Proposition 6.5. Let T be a nonempty binary tree with n nodes and height h.

- 1. If the levels 0, 1, ..., h have the maximum number of nodes then $n = 2^{h+1} 1$.
- 2. If the levels $0, 1, \ldots, h-1$ have the maximum number of nodes and level h has one node¹ then $n=2^h$.
- 3. If T is complete then $2^h \le n \le 2^{h+1} 1$.
- 4. If T is complete then $h = \lfloor \log(n) \rfloor$.

Proof

- 1. Induction on T (easy exercise).
- 2. Immediate consequence of 1.
- 3. Immediate consequence of 1. and 2.
- 4. According to 3.,

$$2^{h} \le n$$

$$\Rightarrow h \le \log(n). \tag{1}$$

According to 3.,

$$2^{h+1} - 1 \ge n$$

$$\Rightarrow 2^{h+1} \ge n + 1$$

$$\Rightarrow h + 1 \ge \log(n+1)$$

$$\Rightarrow h \ge \log(n+1) - 1$$

$$\Rightarrow h > \log(n) - 1 \quad [\log(n+1) > \log(n)]. \tag{2}$$

Combining (1) and (2) we get $h = \lfloor \log(n) \rfloor$.

¹This is not a strong binary tree.