
MEASURING PROGRESS OF

MODEL CHECKING RANDOMIZED ALGORITHMS

XIN ZHANG

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

GRADUATE PROGRAM IN COMPUTER SCIENCE AND ENGINEERING
YORK UNIVERSITY

TORONTO, ONTARIO
JULY 2010

MEASURING PROGRESS OF

MODEL CHECKING RANDOMIZED

ALGORITHMS

by Xin Zhang

a thesis submitted to the Faculty of Graduate Studies of
York University in partial fulfilment of the requirements
for the degree of

MASTER OF SCIENCE

c© 2010

Permission has been granted to: a) YORK UNIVER-
SITY LIBRARIES to lend or sell copies of this disserta-
tion in paper, microform or electronic formats, and b)
LIBRARY AND ARCHIVES CANADA to reproduce,
lend, distribute, or sell copies of this thesis anywhere in
the world in microform, paper or electronic formats and
to authorise or procure the reproduction, loan, distribu-
tion or sale of copies of this thesis anywhere in the world
in microform, paper or electronic formats.

The author reserves other publication rights, and neither
the thesis nor extensive extracts for it may be printed or
otherwise reproduced without the author’s written per-
mission.

MEASURING PROGRESS OF

MODEL CHECKING RANDOMIZED ALGORITHMS

by Xin Zhang

By virtue of submitting this document electronically, the author certifies that this
is a true electronic equivalent of the copy of the thesis approved by York University
for the award of the degree. No alteration of the content has occurred and if there
are any minor variations in formatting, they are as a result of the coversion to
Adobe Acrobat format (or similar software application).

Examination Committee Members:

1. Franck van Breugel

2. Jonathan Ostroff

3. Eric Ruppert

4. Neal Madras

Abstract

Verification of the source code of a probabilistic system by means of an explicit-

state model checker is challenging. In most cases, the model checker will either

run out of memory or will simply not terminate within any reasonable amount of

time. We introduce the notion of a progress measure for such a model checker. The

progress measure returns a number in the interval [0, 1]. This number provides us

a quantitative measure of the amount of progress the model checker has made. The

larger the number, the more progress the model checker has made. We also show

how to compute the progress measure for checking invariants. Explicit-state model-

checkers usually exploit search strategies such as depth-first search and breadth-

first search to explore the transitions. We introduce three new search strategies that

take the probabilities associated with the transitions into account. Furthermore, we

discuss the implementation of our theoretical framework within the explicit-state

model checker Java PathFinder. We compare the amount of progress made by the

iv

different search strategies for eight randomized algorithms implemented in Java.

v

Acknowledgements

I am extremely thankful to my supervisor Professor Franck van Breugel for

his guidance, support, patience and constant encouragement. I thank him for

introducing me to the area of model checking and probability theory. I learned

many new concepts under his supervision. Not only did he provide me with the

support and guidance throughout my research. He also spent so much time on

reading my drafts, correcting errors and giving me advice on writing. Without his

encouragement, I would never have been able to finish my thesis.

I am grateful to Professor Eric Ruppert, Professor Jonathan Ostroff and Profes-

sor Neal Madras for agreeing to serve on my supervisory committee and providing

very useful feedback on my thesis. I greatly appreciate Professor Eric Ruppert‘s

efforts in reading my thesis in great depth and providing detailed comments. Many

thanks to Professor Jonathan Ostroff for teaching me a lot about software engi-

neering. My heartfelt thanks to Professor Neal Madras his detailed reading of my

vi

thesis and suggesting several improvements. I also thank graduate assistant Ouma

Jaipaul-Gill for her help with administrative matters and encouragement. I am

thankful to the Computer Science and Engineering Department and NSERC for

providing financial support.

I want to thank Trevor Alexander Brown who helped me with some proofs. Our

discussions really clarified the concept of model checking.

I thank my fellow graduate students and friends, especially Nastaran Shafiei,

Anton Belov, Hui Wang, and Joanna Helga. They did not only give me a lot of

new ideas and suggestions, but also provided the wonderful company and cheerful

environment in the department.

vii

Table of Contents

Abstract iv

Acknowledgements vi

Table of Contents viii

1 Introduction 1

2 Some Probability Theory 10

3 A Model of a Probabilistic Model Checker 15

3.1 A Probabilistic Transition System 16

3.2 A Set of Execution Paths . 18

3.3 A Measurable Space of Execution Paths 22

3.4 A Search of a Probabilistic Transition System 25

4 A Progress Measure 27

viii

4.1 Extension of the Search . 27

4.2 Definition of Progress . 34

4.3 Characterization of Progress for Invariants 41

4.4 Computation of Progress for Invariants 57

4.5 Maintaining the Searched System 64

5 Search Strategies 69

5.1 DFS and BFS . 69

5.2 Probability-First Search . 71

5.3 Breadth-First Probability-Second Search 73

5.4 Randomized Search . 75

5.5 Properties of Search Strategies . 77

5.6 Comparison . 81

6 An Extension of JPF to a Probabilistic Model Checker 84

6.1 The Class Choice . 84

6.2 The Abstract Class ChoiceGenerator 89

6.3 The Interface Probable . 91

6.4 The Class ProbabilisticChoiceGenerator 92

6.5 The Native Peer Class JPF probabilistic Choice 93

6.6 The Complete Picture . 96

ix

7 Implementation of the Progress Measure 99

7.1 The Class ProbabilityListener . 101

7.2 The Class Transition . 103

7.3 The Class PTS . 104

7.4 The Computation of the Progress Measure 105

7.5 The Complete Picture . 109

8 Implementation of the Search Strategies 114

8.1 The Abstract Classes Search and ProbabilitySearch 114

8.2 The Classes PFS and BFPSS . 123

8.3 The Class RandomizedSearch . 126

8.4 The Complete Picture . 128

9 Case Studies 131

9.1 Die and Biased Die . 132

9.2 Randomized Quicksort . 136

9.3 Random Select . 138

9.4 Skiplist . 140

9.5 Random Matrix Equation . 142

9.6 Scissors Game . 144

9.7 Stable Marriage . 146

x

9.8 Summary . 149

10 Conclusion 151

10.1 Overview . 151

10.2 Future Work . 152

Bibliography 155

xi

1 Introduction

The problem of verifying properties of programs is extremely important, not only

for safety critical applications, but also for business applications. During the de-

velopment of software, more than one third of the time and budget is spent on

testing [26], which is meant to find bugs in the software. But despite this effort,

particular bugs often remain in the software. On the one hand, for safety critical

applications this can cause loss of life. For example, in October 1992 the failure of

the London ambulance service computer-aided dispatch [2] was the major reason

for 20 to 30 deaths. On the other hand, for business applications the result may be

considerable financial losses. One example is the failed Denver airport automated

baggage handling system [5]. Started in 1989, the $234 million project was delayed

until 1995, costing $500 million more, and in 2005 the system was essentially shut

down due to high maintenance costs.

In order to find bugs in software, testing is usually done during and after the

development. Since testing can only show the presence of bugs, not their absence

1

[7], testing does not guarantee the correctness of the system. The main reason why

conventional testing is not always sufficient is that it does not usually capture all

possible execution paths; or in other words, it is incapable of exploring all the pos-

sible states of the program. Verification techniques and tools provide a systematic

way to check many or even all possible states of a program. So verification should

supplement testing whenever possible.

There are three stages of verification. First, verification should be done during

the design stage. After capturing the user requirements, the specification can be

developed by using mathematical notation, and tools such as Spin [12] can be used

to check for design errors. Second, when the code is being implemented, tools

such as Java PathFinder [30] can be used to detect bugs like uncaught exceptions,

deadlocks, data races, etc. The last step is to verify the whole system, including

user input. Since the users’ behaviors are not always predictable, it is useful to

exploit a behavior-based tool to verify user input, such as Abbot [8].

Next, we briefly introduce two different approaches to verification.

• Theorem proving. Roughly speaking, a theorem prover is a program that

attempts to prove theorems. There are two types of theorem provers, auto-

matic theorem provers and manual theorem provers. The former are fully

automatic whereas the latter may need some human input. When applying

theorem provers to verification, the properties to be verified are usually mod-

2

eled as theorems and the program to be verified is usually modeled by axioms

and rules. The theorem prover verifies a property of the program by proving

the corresponding theorem using the corresponding axioms and rules. For

more details about theorem proving, we refer the reader to, for example, [21].

• Model checking. A model checker is a program that systematically explores

states of the program being verified. The property being verified is often

expressed in terms of a logic. The property determines which states the

model checker has to check for a violation of the property. In case a violation

is found, the model checker usually provides a counterexample that shows

why the program does not satisfy the property. Since the number of states

of the program may be very large, in model checking several techniques have

been developed to reduce the size of the state space. For more details, we

refer the reader to, for example, [1].

In this thesis, we focus on model checking.

In order to check if a program satisfies the property to be verified, an explicit

model checker mostly uses a forward strategy to search the state space. The model

checker starts in the initial state. When the model checker is in a particular state,

it considers the successors of the state. Despite techniques used to reduce the size

of the state space, the number of states that can be reached from the initial state

3

usually remains huge. Moreover, for each state an explicit model checker keeps

track of the concrete values of variables. As a consequence, we cannot compress

the memory usage for a single state much. In contrast, a symbolic model checker

searches a set of states in one single step. Instead of concrete values, a symbolic

model checker stores the values of the variables symbolically. In this way, the

memory usage is often reduced considerably. Besides the forward search strategy,

most symbolic model checkers can also perform backward searches. This strategy

identifies those states where the property to be verified is violated, and searches

the predecessors of those states. If the initial state is reached, we can conclude

that a violation of the property has been found. For a more detailed comparison of

explicit and symbolic model checkers, we refer the reader to, for example, [10]. In

this thesis, we concentrate on explicit model checking.

