Implementation of a dictionary by means of a skip list

Variables

size: integer
skip-list: a two-dimensional collection of nodes; each node contains an item (an element and a key)
and pointers to the nodes before, after, above and below the node (if these exist)

T

start: pointer to node

invariant: the nodes n1yg, ..., nyo of skip-list contain the items of the dictionary sorted by key.
For every tower, the nodes in the tower contain the same item. The keys of the first and last tower
are —oo and oo, respectively. Only the top level only contains two nodes: 79 and ng41,4. size is
the size of the dictionary.! start points to ng .-

Initialization
size < 0
skip-list + —

Key of node ng is —oo and key of node nq g is 0o
start points to ng o

Algorithms

size():
output: size of dictionary
return size

isEmpty():
output: dictionary is empty?
return (size = 0)

skipSearch(key):
input: key to be searched for

!The auxiliary insertAfterAbove does not preserve this property. We can remedy this by changing either the invariant
or the algorithms. For simplicity, we will not do that.



output: node of skip-list with the largest key that is less than or equal to key on the bottom level

node < start
while there is a node below node do
loop-invariant: the keys of all the nodes before node are smaller than or equal to key

node < node below node

while key of node after node < key do

loop-invariant: the keys of all the nodes before node are smaller than or equal to key

node <— node after node

return node

findElement(key):
input: key to be searched for
output: element of item with key in the dictionary; NO-SUCH-KEY if no such item exists
node < skipSearch(key)
if key of node = key then
return element of node
else
return NO-SUCH-KEY

insertAfterAbove(after, above, key, element):
input: item of node to be inserted; position in skip-list where node is to be inserted
output: inserted node
postcondition: node with item (key, element) has been inserted after node after and above node
above in skip-list; if after = start one level is added to the first and last tower
node < node with item (key, element)
insert node after node after and above node above
if after = start then
insert a node with key —oo on top of the first tower
start < inserted node
insert a node with key oo on top of the last tower
return node

skiplnsert(key, element):
input: item to be inserted
postcondition: tower with item (key, element) has been inserted in skip-list
after < skipSearch(key)
insert a node with item (key, element) after node after?
above < inserted node
flip coin
while coin = heads do
loop-invariant: above is the top node of the tower being inserted
while there is no node above node after do
loop-invariant: there is no node above the nodes in between the node following after and the
node before above
after < node before node after
after < node above node after
above < insertAfterAbove(after, above, key, element)

2There is no node above or below the inserted node.



flip coin
size < size + 1

insertltem(key, element):

input: item to be inserted

postcondition: item (key, element) has been inserted into the dictionary
skiplnsert(key, element)

skipRemove(key):
input: key to be searched for
output: element of item with key in skip-list; NO-SUCH-KEY if no such item exists
postcondition: tower with key is has been removed from skip-list
node < skipSearch(key)
if key of node = key then
element < element of node
while there is a node above node do
loop-invariant: nodes below node have been removed
node < node above node
remove node below node
remove node
while one but top level has only two (dummy) nodes do
remove one but top level from skip-list
size < size — 1
return element

else
return NO-SUCH-KEY

remove(key):
input: key to be searched for
output: element of item with key in dictionary; NO-SUCH-KEY if no such item exists
postcondition: item has been removed from dictionary

skipRemove(key)



