
FORMAL VERIFICATION OF A CONCURRENT BINARY SEARCH
TREE

XIWEN CHEN

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

GRADUATE PROGRAM IN DEPARTMENT OF COMPUTER SCIENCE AND
ENGINEERING

YORK UNIVERSITY
TORONTO, ONTARIO

AUGUST 2013

FORMAL VERIFICATION OF A
CONCURRENT BINARY SEARCH TREE

by Xiwen Chen

a thesis submitted to the Faculty of Graduate Studies of
York University in partial fulfilment of the requirements
for the degree of

MASTER OF SCIENCE
c© 2013

Permission has been granted to: a) YORK UNIVER-
SITY LIBRARIES to lend or sell copies of this disserta-
tion in paper, microform or electronic formats, and b)
LIBRARY AND ARCHIVES CANADA to reproduce,
lend, distribute, or sell copies of this thesis anywhere in
the world in microform, paper or electronic formats and
to authorise or procure the reproduction, loan, distribu-
tion or sale of copies of this thesis anywhere in the world
in microform, paper or electronic formats.

The author reserves other publication rights, and neither
the thesis nor extensive extracts for it may be printed or
otherwise reproduced without the author’s written per-
mission.

FORMAL VERIFICATION OF A CONCURRENT BINARY SEARCH
TREE

by Xiwen Chen

By virtue of submitting this document electronically, the author certifies that this is
a true electronic equivalent of the copy of the thesis approved by York University for
the award of the degree. No alteration of the content has occurred and if there are
any minor variations in formatting, they are as a result of the coversion to Adobe
Acrobat format (or similar software application).

Examination Committee Members:

1. Eric Ruppert

2. Franck van Breugel

3. Jonathan S. Ostroff

4. Scott P. Kelly

Abstract

In this thesis, we formally verify a simplified version of the non-blocking lineariz-

able binary search tree of Ellen et al., which appeared in the Proceedings of the 29th

Annual ACM Symposium on Principles of Distributed Computing (pages 131-140),

using the PVS specification and verification system. The algorithm and its speci-

fication are both modelled as I/O automata. In order to formally verify that the

algorithm implements the specification, we show that the algorithm’s I/O automa-

ton simulates the specification’s. An intermediate I/O automaton is constructed

to simplify the simulation proof of linearizability. By showing there is a forward

simulation from the algorithm’s I/O automaton to the intermediate automaton and

there is a backward simulation from the intermediate automaton to the specifica-

tion’s automaton, we formally verify that the algorithm implements its specification.

While formalizing the proof, we found small errors in the original proof.

iv

Acknowledgements

I would like to express my very great appreciation to Professor Eric Ruppert, my

research supervisor, for his patient guidance, valuable and constructive suggestions

for this research. Without his advice and help, this thesis would not have been

completed.

I am particular grateful for the assistance of Professor Franck van Breugel, who

broadened my horizons and helped me to decide on my research area. I would like

to thank all members of my examining committee for their helpful comments on my

thesis.

Last but not least, I would like to acknowledge the support provided by my

family for my thesis.

v

Table of Contents

Abstract iv

Acknowledgements v

Table of Contents vi

1 Introduction 1

1.1 Formal Verification . 3

1.2 Previous Work . 6

1.3 Overview of the Thesis . 8

2 Proving Linearizability Using Simulations 10

2.1 Model of Computation . 10

2.2 Data Types . 11

2.3 Input/Output Automata . 16

2.3.1 Concurrent Implementations and Linearizability 18

2.3.2 Canonical Automata . 24

vi

2.4 Simulations . 32

2.4.1 Forward Simulations . 32

2.4.2 Backward Simulations . 40

3 Non-blocking Binary Search Trees and a Simplified Algorithm 43

3.1 A Non-blocking Binary Search Tree Algorithm 46

3.1.1 Implementation Overview . 46

3.1.2 Detailed Implementation . 53

3.2 A Simplified Algorithm . 59

4 Modelling the Algorithms 64

4.1 The Canonical Automaton . 64

4.2 The Concrete Automaton . 66

4.3 An Intermediate Automaton and Backward Simulation 74

4.4 The Forward Simulation . 85

5 Invariants and Proofs 98

5.1 An Overview of the Proof . 98

5.2 Proofs in the Forward Simulation . 100

5.3 Some Definitions in PVS . 110

5.4 Errors Found . 113

5.5 Proofs in the Backward Simulation 119

vii

6 Conclusion 121

Bibliography 125

viii

1 Introduction

With the arrival of the multi-core central processing unit (CPU) revolution, a consid-

erable fraction of the applications developed today is concurrent. “But concurrency

is hard. Not only are today’s languages and tools inadequate to transform appli-

cations into parallel programs, but also it is difficult to find parallelism in main

stream applications, and—worst of all—concurrency requires programmers to think

in a way humans find difficult”, as Microsoft’s Herb Sutter and James Larus wrote

in 2005 [1]. Unfortunately, almost a decade later, the above quote still reflects the

current state of affairs in the field of software development.

Since concurrency is hard, libraries with concurrency primitives such as a concur-

rent array, a concurrent queue and a concurrent set are essential for today’s software

developer. Such concurrency primitives provide objects that can be accessed con-

currently by multiple processes. One popular way of specifying correctness of such a

concurrent object is linearizability. This means that it behaves as if operations on it

occur instantaneously. For example, to design a concurrent algorithm that stores a

searchable set that can be updated by insert and delete operations, which is a very

1

common scenario, a concurrent implementation of binary search trees will be very

helpful.

It has been a long time since researchers realized that traditional approaches,

which are based on mutual exclusion, are often not efficient enough and have associ-

ated problems such as deadlock, livelock and convoying. To combat these problems,

they developed concurrent objects that do not rely on mutual exclusion mechanisms

such as locks and semaphores. Lock-free implementations, which avoid mutual ex-

clusion using other techniques to coordinate access by different processes to shared

data, provide high parallelism and good performance under a variety of different

workloads. There are several different progress properties that a lock-free algorithm

can satisfy. The wait-free property [2] ensures that any process can complete any

operation in a finite number of steps, regardless of the execution speeds of the other

processes. The non-blocking property guarantees that some operation will com-

plete in a finite number of steps. This weaker condition allows individual processes

to starve but guarantees system-wide progress. All wait-free algorithms are non-

blocking. The terms non-blocking and lock-free are often used interchangeably. We

use non-blocking as a term to specify algorithms that satisfy this progress condi-

tion and use lock-free as a general term to describe algorithms that do not rely on

mutual exclusion. Lock-free algorithms are generally more complex than lock-based

algorithms, because intricate parallelism techniques are introduced to avoid locks.

2

Recently, Ellen et al. [3] gave a non-blocking linearizable implementation of a

binary search tree. They provided a proof of correctness written in English which was

quite lengthy and complex. The goal of our work is to provide a formal verification

of this proof.

1.1 Formal Verification

Since concurrency is hard, it should come as no surprise that concurrent algorithms

are prone to errors. Therefore, there are significant challenges to ensure the correct-

ness of concurrent algorithms in general, and lock-free algorithms in particular. For

example, Detlefs et al. [4] developed a lock-free double-ended queue, called the Snark

algorithm, with a proof of correctness, but bugs were reported later by Doherty [5].

Shann et al. [6] published their non-blocking queue algorithm with safety proofs,

but bugs were found when formal verification methods were applied by Colvin and

Groves in [7].

Although it is hard to avoid bugs in an algorithm, there are a variety of methods

to reduce the chance of making a mistake. Testing is one such method to detect

bugs. However, testing all executions of a nontrivial concurrent algorithm is usually

infeasible (or even impossible) because there are simply too many. Formal verifica-

tion is another method of checking whether a design satisfies some properties. It

is the act of proving or disproving the correctness of algorithms with respect to a

3

certain formal specification or property, using formal methods of mathematics. The

two main approaches are model checking and theorem proving.

Model checking builds a mathematical model of the algorithm as a collection of

states and actions that move from one state to another. Then, a model checker per-

forms a systematic, exhaustive exploration of the state space, for example to check

that an invariant is true in all reachable states. Lamport [8] described a way to ver-

ify concurrent algorithms using the +CAL algorithm language and the TCL model

checker and successfully detected the bugs in the Snark algorithm found by Do-

herty et al. [9]. He translated the algorithm into the +CAL algorithm language and

then to a TLA+ specification that can be model checked. Liu et al. [10] presented

their way to check linearizability based on refinement relations from abstract speci-

fications to concrete implementations using model checking methods. Their method

exploits model checking of finite state systems specified as concurrent processes with

shared variables, and partial order reduction is applied to reduce the search space.

The toolset they used can automatically check a variety of algorithms. However,

no tree implementation has been verified in their paper and the tool has not been

published. The approaches that use model checking techniques can help us quickly

discover bugs in some algorithms. However, for complicated concurrent algorithms,

the search spaces are usually too large to be explored in a reasonable amount of

time and using a reasonable amount of space.

4

Theorem proving (also called deductive reasoning), is the proving of mathemat-

ical theorems in a format so that the proof can be checked by a computer program

such as PVS, Coq, HOL or Isabelle. Theorem proving is more powerful than model

checking because it can deal with an infinite state space more easily. Because the

binary search tree of Ellen et al. [3] is a data structure of unbounded keys, and pro-

cesses, the state space is infinite. So, we use the PVS theorem prover to formalize

the binary search tree’s proof of correctness.

PVS is a verification system that contains a specification language and a theorem

prover. We used this verification system in our proofs. Compared with other theo-

rem proving systems, such as HOL and Isabelle, PVS has several advantages. First,

its specification language allows the user to define things in a way that is similar

to programming languages. For instance, we can define a data type using square

brackets and specify its fields’ names and types. We can also define data types

by explicitly writing datatype, and PVS then automatically generates basic axioms

for it. Hence, having such a specification language, we can easily formalize pseu-

docode using PVS and focus on proving correctness. Second, unlike HOL, the PVS

theorem prover allows users to define their axioms, which provides more freedom

to construct proofs based on some facts without getting stuck on low level details.

However, because introducing user defined axioms may introduce inconsistencies,

axioms must be very carefully designed. Third, PVS also provides some automatic

5

reasoning procedures such as grind, assert and bddsimp etc., which simplify the task

of proving correctness.

1.2 Previous Work

Lynch and Tuttle [11] introduced I/O automata (IOA), which can be used to model

concurrent algorithms and specifications of correctness. To prove that an algorithm

correctly implements a specification, one has to show that for every execution of

the algorithm’s automaton, the externally observable behaviour is the same as the

behaviour of the specification automaton. Lynch and Vaandrager [12] introduced

techniques for doing this, including forward simulations and backward simulations.

In Doherty’s Master’s thesis [5], he introduced a way to use the PVS theo-

rem prover to check the forward simulation between the Snark algorithm [4] and

its specification, and detected bugs in the algorithm. A canonical automaton was

introduced there to model the specification and capture the property of lineariz-

ability. Then, a forward simulation was used to show that the automaton of the

concurrent implementation simulates the canonical automaton, thus showing that

the implementation is linearizable. (We shall discuss this technique in more detail

in Chapter 2.) While the author was trying to prove the correctness of the Snark

algorithm using a forward simulation, he detected bugs. He also showed how to fix

those bugs, and mentioned that a backward simulation might be needed to complete

6

the proof. The complete verification of this algorithm was done later in [9].

Doherty et al. [13] used a similar method to verify a queue that is slightly op-

timized from Michael and Scott’s non-blocking FIFO queue [14] using the PVS

theorem prover. In this paper, they formally described a way to verify the non-

blocking algorithm using simulation techniques. Their idea was to introduce three

IOAs: an abstract one which was the same as the canonical automaton, an interme-

diate one and a concrete one which represented the implementation. A backward

simulation was proved between the abstract IOA and the intermediate IOA, and a

forward simulation was verified between the intermediate IOA and the concrete IOA.

This technique was also used in [9] to complete the proof of the correctness of the

modified Snark algorithm. More details about the relationship between backward

simulations and non-blocking algorithms are also discussed in [15].

Colvin et al. [7] used this method (i.e., using three IOAs) to prove the correct-

ness of an array-based non-blocking implementation of a bounded queue by Shann

et al. [6] and also detected errors in the algorithm. After they fixed that algorithm,

they successfully formally verified the modified version using PVS.

In later work of Colvin et al. [16], they used this hybrid forward and backward

simulation technique to verify a lazy concurrent list-based set algorithm [17]. Al-

though this algorithm is based on locks, one of its operations (a contain operation)

has the wait-freedom property.

7

Although many concurrent algorithms manipulating arrays, queues and lists have

been formally verified, no one has tried to formally verify non-blocking binary search

tree algorithms so far. Hence, our goal is to formally verify the non-blocking binary

search tree algorithm discovered by Ellen et al. [3]. Our idea of how to formally

verify the algorithm was inspired by Colvin et al. [16].

Many people have formally verified concurrent algorithms using the PVS theorem

prover. Gao used PVS to prove the correctness and progress properties of a lock-

free dynamic hash table in his Ph.D. thesis [18]. In his thesis, he also proved the

correctness of a lock-free parallel garbage collector using PVS. Archer et al. [19]

described a general way to model concurrent algorithms as timed I/O automata

using the Tempo toolkits [20] and then verify the properties of the I/O automata in

PVS through the interface TAME [21, 22].

1.3 Overview of the Thesis

In this thesis, we first introduce our model of computation in Chapter 2. For a

data type, we define its sequential executions, atomic executions and concurrent

executions. Once, an implementation of a data type is modelled by means of an I/O

automaton, simulations are used to prove the correctness of its executions.

Chapter 3 presents the non-blocking binary search tree algorithm of Ellen et al. [3].

We give an overview of how this algorithm works and then explain some key steps

8

of that algorithm. A simplified algorithm is given later in this chapter to make our

proofs easier.

In Chapter 4, the details of modelling the binary search tree algorithm are pre-

sented. Then, we define a forward simulation and a backward simulation in order

to prove the correctness of the algorithm. Chapter 5 discusses the proofs for the

forward and backward simulation. The difficulties and bugs that we detected dur-

ing the formal verification using PVS are also discussed there. Chapter 6 gives a

summary and describes some of the future work we would like to pursue.

9

2 Proving Linearizability Using Simulations

2.1 Model of Computation

To model data types and algorithms in a shared-memory architecture, we use an

asynchronous shared-memory model. In the asynchronous model, different processes

take steps in an arbitrary order, at arbitrary relative speeds. Intuitively, in the

asynchronous model, we assume there is a scheduler that determines which process

will take the next step. Algorithms and data structures should behave correctly for

all possible schedules made by that scheduler. Our model allows failures to model

the fact that the systems in which the algorithms are running may not be completely

reliable. Therefore, programs need to tolerate faulty behaviour. We consider crash

failures : a process executing some code may stop without a warning. (These are

also known as halting failures.)

In a shared-memory model, a collection of processes interact with one another via

a collection of shared objects [23]. Such an assumption captures the way commu-

nication occurs in a multi-core CPU. We assume our system provides some atomic

10

shared objects, either implemented in hardware or by the operating system. Atomic

objects can be accessed concurrently by several processes, but they ensure that each

operation performed by the processes occurs atomically. For example, read/write

registers are one of the most frequently used types of shared objects in concurrent

systems. A read/write register stores a value. A write(v) operation changes the

value to v and returns ack. A read operation returns the value currently stored

in the read/write register without changing it. Both write and read operations are

atomic. Compare-and-swap is also a popular type of atomic object in multi-core

systems. A compare-and-swap (CAS) object X stores a value from a universe U ,

and provides only one operation, CAS (u, v), where u and v are in U . A CAS (u, v)

on object X successfully writes v into X if and only if the value previously stored

in X is equal to u. Otherwise, CAS (u, v) does nothing to the value stored in X.

Whether it succeeds or fails, CAS (u, v) returns the old value of X. We present a

formal way to describe the model we discussed here in Section 2.3.

2.2 Data Types

If we wish to use more complex data structures than those provided by the system,

we must implement them in software. In order to describe the correctness of a

concurrent implementation of a data type, Herlihy and Wing [24] defined a property

called linearizability. It ensures that every operation on the concurrent objects

11

appears to take effect atomically at some point between its invocation and response.

Before we formally define linearizability, we introduce the definition of a sequential

specification of a data type, adapted from [23, Chapter 9.4].

Definition 2.1. A data type is a tuple 〈V, v0, I, R, f〉 consisting of

• a set V of values,

• an initial value v0 ∈ V ,

• a set I of invocations,

• a set R of responses, and

• a function f : V × I → R× V .

Intuitively, an object of type 〈V, v0, I, R, f〉 stores a value from V and starts

with the initial value v0. If an invocation inv ∈ I is performed when the object’s

value is v ∈ V , then f(v, inv) = (res, v′) describes the outcome of the invocation:

the object’s value is changed to v′ and the object returns the response res. For

simplicity, we restrict data types to behave deterministically here. This covers most

data types encountered in practice.

A data type can be manipulated by either one process or a set of processes. We

define a sequential execution of a data type by only one process in Definition 2.2.

12

Definition 2.2. A sequential execution of a data type 〈V, v0, I, R, f〉 is a finite se-

quence 〈v0, inv1, res1, v1, inv2, res2, · · · , vk〉, such that for all 0 ≤ j < k, f(vj, invj+1) =

(resj+1, vj+1).

We denote the empty sequence by ε and use � to denote concatenation of se-

quences. Using the definition of sequential executions of a data type, we can define

the notion of a sequential trace of a data type. A trace is also called a history by

Herlihy and Wing [24].

Definition 2.3. The trace of a sequential execution is defined inductively as follows:

• trace(ε) = ε, and

• trace(〈v, inv, resp〉�E) = 〈inv, resp〉�trace(E), for any execution 〈v, inv, resp〉�

E.

A sequence is a sequential trace of a data type if it is the trace of some sequential

execution of that data type. Here, we give an example of a fetch and increment

(fetch&inc) data type. A fetch&inc data type stores an integer value and provides

only one type of operation. It atomically performs the following three small steps:

(1) read the integer value of the object and store it to a local variable val; (2)

increase the object’s value by 1; (3) return val. More formally, the specification of

a fetch&inc data type is shown in Definition 2.4.

Definition 2.4. A fetch&inc data type is defined as follows:

13

• V = N,

• v0 = 0,

• I = {fi},

• R = {fiResp(n) | n ∈ N}, and

• f(v, fi) = (fiResp(v), v + 1), for any v ∈ V .

For instance, a fetch&inc data type may have a sequential execution:

Es = 〈0, fi, fiResp(0), 1, fi, fiResp(1), 2, fi, fiResp(2), 3, fi, fiResp(3), 4〉.

The trace Ts corresponding to Es is:

Ts = 〈fi, fiResp(0), fi, fiResp(1), fi, fiResp(2), fi, fiResp(3)〉.

A data type can also be concurrently manipulated by a finite set of processes

PROC. Its executions, known as atomic executions, are defined in Definition 2.5.

Definition 2.5. An atomic execution of a data type 〈V, v0, I, R, f〉 manipulated by

a set of processes PROC is a finite sequence 〈v0, (inv1, p1), (res1, p1), v1, (inv2, p2),

(res2, p2), . . . , vk〉 such that for all 0 ≤ j < k, f(vj, invj+1) = (resj+1, vj+1) and for

all 1 ≤ j ≤ k, pj ∈ PROC.

For instance, an atomic execution of a data type among processes p, q and r may

look like:

Ea = 〈v0, (inv, p), (res, p), v1, (inv, r), (res, r), v2, (inv, q), (res, q), v3〉.

14

Or, we can put processes as subscripts for a more compact representation.

Ea = 〈v0, invp, resp, v1, invr, resr, v2, invq, resq, v3〉.

The definition of the atomic trace can also be defined by applying Definition 2.3.

Hence, atomic traces are the trace of atomic executions of a data type. For instance,

the trace of Ea is:

Ta = 〈invp, resp, invr, resr, invq, resq〉.

The invocation and the matching response by p compose a complete operation of p.

For each invocation by process p, the matching response is the next response by p.

Intuitively, in an atomic trace, each response of a process p is immediately preceded

by a matching invocation of p.

An example of an atomic execution on a fetch&inc object manipulated by pro-

cesses p, q, and r is shown below.

〈0, fip, fiRespp(0), 1, fir, fiRespr(1), 2, fip, fiRespp(2), 3, fiq, fiRespq(3), 4〉.

