1 Binary search tree implementation of a dictionary

Variables

tree: binary tree
inv: tree is a binary search tree containing the items of the dictionary

Algorithms

size()
out: size of dictionary
return (size of tree)

isEmpty()
out: dictionary is empty?
return (tree is empty?)

findElement(key)
in: key to be searched for
out: element of item with key in dictionary; NO-SUCH-KEY if no such item exists
if tree is empty
return NO-SUCH-KEY
else
return findElement(key, root of tree)

findElement(key, node)
in: key to be searched for; root of subtree to be searched
out: element of item with key in subtree rooted at node; NO-SUCH-KEY if no such item exists
if node is leaf
if key of node = key
return element of node
else
return NO-SUCH-KEY
else
if key of node = key
return element of node
else if key of node > key
if node has left child
return findElement(key, left child of node)
else
return NO-SUCH-KEY
else (key of node < key)
if node has right child
return findElement(key, right child of node)
else
return NO-SUCH-KEY

insertltem(key, element)
in: item to be inserted
post: item (key, element) has been inserted into dictionary



if tree is empty

let node containing (key, element) be the root of tree
else

return insertltem(key, element, root of tree)

insertltem(key, element, node)
in: item to be inserted; root of subtree to be inserted in
post: item (key, element) has been inserted into subtree rooted at node
if node is leaf
if key of node > key
add node containing (key, element) as left child of node
else
add node containing (key, element) as right child of node
else
if key of node > key
if node has left child
insertltem(key, element, left child of node)
else
add node containing (key, element) as left child of node
else (key of node < key)
if node has right child
insertltem(key, element, right child of node)
else
add node containing (key, element) as right child of node

remove(key)
in: key to be searched for
out: element of item with key in dictionary; NO-SUCH-KEY if no such item exists
post: item has been removed from dictionary
if tree is empty
return NO-SUCH-KEY
else
return remove(key, root of tree)

remove(key, node)
in: key to be searched for; root of subtree to be searched
out: element of item with key in subtree rooted at node; NO-SUCH-KEY if no such item exists
post: item has been removed from subtree rooted at node
if node is leaf
if key of node = key
return element of node
remove node
else
return NO-SUCH-KEY
else
if key of node > key
if node has left child
return remove(key, left child of node)
else



return NO-SUCH-KEY
else if key of node < key
if node has right child
return remove(key, right child of node)
else
return NO-SUCH-KEY
else (key of node = key)
if node has only one child
return element of node
replace node by its child
else
let item = removeMin(right child of node)
return element of node
store item in node

removeMin(node)
in: root of subtree
out: item with minimal key in subtree rooted at node
post: node of item with minimal key has been removed from subtree rooted at node
if node is leaf
return item of node
remove node
else
if node has left child
removeMin(left child of node)
else
return item of node
replace node by its right child



