Implementation of a stack with an array

Variables

stack: array of elements
top: integer
invariant: stack[0], ..., stack{top] are the elements of the stack listed from bottom to top

Initialization

top + —1

Algorithms

size():
output: size of stack
return (top + 1)

isEmpty():
output: stack is empty?
return (top < 0)

top():
precondition: stack is nonempty
output: top element of stack
return stack{top)

push(element):
precondition: stack is not full
postcondition: element has been added onto top of stack
input: element to be added to stack

top < top + 1

stack[top] <+ element

pop():
precondition: stack is nonempty
postcondition: top element has been removed from stack
output: top element of stack

temp < stack{top)

top < top — 1

return temp

Implementation of a queue with a circular array

Variables

queue: array of elements

front: integer

rear: integer

capacity: integer

invariant: if front < rear, then queue[front], ..., queue[rear — 1] are the elements of the queue from front to
rear; otherwise, queue[front], ..., queue[capacity — 1], queue[0], ..., queue[rear — 1] are the elements of the
queue from front to rear



Initialization

front < 0
rear <— 0
capacity < capacity of the array

Algorithms

size():
output: size of queue
return (capacity — front + rear) mod capacity

isEmpty():
output: queue is empty?
return (front = rear)

front():
precondition: queue is nonempty
output: front element of queue
return queue[front]

enqueue(element):
precondition: array queue holds less than capacity — 1 elements
postcondition: element has been added at the rear of queue
input: element to be added to queue

queue[rear] + element

rear < (rear + 1) mod capacity

dequeue():
precondition: queue is nonempty
postcondition: front element has been removed from queue
output: front element of queue

temp < queuve[front]

front < (front + 1) mod capacity

return temp