Most model checkers consider a model of the system being verified, rather than

the source code of the system. A model is usually simpler than the source code and,

hence, the model is generally easier to verify. However, the details from which the

model abstracts are not considered in the verification effort and, hence, the results

obtained when considering a model may be less accurate. For example, consider the

failed launch of Ariane 5 on June 4, 1996 [20]. The software of Ariane 5 migrated

from Ariane 4, which has a correct model. However, the conversion from a bad 64-

bit floating point to a 16-bit integer caused damage of $370 million. Whereas a tool

4

that checks properties of a model is usually exploited to find errors in algorithms,

a tool that considers the source code is generally used to detect coding errors.

considers the source code is generally used to detect coding errors. In this thesis,

we focus on the model checking of the code of the system, rather than a model of

it.

“A randomized algorithm is one that receives, in addition to its input data, a

stream of random bits that it can use for the purpose of making random choices”

[16]. Each time the algorithm gets a random bit, it resolves a random choice. Ran-

domized algorithms are used in different areas of computer science. For example,

in number theory Rabin [25] used the random choices to generate numbers that are

prime with high probability. In geometry, Karp [15] used a randomized algorithm

to approximate a solution to the traveling salesman problem. Randomized algo-

rithms have several advantages over deterministic algorithms. First, randomized

algorithms are usually easier to implement and understand than deterministic algo-

rithms. Second, a randomized algorithm often needs less running time and memory

space. In this thesis, we focus on model checking of the source code of randomized

algorithms.

On the one hand, ordinary sequential code gives rise to a single execution path.

On the other hand, randomized code usually gives rise to many different execution

paths. Consider the following Java snippet.

5

Random random = new Random();

long count = 0;

while (random.nextBoolean())

count++;

The above snippet gives rise to a huge number of different execution paths: more

than 264. Hence, it will come as no surprise that an explicit model checker either will

run out of memory or will not complete its verification of the above very simple

code snippet within any reasonable amount of time. The same applies for most

implementations of randomized algorithms as we shall see in Chapter 9 of this

thesis.

Since explicit model checkers generally cannot fully verify implementations of

randomized algorithms, it would be interesting to extend such a model checker such

that it keeps track of the amount of progress it has made with its verification effort.

The main question addressed in this thesis is how to define a measure that captures

the amount of progress made by an explicit model checker verifying the code of a

randomized algorithm. Simply counting the number of (states or) execution paths

that have been checked is not very useful for several reasons. First of all, it may

be very difficult or even impossible to determine the total number of potential

execution paths. Hence, the number of execution paths that have been checked by

the model checker gives us very limited information about the amount of progress

that has been made. Secondly, some execution paths are more likely to happen

6

than others. For example, the nonterminating execution path of the above snippet

occurs with probability zero. Checking this execution path amounts to no progress

at all.

To capture the progress made by the model checker, instead of counting the

number of execution paths, we endow the set of potential execution paths with a

σ-algebra and a probability measure. In this way, we obtain a probability space of

execution paths. As we shall argue, the amount of progress made depends on the

property that the model checker is verifying. We restrict our attention to linear

time properties. The measure of the set of execution paths, which are relevant to

the property under verification and have been checked, gives us a number in the

interval [0, 1]. This number provides us a quantitative measure of the amount of

progress the model checker has made towards verifying the property. The larger the

number, the more progress the model checker has made. As far as we know, we are

the first to propose a notion of progress. To formalize this notion of progress, we

represent an explicit-state probabilistic model checker as a probabilistic transition

system and a sequence of transitions. Our formalization of a notion of progress is

a major contribution of this thesis.

We prove that our progress measure is a lowerbound of the measure of the ex-

ecution paths that satisfy the property (provided that no counterexample to the

property has been found yet). For example, assume that the progress towards veri-

7

fying the linear time property φ is 0.9999. Then, the probability that we encounter

a violation of φ is at most 0.0001. Obviously, this is more informative than the

model checker providing the message “out of memory.”

We provide a characterization of the progress for checking invariants, an im-

portant class of linear time properties. This is another major contribution of this

thesis. Based on this characterization, we propose an algorithm to compute the

progress for invariants.

The work most closely related to ours is the work by Pavese, Braberman and

Uchitel [23].1 They also aim to provide useful feedback when a model checker runs

out of memory. Their notion aims to quantify the degree to which the model checker

has explored its entire state space. It captures the likelihood of execution paths

reaching states that have not been explored by the model checker.

A model checker can use different search strategies to explore the state space.

We define three new search strategies: probability-first search, breadth-first probability-

second search and randomized search. All take the probabilities of transitions into

account when choosing the next transition. This is one of the contributions of this

thesis.

We implement our theoretical framework within JPF, an explicit state model

checker. This is another major contribution of this thesis. First, we extend JPF

1Our work was carried out independently from theirs. We only became aware of a draft version
of [23] while finishing this thesis.

8

to a probabilistic model checker. Second, we implement the algorithm to compute

the progress measure for invariants. Moreover, we implement the three new search

strategies in JPF. Finally, we also implement a number of randomized algorithms in

Java and use our extension of JPF to model check them. We compute the progress

by using the algorithm we mentioned above. At the end of this thesis, we shall show

the progress made during the search by both our new search strategies and JPF’s

original depth-first search and breadth-first search. By comparing the results, we

shall conclude that for most of these examples, our new search strategies made

progress faster than depth-first search and breadth-first search.

9

2 Some Probability Theory

In this thesis we shall use some basic concepts and results from probability theory

to define a notion of progress made when model checking a randomized algorithm.

In particular, we shall use the following definitions and theorems.

First, we introduce the notion of a discrete probability distribution and its

support.

Definition 2.1.1. Let Ω be a set. A discrete probability distribution on Ω is a

function µ : Ω→ [0,∞] such that
∑

x∈Ω µ(x) = 1.

Definition 2.1.2. Let Ω be a set and µ : Ω → [0,∞] be a discrete probability

distribution on Ω. The support of µ is the set {x ∈ Ω | µ(x) > 0}.

For example, let Ω = {1, 2, 3}. Then the function µ : Ω → [0,∞] defined by

µ(1) = 0, µ(2) = 0.5, and µ(3) = 0.5 is a discrete probability distribution on Ω,

and the support of µ is {2, 3}.

The proposition below gives an important property of the support of a discrete

probability distribution.

10

Proposition 2.1.3. The support of a discrete probability distribution is countable.

Proof. For a proof of this proposition we refer the reader to, for example, [29,

Proposition 2.1.2].

An important concept in probability theory is a σ-algebra, on which we can

define a measure. A σ-algebra is a collection of sets satisfying certain properties,

and we give the definition of a σ-algebra below.

Definition 2.1.4. Let Ω be a set. A σ-algebra Σ on Ω is a collection of subsets of

Ω such that

• ∅ ∈ Σ,

• if A ∈ Σ, then its complement Ac ∈ Σ, and

• if Ai ∈ Σ for all i ∈ IIN, then the union
⋃

i∈IIN Ai ∈ Σ.

For example, if Ω = {1, 2}, then the set {∅, {1, 2}} is a σ-algebra on Ω. And

the set {∅, {1}, {2}, {1, 2}} is a σ-algebra on Ω as well.

Furthermore, we introduce the concept of a semi-ring, which is also a collection

of sets, but with weaker conditions.

Definition 2.1.5. Let Ω be a set. A semi-ring Γ on Ω is a collection of subsets of

Ω such that

11

• ∅ ∈ Γ,

• if B, B′ ∈ Γ then B ∩ B′ ∈ Γ, and

• if B, B′ ∈ Γ then there exist Bi ∈ Γ for all i ∈ IIN which are pairwise disjoint

such that B\B′ =
⋃

i∈IIN Bi.

Note that every σ-algebra is a semi-ring. However, the reverse inclusion does

not always hold. For example, if Ω = {1, 2}, then the set {∅, {1}} is a semi-ring,

but it is not a σ-algebra. Now we can define a measure on a semi-ring.

Definition 2.1.6. Let Ω be a set. Let Γ be a semi-ring on Ω. A measure on Γ is

function ν : Γ→ [0,∞] such that

• ν(∅) = 0, and

• if Ai ∈ Γ, for i ∈ IIN, are pairwise disjoint and
⋃

i∈IIN Ai ∈ Γ, then ν(
⋃

i∈IIN Ai) =

∑

i∈IIN ν(Ai).

For example, let Ω = {1, 2} and Γ = {∅, {1}}. Then the function ν : Γ→ [0,∞]

defined by ν(∅) = 0 and ν({1}) = 0.5 is a measure on Γ.

The following two propositions capture some properties of measures: mono-

tonicity and continuity.

Proposition 2.1.7. Let µ be a measure on a σ-algebra Σ, and sets A, A′ ∈ Σ. If

A ⊆ A′, then µ(A) ≤ µ(A′).

12

Proof. For a proof of this proposition we refer the reader to, for example, [3, Sec-

tion 2]

Proposition 2.1.8. Let Ω be a set, Σ be a σ-algebra on Ω, and µ be a measure on

Σ. If Ai ∈ Σ for all i ∈ IIN, A0 ⊇ A1 ⊇ . . . , and µ(A0) is finite then µ(
⋂

i∈IIN Ai) =

limi∈IIN(µ(Ai)).

Proof. For a proof of this proposition we refer the reader to, for example, [3, The-

orem 2.1].

The following extension theorem states that a measure on a semi-ring can be

extended to a measure on a σ-algebra which contains the semi-ring. We shall

use this theorem to obtain a measure on sets of execution paths of a probabilistic

transition system. This measure will play a key role in this thesis.

Theorem 2.1.9. Let Ω be a set and Γ be a semi-ring on Ω. If ν is a measure on

Γ, then there exists a σ-algebra Σ on Ω and a measure µ on Σ such that

• Γ ⊆ Σ, and

• ν(A) = µ(A) for all A ∈ Γ.

Proof. For a proof of this theorem we refer the reader to [31, Chapter 2].

Next, we define the notion of a probability measure.

13

Definition 2.1.10. Let Ω be a set and Σ be a σ-algebra on Ω. A probability

measure µ on Σ is a measure such that µ(Ω) = 1.

For example, let Ω = {1, 2} and Σ = {∅, {1}, {2}, {1, 2}}. Then the function

µ : Σ→ [0,∞] defined by µ(∅) = 0, µ({1}) = 0.5, µ({2}) = 0.5, and µ({1, 2}) = 1

is a probability measure on Σ.