Its atomic trace is:

〈fip, fiRespp(0), fir, fiRespr(1), fip, fiRespp(2), fiq, fiRespq(3)〉.

Besides sequential executions and atomic executions, there are concurrent execu-

tions of implementations of data types. We define concurrent executions and traces

after introducing I/O automata.

15

2.3 Input/Output Automata

The input/output (I/O) automaton is a formal model for asynchronous comput-

ing [23]. It is a powerful and general model that is suitable for describing almost

any type of asynchronous concurrent system. An I/O automaton is a simple type

of state machine in which the transitions are associated with named actions, which

are classified as external or internal. Following the definitions given by Lynch

and Tuttle [11] and Doherty [5], external actions, which are visible to the outside

world, are further classified according to whether they model invocation (input) or

response (output) events. On the other hand, internal actions are visible only to

the automaton itself. Given three disjoint sets in, out, and int of input, output and

internal actions, respectively, we use the triple (in, out, int) as an action signature

S. We denote the sets in, out, and int of the action signature S by in(S), out(S),

and int(S), respectively. Furthermore, we define the external actions, ext(S), to be

in(S) ∪ out(S); acts(S) to be all the actions of S.

Definition 2.6. An input/output automaton A consists of four components,

1. a set states(A) of states,

2. a non-empty set start(A) ⊆ states(A) of start states,

3. an action signature sig(A), and

4. a transition relation trans(A) ⊆ states(A)× acts(sig(A))× states(A).

16

We use acts(A) as shorthand for acts(sig(A)), and similarly for in(A), and so

on. We call an element (s, π, s′) of trans(A) a transition of A. The transition

(s, π, s′) is called an input transition, output transition or internal transition, based

on whether the action π is an input action, output action or internal action. When

(s, π, s′) ∈ trans(A), we write s
π−→A s

′, or s
π−→ s′ when no confusion is possible.

If s
π−→A s

′ we refer to s as the pre-state of the transition, and s′ as the post-state.

Now we present some definitions related to I/O automata, mainly adapted from

Doherty [5].

Definition 2.7. For any I/O automaton A:

1. An execution fragment ofA is a finite sequence α = 〈s0, π1, s1, π2, s2, · · · , πk, sk〉

of alternating states and actions of A such that (si, πi+1, si+1) is a transition

of A for all 0 ≤ i < k. If such a finite execution fragment exists, we write

s0
α

=⇒A sk, or s0
α

=⇒ sk when no confusion is possible.

2. An execution of A is a finite execution fragment whose first state s0 is in

start(A). We denote the set of executions of A by execs(A).

3. For an execution α of A, trace(α) is the sequence α restricted to external

actions of the automaton A.

4. The set traces(A) is the set of traces of executions of A.

17

2.3.1 Concurrent Implementations and Linearizability

Intuitively, a concurrent implementation of a data type specifies a program that can

be executed by each process p ∈ PROC to perform an operation. This program

will also specify the result of the operation to be returned to p. More formally, a

concurrent implementation will be described as an I/O automaton, whose external

actions are invocations and responses of the data type. Since the program that im-

plements an operation may take many steps, those steps are all modelled as internal

actions. When describing a concurrent implementation using an I/O automaton, we

also put processes as subscripts of the actions in each transition to identify which

process takes a step.

Thus, we can formally define concurrent executions and concurrent traces.

Definition 2.8. A concurrent execution of a concurrent implementation manipu-

lated by a set of processes PROC is an execution of its I/O automaton, in which

each action has a process as its subscript.

Definition 2.9. A concurrent trace of a concurrent implementation manipulated

by a set of processes PROC is a trace of its I/O automaton.

Because the steps of processes are interleaved by the scheduler, an invocation of

an operation by one process and its matching response are not guaranteed to be next

to each other, in the trace of a concurrent implementation. Between an invocation

18

and the matching response made by one process, there may be some invocations

and responses for other processes. For example, if the set of processes is {p, q, r}, a

concurrent trace of a data type D may look like:

T = 〈invp, invr, resr, invq, resp, resq〉.

fi

r

q

p

fi fiResp(0)

fiResp(3)

Time

process

fi

fi fiResp(1)

Trace T1: 〈fip, fiq, fiRespp(0), fip, fir, fiRespq(3), fiRespr(1)〉

Figure 2.1: The trace from a finite execution sequence on fetch&inc object by three

processes: p, q, and r.

Figure 2.1 shows one possible trace T1 of a concurrent implementation of a

fetch&inc data type executed by processes p, q and r. The trace of a concurrent data

type, like T1, is complicated because of the interleaving of operations by different

processes. Therefore, we need some properties to identify if a trace is “good” or not.

Linearizability [24] is such a property which guarantees that each concurrent trace

is equivalent to some legal atomic trace that satisfies its sequential specification.

Before formally specifying linearizability, we need to introduce some definitions,

19

adapted from [24].

Definition 2.10. Given a trace T and a process p, a process subtrace, T |p (T at p),

is the subsequence of all invocations and responses in T whose process names are p.

Definition 2.11. Two traces T and T ′ are equivalent if, for every process p, T |p =

T ′|p.

Definition 2.12. A trace T of a data type D is well-formed if, for each process p,

its subtrace T |p starts with an invocation, and alternates between invocations and

responses.

We also define a partial order relation on operations of different processes. Recall

that an operation e consists of the invocation inv(e) together with the matching

response res(e) (if it exists).

Definition 2.13. The irreflexive partial order <T on the operations in trace T , is

defined by: ei <T ej if and only if res(ei) precedes inv(ej) in T.

Informally, the irreflexive partial order <T shows a “sequential” relation among

some operations. Pairs of operations that are not ordered by <T are regarded as

“concurrent” operations. Straightforwardly, if a trace is atomic, <T becomes a total

order. Based on the preceding definitions, we define a trace T to be linearizable as

follows.

20

Definition 2.14. For a trace T ′, let complete(T ′) be the maximal subsequence of T ′

consisting of all responses and their matching invocations. A trace T is linearizable

with respect to a data type D, if it can be extended (by appending zero or more

response events) to some trace T ′ such that:

L1: complete(T ′) is equivalent to some legal atomic trace S, and

L2: <complete(T ′)⊆<S.

A pending operation in an execution is an operation without a matching re-

sponse. Intuitively, for each pending operation that takes effect but does not return

a response, we add the response to obtain T ′. For example, in Figure 2.1, the sec-

ond operation made by process p is pending, but it must take effect in trace T1,

since that is the only way that process q can return fiResp(3). On the other hand,

complete(T ′) excludes those pending operations that have not yet taken effect. As

described by Herlihy [24], “L1 in Definition 2.14 states that processes act as if they

were interleaved at the granularity of complete operations. L2 states that this se-

quential interleaving corresponds to the precedence ordering of operations.” S is

called a linearization of T . Note that L1 also implies that subtraces of each process

in T are well-formed.

To show linearizability of a trace, we can identify a time within each opera-

tion when the operation can be considered to take effect, namely the linearization

point, and show that ordering the operations in the concurrent execution by their

21

linearization points gives an equivalent atomic trace. Each operation that has no

response may or may not be assigned a linearization point. For example, we can

assign linearization points to T1 as shown in Figure 2.2 so that its corresponding

legal atomic trace is T0. Another example of assigning linearization points to a trace

is illustrated in Figure 2.3(a). Since there is no way to assign linearization points to

the trace shown in Figure 2.3(b), it is not linearizable. To see why, in any atomic

trace that preserves the order <complete(T), there is a partial order relation between

the first operations performed by process q and r (because fiRespq(2) precedes fir

in T3). However, their responses violate the specification of the fetch&inc data type.

fi

r

q

p

fi fiResp(0)

fiResp(3)

Time

process

fi

fi fiResp(1)

?

?

?

?

Trace T1: 〈fip, fiq, fiRespp(0), fip, fir, fiRespq(3), fiRespr(1)〉

Figure 2.2: Trace T1 of a fetch&inc object with linearization points (shown as

“stars”). Here, p’s second operation took effect but the operation was pending.

Definition 2.15. A linearizable implementation of a data type D is one whose

concurrent traces are linearizable.

22

fi

r

q

p

Time

process

fi

fi

fiResp(3)

fiResp(1) fiResp(2)fi

fi

fiResp(0)

(a)

(b)

r

q

p

Time

process

fi

fi fiResp(0)

fiResp(1)

fiResp(3)fiResp(2)

fi

Trace T3:〈fip(), fiq(), fiRespq(2), fir(), fiq(), fiRespp(0), fiResp(1), fiRespq(3)〉

?

?

?

?

Trace T2:〈fip(), fiq(), fiRespq(1), fir(), fiq(), fiRespp(0), fiRespr(3), fiRespq(2)〉

Figure 2.3: (a) shows a possible way to assign linearization points (shown as “stars”)

in trace T2. (b) illustrates an execution that is not linearizable.

In other words, a concurrent data structure is linearizable if, for each concurrent

trace of the data type, there is an atomic trace in which every operation returns the

same result, and non-concurrent operations occur in the same order in the atomic

trace as in the concurrent trace.

Definition 2.16. The trace inclusion relation ⊆T is defined as follows: for any I/O

automata A and B, A ⊆T B iff traces(A) ⊆ traces(B).

An I/O automaton can be viewed as a “black box” from the point of view of a

23

user. What the user sees is just the trace of the automaton’s execution. If, for any

automata A and B, A ⊆T B, then any (external) behaviour exhibited by A could

also be exhibited by B. Trace inclusion allows us to identify if one I/O automaton

specifies the desired external behaviour of another automaton. Section 2.4 describes

a formal verification technique based on the trace inclusion property between a

specification automaton and an implementation automaton.

2.3.2 Canonical Automata

Doherty [5] described a canonical automaton which is able to capture all linearizable

traces of the data type D. Doherty proved the traces of any automaton that is a

linearizable implementation of D will be included in the traces of the canonical

automaton [5].

Recall that an automaton consists of four key parts: states, start states, actions

and a transition relation. In the canonical automaton CA for a data type D =

(V, v0, I, R, f) and a set of processes PROC, the state consists of a value from V

and a value of the program counter for each process. Intuitively, a state records the

current value of an instance of D, and the value of the program counter for process p

indicates the next action that p is allowed to perform. Start(CA) contains a single

state where the value is the initial value v0 of D and program counter of each process

p is set to be idle, indicating that p is ready to perform an invocation. As defined

24

in [5], the canonical automaton’s external input actions are invocations of the data

type coupled with processes. Similarly, each external output action is one of the

data type’s responses together with a process. Thus, we will have the following

external signature for CA.

• in(CA) = {invp | inv ∈ I, p ∈ PROC}
• out(CA) = {respp | resp ∈ R, p ∈ PROC}

We call in(CA) its invocations, and out(CA) its responses. Internal actions in

int(CA) which represent the linearization points, apply the update function f of

D’s specification to the value. The transition relation trans(CA) is constructed

straightforwardly based on states and actions.

Figure 2.4 shows how we construct states(CA), start(CA), in(CA), out(CA) and

int(CA), given a set of processes PROC. To guarantee the well-formed property of

the traces of CA, there are three types of values for the program counter: pc idle,

pc inv and pc resp. Intuitively, pc idle indicates that only invocations are allowed

to be performed, and pc inv indicates that a process has performed the invocation

inv and is able to execute an internal action. Similarly, pc resp indicates that the

response resp is allowed to be returned to a process.

Because a state of an automaton is usually represented using a Cartesian prod-

uct, we introduce “state variables” [5] to describe each component of it. For example,

we use a state variable “pcp” for each p ∈ PROC and a state variable “val”, where

pcp = πp(π2(s)) and val = π1(s), for a state s ∈ states(CA). Thus, we have a more

25

states(CA) = V ×
∏

p∈PROC Pcval, where Pcval = {pc idle}∪{pc inv : inv ∈

I} ∪ {pc resp : resp ∈ R}

start(CA) = {v0} ×
∏

p∈PROC{pc idle}, where v0 is the initial value of D

in(CA) = {invp | inv ∈ I, p ∈ PROC}

out(CA) = {respp | resp ∈ R, p ∈ PROC}

int(CA) = {do invp | inv ∈ I, p ∈ PROC}

Figure 2.4: The states, start and actions of the canonical automaton CA with

respect to a data type D and a set of processes PROC.

convenient way to describe trans(CA).

Based on the construction of states(CA), start(CA) and acts(CA), the transition

relation trans(CA) ⊆ states(CA)×acts(CA)×states(CA) of the canonical automa-

ton is obvious. We describe trans(CA) as the set of all triples (s, π, s′) such that

the state s satisfies the some preconditions before executing the action π and the

state s′ is obtained from s by updating s according to π. When a process’s program

counter is pc idle, it is able to perform an invocation. After the invocation, it may

perform an internal action and then a response action may be invoked eventually.

Whenever an action is performed by p, its program counter is updated to ensure the

well-formed property. Additionally, when an internal action is executed, the value

of D in the state of CA is also updated according to the update function f of D.

Table 2.1 illustrates how we use Pre and Eff to capture the pre-conditions before

26

executing an action and the effects of the action on the state, respectively. Note

that the effects of each action form a set of parallel assignments. State variables

that are not mentioned in Eff remain the same.

Action Pre Eff

invp pcp = pc idle pcp ← pc inv

do invp pcp = pc inv val ← v′, pcp ← pc resp,

val = v where (resp, v′) = f(v, inv)

respp pcp = pc resp pcp ← pc idle

Table 2.1: Transitions of a Canonical Automaton.

In Table 2.1, invp, do invp and respp all represent actions, where inv ∈ I, resp ∈

R and p ∈ PROC. The construction of our canonical automaton follows Doherty [5].

A slightly different construction is given by [23, Section 13.2]. To show a concrete

example of constructing a canonical automaton, recall the fetch&inc data type

described in Definition 2.4. The canonical automaton CF for the fetch&inc data

type is shown in Figure 2.5 and Table 2.2.

Linearizability of the Canonical Automaton

This section proves that all traces of the canonical automaton are well-formed and

linearizable. The results in this section are fairly straightforward and mainly follow

27

states(CF) = N ×
∏

p∈PROC Pcval, where Pcval = {pc idle, pc fi} ∪

{pc fiResp(n) | n ∈ N}

start(CF) = {0} ×
∏

p∈PROC{pc idle}

in(CF) = {fip | p ∈ PROC}

out(CF) = {fiResp(n) | n ∈ N, p ∈ PROC}

int(CF) = {do fip | p ∈ PROC}

Figure 2.5: states, start and actions of the canonical automaton CF for the

fetch&inc data type.

Action Pre Eff

fip pcp = pc idle pcp ← pc fi

doF ip pcp = pc fi pcp ← pc fiResp(v)

val = v val ← v + 1

fiRespp(n) pcp = pc fiResp(n) pcp ← pc idle

Table 2.2: Transitions for the canonical automaton CF of the fetch&inc data type.

the proofs in [23] and [5]. We assume we have a data type D = (V, v0, I, R, f) and

the canonical automaton CA as described in the preceding construction.

Recall that a linearizable I/O automaton A should satisfy three properties: its

external actions must match the invocations and responses of D, its traces must be

well-formed, and its traces must be linearizable. According to the construction, it is

28

trivial to show that in(CA) and out(CA) correspond to invocations and responses

of D.

Lemma 2.17. All the traces of CA are well-formed.

Proof. Consider an execution of CA and a process p.

• For the state s ∈ start(A), pcp = pc idle. Because only p’s actions modify pcp,

the first p-indexed action has to be an invocation according to the transitions

in Table 2.1.

• Immediately after any p-indexed invocation invp, pcp = pc inv. According to

the Table 2.1, the only admissible action for p is a do invp, if it exists.

• The next p-indexed action after each do invp is a response, if it exists. The

p-indexed response action also sets pcp to pc idle.

• The next p-indexed action after each response resp is an invocation, if it exists,

because pcp = pc idle.

We next show that all traces of CA are linearizable.

Lemma 2.18. All traces of CA are linearizable.

29

Proof. Let α = 〈s0, π1, s1, π2, s2, · · · , sn−1, πn, sn〉 be an execution of CA and T be

the trace of α. A complete operation in α consists of its invocation inv op, the

internal action do inv op, and the matching response resp op.

Let T ′ be an extension of T obtained by appending the response for every pending

operation in T that has a do inv in α. Let op1, op2, op3, · · · , opk (k ≤ n) be the

operations whose do inv actions are in α, in the order of those do actions. Let S be

the atomic trace 〈inv op1, resp op1, inv op2, resp op2, · · · , inv opk, resp opk〉.

According to Definition 2.14, we must show that S is a legal trace with respect to

the data type D = (V, v0, I, V, f); <complete(T ′)⊆<S; and complete(T ′) is equivalent

to S.

(a). Let the value of the state just prior to the do inv action of opi in α be vi−1.

Since only do inv actions modify the value component of a state of CA, vi

remains the same among all states between states after do invi−1 and before

do invi. Moreover, v0 is the same as the initial value in state s0. Thus, by

the definition of do inv action of opi, f(vi−1, inv opi) = (resp opi, vi), where

in the state after do inv opi, its pcp = pc resp. Thus, resp opi = resp. So,

∀i : f(vi−1, inv opi) = (resp opi, vi) and S is a trace of a legal execution.

(b). For all i, j, if resp opi precedes inv opj in complete(T ′), opi precedes opj in S.

Because we have shown in the proof of Lemma 2.17 that the do action of an

operation is in between its invocation and matching response, do invi precedes

30

do invj in α. Therefore, by the construction of S, resp opi precedes inv opj

in S. So we have <complete(T ′)⊆<S.

(c). We argue that S|p is the same as complete(T ′)|p for every process p. As proved

in part (b), we can easily obtain <complete(T ′)|p⊆<S|p, where both <complete(T ′)|p

and <S|p are total orders. Combined with the fact that for every operation,

its invocation precedes the matching response, the order of invocations and

responses in complete(T ′)|p and S|p must be the same. It remains to show

that every operation in complete(T ′) if and only if it is in S. This is true

because any operation, either a complete operation or a pending one, which

contains the do action is in complete(T ′), and also is in S by the construction.

Pending operations which do not have do actions are in neither complete(T ′)

nor S.

Lynch [23] shows a proof of Lemma 2.18 for a slightly different canonical au-

tomaton, but the idea of that proof is similar to the one given here. The intuition

in both proofs is that we can always linearize the traces according to the do inv

actions of the canonical automaton. Since do inv actions directly follow the update

function of the data type, this order of execution sequence forms a legal sequential

execution.

31

2.4 Simulations

The simulation method [12] is an approach for proving one concurrent system A

implements B by showing a trace inclusion relationship between them. In a simu-

lation proof, each system is modelled as an I/O automaton and we show that each

transition in A has a corresponding execution in B, such that their traces are the

same. This technique has been frequently used for formal verification of linearizabil-

ity of concurrent implementations. An implementation is linearizable if the traces

of the automaton that models the implementation of data type D, are subsumed by

the traces of the canonical automaton of D. To show the inclusion relationship, we

mainly consider two types of simulations: forward and backward.

2.4.1 Forward Simulations

A forward simulation [12] from automaton A to automaton B is a relation fsr

from states of A to states of B such that every initial state of A is related to an

initial state of B, and every action of A yields a corresponding sequence of actions

of B.

Definition 2.19. A forward simulation from the I/O automaton A to I/O au-

tomaton B is a relation fsr ⊆ states(A) × states(B) that satisfies the following

properties:

1. For every s ∈ start(A), there exists a u ∈ start(B), such that (s, u) ∈ fsr.

32

2. If s
α−→A s

′ and (s, u) ∈ fsr, then there exists u
α̂

==⇒B u
′ for some u′ such that

(s′, u′) ∈ fsr, and

3. the external action in α̂ is the same as the external action in α (i.e., either

equals α, if α is an external action, or is empty otherwise).

Recall that s
α−→A s

′ denotes that by performing the action α, state s becomes

the post state s′ in A. The notation u
α̂

==⇒B u′ means that in B, the automaton

moves from state u to u′ by performing a sequence of actions α̂. If the relation

fsr over states(A) and states(B) in Definition 2.19 is a function, we call it a re-

finement [12]. A refinement is a simplified forward simulation that is often used in

formally verifying the correctness of concurrent implementations [5, 7, 9, 10, 13, 16].

Theorem 2.20. If fsr is a forward simulation from A to B, then traces(A) ⊆

traces(B) [12].

