Implementation of a list with a doubly linked list

Variables

size: integer
sequence: doubly linked list with dummy nodes at the beginning and the end; each node, apart from the
nodes ng and n,, 41, contains an element of the list

A T TN — —
head: pointer to node
tail: pointer to node

imwariant: the nodes nq, ..., ny, of sequence contain the elements of the list listed from first to last element.
size is the size of the list. head points to ng and tail points to n,41.

Initialization

size < 0

_—\
sequence —
V

head points to ng
tail points to n

Algorithms

size()
output: size of list
return size

isEmpty()
output: list is empty?
return (size = 0)

elements():
output: collection of elements of the list
col + empty collection
node < second node of sequence
while node # tail do
loop invariant: col contains the elements of nodes after head and before node
add element of node to col
return col

positions():
output: collection of positions of the list
col < empty collection
node < second node of sequence
while node # tail do
loop invariant: col contains the nodes after head and before node
add node to col
return col

first():
precondition: list is nonempty
output: first position of list
return second node of sequence



last():
precondition: list is nonempty
output: last position of list

return one but last node of sequence

before(position):
precondition: position is not the first position of list
output: position of list before position

return node before position in sequence

after(position):
precondition: position is not the last position of list
output: position of list after position

return node after position in sequence

isFirst(position):
output: is position first position of list?
return (position = first())

isLast(position):
output: is position last position of list?
return (position = last())

replaceElement(position, element):
postcondition: element at position in list has been replaced with element
input: position element of which is to be replaced with element
output: replaced element

temp < element of position

element of position < element

return temp

swapElements(first, second):
postcondition: elements of first and second have been swapped
input: positions elements of which are to be swapped

swap elements of first and second

insertFirst(element):
postcondition: position with element has been inserted at the beginning of list
input: element to be inserted
output: position of inserted element

node < node with element

insert node in between the first and second node of sequence

size « size + 1

return node

insertLast(element):
postcondition: position with element has been inserted at the end of list
input: element to be inserted
output: position of inserted element

node < node with element

insert node in between the last and one but last node of sequence

size < size + 1

return node

insertBefore(position, element):
postcondition: position with element has been inserted before position in list
input: element to be inserted before position
output: position of inserted element



node < node with element

insert node before position in sequence
size < size + 1

return node

insertAfter(position, element):
postcondition: position with element has been inserted after position in list
input: element to be inserted after position
output: position of inserted element

node < node with element

insert node after position in sequence

size « size + 1

return node

remove(position):
postcondition: position has been removed from list
input: position to be removed
output: element of removed position

temp < element of position

remove position from sequence

size < size — 1

return temp



