Implementation of a vector with an array

Variables

sequence: array of elements
size: integer
invariant: sequence[0], ..., sequence[size — 1] are the elements of the vector

Initialization

size + 0

Algorithms

size():
output: size of vector
return size

isEmpty():
output: vector is empty?
return (size = 0)

elemAtRank(rank):
precondition: rank is valid!
input: rank of element to be returned
output: element at rank

return sequence[rank]

replaceAtRank(rank, element):
precondition: rank is valid
postcondition: element at rank has been replaced by element
input: rank of element to be replaced and replacement element
output: replaced element

temp < sequence[rank)

sequence[rank] < element

return temp

insertAtRank(rank, element):
precondition: rank is valid or rank = size, and sequence is not full
postcondition: element has been inserted at rank
input: element to be inserted and rank at which element has to be inserted
move sequence[rank], .. ., sequence[size — 1] one position to the right
sequence[rank] < element
size < size + 1
Ad (1):
for ¢ = size—1,...,rank do
loop-invariant: Vj : i < j < size : sequence[j] has been moved one position to the right
sequenceli + 1] « sequence]i]

removeAtRank(rank):
precondition: rank is valid
postcondition: element at rank has been removed
input: rank of the element to be removed
output: element at rank
temp < sequence[rank)

Lrank is invalid if rank < 0 V rank > size.



move sequence[rank + 1],. .., sequence[size — 1] one position to the left (2)
size ¢ size — 1
return temp
Ad (2):
for i =rank+1,...,size—1 do
loop-invariant: Vj : rank < j < i : sequence[j] has been moved one position to the left
sequenceli — 1] + sequence]i]

Implementation of a list with a circular array

Variables

sequence: array of positions; each position contains an element and an index
first: integer

last: integer

capacity: integer

invariant: if first < last, then the elements stored in the positions sequence[first], ..., sequence[last — 1] are
the elements of the list; otherwise, the elements stored in the positions sequence[first], ..., sequence[capacity
— 1], sequence[Q], ..., sequence[last — 1] are the elements of the list; the indices stored in the positions

correspond to the indices of the array, that is, the index stored in position sequenceli] is i; capacity is the
capacity of the array sequence

Initialization

first < 0
last + 0
capacity + capacity of the array

Algorithms

length(begin, end):

input: indices of array sequence

output: length of the segment of sequence from (and including) begin upto (and excluding) end
return (capacity + end — begin) mod capacity

leftOf (index):

input: index of array sequence

output: index of cell to the left of index
return (capacity + index — 1) mod capacity

rightOf(index):

input: index of array sequence

output: index of cell to the right of index
return (indez + 1) mod capacity

moveleft(begin, end):
input: indices of array sequence
output: move the segment of sequence from (and including) begin upto (and excluding) end one position
to the left
index < begin
while index # end do
loop invariant: sequence[begin], ..., sequence[leftOf(index)] have been moved one position to the left
sequence[leftOf(index)] + sequence[index]
index of sequence[leftOf(index)] + leftOf(indexz)
index <+ rightOf(index)



moveRight(begin, end):
input: indices of array sequence
output: move the segment of sequence from (and including) begin upto (and excluding) end one position
to the right
indezx ¢ end
while index # begin do
loop invariant: sequence[index], . .., sequence[leftOf(end)] have been moved one position to the right
sequencelindez] < sequence[leftOf(index)]
index of sequence[index] + indez
indexr + leftOf(index)

size():
output: size of list
return length(first, last)

isEmpty():
output: list is empty?
return (first = last)

first():
precondition: list is nonempty
output: first position of list
return sequence[first]

last():
precondition: list is nonempty
output: last position of list
return sequence[leftOf(last)]

before(position):
precondition: position is not first position and position is valid?
output: position of list before position

index < index of position

return sequence[leftOf(indez))

after(position):
precondition: position is not last position and position is valid
output: position of list after position

index < index of position

return sequence[rightOf(indez)]

isFirst(position):

precondition: position is valid

output: is position first position of list?
return (position = first())

isLast(position):

precondition: position is valid

output: is position last position of list?
return (position = last())

replace(position, element):
precondition: position is valid
postcondition: element at position in list has been replaced with element
input: position element of which is to be replaced with element
output: replaced element
element < element of position

2position is valid if it is part of the list



element of position < element
return element

swap(first, second):
precondition: first and second are valid
postcondition: elements of first and second have been swapped
input: positions elements of which are to be swapped

swap elements of first and second

insertFirst(element):
precondition: array is not full®
postcondition: position with element has been inserted at the beginning of list
input: element to be inserted
output: position of inserted element
first < leftOf(first)
position < position with element and first
sequencelfirst] < position
return position

insertLast(element):
precondition: array is not full
postcondition: position with element has been inserted at the end of list
input: element to be inserted
output: position of inserted element
position < position with element and last
sequence[last] < position
last <+ rightOf(last)
return position

insertBefore(position, element):
precondition: array is not full and position is valid
postcondition: position with element has been inserted before position in list
input: element to be inserted before position
output: position of inserted element
index < index of position
if length(first, index) < length(indez, last) then
moveleft(first, index)
temp < position with element and leftOf(index)
sequence[leftOf(indez)] < temp
first < leftOf(first)
else
moveRight(indez, last)
temp < position with element and index
sequencelindez] < temp
last + rightOf(last)
return temp

insertAfter(position, element):
precondition: array is not full and position is valid
postcondition: position with element has been inserted after position in list
input: element to be inserted after position
output: position of inserted element
if position = last() then
return insertLast(element)

3 capacity — size() > 2



else
return insertBefore(after(position), element)

remove(position):
precondition: position is valid
postcondition: position has been removed from list
input: position to be removed
output: element of removed position
element < element of position
index < index of position
if length(first, indez) < length(rightOf(indez), last) then
moveRight(first, index)
first < rightOf(first)
else
moveleft(rightOf(indez), last)
last < leftOf(last)
return element