Proof. Let EA = 〈s0, π1, s1, π2, · · · , sn−1, πn, sn〉 be an execution of A and TA be

the trace of EA. We argue that there exists an execution EB of B that has

the same trace as TA. Let c0 be an initial state of B, such that (s0, c0) ∈ fsr

(such a c0 exists according to Definition 2.19). We do induction on the length

of EA. If we know s0
〈π1,··· ,πi〉

======⇒A si and c0
〈π̂1,··· ,π̂i〉

======⇒B ci such that c0 ∈ fsr(s0),

ci ∈ fsr(si) and trace(〈π1, · · · , πi〉) = trace(〈π̂1, · · · , π̂i〉), we can construct an ex-

ecution sequence ci
π̂i+1

===⇒B ci+1 of B for si
πi+1−→A si+1 of A, where trace(πi+1) =

33

trace(π̂i+1) and ci+1 ∈ fsr(si+1). Then, c0
〈π̂1,··· ,π̂i+1〉

=======⇒B ci+1, ci+1 ∈ fsr(si+1) and

trace(〈π̂1, · · · , π̂i+1〉) = trace(〈π1, · · · , πi+1〉). The base case is trivial when i = 0.

Finally, we have trace(〈π̂1, · · · , π̂n〉) = trace(〈π1, · · · , πn〉) = trace(EA).

An Example of a Forward Simulation

We shall show an example of how a forward simulation can be used to prove the

correctness of an implementation. A simple implementation of the fetch&inc using

a CAS object is illustrated in Figure 2.6. Recall the specification D = (V, v0, I, R, f)

of a fetch&inc data type in Definition 2.4 and the canonical automaton CF in Fig-

ure 2.5 and Table 2.2. It is fairly easy to see that this implementation is linearizable:

the linearization point of each fetch&inc operation is when it performs its successful

CAS. We shall formalize this argument using a forward simulation.

As described in Section 2.1, a CAS(X,u,v) operation always returns the old value

stored in X. It successfully changes the value stored in X to v if and only if the old

value of X is equal to u. Otherwise, it does not change the value. In order to show

the relation between the implementation and its specification, we first formalize the

algorithm in Figure 2.6 as a concrete automaton C. Let PROC be a set of process

and let Pcval = {pc idle, pcLine1, pcLine2} ∪ {pc fiResp(n) | n ∈ N}. Consider

the concrete automaton for the fetch&inc implementation shown in Figure 2.7.

The state of the concrete automaton consists of a shared variable v, a local vari-

34

Fetch&Inc()

while TRUE {

1 res← v

2 if CAS (v, res, res+ 1) = res

return res

}

Figure 2.6: An algorithm that uses CAS to implement the fetch-and-increment data

type.

states(C) = {v | v ∈ N} ×
∏

p∈PROC{res | res ∈ N} ×
∏

p∈PROC Pcval

start(C) = {s ∈ states(C) | s.v = 0∧∀p ∈ PROC : s.resp = 0∧ s.pcp = idle}

in(C) = {fip | p ∈ PROC}

out(C) = {fiRespp(n) | n ∈ N, p ∈ PROC}

int(C) = {line1p, line2Tp, line2Fp}

Figure 2.7: The concrete automaton that models the implementation of the fetch-

and-increment data type.

able resp for each p and a program counter pcp for each p. Each action corresponds

to executing a line of the code. For simplicity, resp is initialized to 0 for all p. We

use multiple actions to model those lines of code which may subsequently execute

35

different lines depending on their pre-condition, such as if, until and while opera-

tions. For example, in this algorithm, Line 2 in Figure 2.6 is modelled as two internal

actions: line2Tp and line2Fp. One indicates the if condition on line 2 evaluates to

true and the other indicates it evaluates to false.

Action Pre Eff

fip pcp = pc idle pcp ← pcLine1

line1p pcp = pcLine1 pcp ← pcLine2

resp ← v

line2Fp pcp = pcLine2 pcp ← pcLine1

v 6= resp

line2Tp pcp = pcLine2 pcp ← pc fiResp(resp)

v = resp v ← resp + 1

fiRespp(n) pcp = pc fiResp(n) pcp ← pc idle

Table 2.3: Transitions of the concrete automaton C of the fetch-and-increment

algorithm.

The preconditions and effects of each action are shown in Table 2.3. The internal

action line1p formalizes the “read” action in Figure 2.6, and line2Fp captures a failed

CAS (where the value it wants to change is not equal to its expected value). Action

line2Tp corresponds to a successful CAS, where the value is increased by one. After

36

defining the concrete automaton of the algorithm, we need to show that there is a

forward simulation from the concrete automaton C to canonical automaton CF , to

show that C implements CF . To show that a forward simulation exists, we establish

a relation fsr over states(C) and states(CF) and an action correspondence between

acts(C) and acts(CF). First of all, because the program counters are one of the

most important components of the states for both automata, we present how they

are changed and their relation in C and CF in Figure 2.8.

pc_fiResp(n)

Concrete

Abstract

pc_idle

pc_idle pcLine1

pc_fi

pcLine2

pc_fiResp(n)

fiRespp(n)

line2Fp

line1p

line2Tpfip

fip doF ip

fiRespp(n)

Figure 2.8: The state diagrams of process p’s program counter value for both con-

crete and canonical automata and the relation between them.

Intuitively, the connection of program counters between C and CF relates to

the action correspondence of the two automata. A successful CAS action in C

corresponds to a doF ip, which increases the value by one in CF . Any other internal

37

actions in C corresponds to a null sequence of actions in CF . Additionally, all

external actions are performed in the same way in C and CF in order to have the

same traces in the forward simulation. This gives us the forward simulation relation

in terms of the values of the program counter of process p, illustrated by the red

dotted lines in Figure 2.8. Together with the requirement that the value of the

fetch&inc data type recorded in both automata is the same, we have the forward

simulation relation fsr(s, s′), where s ∈ states(C) and s′ ∈ states(CF), defined as

follows:

fsr(s, s′) =(s.v = s′.val)∧ (2.1)(
∀p ∈ PROC : (s.pcp = s′.pcp)∨ (2.2)

(s′.pcp = pc fi ∧ (s.pcp = pcLine1 ∨ s.pcp = pcLine2))
)
.

(2.3)

Basically, (2.1) requires the value of the abstract data type to match the value

stored in CAS object v. (2.2) and (2.3) require that the values of the program

counters are also the same, except that the two values, pcLine1 and pcLine2, in C

both correspond to a single value pc fi in CF . Because local variables are invisible

from CF , they may be arbitrary. Intuitively, this mapping captures the fact that

internal actions: line1 and line2F correspond to null actions in CF .

Lemma 2.21. There exists a forward simulation from C to CF using the relation

38

fsr defined above. (We also proved this lemma using the PVS theorem prover.)

Proof. We prove that (2.1)-(2.3) define a forward simulation, according to the Def-

inition 2.19. Firstly, if s ∈ start(C) then there exists a u ∈ start(CF) such that

u.v = s.val and ∀p : u.pcp = s.pcp = pc idle. Thus (s, u) ∈ fsr.

Secondly, if s
α−→C s′ and (s, u) ∈ fsr, we show there exists a state u′ and a

sequence of actions α̂ such that u
α̂

==⇒CF u′ and (s′, u′) ∈ fsr , and the external

actions in α̂ are the same as the external actions in α. Because there are five types

of action: fip, line1p, line2Tp, line2Fp and fi Respp(n) in C, we prove this property

by distinguishing the following cases.

1. If α = fip, let u′ ∈ states(CF), such that u′.v = u.v and ∀q 6= p : u′.pcq =

u.pcq, u
′.pcp = pc fi. We then have u

fip−→CF u
′ in CF according to Table 2.3.

Because s′.pcp = pc fi and (s, u) ∈ fsr, we know (s′, u′) ∈ fsr.

2. If α = fiRespp(n), let u′ ∈ states(CF), such that u′.v = u.v and ∀q 6= p :

u′.pcq = u.pcq, u
′.pcp = pc idle. We then have u

fiResp(v)−−−−−→CF u′ according to

Table 2.3. Because s′.pcp = pc idle and (s, u) ∈ fsr, we know (s′, u′) ∈ fsr.

3. If α = line2Tp, let k = s.v = u.val and u′ ∈ states(CF) such that ∀q 6=

p : u′.pcq = u.pcq and u′.pcp = pc fiResp(k), u′.val = k + 1. We then have

u
doF ip−−−→CF u′, since u.pcp = pc fi and u.val = k according to (s, u) ∈ fsr.

Because s′.pcp = pc fiResp(k), u′.val = s′.v = k+1 and (s, u) ∈ fsr, we know

(s′, u′) ∈ fsr.

39

4. If α = line1p or α = line2Fp, let u′ ∈ states(CF) such that u′ = u. We

have u
nil−→CF u

′. We easily obtain (s′, u′) ∈ fsr, because for line1p: s
′.pcp =

pc Line2 and u′.pcp = pc fi, or for line2Fp: s
′.pcp = pc Line1 and u′.pcp =

pc fi.

2.4.2 Backward Simulations

A backward simulation relation [12] bsr is similar to a forward simulation relation,

but the main difference is that in a forward simulation, we reason about execution

sequences in a forward direction and in a backward simulation from A to B, we

start from the end of A’s execution and construct the corresponding execution of B

backwards.

Definition 2.22. A backward simulation from the I/O automaton A to the I/O

automaton B is a total relation1 bsr ⊆ states(A)× states(B) that satisfies:

1. If s ∈ start(A) and u ∈ states(B), for all (s, u) ∈ bsr, u ∈ start(B), and

2. if s′
α−→A s and u ∈ states(B) such that (s, u) ∈ bsr, then there exists a state

(s′, u′) ∈ bsr such that u′
α̂

==⇒B u, and

1A relation R over states(A) and states(B) is total if, for every a ∈ states(A), there exists
b ∈ states(B) such that (a, b) ∈ R is true.

40

3. the external action in α̂ is the same as the external action in α (i.e., either

equals α, if α is an external action, or is empty otherwise).

Theorem 2.23. If bsr is a backward simulation from A to B, then traces(A) ⊆

traces(B).

Proof sketch. The idea of the proof here is similar to the proof of Theorem 2.20. It

also can be found in [12]. The intuition is that given an execution α = 〈s0, π1, s1, · · · ,

πn, sn〉 in A, we construct a corresponding execution α̂ in B starting from the end to

the beginning inductively. Because the states ui+1 ∈ states(B) and si+1 ∈ states(A)

are related by bsr, there is a ui ∈ states(B) such that (ui, si) ∈ bsr and ui
π̂i==⇒B ui+1

and trace(πi) = trace(π̂i) according to the definition of backward simulation. For

s0 ∈ start(A), by property 1 of Definition 2.22, we have a u0 ∈ start(B) such that

u0
〈π̂1,··· ,π̂n〉

======⇒B un and trace(〈π1, · · · , πn〉) = trace(〈π̂1, · · · , π̂n〉).

Intuitively, backward simulations are similar to forward simulations, except that

in a backward simulation, all states in the image of a state in start(A) are in

start(B), whereas, in a forward simulation, some states in the image of start(A)

are in start(B). This is because when we construct a related trace backwards, the

first state of the trace should be an initial state.

Both forward and backward simulations can be used to show one automaton

implements another. People use backward simulations because sometimes it is more

intuitive to show a backward simulation relation between two automata [7, 13, 15].

41

We use a backward simulation in Chapter 4.

Sometimes, to show that an automaton C implements another automaton A, we

create an intermediate automaton B and show a forward simulation from C to B and

a backward simulation from B to A. Together, these imply traces(C) ⊆ traces(A).

This approach is called a hybrid forward and backward simulation.[12]

42

3 Non-blocking Binary Search Trees and a

Simplified Algorithm

A binary search tree (BST) [25] is one of the most fundamental data structures used

in the traditional sequential setting. It can be used to support sorting and searching

algorithms and also to implement sets, multisets, priority queues and dictionaries.

A node in a BST with or without children is called an internal node or a leaf,

respectively. The node without a parent is the root. Each internal node can have

two children left and right. Every node stores a key. Node x is a descendant of

node y, if x is the child of y or x is a descendant of y’s child. Intuitively, if there is

a path of child pointers from y to x, x is a descendant of y. Figure 3.1 illustrates

an instance of a BST, whose nodes store integer keys. The node with key 10 is the

root. The node containing key 4 is one of the descendants of the node with key 6.

The subtree of a BST rooted at a given node is the tree containing that node and

all of its descendants. For example, the nodes with keys 6, 3, 4 and 8 form a subtree

of the BST shown in Figure 3.1. A BST must also have an important property in

43

root

10

6

3 8

4

12

17

rightleft

left right
right

right

Figure 3.1: A typical binary search tree with integers as key values.

terms of its key values: for every internal node x, all keys in the left subtree of that

node are less than x.key and all keys in the right subtree are greater than or equal

to x.key.

A BST can be used to implement a set data type, which stores a set of keys and

provides find, insert and delete as basic operations.

Definition 3.1. A set data type SET has the following sequential specification:

• a state set S = P (Key), where Key is a totally ordered set of all possible

keys,

• an initial value s0 = ∅,

• a set I = {FindInv(k), InsertInv(k), DeleteInv(k) | k ∈ Key} of invoca-

tions,

44

• a set R = {FindResp(r), InsertResp(r), DeleteResp(r) | r ∈ boolean} of

responses, and

• an update function f : V × I → R× V , such that:

f(s, findInv(k)) = (findResp(true), s), if k ∈ s,

f(s, findInv(k)) = (findResp(false), s), if k /∈ s,

f(s, insertInv(k)) = (insertResp(false), s), if k ∈ s,

f(s, insertInv(k)) = (insertResp(true), s ∪ {k}), if k /∈ s,

f(s, deleteInv(k)) = (deleteResp(true), s− {k}), if k ∈ s,

f(s, deleteInv(k)) = (deleteResp(false), s), if k /∈ s,

for all k ∈ Key and s ∈ S.

Intuitively, find operations return true or false depending on whether the given

key value is in the set or not. An insert operation inserts a new key into the set and

returns true if the key was not already in it. The operation returns false and the

set remains unchanged if the given key is already in the set. (We assume that the

set data type does not allow duplicate keys.) A delete operation removes the given

key from the set and returns true if the key is in the set. Otherwise, it return false

and the set remains unchanged.

45

3.1 A Non-blocking Binary Search Tree Algorithm

Ellen et al. [3] developed the first efficient non-blocking implementation of a BST for

an asynchronous shared-memory system. They provided a detailed proof of correct-

ness, which was written in natural language. The BST algorithm they considered

is leaf-oriented, meaning that all keys in the set are stored in leaf nodes and each

internal node has exactly two children. Internal nodes only store auxiliary keys that

are used to direct the searches towards the leaf containing a particular key.

Definition 3.2. Given a key k, the search path for k in a leaf-oriented BST is the

sequence of nodes 〈n0, n1, n2, · · · , nm〉, such that n0 is the root, nm is a leaf, and

for 1 ≤ i ≤ m, ni is the left child or right child of ni−1 depending on whether

k < ni−1.key or k ≥ ni−1.key, respectively.

3.1.1 Implementation Overview

To support the set data type, the non-blocking BST provides algorithms for three

operations: find, insert and delete. All of them use a common sub-routine called

search, which starts from root and searches toward a leaf that potentially contains

the given key. The find operation returns true if the leaf node where the search ter-

minates contains the given key. Otherwise, it returns false. Examples of a successful

and unsuccessful find operation are shown in Figure 3.2. Square boxes and circles

represent leaf nodes and internal nodes, respectively. Triangles represent subtrees.

46

(a)

5

2

5

(b)

find(1)

2

find(2)

αα

Figure 3.2: An example of find operations in a leaf-oriented BST. (a). The find(2)

operation ends with a node containing key 2, and returns true. (b) The find(1)

operation ends up with a node containing key 2, and returns false.

insert(1)

2

5

21

2

5

2

α α

Figure 3.3: An example of an insert operation in a leaf-oriented BST.

A typical successful insert and delete operation on a leaf-oriented BST are shown

in Figure 3.3 and 3.4. The insert(1) operation locates a leaf node which potentially

contains key 1 by using the search subroutine. If it successfully finds such a node,

insert(1) returns false since no duplicated keys are allowed. In Figure 3.3, because

the leaf does not contain key 1, the search tries to insert key 1 into the BST by

replacing the leaf with a subtree containing three nodes. Two leaves containing the

47

delete(2)
2

5

2

2

5

2

α

β

α

β

Figure 3.4: An example of a delete operation in a leaf-oriented BST.

key of the replaced leaf and the inserted key are in that subtree and their parent

node contains the maximum of the two keys. After such an update, insert(1) returns

true.

A delete operation locates a leaf node that potentially contains the given key

using the search routine as well. If such a node does not contain the given key,

the delete operation returns false. Otherwise, the given key is detected, as in

the example shown in Figure 3.4, and the child pointer of the leaf’s grandparent

is changed from the leaf’s parent to the leaf’s sibling and true is returned. This

ensures that the deleted node is no longer reachable through the child pointers of

the BST.

Some coordination between processes is needed to avoid problems when more

than one process wants to update the same part of the tree concurrently. Partly

inspired by Fomitchev and Ruppert’s linked list implementation [26] and the coop-

48

erative technique of Barnes [27], the non-blocking BST algorithm uses a flagging

system to indicate whether there is a process operating at a node. Intuitively, each

internal node can be flagged and flags behave like a kind of lock. There are different

types of flags used to represent different operations. When a node is flagged, only

some particular steps can be applied to it to continue the operation that placed the

flag. Other operations have to help this operation to complete before they can place

their own flags. Every node has a field to indicate its current state. Initially, the

state of a node is set to CLEAN. Before an insert or delete operation changes the

child pointer of a node, the node’s state must be set to IFLAG or DFLAG, respec-

tively. After the child pointer is changed, the state of the node is set to CLEAN

again. The state field of a node is flagged using a CAS step which succeeds only if

the state of that node is CLEAN and has not changed since the operation read the

node’s child pointer. This guarantees that during the whole operation of a process,

no other operations modify those flagged nodes.

However, these flag states are not sufficient for a delete operation. Figure 3.5

illustrates a problem when two simultaneous delete operations happen using flags

only to “lock” the grandparents. In Figure 3.5(a), delete(5) and delete(1) occur

concurrently. They set the states of the internal nodes with keys 6 and 4 to DFLAG

at the same time before changing their child pointers. Initially the set contains keys

{1, 2, 5, 7}. Then, both operations modify the child pointers of their flagged nodes

49

4

3

1 2

7

5

6

(b)

6

1 2

7

5

4

3

DFLAG

DFLAG

(a)

Figure 3.5: A problem caused by two delete operations if we only use the DFLAG

state. (a). delete(5) and delete(1) are being executed and the nodes whose keys are

6 and 4 are set to DFLAG before changing their child pointers. (b). The BST after

delete(5) and delete(1) were completed.

and the resulting subtree is shown in Figure 3.5(b), where the leaves contain keys

{1, 2, 7}. This is because only leaf nodes containing 1, 2 and 7 are reachable from the

root of the BST. However, according to the specification of the set (Definition 3.1),

the BST should contain only {3, 7} after those two deletes.

To solve this kind of problem, Ellen et al. introduce another MARK state. A

delete operation must set the state of the leaf’s parent to MARK before changing

the grandparent’s child pointer to remove the parent node from the tree. The state

of a node can be set to MARK only if it is CLEAN, and once a node is marked, it

remains so forever. Intuitively, the MARK state guarantees that a node cannot be

50

set to MARK and DFLAG/IFLAG at the same time. Thus, when a delete operation

removes a marked node from the BST, no operation can subsequently modify the

marked node.

Because the flagging system intuitively behaves like locks, it may prevent progress.

Figure 3.6 illustrates an example where no more operations can be done on the nodes

whose keys are 3 and 4 due to the crash of delete(1). The operation delete(5) gets

blocked because it attempts to MARK the node whose key is 4. However, that node

is not in its CLEAN state. In order to guarantee the progress property of this algo-

delete(1)

delete(5)

1 2

7

5

4

3

DFLAG

DFLAG

MARK

6

Figure 3.6: If delete(1) dies, it blocks delete(5).

rithm, Ellen et al. [3] used helping mechanisms in the insert and delete operations.

Basically, besides setting the states of a node, every operation also stores some es-

sential information about itself in that node. Thus, if an operation is blocked by

an unfinished operation, it uses this information to try to help complete the unfin-

ished one before restarting its own operation. To ensure that only one helper of an

51

operation performs the required change to the tree, child pointers are also updated

using CAS steps.