Finally, we define the notion of a measurable space.

Definition 2.1.11. A measurable space is a triple 〈Ω, Σ, µ〉 consisting of a set Ω,

a σ-algebra Σ on Ω, and a measure µ on Σ.

In this thesis, we shall turn the set of execution paths of a probabilistic transition

system into a measurable space. This measurable space will form the basis for our

definition of progress.

14

3 A Model of a Probabilistic Model Checker

In this thesis, we mainly focus on extending JPF to a probabilistic model checker.

As we discussed in our introduction, due to the state space explosion problem

during model checking a randomized algorithm, the model checker either runs out

of memory or it takes an unreasonably long time to finish the model checking. As

we already argued in our introduction, it is useful to keep track of the amount of

the progress made by the model checker.

In this chapter, we introduce a theoretical framework which we shall exploit in

the next chapter to define our measure of progress. We model the randomized code

that is checked by an explicit-state probabilistic model checker (like our extension

of JPF presented in Chapter 6) as a probabilistic transition system. We turn the set

of execution paths of a probabilistic transition system into a measurable space. Our

measure of progress will be defined in terms of this measure space. Furthermore, we

capture the model checking of some randomized code as a sequence of transitions,

which are part of the probabilistic transition system modeling the randomized code.

15

3.1 A Probabilistic Transition System

We represent the randomized code to be verified by an explicit-state probabilistic

model checker, such as our extension of JPF, as a probabilistic transition system.

Definition 3.1.1. A probabilistic transition system is a tuple

〈S, T,AP, s0, source, target, prob, label〉 consisting of

• a set S of states,

• a set T of transitions,

• a set AP of atomic propositions,

• an initial state s0,

• a function source : T → S,

• a function target : T → S,

• a function prob : T → (0, 1], and

• a function label : S → 2AP

such that

• s0 ∈ S, and

• for all s ∈ S,
∑

{ prob(t) | source(t) = s } ∈ {0, 1}.

16

Instead of 〈S, T,AP, s0, source, target, prob, label〉 we usually write S and we

denote, for example, its set of states by SS .

We shall use the following probabilistic transition system as the running example

for the rest of this chapter.

Example 3.1.2. The probabilistic transition system depicted by

s0
0.6

��

0.4

 B
BB

BB
BB

B

s1
0.3

//
0.7

FF

s2

has three states and four transitions. In this example, we use the indices of the

source and target to name the transitions. For example, the transition from s0 to

s2 is named t02. Given this naming convention, the functions source and target are

defined in the obvious way. For example, source(t02) = s0 and target(t02) = s2.

The function prob can be easily extracted from the above diagram. For example,

prob(t02) = 0.4. The set AP and the function label will not play a role until

Section 4.2. There we will discuss them in detail.

For the remainder of this chapter, we fix a probabilistic transition system S. A

state is final in S if it has no outgoing transitions. In Example 3.1.2, the state s2

is final.

Definition 3.1.3. A state s is final in S if
∑

{ probS(ti) | sourceS(ti) = s } = 0.

17

Other than final states, each state has outgoing transitions. In a probabilistic

transition system each outgoing transition has an associated probability, and the

sum of these probabilities is one. This leads to the fact that the number of outgoing

transitions is countable.

Proposition 3.1.4. Each state has countably many outgoing transitions.

Proof. This follows immediately from Proposition 2.1.3.

3.2 A Set of Execution Paths

We classify the potential execution paths of a probabilistic transition system into

two categories: infinite execution paths and finite execution paths.

Definition 3.2.1. An infinite execution path of a probabilistic transition system S

is an infinite sequence of transitions t1t2 . . . such that

• for all i ≥ 1, ti ∈ TS ,

• sourceS(t1) = s0, and

• for all i ≥ 1, targetS(ti) = sourceS(ti+1).

The set of all infinite execution paths is denoted by Execω
S .

A finite execution path of a probabilistic transition system S is either a finite

sequence of transitions t1 . . . tn for some n ≥ 1 such that

18

• for all 1 ≤ i ≤ n, ti ∈ TS ,

• sourceS(t1) = s0,

• targetS(tn) is final in S and

• for all 1 ≤ i < n, targetS(ti) = sourceS(ti+1),

or the empty sequence ǫ if s0 is final in S. The set of all finite execution paths is

denoted by Exec∗S .

The set of all execution paths ExecS is defined by ExecS = Execω
S ∪ Exec∗S .

For the probabilistic transition system of Example 3.1.2, the sequence

t01t10t01t10 . . . is an example of an infinite execution path and the sequence t01t12 is

an example of a finite execution path.

We use pref(ExecS) to denote the set of finite prefixes of execution paths in

ExecS . Note that Exec∗S ⊆ pref(ExecS). In general, the reverse inclusion does not

hold. For example, in the probabilistic transition system of Example 3.1.2, we have

that ǫ, t01, t01t10, . . . ∈ pref(ExecS), and ǫ, t01, t01t10, . . . /∈ ExecS .

In order to identify the last state of an execution path, we extend the function

target as follows.

Definition 3.2.2. The function targetS : pref(ExecS)→ S is defined by

targetS(ǫ) = s0

targetS(t1 . . . tn) = targetS(tn)

19

To prove that the set pref (ExecS) is countable, we introduce the following

countable sets of states and transitions.

Definition 3.2.3. For each n ∈ IIN, the set of states Sn
S and the set of transitions

T n+1
S is defined by

S0
S = {s0}

Sn+1
S = { targetS(t) | t ∈ T n }

T n+1
S = {t ∈ T | sourceS(t) ∈ Sn }

Proposition 3.2.4. For all n ∈ IIN, the sets Sn
S and T n+1

S are countable.

Proof. By induction on n.

• Obviously, S0
S is countable.

• By the induction hypothesis, the set T n
S is countable. Therefore, the set Sn+1

S

is countable as well.

• According to Proposition 3.1.4, each state has countably many outgoing tran-

sitions. By the induction hypothesis, the set Sn
S is countable. Hence, the set

T n+1
S is countable as well.

From the countability of the above introduced sets we can derive that the set

pref(ExecS) is countable as well.

20

Proposition 3.2.5. The set pref(ExecS) is countable.

Proof. We denote the set of prefixes of ExecS of length n by Execn
S . Because

pref(ExecS) =
⋃

n∈IIN Execn
S and a countable union of countable sets is countable, it

suffices to prove that the set Execn
S is countable for each n ∈ IIN. The latter fact we

prove by induction on n.

Obviously

Exec0
S = {ǫ}

is a countable set. Assume that the set Execn
S is countable. Since

Execn+1
S = { et | e ∈ Execn

S ∧ targetS(e) = sourceS(t) }

is a subset of { et | e ∈ Execn
S ∧ t ∈ T n+1

S } and both Execn
S and T n+1

S are countable,

we can conclude that Execn+1
S is countable as well.

Corollary 3.2.6. The set Exec∗S is countable.

We use |e| to denote the length of the execution path e. For example, in the

probabilistic transition system of Example 3.1.2, |t01t12| = 2.

Furthermore, we use e[n] to denote execution path e truncated at length n. If

|e| ≤ n then e[n] is equal to e. Otherwise, e[n] consists of the first n transitions of

e. Note that e[n] ∈ pref(ExecS).

In the probabilistic transition system of Example 3.1.2, for the infinite execution

21

path e = t01t10t01t10 . . ., e[1] = t01, e[2] = t01t10, e[3] = t01t10t01, and so on. For the

finite execution path e = t01t12, e[1] = t01, and e[2] = e[3] = · · · = t01t12.

Let e1, e2 ∈ pref(ExecS). We use e1 - e2 to denote that e1 is a prefix of e2. In

the probabilistic transition system of Example 3.1.2, t01 - t01t10, and t01t10 6- t01t12.

Furthermore, we use e1 ∼ e2 to denote that e1 is a prefix of e2 or e2 is a prefix

of e1, and we use e1 6∼ e2 to denote that e1 is not a prefix of e2 and e2 is not a

prefix of e1. In the probabilistic transition system of Example 3.1.2, t01t10 ∼ t01

and t01t10 6∼ t01t12

3.3 A Measurable Space of Execution Paths

As we already discussed in the introduction, we shall define our progress measure

by means of a measurable space of execution paths. As we have seen in Defi-

nition 2.1.11, a measurable space consists of a set, in this case the set ExecS of

executions paths, a σ-algebra and a measure. In this section, we introduce a semi-

ring and a measure on this semi-ring and use Theorem 2.1.9 to show that there

exists a σ-algebra, which extends the semi-ring, and a measure on this σ-algebra,

which extends the measure on the semi-ring. The measurable space we define below

is similar to the ones studied by Segala [27] and Sokolova, De Vink and Woracek

[28].

The elements of the semi-ring are the so-called basic cylinder sets. These are

22

defined as follows.

Definition 3.3.1. Let t1 . . . tn ∈ pref(ExecS). Its basic cylinder set BS
t1...tn

is defined

by

BS
t1...tn

= { e ∈ ExecS | t1 . . . tn - e}.

Note that BS
ǫ = ExecS . In the probabilistic transition system of Example 3.1.2,

the basic cylinder set of t01 is BS
t01

= {t01t12, t01t10t02, t01t10t01t12, . . .}.

Definition 3.3.2. The cylinder set BS is defined by

BS = {BS
t1...tn

| t1 . . . tn ∈ pref(ExecS) } ∪ {∅}.

In the probabilistic transition system of Example 3.1.2, the cylinder set BS =

{∅, BS
ǫ , BS

t01
, BS

t02
, BS

t01t10
, BS

t01t12
, . . . }. Next, we show that the cylinder set BS is a

semi-ring.

Proposition 3.3.3. The collection BS is a semi-ring.

Proof. Recall from Definition 2.1.5 that we have to prove

(i) ∅ ∈ BS ,

(ii) if B, B′ ∈ BS then B ∩ B′ ∈ BS , and

(iii) if B, B′ ∈ BS then there exist Bi ∈ BS for all i ∈ IIN, which are pairwise

disjoint such that B \B′ =
⋃

i∈IIN Bi.