Figure 3.7 illustrates the big picture of how the state of a node changes during

different steps of an insert or delete operation. Its right part, included in the blue

box, describes steps of an insert operation. Refer to pseudocode in Figure 3.10 and

3.11. An insert operation tries to set a node’s state from CLEAN to IFLAG by an

iflag CAS (Line 31). After that, the insert operation changes its child pointer to a

new subtree containing three nodes by an ichild CAS (Line 41) while the state of the

node remains IFLAG. Subsequently, the operation changes the node with IFLAG

state to a CLEAN node by an iunflag CAS (Line 43).

The rest of Figure 3.7 describes steps of a delete operation. A delete operation

first flags a CLEAN grandparent node, changing its state to DFLAG by a dflag CAS

(Line 54). Then, such a delete operation may continue or backtrack depending on

whether it successfully marks the parent node by a mark CAS (Line 62) or not. If the

mark CAS succeeds, the grandparent node’s state remains unchanged and the parent

node’s state is changed from CLEAN to MARK. Subsequently, the delete operation

changes the child pointer of the grandparent node and then sets it back to a CLEAN

node by a dchild CAS (Line 85) and a dunflag CAS (Line 87), respectively. If the

mark CAS fails, the delete operation backtracks and changes the grandparent node’s

state from DFLAG to CLEAN through a backtrack CAS (Line 80) and restarts the

52

delete operation.

(on child)

CLEANDFLAGDFLAG

DFLAG

IFLAG IFLAG

backtrack CAS

iunflag CAS

dunflag CAS

dchild CAS

dflag CAS iflag CAS ichild CAS

MARK

mark CAS

DELETE INSERT

mark CAS

Figure 3.7: Main CAS steps and their effects of changing the states of nodes for a

delete and insert operations.

3.1.2 Detailed Implementation

The non-blocking BST uses objects that support read, write and CAS operations.

The key set U is totally ordered. To avoid special cases that would require changing

the root, the tree is initialized as shown in Figure 3.8. We assume there are two

Root

∞2∞1

∞2

Figure 3.8: The initial state of the tree in the non-blocking BST algorithm.

special values ∞1 and ∞2, such that every value in U is less than ∞1 and ∞2, and

∞1 < ∞2. Hence, every insert or delete operation only modifies the left subtree

53

of root. The types of objects we use to represent the data structure are defined in

Figure 3.9. Internal nodes and leaf nodes are distinguished by the truth value of the

type Node{

Key ∪ {∞1,∞2} key

Node left, right

Info info

Bool isinternal

}

type Info{

{CLEAN, DFLAG, IFLAG, MARK} infotype

Node gpn, pn, ln, nIntern,

Info pinfo, dinfo

}

Figure 3.9: Data types defined in the non-blocking BST algorithm.

isinternal field of Node objects. For simplicity, both internal nodes and leaf nodes

have left and right fields. However, for the leaf nodes, they all point to a special NIL

Node. Every node has an info field, which points to an Info object. There are four

types of Info objects, CLEAN, DFLAG, IFLAG and MARK, distinguished by the

value of the infotype field. An Info object can also record essential information about

an insert or delete operation. This information is stored in its gpn, pn, ln, nIntern,

pinfo and dinfo fields when an Info object is created. A CLEAN Info object does

not need to store any further information in those fields. An IFLAG Info object,

which is created by an insert operation, usually stores the leaf node to be replaced

54

in its ln field, the parent of that leaf node in pn, and the newly created internal

node in nIntern. A DFLAG Info object, which is created by a delete operation,

stores the leaf node to be removed, the parent of the leaf node and the grandparent

of the leaf node in ln, pn and gpn, respectively. It also stores an Info object that was

read from the parent in pinfo. (This is used by other processes helping the delete

as the old value for the mark CAS.) A MARK Info object, which is also created by

a delete operation after the creation of a DFLAG Info object, just has a pointer to

the DFLAG Info object created by the deletion.

The detailed implementations of the non-blocking algorithms are shown in Fig-

ure 3.10 and Figure 3.11, where comments are preceded by . . Basically, all three

operations call the sub-routine Search(k) to traverse nodes until reaching a leaf.

The Search(k) routine takes a key k as its input parameter and returns five objects.

At Line 2, the search starts from the root. The search goes down to the left or

right child depending on whether the key field of the current internal node is less

or greater than the given key k. It stops when it hits a leaf node (Line 4). During

the while loop, it stores the last three visited nodes as gpn, pn and ln (grandparent,

parent and leaf node). It also stores the info field of gpn and pn. A Find(k) op-

eration calls Search(k) and gets the returned leaf node. If the key field of the leaf

node is equal to k, it returns true, otherwise it returns false.

Definition 3.3. The sequence of visited nodes by an invocation of search is the

55

1 Search(Key k) : 〈Node,Node,Node, Info, Info〉 {
. Used by Insert, Delete and Find to traverse a branch of the BST; satisfies following postconditions:
. (1) ln points to a Leaf node and pn points to an Internal node
. (2) Either pn.left has contained ln (if k < pn.key) or pn.right has contained ln (if k ≥ pn.key)
. (3) pn.info has contained pinfo
. (4) if ln.key 6=∞1, then the following three statements hold:
. (4a) gpn points to an Internal node
. (4b) either gpn.left has contained pn (if k < gpn.key) or gpn..right has contained pn (if k ≥ gpn.key)
. (4c) gpn.info has contained gpinfo

2 Node gpn, pn, ln := Root
3 Info gpinfo, pinfo . Each stores a copy of an info field

4 while ln points to an internal node {
5 gpn := pn . Remember parent of pn
6 pn := ln . Remember parent of ln
7 gpinfo := pinfo . Remember info field of gpn
8 pinfo := pn.info . Remember info field of pn
9 if k < ln.key then ln := pn.left else ln := pn.right . Move down to appropriate child
10 }
11 return 〈gpn, pn, ln, pinfo, gpinfo〉
12 }

13 Find(Key k) : boolean {
14 Node ln

15 〈−,−, ln,−,−〉 := Search(k)
16 if ln.key = k then return true
17 else return false
18 }

19 Insert(Key k) : boolean {
20 Node ln, pn, nIntern, nSib
21 Node nNode := a new leaf node whose key field is k
22 Info pinfo, result, op

23 while True {
24 〈−, pn, ln, pinfo,−〉 := Search(k)
25 if ln.key = k then return false . Cannot insert duplicate key
26 if pinfo.infotype 6= Clean then Help(pinfo) . Help the other operation
27 else {
28 nSib := a new leaf whose key is ln.key
29 nIntern := a new internal node with key field max(k, ln.key),

info field 〈Clean,⊥,⊥〉, and with two child fields equal to nNode and nSib
(the one with the smaller key is the left child)

30 op := a new Info object containing 〈IFlag, pn, ln, nIntern〉
31 result := CAS(pn.info, pinfo, op) . iflag CAS
32 if result = pinfo then { . The iflag CAS was successful
33 HelpInsert(op) . Finish the insertion
34 return True
35 }
36 else Help(result) . The iflag CAS failed; help the operation that caused failure
37 }
38 }
39 }

40 HelpInsert(Info op) {
. Precondition: op is to an IFlag Info object (i.e., it is not ⊥)

41 CAS-Child(op.pn, op.ln, op.nIntern) . ichild CAS
42 clean := a new Clean Info object
43 CAS(op.pn.info, op, clean) . iunflag CAS
44 }

Figure 3.10: Pseudocode for Search, Find and Insert [3].

56

45 Delete(Key k) : boolean {
46 Node gpn, pn, ln; Info pinfo, gpinfo, result, op;

47 while True {
48 〈gpn, pn, ln, pinfo, gpinfo〉 := Search(k)
49 if ln.key 6= k then return false . Key k is not in the tree
50 if gpinfo.infotype 6= Clean then Help(gpinfo)
51 else if pinfo.infotype 6= Clean then Help(pinfo)
52 else { . Try to flag gpn
53 op := a new DFlag Info object containing 〈gpn, pn, ln, pinfo〉
54 result := CAS(gpn.info, gpinfo, op) . dflag CAS
55 if result = gpinfo then { . CAS successful
56 if HelpDelete(op) then return true . Either finish deletion or unflag
57 }
58 else Help(result) . The dflag CAS failed; help the operation that caused the failure
59 } } }

60 HelpDelete(Info op) : boolean {
. Precondition: op points to a DFlag Info object (i.e., it is not ⊥)
Info result, result2, op2, op3, clean

61 op2 := a new Mark Info object 〈Mark, dinfo := op〉
62 result := CAS(op.pn.info, op.pinfo, op2) . mark CAS
63 if result = op.pinfo or [result.infotype = Mark, result.dinfo = op] then {

. op.pn is successfully marked
64 HelpMarked(op) . Complete the deletion
65 return true . Tell Delete routine it is done
66 }
67 else { . The mark CAS failed
68 if result.infotype = IFlag then HelpInsert(result) . op.pn is an IFlag node
69 if result.infotype = Mark then HelpMarked(result.dinfo) . op.pn is a Mark node
70 if result.infotype = DFlag then { . op.pn is a DFlag node
71 op3 := a new Mark Info object 〈Mark, dinfo := result〉

. Non-recursively help the DFlag node
72 result2 = CAS(result.pn.info, result.pinfo, op3)
73 if result2 = result.pinfo or [result2.infotype = Mark, result2.dinfo = result]
74 then HelpMarked(result)
75 else {
76 clean := a new Clean Info object . The non-recursive mark help fails
77 CAS(result.gpn.info, result, clean) . Help op.pn backtrack
78 }
79 }
80 clean := a new Clean Info object
81 CAS(op.gpn.info, op, clean) . backtrack CAS
82 return false . Tell Delete routine to try again
83 } }

84 HelpMarked(Info op) {
. Precondition: op points to a DFlag Info object (i.e., it is not ⊥)
Node other; Info clean;

. Set other to point to the sibling of the node to which op.ln points
85 if op.pn.right = op.ln then other := op.pn.left else other := op.pn.right

. Splice the node to which op.pn points out of the tree, replacing it by other
86 CAS-Child(op.gpn, op.pn, other) . dchild CAS
87 clean := a new Clean Info object
88 CAS(op.gpn.info, op, clean) . dunflag CAS
89 }

Figure 3.11: Pseudocode for Delete and some auxiliary routines [3].

57

90 Help(Info u) {
. General-purpose helping routine
. Precondition: u has been stored in the info field of some internal node

91 if u.infotype = IFlag then HelpInsert(u)
92 else if u.infotype = Mark then HelpMarked(u)
93 else if u.infotype = DFlag then HelpDelete(u)
94 }

95 CAS-Child(Node parent, Node old, Node new) {
. Precondition: parent points to an Internal node and new points to a Node (i.e., neither is ⊥)
. This routine tries to change one of the child fields of the node that parent points to from old to new.

96 if new.key < parent.key then
97 CAS(parent.left, old, new)
98 else
99 CAS(parent.right, old, new)
100 }

Figure 3.12: Pseudocode for Delete and some auxiliary routines [3].

sequence of nodes 〈n0, n1, n2, · · · , nm〉 that ln points to. More specifically, n0 is root

since ln is first set to root on Line 2. For 1 ≤ i ≤ m, ni is the node that ln points

to immediately after ln gets updated by the ith iteration of Line 8.

An Insert(k) operation first creates a new leaf node containing k at Line 21.

Then, it tries to insert this leaf until it succeeds. In a single iteration of the loop, if

the leaf node returned by a Search(k) sub-routine does not contain k, and no other

operation was changing pn, it creates a subtree containing three nodes (Line 28-29).

After that, the operation creates an Info object that stores the information about

the operation (Line 30) and tries to flag pn. If the flagging succeeds, the operation

changes a child pointer of pn from ln to the newly created subtree and unflags the

node with IFLAG state to CLEAN (Line 42-43). If the flagging was blocked by

another unfinished operation, the search tries to help the other operation and then

starts its own work again (Line 36).

58

A Delete(k) operation returns false if the Search(k) returns a leaf node which

does not contain k. Otherwise, the Delete(k) operation tries to remove the leaf

returned by the Search(k) from the BST. It consists of three main steps: flag the

grandparent node gpn using a dflag CAS (Line 53-54), mark the parent node pn

using a mark CAS (Line 61-62), and change the child pointer using a dchild CAS

(Line 87). If the dflag CAS on gpn is blocked by another unfinished operation, the

delete helps the unfinished operation (Line 58). After setting the state of gpn to

DFLAG, it attempts a mark CAS on pn. If this mark CAS is blocked by another

unfinished operation, the delete helps the unfinished one (Line 67-78) and backtracks

(i.e., performs Line 79-80 to set gpn’s state to CLEAN) and starts a new iteration of

Delete(k). Otherwise, the mark CAS succeeds and the delete operation continues

by performing a dchild CAS (Line 85) to change the child pointer and then resetting

the state of gpn to CLEAN using a dunflag CAS (Line 87).

3.2 A Simplified Algorithm

To make our verification of the proof of correctness easier, we introduce a simplified

version of the non-blocking BST algorithms without helping mechanisms and prove

this new version correct in PVS using simulations. Once this proof is complete,

we believe it will be possible to extend it to prove the correctness of the original

algorithm. The ideas behind the simplified algorithm are the same as the original

59

one, except that if an operation is blocked by other unfinished operations, it tries

again and until the unfinished one gets finished. This technique is called busy

waiting, and does not guarantee the progress property. The pseudocode for the

simplified algorithms is shown in Figure 3.13 and 3.14.

We use Si, Fi, Ii and Di to represent the ith Line in the Search, Find, Insert and

Delete pseudocode in Figure 3.13 and 3.14, respectively. In the simplified version

of the BST algorithm, we have made a few changes. In the original paper, a bit in

the word of the node’s pointer to an Info object represents the type of Info object.

But we use the infotype (CLEAN/IFLAG/DFLAG/MARK) field inside the Info

object to distinguish them. This makes it more clear and straightforward when we

implement the algorithm. As a consequence, we always create new CLEAN objects

to avoid the ABA problem.

The main steps of Find, Insert and Delete operations are the same as in the

original algorithms. The subroutine Search(k) remains the same as before and is

used by all Find(k), Insert(k) and Delete(k) operations. The Find(k) operation is

exactly the same. The Insert(k) operation inserts a node containing k (created at

I1) if there is no such leaf node containing k found by Search(k). First, it calls the

subroutine Search(k) to determine if there is a leaf node that potentially contains k

(I2). If such a leaf does not exist, the operation attempts to insert the key into the

BST. From I6 to I9, a new subtree containing three nodes is created. The operation

60

then attempts to set the state of pn to IFLAG by a iflag CAS (I10-I11). If this

iflag CAS is blocked by an other unfinished operation, it loops and tries again.

Otherwise, after a successful iflag CAS, it changes the child pointer of pn from ln to

the newly created subtree by an ichild CAS (I13-I15). The operation changes the

state of pn to CLEAN by an iunflag CAS (I16-I17).

A Delete(k) operation searches the BST to check if there is a node potentially

containing k (D1). It returns false if the leaf node returned by Search(k) does

not contain k. Otherwise, the operation sets gpn’s state to DFLAG by a dflag CAS

(D6-D7). If the dflag CAS is blocked by some other unfinished operations, the

current Delete(k) loops and attempts again. After a successful dflag CAS (D8), the

delete operation tries to set the state of pn to MARK by a mark CAS (D9-D10). If

the mark CAS is blocked by some other unfinished operation, it backtracks (D20)

and starts Delete(k) again. If the mark CAS succeeds (D12), the operation then

changes the child pointer of gpn from pn to the sibling of ln using a dchild CAS

(D17-D18), thereby deleting ln from the BST. After the dchild CAS, a dunflag CAS

(D19) resets the state of gpn to CLEAN.

61

Search(Key k) : <Node, Node, Node, Info, Info>

1 ln← Root
2 while ln is not a leaf {
3 gpn← pn
4 pn← ln
5 gpinfo← pinfo
6 pinfo← pn. info
7 if k < ln.key
8 ln← pn. left
9 else ln← pn.right
}

Find(Key k) : Node

1 <−,−, ln,−,−> ← Search(k)
2 if ln.key = k

return true
else return false

Insert(Key k) : boolean

1 nNode← newNode(key← k, isleaf← true, isinternal← false)
while TRUE {

2 <−, pn, ln, pinfo,−> ← Search(k)
3 lnk ← ln.key
4 if lnk = k

return false
5 if pinfo.infotype = CLEAN {
6 nSib← newSib(key← lnk, isleaf← true, isinternal← false)
7 if k > lnk
8 nIntern← newIntern(key← k, left← nSib, right← nNode,

isleaf← false, isinternal← true)
else

9 nIntern← newIntern(key ← lnk, left← nNode, right← nSib,
isleaf← false, isinternal← true)

10 op← newIInfo(IFLAG, pn, ln, nIntern)
11 result← CAS(pn.info, pinfo, op)
12 if result = pinfo {
13 if op.nIntern.key < op.pn.key
14 CAS (op.pn.left, op.ln, op.nIntern)
15 else CAS (op.pn.right, op.ln, op.nIntern)
16 clean← newCInfo(CLEAN,−,−,−)
17 CAS (op.pn.info, op, clean)

return true
}

}
}

Figure 3.13: Pseudocode for Search and Find operations.

62

Delete(Key k) : boolean

while TRUE {
1 <gpn, pn, ln, pinfo, gpinfo> ← Search(k)
2 lnk ← ln.key
3 if lnk 6= k

return false
4 if gpinfo.infotype = CLEAN {
5 if pinfo.infotype = CLEAN {
6 op1← newDInfo(DFLAG, gpn, pn, ln, pinfo)
7 result← CAS(gpn.info, gpinfo, op1)
8 if result = gpinfo {
9 op2← newMInfo(MARK, dinfo← op1)

10 result← CAS(op1.pn.info, op1.pinfo, op2)
11 clean← newCInfo(CLEAN,−,−,−)
12 if result = op1.pinfo
13 if op1.pn.right = op1.ln
14 other ← op1.pn.left
15 else other ← op1.pn.right
16 if other.key < op1.gpn.key
17 CAS (op1.gpn.left, op1.pn, other)
18 else CAS (op1.gpn.right, op1.pn, other)
19 CAS (op1.gpn.info, op1, clean)

return true }
else {

20 CAS (op1.gpn.info, op1, clean)
} } } }

}

Figure 3.14: Pseudocode for Delete operations.

63

4 Modelling the Algorithms

In order to prove the correctness of the simplified BST algorithm using PVS, we

model the implementation and the specification as automata which are called the

concrete automaton and canonical automaton, respectively. To make the proof eas-

ier, we introduce an intermediate automaton and use a hybrid forward and backward

simulation to prove correctness. We show that the concrete automaton implements

the intermediate one via a forward simulation and the intermediate automaton im-

plements the canonical one via a backward simulation.

4.1 The Canonical Automaton

The canonical automaton models the abstract specifications of the SET data type

defined in Definition 3.1. By using the method introduced in Section 2.3.2, we can

build the canonical automaton easily.

As mentioned in Section 3.1.2, let U be a totally ordered set and UPlus =

U ∪ {∞1,∞2} such that every value in U is less than ∞1 and ∞2 and ∞1 < ∞2.

Intuitively, U contains all possible keys that can be inserted into the data structure.

64

Let PROC be a finite set of processes. Let Pcval be the set of all possible values

for the program counter of a process. More precisely, we define Pcval as follows.

Pcval =

{
idle,

pcDoFind(k), pcF indResp(true), pcF indResp(false),

pcDoInsert(k), pcInsertResp(true), pcInsertResp(false),

pcDoDelete(k), pcDeleteResp(true), pcDeleteResp(false) | k ∈ U
}
.

The state of the canonical automaton AbsAut is a pair: (keys, pc), where keys ⊆ U

and pc : PROC −→ Pcval. The initial state start in the canonical automaton Ab-

sAut has start.keys = ∅ and start.pc(p) = pc idle for all p ∈ PROC. In PVS, we

model a state of the AbsAut as follows:

state : TYPE = { keys : setof [U],

pc : [PROC → Pcval] }.

PROC is modelled as subset of the natural numbers from 0 to some n ≥ 1 in

PVS. We use setof [U] to model a set whose elements are all in U . Thus, state.keys

records the set of keys the BST currently contains, and state.pc records the program

counter of each process.

Figure 4.1 shows all external and internal actions for AbsAut. For each kind of

operation, two different internal actions are used to capture the linearization points

65

in(AbsAut) = {findInvp(k), insertInvp(k), deleteInvp(k) | k ∈ U, p ∈

PROC}

out(AbsAut) = {findRespp(r), insertRespp(r), deleteRespp(r) | r ∈ boolean,

p ∈ PROC}

int(AbsAut) = {doF indTp(k), doF indFp(k), doInsertTp(k), doInsertFp(k),

doDeleteTp(k), doDeleteFp(k) | k ∈ U, p ∈ PROC}

Figure 4.1: Actions of the canonical automaton AbsAut for a SET data type.

of operations that return true or false. All transitions for the AbsAut are defined

in Table 4.1. To make the description similar to our formalization in PVS, we use

keys.add(k) or keys.remove(k) to represent adding or removing an element k from

a set keys.

4.2 The Concrete Automaton

The concrete automaton ConcAut is used to represent the implementation. This

automaton models the pseudocode we described in Figure 3.13 and 3.14. More

details of modelling the ConcAut in PVS can be found in our PVS scripts. We only

discuss some key parts of the modelling here.

A state of ConcAut contains four parts: program counters, local variables, shared

objects in shared memory and auxiliary variables. The program counter of a process

records which line of code the process will next execute. We define a set Pcval

66

Action Precondition Effect
findInv(k, p) s.pc(p) = idle s.pc(p) ← pcDoFind(k)
doF indT (k, p) s.pc(p) = pcDoFind(k) s.pc(p) ← pcF indResp(true)

k ∈ s.keys
doF indF (k, p) s.pc(p) = pcDoFind(k) s.pc(p) ← pcF indResp(false)

k /∈ s.keys
findResp(r, p) s.pc(p) = pcF indResp(r) s.pc(p) ← idle

insertInv(k, p) s.pc(p) = idle s.pc(p) ← pcDoInsert(k)
doInsertT (k, p) s.pc(p) = pcDoInsert(k) s.pc(p) ← pcInsertResp(true)

k /∈ s.keys s.keys.add(k)
doInsertF (k, p) s.pc(p) = pcDoInsert(k) s.pc(p) ← pcInsertResp(false)

k ∈ s.keys
insertResp(r, p) s.pc(p) = pcInsertResp(r) s.pc(p) ← idle

deleteInv(k, p) s.pc(p) = idle s.pc(p) ← pcDoDelete(k)
doInsertT (k, p) s.pc(p) = pcDoDelete(k) s.pc(p) ← pcDeleteResp(true)

k ∈ s.keys s.keys.remove(k)
doDeleteF (k, p) s.pc(p) = pcDoDelete(k) s.pc(p) ← pcDeleteResp(false)

k /∈ s.keys
deleteResp(r, p) s.pc(p) = pcDeleteResp(r) s.pc(p) ← idle

Table 4.1: Transitions of the canonical automaton AbsAut, where s is a variable of
TYPE state, k is an element of U and P is an element of PROC.

of possible values for a process’s program counter. Intuitively, each line of the

pseudocode is modelled as an element in Pcval.

67

Pcval =

{
idle,

pcSearch1, pcSearch2, · · · , pcSearch9,

pcF ind1, pcF ind2, pcF indResp(r),

pcInsert1, pcInsert2, · · · , pcInsert17, pcInsertResp(r),

pcDelete1, pcDelete2, · · · , pcDelete20, pcDeleteResp(r) | r ∈ boolean
}
.

Then, the component pc of the state of ConcAut is a function pc : PROC −→ Pcval.

The way to model shared objects in ConcAut is a bit tricky. Node and Info

objects which are defined in Figure 3.9 are modelled as two abstract types in PVS

called Node and Info. Their fields, such as the child pointers of a node, the key

field of a node or the leaf field of an Info object are modelled as functions from

Node (Info) to the desired type. For clarity, the name of each field has a “f” as

suffix. Thus, shared variables are modelled by the functions described in Table 4.2.

One can easily construct the types in Table 4.2 from Figure 3.9. The Flag type

is defined by: Flag TYPE = {CLEAN, DFLAG, IFLAG, MARK}, as described in

Section 3.1.2.

In order to record the local information of each process, each local variable is

modelled by a component of the state in ConcAut. Because these variables are local,

they are modelled as functions from processes to the appropriate type, as listed in

Table 4.3.

68

Node object Info object

shared variable function shared variable function

keyf Node −→ UPlus infotypef Info −→ Flag

leftf Node −→ Node gpnf Info −→ Node

rightf Node −→ Node pnf Info −→ Node

infof Node −→ Info lnf Info −→ Node

isinternf Node −→ boolean nInternf Info −→ Node

pinfof Info −→ Info

dinfo Info −→ Info

Table 4.2: Representing fields of shared objects in the state of ConcAut.

local variable function local variable function

ret addr PROC −→ pc return k PROC −→ U

lnk PROC −→ UPlus pn PROC −→ Node

gpn PROC −→ Node ln PROC −→ Node

other PROC −→ Node result PROC −→ Info

gpinfo PROC −→ Info pinfo PROC −→ Info

op PROC −→ Info op1 PROC −→ Info

op2 PROC −→ Info clean PROC −→ Info

nSib PROC −→ Node nIntern PROC −→ Node

Table 4.3: Local variables of a state in ConcAut.

All local variables in Table 4.3 are straightforward to obtain from the simpli-

fied algorithm, except for ret addr. This local variable is used when the search

subroutine is invoked and it records where to continue from if the subroutine com-

pletes. Hence, pc return = {pcF ind2, pcInsert3, pcDelete2} ⊆ Pcval. The states

of ConcAut also include auxiliary variables: aux keys ⊆ U , aux seen in, aux seen out

: PROC −→ boolean. They do not model anything in the pseudocode, but are used

69

to simplify our proofs. They are discussed in Section 4.4.

The initial state of ConcAut is defined as follows:

* Most local variables are initialized to NIL, except that for all p : pc(p)=idle,

lnk(p)=∞2.

* The value of some fields of shared objects, namely the keyf and isinternf fields

of a Node object and the infotypef field of an Info object, is not specified.

Their initial value are irrelevant to some lemmas we need to prove later.

* Most fields of shared objects are initialized to NIL, except three shared Node

objects listed in Table 4.4 and three Info objects listed in Table 4.5.

* The initial values of auxiliary variables are: aux keys = ∅, aux seen in(p) =

false, aux seen out(p) = false for all p ∈ PROC. (More details are discussed

in Section 4.4.)

There are three allocated Nodes: root and its two children (nInf1 and nInf2) in an

initial state, as well as the Info objects that belong to them (CL1, CL2 and CL3).

As discussed in Section 2.4.1, the idea of building the ConcAut is straightforward:

each line of the code, which contains at most one shared memory access, is modelled

by a single internal action except for an if statement, a test of the exit condition of

a while loop or a CAS operation. Each of those three types of lines are modelled by

70

field f value of f(root) value of f(nInf1) value of f(nInf2)

keyf ∞2 ∞1 ∞2

leftf nInf1 NIL NIL

rightf nInf2 NIL NIL

infof CL1 CL2 CL3

isinternf true false false

Table 4.4: Initial state of root and its two children.

field f value of f(CL1) value of f(CL2) value of f(CL3)

infotypef CLEAN CLEAN CLEAN

gpnf NIL NIL NIL

pnf NIL NIL NIL

lnf NIL NIL NIL

nInternf NIL NIL NIL

pinfof NIL NIL NIL

dinfo NIL NIL NIL

Table 4.5: Initial state of Info objects belong to root and its two children.

two actions: a successful one and a failed one. However, there are some actions in

our concrete automaton consisting of several shared memory access. That is allowed,

because only one of them accesses a changeable field, and the others are reading from

unchangeable fields. Hence, it does not matter if we collapse steps that read from

unchangeable fields into one action. For instance, when an Info object is created, the

values of its fields remain unchanged. Hence, each of Lines I14, I15, I17, D10, D17,

D18, D19 and D20 can be regarded as an atomic action in our concrete automaton,

thereby simplifying our model of the concrete automaton. In addition to the internal

71

actions, for each kind of operation, we define two external actions: an invocation and

a response action. In the same way we modelled the implementation of the fetch-

and-increment object in Table 2.3, we model the BST algorithm as follows. Most

of steps in the pseudocode can be trivially translated into a transition in ConcAut,

except for a few cases. All three operations (find, insert and delete) invoke the

search subroutine. When the invocation of process p occurs, we set ret addr(p)

to the appropriate return address, while changing pc(p) to pcSearch1. Another

interesting case is to model an allocation step in the pseudocode. We introduce

two new variables allocatedNode and allocatedInfo in the state of ConcAut, which

maintain a set of used Nodes and Info objects, respectively. Hence, whenever an

allocation step for a Node is performed by a process p, we pick a node that is not in

allocatedNode and return the node to p, add the node to allocatedNode, and then

assign appropriate values to its fields. This can be done by assuming an axiom that

there are always infinitely many unallocated nodes to pick. Allocation of an Info

object is done in the same way.

Table 4.6 shows some examples of modelling lines of the pseudocode. Whenever

an invocation is performed at state s by a process p, the key k is saved into the local

variable s.k(p). The function newNode shown in Figure 4.2 behaves exactly as we

discussed above. More precisely, when p creates a new nNode at Line I1, it picks

an unused Node object n and Info object x and adds them into allocatedNode and

72

allocatedInfo set, sets the type of x to CLEAN, points infof(n) to x, assigns the

node a key value and sets isinternf(n) to false. If p creates a MARK Info object

through the newMInfo function that has three parameters, p picks an unused Info

object x and adds it into the allocatedInfo set, sets infotypef(x) to MARK, points

dinfof(x) to an Info object and returns this newly allocated MARK Info object to

op2(p).

newNode(c : state, p : PROC, k : U) :

LET n = getNode(c), x = getInfo(c).

c.allocatedNode.add(n)

c.allocatedInfo.add(x)

c.infotypef(x) ← CLEAN

c.infof(n) ← x

c.isinternf(n) ← false

c.keyf(n) ← k

c.nNode(p) ← n

newMInfo(c : state, p : PROC, dinfo : Info) :

LET x = getInfo(c).

c.allocatedInfo.add(x)

c.infotypef(x) ← MARK

c.dinfof(x) ← dinfo

c.op2(p) ← x

Figure 4.2: Definition of the newNode and newMInfo functions. Function

getNode(c) picks a new Node object that is not in c.allcoatedNode. Symmetrically

for getInfo(c).

73

4.3 An Intermediate Automaton and Backward Simulation

In the concurrent BST algorithm [3], some operations, such as a find(k) operation

by a process p that returns true, may not actually “take effect” at the time when p

determines at Line F2 that find(k) should return true by comparing k to the key of

the leaf reached by the search. Consider the example shown in Figure 4.3 (a), which

involves three processes. Processes q0 and q1 insert and then delete key 3, while p

is concurrently executing find(3). The other diagrams in Figure 4.3 describe the

shape of the BST, as a result of those operations. Note that, when p successfully

finds the desired key in the leaf, that leaf is no longer in the BST. Namely, when

process p executes Line F2 and decides to return true for the find(3) operation, that

key is not in the BST. So, Line F2 can not be used as a linearization point of the

Find operation. Similarly, I4 and D3 are not the linearization points for some failed

Insert and Delete operations, respectively. For those operations, it is not obvious

how to define the linearization points explicitly. The proofs by Ellen et al. [3] show

that there exists a time during the search when the leaf eventually reached is in

the BST. However, at that time, it is not known where the search will eventually

end up. So, it is difficult to recognize the linearization point of a search when it

happens, without knowing the future actions of that search. Hence, it is difficult to

come up with a forward simulation from ConcAut to AbsAut such that some actions

in ConcAut are directly mapped to the internal actions of AbsAut that represent

74

linearization points. Therefore, we use a hybrid forward and backward simulation by

building an intermediate automaton IntAut, such that this intermediate automaton

simulates the canonical one via a backward simulation and the concrete automaton

simulates the intermediate one via a forward simulation.

Since a proof using backward simulation is usually conceptually harder than a

proof using a forward simulation, we chose to make IntAut as similar to AbsAut

as possible to make the backward simulation proof easier [16]. Thus, most of the

components of the intermediate automaton will be similar to those in AbsAut. Each

process has two additional local boolean variables seen in(p) and seen out(p), which

are inspired by the work of Colvin et al. [16]. If p is performing find(k) or insert(k),

the variable seen in(p) is set to be true if k is in the key set of IntAut either at the

invocation p’s operation, or k was not in the key set at the beginning but during

p’s operation some other insert(k) operation by q successfully inserts k into the key

set of IntAut. Symmetrically, seen out(p) is set to be true if k is not in the key set

at the invocation of p’s find(k) or delete(k), or some delete(k) by another process

successfully deletes k from the key set of IntAut during p’s find(k) or delete(k).

Intuitively, these two variables record whether the desired key has been in the BST

at any time since the beginning of the present operation, with the aim of helping

process p to determine the return value of its operation. For instance, if seen in(p)

is true when p is performing a find(k) operation, it means that the key k has been

75

2

3

5

2

1

p: find(3) = true1
q finished delete(3)

33

2 p: find(3)

q finished insert(3)
0

1

2

5

3

2

(d)

insert (3) = true

q

0
q

find (3) = true

1

p

Time

1 2

2

5

p: find(3)

(b)(a)

(c)

delete (3) = true

αα

α

Figure 4.3: (a) Interleavings of Proc p, q0 and q1 which execute find(3),
insert(3) and delete(3), respectively (all three operations succeed).
(b),(c),(d) illustrate how the three operations modify the binary search
tree. (b) Proc p invoked find(3) and it has set its local variable ln to the
internal node with key 5. (c) Proc q0 runs very quickly and successfully
inserts key 3. Subsequently, p continues to search for key 3 and has set
its local variable ln to (arrives at) internal node with key 3 on Line S9.
(d) Proc q1 executes a complete deletion of key 3, but after that p is
still able to get to the external node with key 3 and subsequently return
true.

76

in the key set at some time since the invocation of find(k). This, indeed, enables

the find operation to return true even if when executing F2, the key k is actually

not in the set any more.

A state of the IntAut is the tuple

(keys, pc, seen in, seen out), where

keys ⊆ U,

pc : PROC −→ Pcval,

seen in : PROC −→ boolean,

seen out : PROC −→ boolean,

and U , PROC and Pcval are defined as in the definition of AbsAut. The possible

values for seen in and seen out are true and false. The initial states start and

actions for the IntAut are shown in Figure 4.4.

We define the states of IntAut in PVS as:

state : TYPE = { pc : [PROC→ Pcval],

keys : setof[U],

seen in : [PROC→ bool],

seen out : [PROC→ bool] } .

The actions for IntAut are shown in Table 4.7. Intuitively, seen in(p) and

seen out(p) are initialized during the invocation of each find, insert and delete

operation of process p. The response of a find(k) operation of process p now

depends on the value of seen in(p) and seen out(p). An insertp(k) can decide to

77

start = {s | s.keys = ∅ ∧
(
∀p : (s.pc(p) = pc idle) ∧ (s.seen in(p) = false) ∧

(s.seen out(p) = false)
)
},

in(IntAut) = {findInvp(k), insertInvp(k), deleteInvp(k) | k ∈ U, p ∈

PROC}

out(IntAut) = {findRespp(r), insertRespp(r), deleteRespp(r) | r ∈ boolean,

p ∈ PROC}

int(IntAut) = {doF indTp(k), doF indFp(k), doInsertTp(k), doInsertFp(k),

doDeleteTp(k), doDeleteFp(k) | k ∈ U, p ∈ PROC}

Figure 4.4: Initial states and actions of the intermediate automaton IntAut for a

SET data type.

return false if seen in(p) is true. Such an insert can be linearized at the time k

was in keys. Similarly, a deletep(k) can decide to return false if seen out(p) is

true. It can be linearized at the time k was not in keys. An insert(k) of process p

that returns true not only adds the value into the abstract key set, but also sets the

value of seen in(q) to be true for any process q that is performing either find(k) or

insert(k). Even if the key k is deleted later by some operation, by applying these

changes, such a find(k) or insert(k) is allowed to return true or false, respectively.

Similarly, a delete(k) of process p which returns true removes the value from the

78

101 bsr(i, a) ≡ (i.keys = a.keys)

102 AND ∀p :
[
i.pc(p) = a.pc(p)

103 OR
(
i.pc(p) = pcDoFind(k) AND

104 a.pc(p) = pcF indResp(false) AND i.seen out(p) = true
)

105 OR
(
i.pc(p) = pcDoFind(k) AND

106 a.pc(p) = pcF indResp(true) AND i.seen in(p) = true
)

107 OR
(
i.pc(p) = pcDoInsert(k) AND

108 a.pc(p) = pcInsertResp(false) AND i.seen in(p) = true
)

109 OR
(
i.pc(p) = pcDoDelete(k) AND

110 a.pc(p) = pcDeleteResp(false) AND i.seen out(p) = true
)]

Figure 4.5: The backward simulation relation bsr between IntAut and AbsAut.

abstract key set, and sets the value of seen out(q) to be true for any process q that is

performing either find(k) or delete(k), thereby allowing such a find(k) or delete(k)

to return false, even if key k is inserted into the BST later by some operation.

After defining the intermediate automaton IntAut, we construct a backward

simulation relation between them as follows. For i ∈ state(IntAut) and a ∈

state(AbsAut) we define bsr shown in Figure 4.5.

As we can see from the definition, bsr contains two parts. The first part

(Line 101) requires that the data (i.e., the keys set) of the related states of IntAut

79

and AbsAut should be identical, and the second part (Line 102-110) requires that

the Pcval of each process p in IntAut stays “in step” with process p in AbsAut, with

four exceptions. For example, Line 103 and 104 say that in AbsAut, p may already

have executed doF indF , indicating that p’s find operation will subsequently return

false, whereas in IntAut, p is still processing the find operation and has not yet

decided to return false. This is allowed only if seen out(p) is true, which means

either k is not in the key set at the invocation of the find operation, or is present

at the invocation but is subsequently successfully deleted by some other process q

before the doF indF is performed. The other three cases are similar.

When we construct the execution sequence of AbsAut in the backward simula-

tion, for each action of IntAut, we choose the same action for the AbsAut, with the

following exceptions. Intuitively, a findp(k) operation that returns true is linearized

either at the time when the search begins (if key k is in the BST at the beginning of

findp(k)) or at the time immediately after some other operation successfully inserts

k (if key k is not in the BST at the beginning of findp(k)). At least one of those

situations must be applicable, because seen in(p) must be true before performing

a doF indTp(k) in IntAut. Hence, key k is either in the BST at the beginning of

a findp(k) or k is inserted by some other operations during the findp(k). Accord-

ingly, when a findInv(k, p) action is performed in IntAut, we choose a sequence

of actions containing the same findInv(k, p) action in AbsAut. This sequence in

80

AbsAut may also contain a doF indT (k, p) action immediately after the invocation, if

seen in(p) is true in IntAut and the findp(k) operation subsequently returns true.

We know the future behaviour of an operation, because it is a backward simulation.

Figure 4.6 shows an example.

In the other case, when the findp(k) operation subsequently returns true in the

future, but after the invocation of the findp(k) seen in(p) is false, we linearize

doF indT (k, p) immediately after a doInsertT (k, q) by some process q. There-

fore, when a doInsertT (k, p) action that successfully adds k into the key set in

IntAut occurs, we may choose a sequence of actions not only containing the same

doInsertT (k, p) action in AbsAut, but also followed by one doF indT (k, q) action

for each q that is executing a find(k) operation that subsequently returns true in

the post state of AbsAut. Figure 4.7 shows an example of this case.