23

By definition, we have ∅ ∈ BS . Hence, (i) holds. To prove (ii), we observe that

BS
t1...tn

∩ BS
t′1...t′m

=































∅ if t1 . . . tn 6∼ t′1 . . . t′m

BS
t1...tn

if t′1 . . . t′m - t1 . . . tn

BS
t′1...t′m

if t1 . . . tn - t′1 . . . t′m

To prove (iii), we have

BS
t1...tn

\BS
t′1...t′m

=















































































∅

if t′1 . . . t′m - t1 . . . tn

BS
t1...tn

if t1 . . . tn 6∼ t′1 . . . t′m

⋃

0≤k<m−n{B
S
t1...tnt′

n+1...t′
n+k

t
| t 6= t′n+k+1 ∧ sourceS(t) = targetS(t′n+k)}

if t1 . . . tn - t′1 . . . t′m

It is trivial that the sets BS
t1...tnt′

n+1...t′
n+k

t
are pairwise disjoint. From Proposi-

tion 3.1.4 we know that the set {t ∈ TS | t 6= t′n+k+1 ∧ sourceS(t) = targetS(tn)}

is countable, and hence the set {BS
t1...tnt′

n+1...t′
n+k

t
| t 6= t′n+k+1 ∧ sourceS(t) =

targetS(tn)} is countable as well.

Next, we define a measure on the semi-ring BS .

24

Definition 3.3.4. The function νS : BS → [0, 1] is defined by

νS(BS
t1...tn

) =
∏

1≤i≤n probS(ti)

νS(∅) = 0

Note that νS(BS
ǫ) = 1.

Proposition 3.3.5. The function νS is a measure on BS .

Proof. We refer the reader to, for example, [29, Lemma 5.3.6].

According to Theorem 2.1.9, a measure on a semi-ring can be extended to a

measure on a σ-algebra containing the semi-ring. We denote the extended measure

by µS and the σ-algebra containing the cylinder set BS by ΣS .

We shall exploit the measurable space 〈ExecS , ΣS , µS〉 to capture our progress

measure. In future chapters we shall use the following properties of this measurable

space:

• ΣS is a σ-algebra,

• BS ⊆ ΣS , and

• ν(B) = µ(B) for all basic cylinder sets B ∈ BS .

3.4 A Search of a Probabilistic Transition System

As we already discussed in Section 3.1, we represent the randomized code to be

verified by an explicit-state probabilistic model checker as a probabilistic transition

25

system. We represent the model checking of the randomized code as a sequence of

transitions of the probabilistic transition system.

Definition 3.4.1. A search of a probabilistic transition system S is a sequence of

distinct transitions t1, . . . , tn for some n ≥ 0 such that ti ∈ TS for all 1 ≤ i ≤ n.

In the probabilistic transition system of Example 3.1.2, the sequence of tran-

sitions t01, t02 is such a search. Given a probabilistic transition system S and a

search t1, . . . , tn of S, those execution paths of S that only consist of the transi-

tions t1, . . . , tn constitute the set

ExecS ∩ ({t1, . . . , tn}
∗ ∪ {t1, . . . , tn}

ω) .

Next we shall show that this set is an element of ΣS and, hence, the probabilistic

measure µS assigns a measure to the set. We shall relate this measure with our

progress measure in Chapter 4.

Proposition 3.4.2. (Exec∗S ∩ {t1, . . . , tn}
∗) ∪ (Execω

S ∩ {t1, . . . , tn}
ω) ∈ ΣS .

Proof. Obviously, the set Exec∗S ∩ {t1, . . . , tn}
∗ is countable. Assume e ∈ Exec∗S .

Then BS
e = {e}. Since BS ⊆ ΣS , we have that {e} ∈ ΣS . Since ΣS is closed under

countable unions,
⋃

e∈Exec∗

S∩{t1,...,tn}∗
{e} = Exec∗S ∩ {t1, . . . , tn}

∗ ∈ ΣS .

Since Execω
S ∩ {t1, . . . , tn}

ω =
⋂

k∈IIN

⋃

e∈pref(Exec
S
)∩{t1,...,tn}k BS

e and BS
e ∈ ΣS

and ΣS is closed under countable unions and intersections, we can conclude that

Execω
S ∩ {t1, . . . , tn}

ω ∈ ΣS .

26

4 A Progress Measure

We discussed in our introduction that having a measure of progress during model

checking a randomized algorithm is useful. In the previous chapter, we modeled

the probabilistic model checker as a probabilistic transition system and a search.

In this chapter we shall introduce the definition of a progress measure.

4.1 Extension of the Search

If the model checker has searched a part of the system, it of course is not aware of

the remainder of the system. To capture this, we formalize how a search can be

extended.

Definition 4.1.1. The probabilistic transition system S ′ extends the search t1, . . . , tn

of the probabilistic transition system S if for all 1 ≤ i ≤ n,

• ti ∈ TS′,

• s0S = s0
S′

,

27

• sourceS′(ti) = sourceS(ti),

• targetS′(ti) = targetS(ti),

• probS′(ti) = probS(ti),

• labelS′(sourceS′(ti)) = labelS(sourceS(ti)),

• labelS′(targetS′(ti)) = labelS(targetS(ti)),

• targetS′(ti) is final in S ′ iff targetS(ti) is final in S, and

• s0S is final in S ′ iff s0
S′

is final in S.

Instead of s0S , we shall write s0 in the remainder of this thesis.

Example 4.1.2. Consider the probabilistic transition system of Example 3.1.2 and

the search t01, t10. The following probabilistic transition system extends the search.

s0
0.6

��

0.4

��

s1
0.3

//
0.7

FF

s2

Besides the transitions t01 and t10, the extended system has the transition t12 as in

Example 3.1.2 and the extra transition t00, but does not contain the transition t02.

Note that the probabilistic transition system S itself extends the search t1, . . . , tn

of S.

28

Consider the search t1, . . . , tn of the probabilistic transition system S. Assume

that the probabilistic transition system S ′ extends t1, . . . , tn. First, we show that

S and S ′ give rise to the same set of execution paths when we restrict to those that

only consist of the transitions t1, . . . , tn.

Proposition 4.1.3. Let S ′ extend t1, . . . , tn of S. Then

ExecS ∩ ({t1, . . . , tn}
∗ ∪ {t1, . . . , tn}

ω) = ExecS′ ∩ ({t1, . . . , tn}
∗ ∪ {t1, . . . , tn}

ω).

Proof. The equality can be proved by proving two inclusions. Since both parts of

the proof are similar, we only show one inclusion. We distinguish the following

three cases.

• If ǫ ∈ ExecS ∩ ({t1, . . . , tn}
∗∪{t1, . . . , tn}

ω), then s0 ∈ SS and s0 is final in S.

Since S ′ extends t1, . . . , tn of S, we know that s0 ∈ SS′ and s0 is final in S ′

as well. Hence, ǫ ∈ ExecS′.

• Assume that u1 . . . um ∈ ExecS ∩ {t1, . . . , tn}
∗. Since u1 . . . um ∈ {t1, . . . , tn}

∗

and S ′ extends t1, . . . , tn of S, we have that for all 1 ≤ i ≤ m,

(1) sourceS′(ui) = sourceS(ui)

(2) targetS′(ui) = targetS(ui), and

(3) targetS′(ui) is final in S ′ iff targetS(ui) is final in S.

Since u1 . . . um ∈ ExecS , we have that

29

(4) sourceS(ui+1) = targetS(ui) for all 1 ≤ i < m,

(5) sourceS(u1) = s0, and

(6) targetS(um) is final in S.

For all 1 ≤ i < m,

sourceS′(ui+1) = sourceS(ui+1) [(1)]

= targetS(ui) [(4)]

= targetS′(ui) [(2)].

Furthermore,

sourceS′(u1) = sourceS(u1) [(1)]

= s0 [(5)].

Also,

targetS(um) is final in S [(6)]

implies that targetS′(um) is final in S ′ [(2) and (3)].

Hence, u1 . . . um ∈ ExecS′ ∩ {t1, . . . , tn}
∗.

• Assume that u1u2 . . . ∈ ExecS ∩ {t1, . . . , tn}
ω. Since u1u2 . . . ∈ {t1, . . . , tn}

ω

and S ′ extends t1, . . . , tn of S, we have that for all i ≥ 1,

30

(1) sourceS′(ui) = sourceS(ui) and

(2) targetS′(ui) = targetS(ui).

Since u1u2 . . . ∈ ExecS , we have that

(3) sourceS(ui+1) = targetS(ui) for all i ≥ 1 and

(4) sourceS(u1) = s0.

For all i ≥ 1,

sourceS′(ui+1) = sourceS(ui+1) [(1)]

= targetS(ui) [(3)]

= targetS′(ui) [(2)].

Furthermore,

sourceS′(u1) = sourceS(u1) [(1)]

= s0 [(4)].

Hence, u1u2 . . . ∈ ExecS′ ∩ {t1, . . . , tn}
ω.

As we already showed in Proposition 3.4.2, the sets ExecS ∩ ({t1, . . . , tn}
∗ ∪

{t1, . . . , tn}
ω) and ExecS′ ∩ ({t1, . . . , tn}

∗ ∪ {t1, . . . , tn}
ω) are measurable. Next, we

31

show that the measures of those sets of executions are the same. In the proof,

we consider the finite and infinite executions separately. But first, we prove the

following simple property that will be used in both cases.

Proposition 4.1.4. Let S ′ extend a search t1, . . . , tn of S. For all e ∈ {t1, . . . , tn}
∗,

we have νS(BS
e) = νS′(BS′

e).

Proof. We distinguish two cases:

• if e = ǫ then

νS(BS
ǫ) = νS(ExecS) = 1 = νS′(ExecS′) = νS′(BS′

ǫ),

and

• if e = u1 . . . um where u1, . . . , um ∈ {t1, . . . , tn}, then

νS(BS
e)

=
∏

1≤i≤m

probS(ui)

=
∏

1≤i≤m

probS′(ui) [S ′ extends t1, . . . , tn of S]

= νS′(BS′

e).

Next, we show that the finite execution paths that only consist of the transitions

t1, . . . , tn of S and S ′ have the same measure.

32

Proposition 4.1.5. Let S ′ extend a search t1, . . . , tn of S. Then

µS(ExecS ∩ {t1, . . . , tn}
∗) = µS′(ExecS′ ∩ {t1, . . . , tn}

∗).

Proof.

µS(ExecS ∩ {t1, . . . , tn}
∗)

= µS





⋃

e∈ExecS∩{t1,...,tn}∗

{e}





= µS





⋃

e∈{t1,...,tn}∗

BS
e





=
∑

e∈{t1,...,tn}∗

µS(BS
e) [µS is a measure]

=
∑

e∈{t1,...,tn}∗

νS(BS
e) [µS extends νS]

=
∑

e∈{t1,...,tn}∗

νS′(BS′

e) [S ′ extends t1, . . . , tn of S and Proposition 4.1.4]

= µS′(ExecS′ ∩ {t1, . . . , tn}
∗) [by symmetric argument].

The same holds for the infinite execution paths that only consist of the transi-

tions t1, . . . , tn as well.

Proposition 4.1.6. Let S ′ extend a search t1, . . . , tn of S. Then

µS(ExecS ∩ {t1, . . . , tn}
ω) = µS′(ExecS′ ∩ {t1, . . . , tn}

ω).

33

Proof. Obviously, for all e ∈ {t1, . . . , tn}
∗ and t ∈ {t1, . . . , tn}, we have BS

e ⊇ BS
et.

Hence BS
ǫ ⊇ (BS

t1
∪ . . . ∪ BS

tn
) ⊇ (BS

t1t1
∪ BS

t1t2
∪ . . . ∪ BS

tntn
) ⊇ . . . and µS(BS

ǫ) = 1

is finite. Then,

µS(ExecS ∩ {t1, . . . , tn}
ω)

= µS





⋂

k∈IIN

⋃

u1...uk∈{t1,...,tn}k

BS
u1...uk





= lim
k∈IIN

µS





⋃

u1...uk∈{t1,...,tn}k

BS
u1...uk



 [Proposition 2.1.8]

= lim
k∈IIN

∑

u1...uk∈{t1,...,tn}k

µS(BS
u1...uk

) [µS is a measure]

= lim
k∈IIN

∑

u1...uk∈{t1,...,tn}k

νS(BS
u1...uk

) [µS extends νS]

= lim
k∈IIN

∑

u1...uk∈{t1,...,tn}k

νS′(BS′

u1...uk
) [S ′ extends t1, . . . , tn of S and Proposition 4.1.4]

= µS′(ExecS′ ∩ {t1, . . . , tn}
ω) [by symmetric argument].

4.2 Definition of Progress

In our definition of a probabilistic transition system, we have a set of atomic propo-

sitions. Furthermore, the definition of probabilistic transition system also contains

a label function which tells us for each state which atomic propositions hold in that

state. This allows us to specify properties of the system. In this thesis, we partic-

ularly focus on linear time properties. These are introduced next. In the definition

34

below, we use 2AP to denote the set of all subsets of AP.

Definition 4.2.1. A linear time property φ is a set of finite or infinite sequences

over the alphabet 2AP.

Next, we give the definition of how an execution path satisfies a linear time

property.

Definition 4.2.2. Let φ be a linear time property and e ∈ ExecS . We define

e |=S φ as follows.

• t1 . . . tn |=S φ if labelS(s0)labelS(targetS(t1)) . . . labelS(targetS(tn)) ∈ φ.

• t1t2 . . . |=S φ if labelS(s0)labelS(targetS(t1))labelS(targetS(t2)) . . . ∈ φ.

Linear temporal logic (LTL) [1, Chapter 5] is a logic to express some linear

time properties. Formulas of this logic can be built from atomic propositions and

operators such as ©, ⊓⊔ and ♦. The atomic proposition p corresponds to the linear

time property consisting of all those sequences of subsets of AP the first element

of which contains p. The formula ©p corresponds to the linear time property

consisting of all those sequences of subsets of AP the second element of which

contains p. Similarly, the formula ©©p corresponds to the linear time property

consisting of all those sequences of subsets of AP the third element of which contains

p. The formula ⊓⊔p corresponds to the linear time property consisting of all those

35

sequences of subsets of AP, all elements of which contain p. The formula ♦p

corresponds to the linear time property consisting of all those sequences of subsets

of AP, one of the elements of which contains p. For more details, we refer the reader

to [1, Section 5.1].

In Definition 4.2.8, we shall define the amount of progress a search has made

towards verifying a linear time property. This amount only makes sense as long as

no violation of the property has been found. The latter is formalized next.

Definition 4.2.3. The search t1, . . . , tn of the probabilistic transition system S has

not found a violation of the linear time property φ if

1. for all e ∈ {t1, . . . , tn}
ω, if e ∈ Execω

S then e |=S φ, and

2. for all e ∈ {t1, . . . , tn}
∗, if e ∈ pref(ExecS) then there exists a probabilistic

transition system S ′ that extends t1, . . . , tn such that e′ |=S′ φ for all e′ ∈ BS′

e .

Note that the search t1, . . . , tn has found a violation of the linear time property

φ if

• either we can form an infinite execution path from the transitions t1, . . . , tn

that violates φ,

• or we can form a prefix e of an execution path from the transitions t1, . . . , tn

which may give rise to a violation of φ no matter how we extend e.

36

For the probabilistic transition system of Example 3.1.2, consider the linear

time property φ = �p. Assume that p is satisfied in state s0 and s1, but not in s2.

Then the search t01, t10 has not found a violation of the property ⊓⊔p and the search

t01, t12 has found a violation of ⊓⊔p.

Consider the search t1, . . . , tn of the probabilistic transition system S. Assume

that the probabilistic transition system S ′ extends t1, . . . , tn. The finite execution

paths that only consist of the transitions t1, . . . , tn of S and S ′ satisfy the same

linear time properties.

Proposition 4.2.4. Let S ′ extend a search t1, . . . , tn of S. For all e ∈ ExecS ∩

{t1, . . . , tn}
∗, e |=S φ iff e |=S′ φ.

Proof. This can be proved along the lines of, for example, the proof of [1, Theo-

rem 3.15].

Note that in our proofs, we only need the following weaker condition.

Proposition 4.2.5. If the search t1, . . . , tn of S has not found a violation of φ,

then e |=S φ for all e ∈ ExecS ∩ ({t1, . . . , tn}
∗ ∪ {t1, . . . , tn}

ω).

Proof. Let e ∈ ExecS ∩ ({t1, . . . , tn}
∗ ∪ {t1, . . . , tn}

ω). We distinguish the following

two cases.

37

• Assume that e ∈ ExecS ∩ {t1, . . . , tn}
∗. From 2. of Definition 4.2.3 we can

conclude that there exists a probabilistic transition system S ′ that extends

t1, . . . , tn such that e′ |=S′ φ for all e′ ∈ BS′

e . From Proposition 4.1.3 we

can deduce that e ∈ ExecS′. Hence, e ∈ BS′

e and, therefore, e |=S′ φ. From

Proposition 4.2.4 we can conclude that e |=S φ.

• When e ∈ ExecS ∩ {t1, . . . , tn}
ω, then we can conclude from 1. of Defini-

tion 4.2.3 that e |=S φ.

In the definition of our progress measure, we make use of the following sets.

Definition 4.2.6. Let the probabilistic transition system S ′ extend the search

t1, . . . , tn of probabilistic transition system S and let φ be a linear time property.

The set Bφ

S′(t1, . . . , tn) is defined by

Bφ

S′(t1, . . . , tn)

=
⋃

{BS′

e ∈ BS′ | e ∈ {t1, . . . , tn}
∗ ∧ ∀e′ ∈ BS

e : e′ |=S′ φ }.

The set Bφ

S′(t1, . . . , tn) contains a basic cylinder set BS
e if all its execution paths,

that is, all extensions of e, satisfy φ. In that case, BS
e does not contain a coun-

terexample of φ. Hence, the set Bφ

S′(t1, . . . , tn) consists of those basic cylinder sets

that do not contain a counterexample of φ. This set is measurable, as is stated in

the following proposition.

38

Proposition 4.2.7. Let φ be a linear time property, and S ′ extend a search t1, . . . , tn

of S. Then Bφ

S′(t1, . . . , tn) ∈ ΣS′.

Proof. For each e ∈ {t1, . . . , tn}
∗, we have that BS′

e ∈ BS′ , and, hence BS′

e ∈ ΣS′ .

The set {BS′

e ∈ BS′ | e ∈ {t1, . . . , tn}
∗ ∧ ∀e′ ∈ BS′

e : e′ |=S′ φ } is countable since

the set {t1, . . . , tn}
∗ is countable. Since ΣS′ is a σ-algebra and, hence, closed under

countable unions, the desired result follows.

Since the set Bφ

S′(t1, . . . , tn) is measurable, its measure µS′(Bφ

S′(t1, . . . , tn)) is

defined. The latter is a number in the interval [0, 1] which represents the “size” of

the basic cylinder sets that do not contain a counterexample of φ. This number

captures the amount of progress of t1, . . . , tn for φ, provided that the probabilistic

transition system under consideration is S ′. Since we have no knowledge of the

transitions other than the search, we consider that all extensions S ′ of t1, . . . , tn

and consider the worst case in terms of progress.

Definition 4.2.8. Consider the search t1, . . . , tn of the probabilistic transition sys-

tem S. Let φ be a linear time property. Assume that t1, . . . , tn has not found a

violation of φ. The progress of the search t1, . . . , tn of φ is defined by

progS(t1, . . . , tn, φ) = inf
{

µS′

(

Bφ

S′(t1, . . . , tn)
)

| S ′ extends t1, . . . , tn of S
}

.