Figure 4.6 and 4.7 illustrate examples of how we construct states and actions

in AbsAut step by step starting from the end of the execution. In Figure 4.6,

the doF indT (3, p) action in IntAut is linearized immediately after its invocation,

because key 3 is in the BST at the invocation. However, in Figure 4.7, we cannot

do the same thing, because the post state of findInv(3, p) in AbsAut indicates that

find(3) will not subsequently return true. Note that when doInsertT (3, q) occurs

in IntAut, we choose a sequence of actions containing the same doInsertT (3, q)

action in AbsAut, followed by one doF indT (3, p) action for process p because it is

81

pc(p)=pcFindResp(T)

backwardly

keys={3}

pc(p)=pcDoFind(3)

keys={3}

seen_in(p)=T

pc(p)=pcFindResp(T)

findInv(3,p) findResp(T,p)

findInv(3,p)

IntAut:

AbsAut:

pc(p)=idle

findResp(T,p)

pc(p)=idle

doFindT(3,p)

doFindT(3,p)

keys={3}

keys={3} keys={3}

pc(p)=pcDoFind(3)

keys={3}

keys={3}

pc(p)=pcFindResp(T)

keys={3}

pc(p)=idle

keys={3}

pc(p)=idle

seen_in(p)=T seen_in(p)=T

Figure 4.6: A simple example of how the backward simulation bsr works between

IntAut and AbsAut. Circles are known states and the dashed circle is the state

constructed backwardly according to actions taken in AbsAut.

executing a find(k) operation that subsequently returns true according to the post

state of doInsertT (3, q) in AbsAut. It is also important to see that states paired by

the green dotted lines satisfy bsr.

Similarly, a findp(k) operation that returns false is linearized either at the time

when the search begins (if key k is not in the BST at the beginning of findp(k)) or

at the time immediately after some other operation successfully deletes k (if key k

is in the BST at the beginning of findp(k)). At least one of those situations must

be applicable, because seen out(p) must be true before performing a doF indFp(k)

82

backwardly

pc(p)=pcDoFind(3)

pc(q)=idle

keys={}

pc(p)=pcDoFind(3)

pc(q)=pcDoInsert(3)

keys={}

pc(p)=pcDoFind(3)

pc(q)=idle

seen_in(p)=F

keys={}

pc(p)=pcDoFind(3)

pc(q)=pcDoInsert(3)

seen_in(p)=F

keys={3}

pc(p)=pcDoFind(3)

pc(q)=pcInsertResp(T)

seen_in(p)=T

keys={3}

pc(p)=pcFindResp(T)

pc(q)=pcInsertResp(T)

keys={3}

pc(p)=pcDoFind(3)

pc(q)=idle

seen_in(p)=T

keys={3}

pc(p)=idle

pc(q)=idle

seen_in(p)=T

keys={3}

pc(p)=pcFindResp(T)

pc(q)=idle

keys={3}

pc(p)=idle

pc(q)=idle

keys={3}

pc(p)=pcFindResp(T)

pc(q)=idle

keys={3}

pc(p)=pcFindResp(T)

pc(q)=idle

seen_in(p)=T

findInv(3,p)

insertInv(3,q) doInsertT(3,q)

findResp(T,p)

insertResp(T,q)

findInv(3,p)

insertInv(3,q) doInsertT(3,q)

doFindT(3,p)

insertResp(T,q)

IntAut:

AbsAut:

keys={}

pc(p)=idle

pc(q)=idle

findResp(T,p)

keys={}

pc(p)=idle

pc(q)=idle

doFindT(3,p)

keys={}

Figure 4.7: Another example of how the backward simulation bsr works between

IntAut and AbsAut.

in IntAut. Hence, key k is either not in the BST at the beginning of the findp(k)

or k is deleted by some other operation during the findp(k). Therefore, when a

findInv(k, p) action is performed in IntAut, we choose a sequence of actions con-

taining the same findInv(k, p) action in AbsAut. In addition, the sequence contains

a doF indF (k, p) action immediately after the invocation, if seen out(p) is true in

IntAut and the findp(k) subsequently returns false. Otherwise, if findp(k) oper-

ation subsequently returns true, but seen out(p) is false when the find is invoked,

we linearize doF indT (k, p) immediately after a doDeleteT (k, q) by some process q.

Consequently, when a successful doDeleteT (k, p) action in IntAut occurs, we may

83

choose a sequence of actions not only containing the same doDeleteT (k, p) action in

AbsAut, but also followed by one doF indF (k, q) action for each q that is executing

a find(k) operation that subsequently returns false according to the post state of

AbsAut.

Similarly, an insertp(k) (or a deletep(k)) that returns false may be linearized

at the time immediately after its invocation or immediately after some other suc-

cessful doInsertT (k, q) (or doDeleteT (k, q)), depending on the value of seen in(p)

(seen out(p)).

To summarize: when a doInsertT (k, p) action in IntAut occurs, we may choose a

sequence of actions not only containing the same doInsertT (k, p) action in AbsAut,

but also followed by one doF indT (k, q) action for each q that is executing a find(k)

operation that subsequently returns true and one doInsertF (k, q) action for each

q that is executing an insert(k) that subsequently returns false according to the

post state of AbsAut. When a successful doDeleteT (k, p) action in IntAut occurs,

we may choose a sequence of actions not only containing the same doDeleteT (k, p)

action in AbsAut, but also followed by one doF indF (k, q) action for each q that

is executing a find(k) operation that subsequently returns true according to the

post state of AbsAut, and one doDeleteF (k, q) action for each q that is execut-

ing a delete(k) operation that subsequently returns false according to the post

state of AbsAut. Because we already linearized doF indT (k, p), doInsertF (k, p),

84

doF indF (k, p) and doDeleteF (k, p) actions of AbsAut, when any of these actions

are performed in IntAut, they are ignored (i.e., we do not choose any action in

AbsAut for those four types of actions in IntAut). This is the action correspon-

dence between IntAut and AbsAut.

By using the bsr relation and our explicit construction of the action correspon-

dence, we were able to show that a backward simulation exists between IntAut and

AbsAut. We have formalized the proof of this backward simulation using PVS.

4.4 The Forward Simulation

We also construct a forward simulation fsr from ConcAut to IntAut. Firstly, we

describe the action correspondence of the forward simulation. Most internal actions

in ConcAut correspond to the empty sequence (ε) of IntAut, except for some key

actions shown in Table 4.8.

Intuitively, successful ichild CAS s (insert14T (p) and insert15T (p)) starting

from a state c in ConcAut are mapped to doInsertT (c.k(p), p) in IntAut, be-

cause both of these actions insert key c.k(p) into the BST. Successful dchild CAS s

(delete17T (p) and delete18T (p)) starting from c in ConcAut are mapped to

doDeleteT (c.k(p), p) in IntAut, since these actions delete key c.k(p) from the BST.

If an insert4T (p) or find2T (p) starting from c is performed in ConcAut, we shall

prove that the given key c.k(p) has been in the BST at some time since the be-

85

ginning of the invocation, which is similar to the pre-condition for performing an

doInsertF (c.k(p), p) or doF indT (c.k(p), p) in IntAut. If a delete3T (p) or find2F (p)

is performed, we shall prove there was a time since the beginning of the invocation

when the given key c.k(p) was not in the BST. Hence, these two actions can be

mapped to doDeleteF (c.k(p), p) or doF indF (c.k(p), p), respectively. Each external

action of ConcAut is mapped to its counterpart in IntAut.

Once again, fsr consists of a data relationship and a Pcval relationship. How-

ever, since it is not convenient for us to relate the concrete data structure of ConcAut

to the abstract set in IntAut directly, we add an auxiliary variable aux keys to the

state of ConcAut to represent all current keys in the BST. Therefore, the data rela-

tion part in fsr can simply require that aux keys of ConcAut is the same as keys

of IntAut if we establish as an invariant that aux keys matches the set of all keys

in the leaves of the BST. More specifically, aux keys is updated as follows.

aux keys: Intuitively, this variable denotes all keys in the reachable leaves of

the BST in ConcAut. Initially, aux keys = ∅. The new key k is added if

a successful ichild CAS of insertp(k) operation is performed. The key k is

removed if a successful dchild CAS of deletep(k) operation is performed.

Similarly, if there is a transition c
α−→ConcAut c

′ and a state i in IntAut, such that

(c, i) ∈ fsr, it is not convenient to reason about the value of i.seen in or i.seen out

directly from the given state of ConcAut. We thus introduce aux seen in and

86

aux seen out into the state of ConcAut and prove some invariants about them.

The auxiliary variables aux seen in and aux seen out are updated as follows.

1. aux seen out: [PROC → bool]. The variable aux seen out(p) is set to true

or false according to whether k /∈ aux keys or not when a findInv(k, p) or

deleteInv(k, p) action is performed. When a successful dchild CAS (delete17T (p)

or delete18T (p)) is performed at a state c and c.k(p) = k, then for each process

q such that aux out affected(q,c) (see Figure 4.8) is true and the given key of

q is equal to k, aux seen out(q) is set to true.

2. aux seen in: [PROC → bool]. The variable aux seen in(p) is set to true

or false according to whether k ∈ aux keys or not when a findInv(k, p) or

insertInv(k, p) action is performed. When a successful ichild CAS (insert14T (p)

or insert15T (p)) is performed at state c and c.k(p) = k, then for each process

q such that aux in affected(q, c) (see Figure 4.9) is true and the given key of

q is equal to k, aus seen in(q) is set to true.

The function aux in affected(p, c) is evaluated to be true, if process p is either in

Line F1-F2 or Line I1-I15 of the simplified algorithm or is performing a search(v)

subroutine which is not invoked by a delete operation. Note that, p is considered

to have completed an insert operation, if it is performing Line I17 or I18. Hence,

aux seen in(p) cannot be affected. Likewise, aux out affected(p,c) is evaluated to be

true, if process p is either in Line F1-F2 or Line D1-D18 or Line D20 of the simplified

87

aux in affected(p, c) ≡ c.pc(p) ∈ { pcF ind1, pcF ind2,

pcInsert1, pcInsert2, pcInsert3, pcInsert4, pcInsert5,

pcInsert6, pcInsert7, pcInsert8, pcInsert9, pcInsert10,

pcInsert11, pcInsert12, pcInsert13, pcInsert14, pcInsert15 }

OR
(
c.pc(p) ∈ { pcSearch1, pcSearch2, pcSearch3, pcSearch4, pcSearch5,

pcSearch6, pcSearch7, pcSearch8, pcSearch9 }

AND c.ret addr 6= pcDelete2

)
Figure 4.8: If an action starting from c, is an ichild CAS, aux seen in(p) may be

set to true for all p if aux in affected(p, c) is true.

algorithm or is performing a search(v) subroutine which is not invoked by an insert

operation. Note that, p is considered to have completed a delete operation if it has

performed a successful dchild CAS. ConcAut updates aux seen in(p) at state c for

key k, if aux in affected(p, c) is true and the given key of stored in process p is the

same to the key inserted by an ichild CAS. Symmetrically, we update aux seen out

at state c to true for some process p and k, if aux in affected(p, c) is true and

c.k(p) = k. Hence, by requiring that c.aux seen in and c.aux seen out be the same

as their counterparts in a state i of IntAut if (c, i) ∈ fsr as part of the data relation

part of fsr, we can prove the forward simulation holds between the two automata

more conveniently.

88

aux in affected(p, c) ≡ c.pc(p) ∈ { pcF ind1, pcF ind2,

pcDelete1, pcDelete2, pcDelete3, pcDelete4, pcDelete5,

pcDelete6, pcDelete7, pcDelete8, pcDelete9, pcDelete10,

pcDelete11, pcDelete12pcDelete13, pcDelete14, pcDelete15,

pcDelete16, pcDelete17, pcDelete18, pcDelete20 }

OR
(
c.pc(p) ∈ { pcSearch1, pcSearch2, pcSearch3, pcSearch4, pcSearch5,

pcSearch6, pcSearch7, pcSearch8, pcSearch9 }

AND c.ret addr 6= pcInsert3

)

Figure 4.9: If an action starting from c, is a dchild CAS, aux seen out(p)
may be set to true for all p if aux out affected(p,c) is true.

Thus, for c ∈ states(ConcAut) and i ∈ states(IntAut), the data relationship

between ConcAut and IntAut is stated as follows.

fsr data rel(c, i) ≡ (c.aux keys = i.keys) ∧ (c.aux seen in = i.seen in)

∧ (c.aux seen out = i.seen out). (4.1)

In addition to the data relation in fsr, there is also a program counter rela-

tion. For c ∈ state(ConcAut) and i ∈ state(IntAut), the program counter re-

lation is defined in Figure 4.10. Relation fsr pc rel find(c, i, p) describes that p

is performing a find operation in ConcAut and p is performing a corresponding

89

fsr pc rel(c, i) ≡ ∀ p: fsr pc rel find(c, i, p)

OR fsr pc rel insert(c, i, p)

OR fsr pc rel delete(c, i, p)

OR (inSearch(c, p) AND c.ret addrp = pcF ind2 AND i.pcp = pcDoFind(c.kp))

OR (inSearch(c, p) AND c.ret addrp = pcInsert3 AND i.pcp = pcDoInsert(c.kp))

OR (inSearch(c, p) AND c.ret addrp = pcDelete2 AND i.pcp = pcDoDelete(c.kp))

Figure 4.10: Program counter relation of fsr.

find operation in IntAut. This relation is also shown in Figure 4.11. Relations

fsr pc rel insert(c, i, p) and fsr pc rel delete(c, i, p) describing the program counter

relations for an insert and delete operation are defined in a similar way. They are

shown in Figure 4.13 and Figure 4.14, repectively. Details of the three relations

fsr pc rel find(c,i,p), fsr pc rel insert(c,i,p) and fsr pc rel delete(c,i,p) are shown in

Figure 4.12.

Intuitively, if (c, i) ∈ fsr pc rel, then for every process p, fsr pc rel find(c, i, p)

is satisfied, or fsr pc rel insert(c, i, p) is satisfied, or fsr pc rel delete(c, i, p) is

satisfied. Otherwise, it is in the case that process p is performing a search subroutine

as shown in Figure 4.15: if the search is invoked by a find operation in ConcAut

then i.pcp = pcDoFind(c.kp) is true in IntAut, or if the search is invoked by

an insert operation in ConcAut then i.pcp = pcDoInsert(c.kp) is true in IntAut,

90

ConcAut

IntAut

pc_idle

pc_idle pcFind2pcFind1

pcDoFind(k) pcFindResp(r)

pcFindResp(r)

findInv(k, p)

findInv(k, p)

find2T (p)

find2F (p)

find1(p)

doFindT (k, p)

doFindF (k, p)

findResp(r, p)

findResp(r, p)

Figure 4.11: Program counter relation during the findp(k) operation in the forward

simulation relation.

otherwise (the search is invoked by a delete operation), i.pcp = pcDoDelete(c.kp)

should be true in IntAut. Overall, a forward simulation relation fsr is defined as

follows.

fsr(c, i) ≡ fsr data rel(c, i) ∧ fsr pc rel(c, i).

91

Action Precondition Effect

findInv(k, p) s.pc(p) = idle s.pc(p) ← pcF ind1
s.k(p) ← k
aux seen in(p) ← (k ∈ s.aux keys)
aux seen out(p) ← (k /∈ s.aux keys)

find1(p) s.pc(p) = pcF ind1 s.pc(p) ← pcSearch1
s.ret addr(p) ← pcF ind2

find2T (p) s.pc(p) = pcF ind2 s.pc(p) ← pcF indResp(true)
AND s.keyf(s.ln(p)) = s.k(p)

find2F (p) s.pc(p) = pcF ind2 s.pc(p) ← pcF indResp(false)
AND s.keyf(s.ln(p)) 6= s.k(p)

findResp(r, p) s.pc(p) = pcF indResp(r) s.pc(p) ← idle

insertInv(k, p) s.pc(p) = idle s.pc(p) ← pcInsert1
aux seen in(p) ← (k ∈ s.aux keys)
s.k(p) ← k

insert1(p) s.pc(p) = pcInsert1 s.pc(p) ← pcInsert2
s.nNode(p) ← newNode(s, p, s.k(p))

insert2(p) s.pc(p) = pcInsert2 s.pc(p) ← pcSearch1
s.ret addr(p) ← pcInsert3

insert14T (p) s.pc(p) = pcInsert14 s.pc(p) ← pcInsert16
AND s.lnf(s.op(p)) = s.aux keys.add(s.k(p))

s.leftf(s.pnf(s.op(p))) FOR EACH q ∈ PROC:
IF
(
s.k(q) = s.k(p)
AND aux in affected(q,s)

)
THEN s.aux seen in(q)← true

insertResp(r, p) s.pc(p) = pcInsertResp(r) s.pc(p) ← idle

deleteInv(k, p) s.pc(p) = idle s.pc(p) ← pcDelete1
aux seen out(p) ← (k /∈ s.aux keys)
s.k(p) ← k

delete9(p) s.pc(p) = pcDelete9 s.pc(p) ← pcDelete10
s.op1(p) ← newMinfo(s, p, s.op1(p))

delete17T (p) s.pc(p) = pcDelete17 s.pc(p) ← pcDelete19
AND s.pnf(s.op1(p)) = s.aux keys.remove(s.k(p))

s.leftf(s.gpnf(s.op1(p))) FOR EACH q ∈ PROC:
IF
(
s.k(q) = s.k(p)
AND aux out affected(q,s)

)
THEN s.aux seen out(q)← true

deleteResp(r, p) s.pc(p) = pcDeleteResp(r) s.pc(p) ← idle

Table 4.6: Some transitions for the concrete automaton ConcAut, where s is a state
of ConcAut.

92

Action Precondition Effect

findInv(k, p) s.pc(p) = idle s.pc(p) ← pcDoFind(k)
seen in(p) ← (k ∈s.keys)
seen out(p) ← (k /∈s.keys)

doF indT (k, p) s.pc(p) = pcDoFind(k) s.pc(p) ← pcF indResp(true)
AND s.seen in(p)

doF indF (k, p) s.pc(p) = pcDoFind(k) s.pc(p) ← pcF indResp(false)
AND s.seen out(p)

findResp(r, p) s.pc(p) = pcF indResp(r) s.pc(p) ← idle

insertInv(k, p) s.pc(p) = idle s.pc(p) ← pcDoInsert(k)
seen in(p) ← (k ∈s.keys)

doInsertT (k, p) s.pc(p) = pcDoInsert(k) s.pc(p) ← pcInsertResp(true)
AND k /∈ s.keys s.keys.add(k)

FOR EACH q ∈ PROC:
IF
(
s.pc(q) = pcDoFind(k)
OR s.pc(q) = pcDoInsert(k)

)
THEN s.seen in(q)← true

doInsertF (k, p) s.pc(p) = pcDoInsert(k) s.pc(p) ← pcInsertResp(false)
AND s.seen in(p)

insertResp(r, p) s.pc(p) = pcInsertResp(r) s.pc(p) ← idle

deleteInv(k, p) s.pc(p) = idle s.pc(p) ← pcDoDelete(k)
seen out(p) ← (k /∈s.keys)

doDeleteT (k, p) s.pc(p) = pcDoDelete(k) s.pc(p) ← pcDeleteResp(true)
AND k ∈ s.keys s.keys.remove(k)

FOR EACH q:
IF
(
s.pc(q) = pcDoFind(k)
OR s.pc(q) = pcDoDelete(k)

)
THEN s.seen out(q)← true

doDeleteF (k, p) s.pc(p) = pcDoDelete(k) s.pc(p) ← pcDeleteResp(false)
AND s.seen out(p)

deleteResp(r, p) s.pc(p) = pcDeleteResp(r) s.pc(p) ← idle

Table 4.7: Transitions for the intermediate automaton IntAut, where s is the vari-
able of TYPE state of IntAut.

93

Actions in ConcAut starting from c Actions in IntAut

find2T (p) doF indT (c.k(p), p)

find2F (p) doF indF (c.k(p), p)

insert4T (p) doInsertF (c.k(p), p)

insert14T (p) doInsertT (c.k(p), p)

insert15T (p)

delete3T (p) doDeleteF (c.k(p), p)

delete17T (p) doDeleteT (c.k(p), p)

delete18T (p)

other actions ε

Table 4.8: Internal action correspondence between ConcAut and IntAut.

94

fsr pc rel find(c, i, p) ≡
(
i.pc(p) = pcDoFind(c.kp)

AND c.pc(p) ∈ {pcF ind1, pcF ind2}
)

OR
(
i.pc(p) = pcF indResp(r)

AND c.pc(p) = pcF indResp(r)
)

fsr pc rel insert(c, i, p) ≡
(
i.pc(p) = pcDoInsert(c.kp)

AND c.pc(p) ∈ {pcInsert1, · · · , pcInsert15}
)

OR
(
i.pc(p) = pcInsertResp(true)

AND c.pc(p) ∈ {pcInsert16, pcInsert17}
)

OR
(
i.pc(p) = pcInsertResp(r)

AND c.pc(p) = pcInsertResp(r)
)

fsr pc rel delete(c, i, p) ≡
(
i.pc(p) = pcDoDelete(c.kp)

AND c.pc(p) ∈ {pcDelete1, · · · , pcDelete18, pcDelete20}
)

OR
(
i.pc(p) = pcDeleteResp(true)

AND c.pc(p) = pcDelete19
)

OR
(
i.pc(p) = pcDeleteResp(r)

AND c.pc(p) = pcDeleteResp(r)
)

Figure 4.12: Program counter relation of fsr when p is performing a find, insert

or delete operation.