Consider the probabilistic transition system of Example 3.1.2. Assume that

p ∈ labelS(si) for all 0 ≤ i ≤ 2. The following table provides some examples of our

39

progress measure for several linear time properties and searches.

t1, . . . , tn ©p ©© p �p ♦p

ǫ 0.0 0.0 0.0 0.0

t01 0.6 0.0 0.0 1.0

t02 0.4 0.0 0.4 1.0

t01, t02 1.0 0.0 0.4 1.0

t01, t12 0.6 0.18 0.18 1.0

t01, t10 0.6 0.42 0.0 1.0

t01, t10, t12 0.6 0.6 0.31 1.0

t01, t10, t02 1.0 0.42 0.69 1.0

t01, t12, t02 1.0 0.18 0.58 1.0

If, instead we consider the best case, by replacing the inf with a sup in the

definition of our progress measure, then we conjecture that we always get one.

Intuitively, since we have not found a violation of the property yet, there exists an

extension of the search such that the property is always satisfied.

Conjecture 4.2.9. Consider the search t1, . . . , tn of the probabilistic transition

system S. Let φ be a linear time property. Assume that t1, . . . , tn has not found a

violation of φ. Then

sup
{

µS′

(

Bφ

S′(t1, . . . , tn)
)

| S ′ extends t1, . . . , tn of S
}

= 1.

40

As we shall show in the next proposition, our progress measure gives a lower

bound for the probability that the linear time property holds. For example, if the

progress measure is 0.9, we know that the probability that the property holds is at

least 0.9.

Proposition 4.2.10. Consider the search t1, . . . , tn of the probabilistic transition

system S. Let φ be a linear time property. Assume that t1, . . . , tn has not found a

violation of φ. Then

progS(t1, . . . , tn, φ) ≤ µS({ e ∈ ExecS | e |=S φ }).

Proof. From the definition of prog, Proposition 2.1.7, and the fact that S extends

t1, . . . , tn of S, we can conclude that it suffices to show that Bφ

S(t1, . . . , tn) is a subset

of { e ∈ ExecS | e |=S φ }. Let e ∈ {t1, . . . , tn}
∗ and assume that ∀e′ ∈ BS

e : e′ |=S φ.

It suffices to show that BS
e is a subset of { e ∈ ExecS | e |=S φ }. Let e′ ∈ BS

e . Then

e′ ∈ ExecS and e′ |=S φ.

4.3 Characterization of Progress for Invariants

In this section, we restrict our attention to the case that the linear time property is

an invariant, that is, it is of the form ⊓⊔p. This is an important class of properties.

In particular, for actual code this class plays a key role. For example, we may

want to check that the code never gives rise to any uncaught exceptions, or that it

41

never causes overflow. These types of properties are all expressed as invariants. We

provide a characterization of our progress measure for invariants. This characteri-

zation is the basis for the algorithm to compute the progress measure for invariants

presented later in this chapter. Given a search t1, . . . , tn of the probabilistic tran-

sition system S, we show that the progress of t1, . . . , tn for an invariant for which

no violation has been found yet is the measure of the set

ExecS ∩ ({t1, . . . , tn}
∗ ∪ {t1, . . . , tn}

ω).

We prove this characterization by showing two inequalities.

Lemma 4.3.1. Assume that the search t1, . . . , tn has not found a violation of �p.

Then

progS(t1, . . . , tn, �p) ≤ µS(ExecS ∩ ({t1, . . . , tn}
∗ ∪ {t1, . . . , tn}

ω)).

Proof. We shall construct a probabilistic transition system S ′ that extends t1, . . . ,

tn of S such that

µS′

(

B⊓⊔p

S′ (t1, . . . , tn)
)

≤ µS(ExecS ∩ ({t1, . . . , tn}
∗ ∪ {t1, . . . , tn}

ω)).

We construct the system S ′ by

• adding the extra state s⊥ with p 6∈ labelS′(s⊥),

42

• adding the transition t⊥ with sourceS′(t⊥) = targetS′(t⊥) = s⊥ and probS′(t⊥) =

1, and

• adding the extra transition ts with sourceS′(ts) = s, targetS′(ts) = s⊥, and

probS′(ts) = 1 − outS(s) for all states s ∈
⋃

1≤i≤n{sourceS′(ti), targetS′(ti)}

such that outS(s) < 1 and s is not final in SS′ , where

outS(s) =
∑

{ probS(ti) | 1 ≤ i ≤ n ∧ sourceS(ti) = s }.

So the probabilistic transition system S ′ is defined by

• SS′ =
⋃

1≤i≤n{sourceS′(ti), targetS′(ti)} ∪ {s0, s⊥},

• TS′ = {t1, . . . , tn}∪{ ts | s ∈ SS′\{s⊥}∧outS(s)<1∧s is not final in S }∪{t⊥},

• sourceS′(t) =































sourceS(t) if t ∈ {t1, . . . , tn}

s if t = ts

s⊥ if t = t⊥

• targetS′(t) =















targetS(t) if t ∈ {t1, . . . , tn}

s⊥ if t = t⊥ or t = ts

• probS′(t) =































probS(t) if t ∈ {t1, . . . , tn}

1− outS(s) if t = ts

1 if t = t⊥

43

It is easy to verify that S ′ is a probabilistic transition system.

From Proposition 4.1.3, 4.1.5, 4.1.6,and 2.1.7, it suffices to show that B⊓⊔p

S′ (t1, . . . , tn)

is a subset of ExecS′ ∩ ({t1, . . . , tn}
∗ ∪ {t1, . . . , tn}

ω).

Let e ∈ {t1, . . . , tn}
∗ such that e′ |=S′ �p for all e′ ∈ BS′

e . Let e′′ ∈ BS′

e . Then

e′′ ∈ ExecS′ and e′′ |=S′ �p. From the construction of S ′ we can conclude that t⊥

is not part of e′′. Hence, e′′ ∈ {t1, . . . , tn}
∗ ∪ {t1, . . . , tn}

ω.

The key step of proving the other inequality is proving that the set Z defined

below has measure zero.

Definition 4.3.2. Let S ′ extend t1, . . . , tn of S. The set Z is defined by

Z = (ExecS′ ∩ {t1, . . . , tn}
ω) \ B⊓⊔p

S′ (t1, . . . , tn).

Let S be the probabilistic transition system of Example 3.1.2, and let S ′ be the

probabilistic transition system of Example 4.1.2. Assume that p ∈ labelS′(s0), labelS′(s1)

and p 6∈ labelS′(s2). Then S ′ extends the search t01, t10 of S. In that case

Z = {(t01t10)
ω}.

In the proof that the set Z has measure zero we use the following set.

Definition 4.3.3. Let e ∈ pref(Z) and n, m ∈ IIN. The set Z(e, n, m) is defined by

Z(e, n, m) = { ē[n + m] | ē ∈ Z ∧ ē[n] = e[n] }.

44

For the probabilistic transition system of Example 3.1.2 and the search t01, t10,

we have that Z = {(t01t10)
ω} and Z(t01, 1, 2) = {t01t10}. Here we need to exploit

some properties of the sets Z and Z(e, n, m). Next we present a series of technical

results.

Proposition 4.3.4. For all e ∈ pref(Z), n, m ∈ IIN, and e1, e2 ∈ Z(e, n, m), if

e1 6= e2 then e1 6∼ e2.

Proof. It suffices to prove that e1 6- e2.

Since e1 ∈ Z(e, n, m), e1 = ē[n + m] for some ē ∈ Z such that ē[n] = e[n].

Towards a contradiction, assume that e1 - e2. As a consequence, target(e1) is not

final. Hence, |e1| = n + m. Since e2 ∈ Z(e, n, m) and e1 - e2, |e2| = n + m and,

therefore, e1 = e2, which contradicts that e1 6= e2.

From the above result, we can immediately conclude the following result.

Corollary 4.3.5. For all e ∈ pref(Z), n, m ∈ IIN, and e1, e2 ∈ Z(e, n, m), if

e1 6= e2 then BS
e1
∩BS

e2
= ∅.

Proposition 4.3.6. For all e ∈ pref(Z), n, m ∈ IIN and e1, e2 ∈ Z(ǫ, 0, n), if

e1 6= e2 then




⋃

ē1∈Z(e1,n,m)

BS
ē1



 ∩





⋃

ē2∈Z(e2,n,m)

BS
ē2



 = ∅.

45

Proof. Let ē1 ∈ Z(e1, n, m). Then

ē1 = ê1[n + m] (4.1)

for some ê1 ∈ Z such that

ê1[n] = e1[n]. (4.2)

Let ē2 ∈ Z(e2, n, m). Then

ē2 = ê2[n + m] (4.3)

for some ê2 ∈ Z such that

ê2[n] = e2[n]. (4.4)

Since e1, e2 ∈ Z(ǫ, 0, n), we have e1[n] = e1 and e2[n] = e2. Because e1 6= e2, we

know e1 6∼ e2 by Proposition 4.3.4. Thus e1[n] 6∼ e2[n]. Hence by (4.2) and (4.4)

we can conclude that ê1[n] 6∼ ê2[n]. Therefore ê1[n+m] 6∼ ê2[n+m]. Then by (4.1)

and (4.3), ē1 6∼ ē2, which implies that BS
ē1
∩BS

ē2
= ∅.

Proposition 4.3.7. For all n, m ∈ IIN,

⋃

e∈Z(ǫ,0,n)

⋃

e′∈Z(e,n,m)

BS
e′ =

⋃

ē∈Z(ǫ,0,n+m)

BS
ē .

Proof. We prove two inclusions.

• Let e ∈ Z(ǫ, 0, n). Then,

e = ê[n] (4.5)

46

for some ê ∈ Z. Let e′ ∈ Z(e, n, m). Then,

e′ = ẽ[n + m] (4.6)

for some ẽ ∈ Z such that

ẽ[n] = e[n]. (4.7)

We have to prove BS
e′ ⊆

⋃

ē∈Z(ǫ,0,n+m) BS
ē . It suffices to show that e′ ∈

Z(ǫ, 0, n + m). This follows immediately from (4.6) and the fact that ẽ ∈ Z.