95

pcDoInsert(k)

pcInsert1 pcInsert4 pcInsert5pc_idle

ConcAut

insert4F(p)insertInv(k,p)

pc_idle

IntAut

pcInsertResp(r)

pcInsertResp(r)

insert13F(p)

insert13T(p)

insert14F(p)

insert17(p)insert16(p)

insert15T(p)

insert14T(p)

insert15F(p)

insert4T(p)

pcInsert14

pcInsert15

pcInsert13 pcInsert16 pcInsert17

insert1(p), · · · , insert3(p)

doInsertF (k, p)

doInsertT (k, p)

insertInv(k, p)

insertResp(r, p)

insert5T (p), · · · , insert12T (p)

insertResp(r, p)

Figure 4.13: Program counter relation during the insertp(k) operation in the forward

simulation relation.

pcDelete1

pcDoDelete(k)

pcDelete16 pcDelete19pc_idle

ConcAut

delete3F(p)deleteInv(k,p)

delete17T(p)

delete18F(p)

delete18T(p)

delete17F(p)

delete16T(p)

delete16F(p)

delete19(p)

delete3T(p)

pcDeleteResp(r)

pc_idle

IntAut

pcDeleteResp(r)

pcDelete18

pcDelete17

pcDelete3 pcDelete4

delete1(p), delete2(p) delete4T (p), · · · , delete15(p)

deleteResp(r, p)

deleteResp(r, p)

deleteInv(k, p)

doDeleteT (k, p)

doDeleteF (k, p)

Figure 4.14: Program counter relation during the deletep(k) operation in the forward

simulation relation.

96

search9(p)

pc(p)=

IntAut

pcDoDelete(k), if ret_addr=pcDelete2.

pcDoFind(k), if ret_addr=pcFind2.

pcDoInsert(k), if ret_addr=pcInsert3.

, search6(p)search2T(p),

pcSearch9

pcSearch8

pcSearch7pcSearch2pcSearch1

ConcAut

search7T(p)

search7F(p)

search2F(p)

search1(p)

search8(p)

· · ·

Figure 4.15: Program counter relation during the searchp(k) subroutine in the for-

ward simulation relation.

97

5 Invariants and Proofs

5.1 An Overview of the Proof

In Chapter 4, we described the way to model the specification and the simplified al-

gorithm using a canonical automaton AbsAut and a concrete automaton ConcAut,

respectively. Because it is complicated to construct a forward simulation directly

from ConcAut to AbsAut, we introduced the intermediate automaton IntAut and

proved that ConcAut implements IntAut and IntAut implements AbsAut through

forward and backward simulations, respectively. This hybrid forward and backward

simulation implies that ConcAut implements AbsAut, and hence our simplified al-

gorithm satisfies its specification.

We have already defined the forward simulation fsr and the backward simulation

bsr in Chapter 4. For the forward simulation (Definition 2.19), we have to prove

three main properties.

1. For every c ∈ start(ConcAut), there exists an i ∈ start(IntAut), such that

(c, i) ∈ fsr.

98

2. If c
α−→ConcAut c

′ and (c, i) ∈ fsr, then there exists α̂ and i′ such that

i
α̂

==⇒IntAut i
′ and (c′, i′) ∈ fsr, and

3. the external action in α̂ is the same as the external action in α.

The first condition requires that every initial state (in Section 4.2) in ConcAut

has a matching initial state in IntAut. Because IntAut has a unique initial state

(defined in Section 4.3), it was trivial to check that every initial state in ConcAut is

related with the initial state in IntAut by fsr (defined in Section 4.4). The second

property was proved by case analysis of all actions in ConcAut, using the action

correspondence shown in Table 4.8. In most cases proving the second property was

not complicated. The exceptions were the actions in ConcAut that map to non-

nil actions of IntAut. These are, by far, the bulkiest part of the proof because

they required proving many auxiliary lemmas about how the concrete automaton

behaves. The last condition was straightforward to verify according to the action

correspondence defined in Table 4.8.

Likewise, using Definition 2.22, which defines a backward simulation between

IntAut and AbsAut, we proved that the following four properties of the backward

simulation hold.

1. For all i ∈ states(IntAut), there exists a ∈ AbsAut such that (i, a) ∈ bsr.

2. If i ∈ start(IntAut) and there exists a ∈ states(AbsAut) such that (i, a) ∈ bsr,

then a ∈ start(AbsAut).

99

3. If i′
α−→IntAut i and a ∈ states(AbsAut) such that (i, a) ∈ bsr, then there exist

a′ and α̂ such that (i′, a′) ∈ bsr and a′
α̂

==⇒AbsAut a, and

4. the external action in α̂ is the same as the external action in α.

The first property was proved by explicitly constructing a state of AbsAut from the

state of IntAut. We proved the second property for the unique initial states for both

IntAut and AbsAut. Once again, the third property was proved by enumerating

all actions in IntAut using the action correspondence defined in the last part of

Section 4.3. The difficult cases are doInsertT (k, p) and doDeleteT (k, p), whose

corresponding actions in AbsAut may consist of several internal actions of other

processes. We shall discuss that part of backward simulation proof in Section 5.5.

After showing the third property, the last one is easy to prove using the action

correspondence.

5.2 Proofs in the Forward Simulation

To complete the proof of the forward simulation defined in Chapter 4 between

ConcAut and IntAut, we must show the key actions in Table 4.8 satisfy the following

property.

If c
α−→ConcAut c

′ and (c, i) ∈ fsr, then there exist α̂ and i′ such that i
α̂

==⇒IntAut

i′ and (c′, i′) ∈ fsr

100

As we described in the overview section, given states c, c′ ∈ states(ConcAut) and

i′ ∈ states(IntAut) and an action α such that c
α−→ConcAut c

′ and (c, i) ∈ fsr, we

can explicitly construct α̂ using the action correspondence between ConcAut and

IntAut defined in Table 4.8. Hence, it remains to construct an i′ ∈ states(IntAut)

which satisfies i
α−→IntAut i

′ and (c′, i′) ∈ fsr.

Firstly, we prove that i
α−→IntAut i

′ after constructing i′ using α̂. For each action

in ConcAut, we need to prove pre-state i enables α̂. A state i enables an action if

the value of the program counter and the data values of i satisfy the precondition

of the action defined in Table 4.7. Hence, we mainly focus on the cases which

map to non-trivial actions in Table 4.8. If the action is a find2T (p), to show

there exists a doF indT (c.k(p), p) action starting from i in IntAut, we need to argue

i.seen in(p) is true. This can be proved by showing c.aux seen in(p) is true since

i.seen in(p) = c.aux seen in(p) from (c, i) ∈ fsr. By the program counter relation

part of fsr, because c.pc(p) = pcF ind2, we have i.pc(p) = pcDoFind(k). Therefore,

preconditions of a doF indT (k, p) action are satisfied in i. Symmetrically, we can

prove that i satisfies the preconditions of a doF indF (c.k(p), p) action in IntAut

when a find2F (p) is performed in ConcAut. Hence, Lemma 5.1 is needed when a

find2T (p) or find2F (p) action occurs in ConcAut.

Lemma 5.1. Let c be any reachable state of ConcAut. If c
find2T (p)−→ c′, then the value

of aux seen inp is true at the state c. If c
find2F (p)−→ c′ then the value of aux seen outp

101

is true at the state c.

A similar argument is applied to insert4T (p) and delete3T (p), as well. When a

successful ichild CAS is performed, by an insert14T (p) or insert15T (p) action, let

k = c.k(p). We have to argue that k /∈ i.keys and i.pc(p) = pcDoInsert(k) before

the action doInsertT (k, p) is taken in IntAut according to Table 4.7. Since i.keys =

c.aux keys follows from (c, i) ∈ fsr, we just have to prove k /∈ c.aux keys. Once

again, because c.pc(p) = pcInsert14 or c.pc(p) = pcInsert15 before insert14T (p)

or insert15T (p), respectively, i.pc(p) = pcDoInsert(k) according to the program

counter relation of (c, i) ∈ fsr. Similarly, when a successful dchild CAS is performed

by a delete17T (p) or delete18T (p) action, let k = c.k(p). We have to argue that

k ∈ c.aux keys and i.pc(p) = pcDoDelete(k). Hence, we need to prove Lemma 5.2

and 5.3 for the ichild and dchild steps in ConcAut, respectively.

Lemma 5.2. Let c be any reachable state of ConcAut. If c
insert4T (p)−→ c′ then the

value of aux seen inp is true at the state c. If c
insert14T (p)−→ c′ or c

insert15T (p)−→ c′, then

c.k(p) is not in aux keys at the state c.

Lemma 5.3. Let c be any reachable state of ConcAut. If c
delete3T (p)−→ c′, then the

value of aux seen outp is true at the state c. If c
delete17T (p)−→ c′ or c

delete18T (p)−→ c′, then

c.k(p) is in aux keys at the state c.

Secondly, we need to show that after taking α̂ from i, the resulting state i′

satisfies (c′, i′) ∈ fsr. Thus, for each action in ConcAut, we need to prove the data

102

relation is satisfied between c′ and i′, as well as the program counter relation part of

fsr. We again focus on the cases in Table 4.8, which are the most complicated ones.

With respect to the data relation between c′.aux keys and i′.keys, we know that

aux keys changes only if a successful child CAS is performed. The key k is added to

aux keys when a successful ichild CAS by process p that inserts key k occurs. Hence,

in IntAut, a doInsertT (k, p) action that adds k to i.keys is performed. Because

c.aux keys = i.keys, we have c′.aux keys = i′.keys. Symmetrically, c′.aux keys =

i′.keys holds if a successful dchild CAS that deletes k occurs.

To prove the set stored in the BST is the same as the set of keys in IntAut,

we have to ensure that aux keys is equal to the set of keys in the BST’s reachable

leaves in ConcAut. This is Invariant 1, which encapsulates the connection between

the key set and its representation in shared memory as a BST. Hence, the complex

structure of the BST in the concrete automaton is hidden by this auxiliary key set

variable.

Invariant 1. The set aux keys in ConcAut always contains the same keys as the

current reachable leaves in the tree starting from the Root node.

With respect to the data relation between c′.aux seen in and i′.seen in, and be-

tween c′.aux seen out and i′.seen out, these parts of the states are initialized at each

invocation of each operation and modified only during a successful child CAS. If α is

an invocation by p, because c.aux keys = i.keys, c′.aux seen in(p) is initialized to

103

the same value as i′.seen in(p), as are c′.aux seen out(p) and i′.seen out(p). When

a successful ichild CAS by process p for key k is performed, α̂ = doInsertT (k, p),

and aux seen in(q) of every process q that is performing a find(k) or an insert(k)

operation but has not yet decided to return true will be set to true in the post

state c′. Hence, we also need to show that i′.seen in(q) is true in order to prove

c′.aux seen in = i′.seen in, which is required for showing (c′, i′) ∈ fsr. Since that

process q is performing a find(k) or an insert(k) in ConcAut, it follows that q’s

program counter value is pcDoFind(k, q) or pcDoInsert(k, q) at state i in IntAut

due to the program counter relation of (c, i) ∈ fsr. Thus, according to the way that

IntAut updates variables in Table 4.7, i′.seen in(q) is set to true by α̂ as well. In

a symmetric way, when a successful dchild CAS occurs, we can show aux seen out

in ConcAut is also related to seen out in IntAut.

To prove the program counter relation holds between c′ and i′, we expand the

effects of α̂ and show that after α̂, the program counter values of c′ and i′ are

still related. There is one type of special case in proving the program counter

relation between c′ and i′. For example, when a failed dchild CAS (delete17F (p))

is performed, we know that α̂ = ε, and (c, i) ∈ fsr. However, we cannot relate c′

to i′, because c.pc(p) = pcDelete19 which is about to return, however, i′.pc(p) =

i.pc(p) = pcDoDelete(k). Therefore, we have to show delete17F (p) cannot occur.

This is because no helping mechanism is implemented, so it is impossible for a delete

104

operation that successfully marks a parent node to fail on the dchild CAS or for an

insert operation that successfully flags a parent node to fail on the ichild CAS. This

is formalized in the following Lemma 5.4.

Lemma 5.4. For any execution of ConcAut, if a process p successfully performs a

mark CAS (delete10T (p)), it cannot perform an unsuccessful dchild CAS (delete17F (p)

or delete18F (p) in the same iteration of the loop). Similarly, if p successfully per-

forms an iflag CAS (insert11T (p)), it cannot perform an unsuccessful ichild CAS

(insert14F (p) or insert15F (p) in the same iteration of the loop).

Combined with the auxiliary variables aux seen in(p) and aux seen out(p),

Lemma 5.1, 5.2 and 5.3 correspond to the Lemma 5.5 and 5.6 and 5.7, reproduced

below, in the original English proof in the tech report [3].

Lemma 5.5. If a Find(k) operation returns true, then the BST contains a leaf with

key k at some point between the beginning and end of the operation. If it returns

false, there exist a time between the beginning and end of the operation such that the

BST does not contain a leaf with key k.

Lemma 5.6. An Insert(k) operation returns true if and only if the BST does not

contain a leaf with key k just before it performs the ichild CAS. If the operation

returns false, there exist a time between the beginning and end of the operation such

that the BST contains a leaf with key k.

105

Lemma 5.7. A Delete(k) operation returns true if and only if the BST does contain

a leaf with key k just before it performs the dchild CAS. If the operation returns false,

there exist a time between the beginning and end of the operation such that the BST

does not contain a leaf with key k.

These lemmas, which require another 25 technical lemmas, were all proved in En-

glish in the original paper [3]. Thus, we formalized their proofs in PVS to complete

the forward simulation. For example, we needed to prove one of the most important

lemmas which claims that in any reachable state, the data structure maintained by

the implementation is a BST, shown as Lemma 5.8.

Lemma 5.8. In every reachable state, the tree of child pointers is a BST [3].

This is also one of the key lemmas proved in the original paper ([3], Lemma 22).

We encountered some difficulties in formalizing lemmas written in [3] and for-

mally proving them using PVS. An important difference between proofs written in

natural language and machine checkable proofs is that a small step in the natural

language proof in a human’s mind is often not a straightforward automatic step

in PVS. PVS provides some proof commands, such as grind, to automatically rea-

son towards a goal. However those procedures, which try repeated skolemization,

instantiation, and if-lifting, are not intelligent enough to prove complex goals, espe-

cially when some complicated data structures are involved. In proving the lemmas

and invariants of the BST algorithms in PVS, one must be very careful of using such

106

commands: if one uses the grind command carelessly, PVS automatically expands

the definition of ConcAut into many cases and complicated expressions, which are

very hard to work with. To avoid this, we have to explicitly state those “small” steps

for humans as lemmas such that we can apply them when proving a higher level

statement. Therefore, our PVS scriptto state the invariants of ConcAut contains

many lemmas which may seem fairly trivial.

For instance, Lemma 4 in [3] states that for each internal node v, no CAS ever

changes v.info to a value that was previously stored there. In the proof, the authors

state “Each successful flag CAS on v.info subfield sets the filed to point to a newly

created Info object, so that this object could never have appeared in v.info before.”

This is easy to verify for a human: a successful iflag CAS (Line I11) is always

preceded by a creation of a new Info object (Line I10). We may use another implicit

fact that no other processes can write or modify the object between Line I10 and

I11 because the only pointer to it is in a local variable of the process that created

it. Therefore, it has never been visible to other processes before the successful iflag

CAS. However, to verify that sentence using PVS, we have to split it into three

small lemmas as follows.

First, we show that an Info object newly created on Line I10 has never appeared

in v.info before, as claimed by Lemma 5.9. The definition of executions in PVS are

discussed in Section 5.3.

107

Lemma 5.9. For any execution, if an Info object f is newly created by I10 at step

i, any Info object accessed by any process before step i is not the same as f .

This lemma can be proved by a contradiction. Assume that before step i, a

process accessed an Info object that is the same as f . By applying Lemma 5.10

and Lemma 5.11, which claim that in any previous state, if x was an allocated Info

object, it is still in the set allocatedInfo, we know that f is in allocatedInfo. By

applying the axiom that describes the creation a new Info object, the object that

I10 allocated must not be in allocatedInfo. Thus, it completes the proof.

Lemma 5.10. For any execution, if a process accesses an Info object, this object

has been allocated.

Lemma 5.11. For any execution, if f was in allocatedInfo, it is still in allocated-

Info.

Second, Lemma 5.12 says that if process p creates an Info object f at I10, before

p successfully performs its iflag CAS (I11) that writes a pointer to f into a node

v, no other process can access f . This lemma can be proved by induction on the

length of the execution.

Lemma 5.12. For any execution and any node v, if an Info object f is newly created

by I10 by process p at step j, and p points v.info to f by a successful iflag CAS at

step i, then no other process can access f between steps j and i.

108

Third, we use Lemma 5.13 to state that for any successful iflag CAS performed

by process p, there exists a previous execution of Line I10 by p such that no step is

taken by p in between. Lemma 5.13 can be observed from the pseudocode. Hence,

no process other than p can access f before the successful iflag CAS. It follows that

no v.info can be set by a CAS operation to point to f by any process other than p.

Combined with Lemma 5.9, we can prove the single sentence written by the authors.

Lemma 5.13. For any execution and any node v, if process p successfully changes

v.info by an iflag CAS to f at step i, there exists a step j such that j < i and f is

created by I10 performed by p and no step belongs to p in between j and i.

Another kind of difficulty that appears when proving invariants of ConcAut using

PVS is what we call code structure problems. One may get a flavour of this problem

by considering Lemma 5.13. Since we model the pseudocode as an I/O automaton,

each line of the code becomes an independent action. In the pseudocode, one can

easily observe how the code is executed line by line. But when we model it as an

I/O automaton, proving something that relies on properties of the code structure,

requires reasoning about many independent actions, which are tied together via

their effects on the program counter. More specifically, if we know that process p

is executing Line I13, we can easily conclude that the IF condition executed by p

at Line I5 returns true, by looking at the pseudocode. However, in PVS, as the

steps are modelled as independent actions, to prove the same statement, we have to

109

state it as a lemma and infer step by step from Line I13 back to Line I5 and then

conclude that if p executes Line I13, there exists an earlier step when p executed I5

and returned true. More generally, whenever one of this kind of situation occurs,

we have to come up with an individual lemma to state it. This is quite inefficient

and thus we want to build the kind of general tools for proving this kind of facts

about an automaton that models code.

5.3 Some Definitions in PVS

Suppose c
α−→ c′, where c and c′ are states and α is an action in ConcAut. As we

can see, besides describing properties of c and c′, we also want to reason about the

previous actions before α or some possible actions after α in an execution. Many

proofs of lemmas in the original paper use that kind of reasoning ([3], Lemma 4, 5, 6,

7, 9, 10, 11, 12, 13, 14, etc.). Our first attempt to formalize a reachable state by an

execution sequence starting from an initial state, adapted from [16], was inductive:

reachable?(c): INDUCTIVE bool =

initial config(c) ∨ (∃ s, α: reachable?(s) ∧ transition(s, α, c))

This says that a state c is reachable if it is an initial state or there is another

state s which is reachable and there is a transition from s to c by performing an

action α. This definition, although clear and simple, makes it awkward to reason

about the actions before a given action or the actions that occur after it. Inspired

110

by [28], we use a more natural way to define states and executions. We define a

finite execution to be a sequence of n+ 1 states and n actions alternating with each

other.

We define a FiniteStepSeq in PVS to be a type that consists of two finite

sequences (finseq), one containing the actions and the other containing the states,

where the length of the state-sequence is one larger than the length of the action-

sequence. In PVS, the pair “[#” and “#]” represents a definition of a record type

with several attributes. Its attributes, which consist of a name followed by a type,

are separated by “,”. The finseq type, provided by PVS, is a function that maps

each natural number that is smaller than the length to an element of a generic type

T.

finseq: TYPE = [# length: nat, seq: [below[length] -> T] #]

FiniteStepSeq: TYPE = [# actions: finseq[action],

states:{ss: finseq[state] | ss.length = actions.length+1} #]

If stepseq is a variable of type FiniteStepSeq, we define the function steps, which

takes a FiniteStepSeq stepseq as its argument and returns a finite sequence of 〈state,

action, state〉 tuples, i.e., transitions.