• Let ē ∈ Z(ǫ, 0, n + m). Then,

ē = ê[n + m] (4.8)

for some ê ∈ Z. In order to show that

BS
ē ⊆

⋃

e∈Z(ǫ,0,n)

⋃

e′∈Z(e,n,m)

BS
e′

it suffices to show that ē ∈ Z(e, n, m) for some e ∈ Z(ǫ, 0, n). Since ê ∈ Z,

we have ê[n] ∈ Z(ǫ, 0, n) and from (4.8) we conclude that ē ∈ Z(ê[n], n, m).

Next, we introduce the function choose. Given a state s, the function returns

a set of transitions. This set can either be empty or contain a single transition. If

the set contains the transition t, then sourceS(t) = s, t is different from t1, . . . , tn,

and there exists a prefix e of an execution path from the initial state to state s

47

consisting only of transitions in t1, . . . , tn such that et is a prefix of an execution

that violates the invariant. If no such transition t exists, then the set is empty.

Definition 4.3.8. The function out¬⊓⊔p : SS′ → 2T
S′ is defined by

out¬⊓⊔p(s)

= {t ∈ TS′ \ {t1, . . . , tn} | ∃e ∈ {t1, . . . , tn}
∗ : targetS′(e) = s ∧ ∃e′ ∈ BS

et : e′ 6|=S′ ⊓⊔p}.

The function choose : SS′ → 2T
S′ is defined by

choose(s) =















∅ if out¬⊓⊔p(s) = ∅

{t} if out¬⊓⊔p(s) 6= ∅

where t is chosen arbitrarily from out¬⊓⊔p(s).

Furthermore, we introduce a set of transitions ∆.

Definition 4.3.9. The set ∆ is defined by

∆ =
⋃

s∈{target
S′(ti)|1≤i≤n}∪{s0}

choose(s) ∪ {t1, . . . , tn}.

Proposition 4.3.10. If Z 6= ∅ then ∆ 6= ∅.

Proof. We distinguish the following three cases.

• If n 6= 0 then the set ∆ is nonempty since t1 ∈ ∆.

• Towards a contradiction, assume that n = 0 then {t1, . . . , tn}
ω = ∅ and,

hence, Z = ∅. This contradicts our assumption that Z 6= ∅.

48

Note that the set ∆ is finite, we define the value δ as the minimal probability

of the transitions in ∆.

Definition 4.3.11. We define δ as

δ = min({ probS′(t) | t ∈ ∆}).

Corollary 4.3.12. If Z 6= ∅ then δ ∈ (0, 1].

We need two more technical results.

Proposition 4.3.13. For all n, m ∈ IIN, if e ∈ Z(ǫ, 0, m) and t1, . . . , tn has not

found a violation of �p, then

µS′





⋃

e′∈Z(e,m,n+1)

BS′

e



 ≤ (1− δn+1)µS′(BS′

e).

Proof. Because e ∈ Z(ǫ, 0, m), we have that ē[m] = e for some ē ∈ Z. Thus

ē ∈ {t1, . . . , tn}
ω, which implies that e ∈ {t1, . . . , tn}

∗.

s0
e=ē[m]

///o/o/o/o/o/o/o ◦ ///o/o/o/o/o/o/o ē ∈ Z

Since ē ∈ BS′

e and ē ∈ Z, it cannot be the case that ẽ |=S′ �p for all ẽ ∈ BS′

e .

Hence, ê 6|=S′ �p for some ê ∈ BS′

e . Since t1, . . . , tn has not found a violation of

�p, we can conclude that ê contains at least one transition not in {t1, . . . , tn}. Let

49

t be the first transition in ê such that t 6∈ {t1, . . . , tn}. Let ě ∈ {t1, . . . , tn}
∗ be such

that ê ∈ BS′

eět.

◦ t // ◦ ///o/o/o/o ê ∈ BS′

eět ∧ ê 6|=S′ ⊓⊔p

s0
e=ē[m]

///o/o/o/o/o/o/o ◦

%%%e
%e%e%e%e%e%e%e%e%e%e%e%e%e%e ě

LL

+k ,l -m /o 1q 3s 6v 9y =} A�
D�
G�
I	
K�
L�

ē ∈ Z

Since ê 6|=S′ ⊓⊔p, we have that t ∈ out¬⊓⊔p(sourceS′(t)). Hence, out¬⊓⊔p(sourceS′(t)) 6=

∅. Assume that choose(sourceS′(t)) = {t′}. Since t′ ∈ out¬⊓⊔p(sourceS′(t)), there

exists ẽ ∈ {t1, . . . , tn}
∗ and ẽ′ ∈ BS′

ẽt′ such that ẽ′ 6|=S′ ⊓⊔p.

◦ t //

t′

!!D
DD

DD
DD

DD
D ◦ ///o/o/o/o/o ê ∈ BS′

eět ∧ ê 6|=S′ ⊓⊔p

s0

ẽ

''

E�
E�
D�
C�
A�
@� >~

=} ;{
:z 9y 7w 6v 5u 4t 3s 2r 1q 0p /o .n -m ,l +k *j *j)i (h (h

e=ē[m]
///o/o/o/o/o/o/o ◦

$$
$d

$d
$d

$d
$d

$d
$d

$d
$d

$d
$d

$d
$d

$d
$d

$d ě

LL

+k ,l -m /o 1q 3s 6v 9y =} A�
D�
G�
I	
K�
L�

◦

((
(h(h(h(h(h(h(h(h(h

ẽ′ ∈ BS′

ẽt′ ∧ ẽ′ 6|=S′ ⊓⊔p

ē ∈ Z

Because t1 . . . tn has not found a violation of ⊓⊔p and ẽ, eě ∈ {t1, . . . , tn}
∗ and

ẽ′ 6|=S′ ⊓⊔p, we can conclude that there exists a e′′ such that eět′e′′ ∈ BS′

eět′ and

50

eět′e′′ 6|=S′ ⊓⊔p.

◦ t //

t′

!!B
BB

BB
BB

BB
B ◦ ///o/o/o/o/o ê ∈ BS′

eět ∧ ê 6|=S′ ⊓⊔p

s0

ẽ

''

F�
E�
D�
C�
B�
@� ?�

=} <|
:z 9y 8x 6v 5u 4t 3s 2r 1q 0p /o .n -m ,l ,l +k *j)i (h (h

e=ē[m]
///o/o/o/o/o/o/o ◦

##
#c

#c
#c

#c
#c

#c
#c

#c
#c

#c
#c

#c
#c

#c
#c

#c ě

LL

+k ,l .n /o 1q 4t 6v 9y =} B�
E�
G�
I	
K�
L�

◦

(((h
(h(h(h(h(h(h(h(h(h

e′′ ///o/o/o/o/o/o/o eět′e′′ 6|=S′ ⊓⊔p

ẽ′ ∈ BS′

ẽt′ ∧ ẽ′ 6|=S′ ⊓⊔p

ē ∈ Z

Since ě ∈ {t1, . . . , tn}
∗, there exists a subsequence e′ of ě from targetS′(e) to

targetS′(eě) with |e′| ≤ n such that ee′t′e′′ ∈ BS′

e .

◦ t //

t′

!!B
BB

BB
BB

BB
B ◦ ///o/o/o/o/o ê ∈ BS′

eět ∧ ê 6|=S′ ⊓⊔p

s0

ẽ

''

F�
E�
D�
C�
B�
@� ?�

=} <|
:z 9y 8x 6v 5u 4t 3s 2r 1q 0p /o .n -m ,l ,l +k *j)i (h (h

e=ē[m]
///o/o/o/o/o/o/o ◦

##
#c

#c
#c

#c
#c

#c
#c

#c
#c

#c
#c

#c
#c

#c
#c

#c

e′

99
9y

9y
9y

9y
9y

9y
9y

9y

ě

LL

+k ,l .n /o 1q 4t 6v 9y =} B�
E�
G�
I	
K�
L�

◦

(((h
(h(h(h(h(h(h(h(h(h

e′′ ///o/o/o/o/o/o/o eět′e′′ 6|=S′ ⊓⊔p

ẽ′ ∈ BS′

ẽt′ ∧ ẽ′ 6|=S′ ⊓⊔p

ē ∈ Z

Thus we have

µS′(BS′

ee′t′) ≥ δ|e
′t′|µS′(BS′

e) [e′t′ ∈ ∆∗]

≥ δn+1µS′(BS′

e) [|e′t′| ≤ n + 1] (4.9)

Since BS′

ee′t′ ⊆ BS′

e and BS′

ė ⊆ BS′

e for all ė ∈ Z(e, m, n + 1) we have




⋃

ė∈Z(e,m,n+1)

BS′

ė



 ∪BS′

ee′t′ ⊆ BS
e (4.10)

51

Furthermore, for all ė ∈ Z(e, m, n + 1),

BS′

ė ∩ BS′

ee′t′ = ∅. (4.11)

because

• ee′t′ cannot be a prefix of ė since t′ 6∈ {t1, . . . , tn} and ė ∈ {t1, . . . , tn}
∗ and

• ė cannot be a strict prefix of ee′t′ because |ė| = m + n + 1 ≥ |ee′t′|.

Thus we have

µS′





⋃

ė∈Z(e,m,n+1)

BS′

ė



 + µS′(BS′

ee′t′)

= µS′





⋃

ė∈Z(e,m,n+1)

BS′

ė ∪ BS′

ee′t′



 [(4.11)]

≤ µS′(BS′

e) [Proposition 2.1.7 and (4.10)]

and, hence,

µS′





⋃

ė∈Z(e,m,n+1)

BS′

ė



 ≤ µS′(BS′

e)− µS′(BS′

ee′t′)

≤ µS′(BS′

e)− δn+1µS′(BS′

e) [(4.9)]

= (1− δn+1)µS′(BS′

e)

Proposition 4.3.14. Assume that asearch t1, . . . , tn has not found a violation of

�p. For all k ∈ IIN,

µS′

(

⋃

e∈Z

BS′

e[k(n+1)]

)

≤ (1− δn+1)k.

52

Proof. We prove this property by induction on k.

• If k = 0 then

µS′

(

⋃

e∈Z

BS′

e[0]

)

= µS′(BS′

ǫ) = 1 = (1− δn+1)0.