111

stepseq: VAR FiniteStepSeq

steps(stepseq): finseq[[state,action,state]] =

(# length := stepseq.actions.length,

seq := λ.(n:below[stepseq.actions.length]):

(stepseq.states(n), stepseq.actions(n), stepseq.states(n+1))

#)

A stepseq is a finiteExecFrag of an I/O automaton if and only if every tuple in

steps(stepseq) is a legal transition of the I/O automaton. Furthermore, a finite-

ExecFrag stepseq is a finiteExecution if and only if the first state of stepseq is an

initial state.

finiteExecFrag(stepseq): bool =

∀ (n: below[stepseq.actions.length]): transition(steps(stepseq)(n))

finiteExecution(stepseq): bool =

finiteExecFrag(stepseq) ∧ initial_config(stepseq.state(0))

Hence, if c
α−→ c′ is the ith transition in a finiteExecution stepseq, we can easily

reason about properties of any actions or states in the execution before ith step

or after ith by referring to their indices. For example, Lemma 5.15 ([3], Lemma

9) can now be formalized using our definitions about finiteExecutions as shown in

Figure 5.1, given the definition of “belong to” as follows.

112

Definition 5.14. A successful flag CAS belongs to an Info object f , if the flag CAS

stores a pointer to an Info object f . A mark CAS belongs to an Info object f , if

the dinfof field of the Info object used by the CAS points to f .

Lemma 5.15. Each mark CAS that belongs to an Info object f is preceded by a

successful dflag CAS that belongs to f.

Let c
α−→ c′. A frequently used lemma that requires proof in PVS is that every

local variable of process p remains unchanged between c and c′ if α belongs to a

process q 6= p. When we prove an invariant, we always have to prove it is preserved

by all possible actions α. There are 79 possible actions in ConcAut. However,

except for a few important actions, most of the actions can be proved to preserve

an invariant by using the same proof steps. Therefore, we usually construct PVS

proof strategies, which consist of a batch of PVS proof commands, to automate the

proofs when we need to enumerate all the actions.

5.4 Errors Found

Although proving the correctness of invariants and lemmas using PVS took a long

time, we did detect some errors in the original proof. An author of [3] detected that

the proof of Lemma 5.16 ([3], Lemma 2(10)) has a small error.

Lemma 5.16. The top part of the tree is always as shown in Figure 5.2. More

precisely:

113

lemma_dflag_before_mark: LEMMA ∀ stepseq: finiteExecution(stepseq) ⇒

(∀ i≤stepseq.actions.length: LET alpha=stepseq.actions(i),

p=process(stepseq.actions(i)),

c=stepseq.states(i),

f=c.dinfof(c.op2(p)) IN

(markCAS(alpha) ⇒

∃ j:nat: j≤i ∧ success_dflagCAS_belong_f(stepseq,j,f)

)

)

markCAS(alpha): bool = (alpha = delete10T OR alpha = delete10F)

success_dflagCAS_belong_f(stepseq,i,f): bool = LET s=stepseq.states(i),

beta=stepseq.actions(i) IN

(beta = delete7T AND s.op1(process(beta)) = f)

Figure 5.1: Using definition of finiteExecution to formalize a lemma.

114

(a) Root.left.key = ∞1, and

(b) if Root.left is an internal node, then Root.left.right is a leaf with key
∞1.

Their proof was done by induction on states in an execution. It is trivial that

the lemma holds for the base case, where the state is the initial state. However,

for the induction step, let c
α−→ c′ and assume the claim holds in c. For the case

where α is a dchild CAS that changes the node root.left using some Info object

f , they argued that after the dchild CAS, root.left is a leaf with key ∞1, because

f.pn.right is a leaf with key ∞1. Because the dchild CAS is successful, root.left

points to f.pn in state c. They also have a lemma that proves that for any DInfo

object f , f.pn is an internal node. They claimed that, it follows from the induction

hypothesis that f.pn.right is a leaf with key ∞1.

RootRoot

(a) (b)

∞2

α

∞1

∞2

∞1

∞1

∞2

∞2

Figure 5.2: Trees showing leaves when the set is (a) empty and (b) non-empty. [3]

This is incorrect. We agree that root.left is an internal node at c, and thus

we can apply the hypothesis to show root.left.right is a leaf with key ∞1 in state

115

c. However, the dchild CAS writes the value stored in other to root.left, and the

value of other was assigned at a step β before α. In the state immediately before β,

we do not know if f.pn.right at this point is a leaf with ∞1, since we do not know

that f.pn is the left child of the root at that time. One way to fix the proof of this

lemma is to use lemmas proved subsequently, which say that if a node is flagged or

marked then no other process can modify its child pointers, and before a successful

dchild CAS, the node is marked. However, in order to do so, all those lemmas have

to be composed into a big induction lemma, which is a bit complicated. Instead, we

fixed this lemma by making it a bit weaker as stated in Lemma 5.17.

Lemma 5.17. The node root.left is always a node with key ∞1.

This weaker lemma turns out to be sufficient to be used in the later proofs, since

we can still conclude that root.left.right has a key greater than or equal to ∞1 by

combining a few lemmas.

In the process of formalizing the proof, I discovered one flaw in the original proof

in Lemma 5.18 ([3], Lemma 14(7)). Note that Lemma 14 in the original proof is a

big induction lemma which has many parts and we mainly discuss the seventh part

of it.

Lemma 5.18. A child (either an ichild or dchild) CAS writes a value into a node

v’s child pointer that has never been stored there before.

We can focus on the case of a dchild CAS dcask that changes the left child of

116

x from a node z to y. In the original proof, to derive a contradiction, the authors

assume that y was the left child of x at some earlier time. Figure 5.3 illustrates the

execution for the proof. In the state just before dcask, z’s child is y. Because we

contradiction

z

y

x

y
z

y

x

y

x
x

dcasj dcask

Figure 5.3: The way to show contradiction in proving Lemma 5.18.

know y 6= z, there must be an earlier child CAS ccasj that caused y to stop being

the left child of x. They proved that just after ccasj, y is not a descendant of x. The

case where ccasj is an ichild CAS is fine. So, we only consider the case where ccasj

is a dchild CAS as shown in Figure 5.3. According to another part of the induction

hypothesis “before a dchild CAS, the child pointers of the parent node f.pn do not

change between the last read in search belong to f and the dchild CAS”, so ccasj

replaces a pointer to y by a pointer to y’s child, and y is no longer a descendant of

x (since y cannot be a descendant of its own child by “the binary tree property”

(another part of the induction hypothesis)). This is incorrect, because “the binary

tree property” can only be applied here when y is reachable. However, there is no

proof to show node x or y is reachable before the dchild CAS.

We fix this lemma by adding more auxiliary claims into the original Lemma 14

117

to compose a bigger induction lemma. The added claims are stated in Lemma 5.19.

Some of these claims were proved in [3], but were not wrapped up in the induction

proof used to prove Lemma 14 in [3]

Lemma 5.19. 1. After a successful dchild CAS by a process p, the node that was

marked by p before the dchild CAS and was reachable right before the CAS,

becomes unreachable and will never become reachable again.

2. If a successful child (either an ichild or dchild) CAS occurs on a node v, v is

reachable in the state right before the CAS.

3. During a search subroutine of process p, each visited node was reachable at a

time before it is visited by p.

4. The node which is unreachable and becomes reachable by an ichild CAS was

never reachable before.

5. If a node is reachable after any action other than a successful ichild CAS then

it was reachable before the action as well.

Intuitively, Lemma 5.19(1) can be proved by two cases. In case 1, if a node is

added by a successful ichild CAS we prove this node is not the marked node by

contradiction by applying Lemma 5.19(4). In the other case, when a node becomes

the new child of its grandparent by a dchild CAS we prove this node is not the

marked node by contradiction by applying Lemma 5.19(5). Lemma 5.19(2) and

118

Lemma 5.19(3) are proved by using the induction hypothesis of each other. Fur-

thermore, Lemma 5.19(4) can be proved using the fact that an ichild CAS always

changes a pointer to a newly allocated node. Lemma 5.19(5) can be proved by

applying Lemma 5.19(2) plus the fact that a dchild CAS changes the child pointer

of f.gpn from f.pn to f.other. Thus, we can use Lemma 5.19(1) to show the con-

tradiction that an unreachable node y becomes reachable in the execution shown in

Figure 5.3, thereby correcting the flaw in the original proof of Lemma 14(7).

5.5 Proofs in the Backward Simulation

It is easier to prove the correctness of the backward simulation compared with the

forward one, because our intention was to design the IntAut to be as similar to the

AbsAut as possible. As discussed earlier, in Section 5.1, we were required to show

that for each type of α such that i′
α−→IntAut i and each a ∈ states(AbsAut) such

that (i, a) ∈ bsr, there exists a state a′ of AbsAut and a sequence of actions α̂ such

that (i′, a′) ∈ bsr and a′
α̂

==⇒AbsAut a, and the external action in α̂ is the same as the

external action in α.

Recall the backward simulation relation bsr and backward action correspondence

defined in Section 4.3. It is trivial to prove that external actions, which are invoca-

tions and responses, satisfy the above properties. It is also not hard to prove that

internal actions, except for doInsertT (k, p) and doDeleteT (k, p), satisfy this prop-

119

erty, because they never modify shared objects which appear in the data relation

part of bsr. A doInsertT (k, p) action has a more complicated behaviour. It adds

k into i′.keys, sets i′.seen in(q) to be true for any process q which is performing a

find(k) or an insert(k) operation but has not decided to return a value, which allows

us to linearize all find(k) operations that subsequently return true and all insert(k)

operations that subsequently return false immediately after doInsertT (k, p). For

this action α, we need to construct the pre-state a′ from a by removing k from

a.keys. The value of program counter a′.pc(q) for a process q is retrieved by setting

its values to the precondition of q’s action in α̂. Then, we show that (i′, a′) ∈ bsr

and a′
α̂

==⇒AbsAut a and the external action in α̂ and α is the same. Because a

doDeleteT (k, p) action behaves in a symmetric way as doInsertT (k, p), we used a

similar method to construct α̂ and a′ to complete the proof. Those proofs can all

be found in our PVS scripts.

120

6 Conclusion

We believe that forward simulations are highly related to a concept called strong

linearizability recently defined by Golab et al. [29]. We conjecture that an implemen-

tation is strongly linearizable if and only if there exists a forward simulation between

the implementation and its sequential specification. Because we believe the BST al-

gorithm is actually strongly linearizable, we believe that a forward simulation exists

between the implementation and its sequential specification. Therefore, one may

be tempted to try to prove that the concrete automaton (the implementation) im-

plements the canonical automaton (specification) directly by a forward simulation.

However, that relation is much more complicated to formalize. Even when we split

the proof into a backward and forward simulation, the forward simulation is still

complicated to be proved using PVS, because the pseudocode of the algorithm is

far from trivial, the concrete automaton is complicated, and the program counter

relationship defined in Figure 4.10 consists of a lot of possibilities. When we were

proving a lemma about the concrete automaton, it was almost impossible to use

PVS’s built-in automated reasoning procedures such as “grind” to save time, be-

121

cause PVS “got lost” in those automatic generated subgoals when auto-rewriting

the concrete automaton.

It seems more reasonable to use a forward simulation to prove the correctness

of an implementation, when its pseudocode is short and simple, as Colvin et al. [16]

and Doherty et al. [13] did. Another reasonable approach is to develop tools to au-

tomatically generate the I/O automaton model from the implementations, such as

its program counter values and actions. The Tempo toolkits developed by Lynch

et al. [20] can translate specifications described in an I/O automata like language

into I/O automata and help with the verification. It would be easier to handle com-

plicated implementations if we were to have a tool that automatically proves some

easy facts about the pseudocode. For instance, local variables are not nil when they

are used, and process p’s local variables remains the same if p did not modify them.

It may also be useful to have a tool to generate lemmas on the pseudocode structure,

such as when a process is executing inside an IF block, the IF condition held at some

earlier time. This would really save proofs designers’ time and let them focus on the

more important and difficult lemmas required to prove correctness. Lesani et al. [28]

tried to construct a general framework for formally verifying software transactional

memory algorithms. Their framework provides templates which make it easier to

construct I/O automata and forward or backward relations.

We have formally verified the correctness of the simplified algorithm using PVS

122

by showing that a forward simulation exists between the concrete automaton, which

models the implementation, and the intermediate automaton, and a backward sim-

ulation exists between the intermediate automaton and the canonical one which

models the sequential specification. Thus, the algorithm without the helping mech-

anism is linearizable. Our future work is to verify that the original algorithm with

the helping mechanism is also linearizable. This can be done by building another

concrete automaton and showing that there is a simulation between this newly built

one and ConcAut. This may be applicable since the automata for the original al-

gorithm and the simplified version are quite similar. An alternative way to verify

the original implementation would be to model the algorithm as a concrete automa-

ton and redo the backward and forward simulation proof again. In this approach,

a lot of lemmas and proofs we have proved in the old automaton can be directly

reused and that will save a great deal of time. When modelling the pseudocode as

ConcAut, we considered that accessing unchangeable fields of a shared object can

be considered as 0 step of accessing the shared memory. We planned to explore such

property in the future, which may simplify the way of modelling of general concur-

rent pseudo codes, thereby simplifying a formal verification. The BST algorithm

is a non-blocking algorithm, which means that it guarantees that in any infinite

execution some operation completes. We are also interested in formalizing the proof

of this progress property of the BST using PVS, which may be quite different from

123

verifying the correctness property. In particular, it will require us to reason about

infinite executions.

124

Bibliography

[1] Sutter, H., Larus, J.: Software and the concurrency revolution. Queue 3(7)

(September 2005) 54–62

[2] Herlihy, M.P.: Wait-free synchronization. ACM Transactions on Programming

Languages and Systems 13(1) (January 1991) 124–149

[3] Ellen, F., Fatourou, P., Ruppert, E., van Breugel, F.: Non-blocking binary

search trees. In: Proceedings of the 29th Annual ACM Symposium on Principles

of Distributed Computing, ACM (July 2010) 131–140

[4] Detlefs, D.L., Flood, C.H., Garthwaite, A., Martin, P.A., Shavit, N., Steele,

G.L.: Even better DCAS-based concurrent deques. In: Proceedings of the 14th

International Conference on Distributed Computing, Springer-Verlag (October

2000) 59–73

[5] Doherty, S.: Modelling and verifying non-blocking algorithms that use dy-

namically allocated memory. Master’s thesis, Victoria University of Wellington

(2003)

125

[6] Shann, C.H., Huang, T.L., Chen, C.: A practical nonblocking queue algo-

rithm using compare-and-swap. In: Proceedings of the Seventh International

Conference on Parallel and Distributed Systems, IEEE (July 2000) 470–475

[7] Colvin, R., Groves, L.: Formal verification of an array-based nonblocking queue.

In: Proceedings of the 10th IEEE International Conference on Engineering of

Complex Computer Systems, IEEE (June 2005) 507–516

[8] Lamport, L.: Checking a multithreaded algorithm with +CAL. In: Proceed-

ings of the 20th International Conference on Distributed Computing, Springer-

Verlag (September 2006) 151–163

[9] Doherty, S., Detlefs, D.L., Groves, L., Flood, C.H., Luchangco, V., Martin,

P.A., Moir, M., Shavit, N., Steele, G.L.: DCAS is not a silver bullet for

nonblocking algorithm design. In: Proceedings of the 16th Annual ACM Sym-

posium on Parallelism in Algorithms and Architectures, ACM (June 2004) 216–

224

[10] Liu, Y., Chen, W., Liu, Y.A., Sun, J.: Model checking linearizability via

refinement. In: Proceedings of the 2nd World Congress on Formal Methods,

Springer-Verlag (November 2009) 321–337

[11] Lynch, N.A., Tuttle, M.R.: Hierarchical correctness proofs for distributed

algorithms. In: Proceedings of the 6th Annual ACM Symposium on Principles

126

of Distributed Computing, ACM (August 1987) 137–151

[12] Lynch, N., Vaandrager, F.: Forward and backward simulations - Part I: Un-

timed Systems. Information and Computation 121 (September 1995) 214–233

[13] Doherty, S., Groves, L., Luchangco, V., Moir, M.: Formal verification of a

practical lock-free queue algorithm. In: International Conference on Formal

Techniques for Networked and Distributed Systems, Springer-Verlag (Septem-

ber 2004) 97–114

[14] Michael, M.M., Scott, M.L.: Nonblocking algorithms and preemption-safe lock-

ing on multiprogrammed shared memory multiprocessors. Journal of Parallel

and Distributed Computing 51(1) (May 1998) 1–26

[15] Doherty, S., Moir, M.: Nonblocking algorithms and backward simulation. In:

Proceedings of the 23rd International Conference on Distributed Computing,

Springer-Verlag (September 2009) 274–288

[16] Colvin, R., Groves, L., Luchangco, V., Moir, M.: Formal verification of a lazy

concurrent list-based set algorithm. In: Proceedings of the 18th International

Conference on Computer Aided Verification, Springer-Verlag (August 2006)

475–488

127

[17] Heller, S., Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N., Shavit, N.:

A lazy concurrent list-based set algorithm. Parallel Processing Letters 17(4)

(December 2007) 411–424

[18] Gao, H.: Design and Verification of Lock-free Parallel Algorithms. PhD thesis,

Groningen University (2005)

[19] Archer, M., Lim, H., Lynch, N.A., Mitra, S., Umeno, S.: Specifying and

proving properties of timed I/O automata using Tempo. Design Automation

for Embedded Systems 12(1-2) (2008) 139–170

[20] Lynch, N.A., Garland, S.J., Kaynar, D., Michel, L., Shvartsman, A.: The

Tempo language user guide and reference manual. (2008)

[21] Archer, M., Heitmeyer, C., Sims, S.: TAME: A PVS interface to simplify proofs

for automata models. In: Proceedings of User Interfaces for Theorem Provers,

IEEE (July 1998) 42–49

[22] Archer, M.: TAME: Using PVS strategies for special-purpose theorem proving.

Annals of Mathematics and Artificial Intelligence 29(1-4) (2000) 139–181

[23] Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA (1996)

128

[24] Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for con-

current objects. ACM Transactions on Programming Languages and Systems

12(3) (July 1990) 463–492

[25] Hibbard, T.N.: Some combinatorial properties of certain trees with applications

to searching and sorting. Journal of the ACM 9(1) (January 1962) 13–28

[26] Fomitchev, M., Ruppert, E.: Lock-free linked lists and skip lists. In: Pro-

ceedings of the 23rd Annual ACM Symposium on Principles of Distributed

Computing, ACM (July 2004) 50–59

[27] Barnes, G.: A method for implementing lock-free shared-data structures. In:

Proceedings of the 5th Annual ACM Symposium on Parallel Algorithms and

Architectures, ACM (July 1993) 261–270

[28] Lesani, M., Luchangco, V., Moir, M.: A framework for formally verifying

software transactional memory algorithms. In: Proceedings of the 23rd Inter-

national Conference on Concurrency Theory, Springer-Verlag (September 2012)

516–530

[29] Golab, W., Higham, L., Woelfel, P.: Linearizable implementations do not

suffice for randomized distributed computation. In: Proceedings of the 43rd

Annual ACM Symposium on Theory of Computing, ACM (2011) 373–382

129

	Abstract
	Acknowledgements
	Table of Contents
	Introduction
	Formal Verification
	Previous Work
	Overview of the Thesis

	Proving Linearizability Using Simulations
	Model of Computation
	Data Types
	Input/Output Automata
	Concurrent Implementations and Linearizability
	Canonical Automata

	Simulations
	Forward Simulations
	Backward Simulations

	Non-blocking Binary Search Trees and a Simplified Algorithm
	A Non-blocking Binary Search Tree Algorithm
	Implementation Overview
	Detailed Implementation

	A Simplified Algorithm

	Modelling the Algorithms
	The Canonical Automaton
	The Concrete Automaton
	An Intermediate Automaton and Backward Simulation
	The Forward Simulation

	Invariants and Proofs
	An Overview of the Proof
	Proofs in the Forward Simulation
	Some Definitions in PVS
	Errors Found
	Proofs in the Backward Simulation

	Conclusion
	Bibliography