• Let k > 0. Assume that

µS′

(

⋃

e∈Z

BS′

e[(k−1)(n+1)]

)

≤ (1− δn+1)k−1. (4.12)

By Proposition 4.3.13, for all e ∈ Z(ǫ, 0, (k − 1)(n + 1)),

µS′





⋃

ē∈Z(e,(k−1)(n+1),n+1)

BS′

ē



 ≤ (1− δn+1)µS′(BS′

e). (4.13)

53

Thus,

µS′

(

⋃

e∈Z

BS′

e[k(n+1)]

)

= µS′





⋃

e∈Z(ǫ,0,k(n+1))

BS′

e





= µS′





⋃

e∈Z(ǫ,0,(k−1)(n+1))

⋃

ē∈Z(e,(k−1)(n+1),n+1)

BS′

ē



 [Proposition 4.3.7]

=
∑

e∈Z(ǫ,0,(k−1)(n+1))

µS′





⋃

ē∈Z(e,(k−1)(n+1),n+1)

BS′

ē



 [Proposition 4.3.6]

≤
∑

e∈Z(ǫ,0,(k−1)(n+1))

(1− δn+1)µS′(BS′

e) [(4.13)]

= (1− δn+1)
∑

e∈Z(ǫ,0,(k−1)(n+1))

µS′(BS′

e)

= (1− δn+1)µS′





⋃

e∈Z(ǫ,0,(k−1)(n+1))

BS′

e



 [Corollary 4.3.5]

= (1− δn+1)µS′

(

⋃

e∈Z

BS′

e[(k−1)(n+1)]

)

≤ (1− δn+1)k [induction hypothesis (4.12)]

Now we show that the set of Z has measure zero.

Lemma 4.3.15. If t1, . . . , tn has not found a violation of �p then µS′(Z) = 0.

Proof. We distinguish the following two cases.

• If Z = ∅, then obviously µS′(Z) = 0.

54

• Otherwise, for all e ∈ Z we have that e ∈ BS′

e[k(n+1)] for all k ∈ IIN. Hence,

Z ⊆
⋂

k∈IIN

(

⋃

e∈Z

BS′

e[k(n+1)]

)

.

Obviously, for all e ∈ Z we have

ǫ = e[0] - e[n + 1] - e[2(n + 1)] - . . . - e[k(n + 1)] - . . .

which implies that

BS′

ǫ = BS′

e[0] ⊇ BS′

e[n+1] ⊇ BS′

e[2(n+1)] ⊇ . . . ⊇ BS′

e[k(n+1)] ⊇

Thus

BS′

ǫ =
⋃

e∈Z

BS′

e[0] ⊇
⋃

e∈Z

BS′

e[n+1] ⊇
⋃

e∈Z

BS′

e[2(n+1)] ⊇ . . . ⊇
⋃

e∈Z

BS′

e[k(n+1)] ⊇

Furthermore, µS(BS′

ǫ) = 1.

We use the above to apply Proposition 2.1.8 below.

µS′(Z) ≤ µS′

(

⋂

k∈IIN

(

⋃

e∈Z

BS′

e[k(n+1)]

))

[Proposition 2.1.7]

= lim
k∈IIN

µS′

(

⋃

e∈Z

BS′

e[k(n+1)]

)

[Proposition 2.1.8]

≤ lim
k∈IIN

(1− δn+1)k [Proposition 4.3.14]

≤ 0 [Corollary 4.3.12]

55

Now, we are ready to prove the other inequality.

Lemma 4.3.16. Assume that t1, . . . , tn has not found a violation of �p. Then

µS(ExecS ∩ ({t1, . . . , tn}
∗ ∪ {t1, . . . , tn}

ω)) ≤ progS(t1, . . . , tn, �p).

Proof. It suffices to show that

µS(ExecS ∩ ({t1, . . . , tn}
∗ ∪ {t1, . . . , tn}

ω)) ≤ µS′(B⊓⊔p

S′)

for each S ′ that extends the search t1, . . . , tn of S.

Let S ′ extend the search t1, . . . , tn of S. Since t1, . . . , tn has not found a violation

of ⊓⊔p,

ExecS′ ∩ {t1, . . . , tn}
∗ ⊆ B⊓⊔p

S′ (t1, . . . , tn). (4.14)

Then

µS(ExecS ∩ ({t1, . . . , tn}
∗ ∪ {t1, . . . , tn}

ω))

= µS′(ExecS′ ∩ ({t1, . . . , tn}
∗ ∪ {t1, . . . , tn}

ω)) [Proposition 4.1.3, 4.1.5 and 4.1.6]

= µS′(ExecS′ ∩ {t1, . . . , tn}
∗)

+µS′(ExecS′ ∩ {t1, . . . , tn}
ω ∩ B⊓⊔p

S′ (t1, . . . , tn))

+µS′(ExecS′ ∩ {t1, . . . , tn}
ω \ B⊓⊔p

S′ (t1, . . . , tn))

= µS′(ExecS′ ∩ {t1, . . . , tn}
∗)

+µS′(ExecS′ ∩ {t1, . . . , tn}
ω ∩ B⊓⊔p

S′ (t1, . . . , tn)) [Lemma 4.3.15]

≤ µS′

(

B⊓⊔p

S′ (t1, . . . , tn)
)

[(4.14) and Proposition 2.1.7].

56

Combining the above results, we arrive at the characterization of our progress

measure for invariants.

Theorem 4.3.17. Assume that t1, . . . , tn has not found a violation of �p. Then

progS(t1, . . . , tn, �p) = µS(ExecS ∩ ({t1, . . . , tn}
∗ ∪ {t1, . . . , tn}

ω)).

Proof. Immediate consequence of Lemma 4.3.1 and 4.3.16.

Note that the above theorem does not hold for all linear time properties. For

example, consider the probabilistic transition system of Example 3.1.2, the search

t01 and the property ©p. As we have already seen, the progress of t01 for ©p is

0.6. However, the set ExecS ∩ ({t01}
∗ ∪ {t01}

ω) is empty and, hence, its measure is

zero.

4.4 Computation of Progress for Invariants

Given the characterization of our progress measure for invariants, we are now in

a position to compute the progress measure for invariants. In this section, we fix

a probabilistic transition system S, which we call the complete system, a search

t1, . . . , tn of this system and an invariant ⊓⊔p. Next, we construct a probabilistic

transition system S ′, which we call the searched system. This searched system

57

is usually considerably smaller than the complete system. We shall exploit the

searched system to compute the progress of t1, . . . , tn for ⊓⊔p. First we give the

definition of the searched system S ′.

Definition 4.4.1. The set SS′ is defined by

SS′ =
⋃

1≤i≤n

{sourceS(ti), targetS(ti)} ∪ {s0, s⊥}.

A state s is partial if s is not final in S and outS(s) < 1.

The set TS′ is defined by

TS′ = {t1, . . . , tn} ∪ { ts | s ∈ SS′ is final in S or partial } ∪ {t⊥}.

The set APS′ is defined by

APS′ = APS ∪ {⊥}.

The function sourceS′ : TS′ → SS′ is defined by

sourceS′(t) =































s⊥ if t = t⊥

s if t = ts

sourceS(t) if t ∈ {t1, . . . , tn}.

The function targetS′ : TS′ → SS′ is defined by

targetS′(t) =















































s⊥ if t = t⊥

s if t = ts and s is final

s⊥ if t = ts and s is partial

targetS(t) if t ∈ {t1, . . . tn}.

58

The function probS′ : TS′ → (0, 1] is defined by

probS′(t) =















































1 if t = t⊥

1 if t = ts and s is final

1− outS(s) if t = ts and s is partial

probS(t) if t ∈ {t1, . . . tn}.

The function labelS′ : SS′ → 2AP
S′ is defined by

labelS′(s) =















{⊥} if s = s⊥

labelS(s) otherwise.

Obviously we have the following property.

Proposition 4.4.2. S ′ is a probabilistic transition system.

For the complete system of Example 3.1.2 and the search t01, t02, t12, the cor-

responding searched system can be depicted as

s0

0.6

~~||
||

||
|| 0.4

BB

BB
BB

BB

s⊥

1

��
s1

0.3
//0.7oo s2

1

��

Note that the probabilistic transition system S ′ only gives rise to infinite execu-

tion paths. Let us denote the set of execution paths of this system by ExecS′. As

we turned the set ExecS into a measurable space, we can also turn the set ExecS′

into a measurable space 〈ExecS′, ΣS′, µS′〉.

59

To prove that we can indeed use the searched system to compute the progress of

the search in the complete system, we relate the complete and the searched system

by linking the execution paths of the two systems.

Definition 4.4.3. The function η : (Exec∗S ∪ Execω
S)→ ExecS′ is defined by

η(e) =































e(ttargetS(e))
ω if e ∈ {t1, . . . , tn}

∗

e if e ∈ {t1, . . . , tn}
ω

e′ttargetS(e′)(t⊥)ω if e = e′te′′ and e′ ∈ {t1, . . . , tn}
∗ and t 6∈ {t1, . . . , tn}

Next, we characterize those execution paths of the complete system, which solely

consist of transitions of the search, in terms of execution paths in the searched

system.

Proposition 4.4.4. The function η provides a one-to-one correspondence between

the sets (Exec∗S ∩ {t1, . . . , tn}
∗) ∪ (Execω

S ∩ {t1, . . . , tn}
ω) and { e′ ∈ ExecS′ | e′ does

not contain t⊥ }.

As we show next, to compute the progress of the search in the complete system,

it suffices to compute the measure of the set of those execution paths of the searched

system that do not contain the transition t⊥.

Theorem 4.4.5. Assume that the search t1, . . . , , tn has not found a violation of

�p

progS(t1, . . . , tn, �p) = µS′({ e′ ∈ ExecS′ | e′ does not contain t⊥}).

60

Proof. We have that

µS(Exec∗S ∩ {t1, . . . , tn}
∗)

= µS





⋃

e∈Exec∗
S
∩{t1,...,tn}∗

BS
e



 [BS
e = {e} for all e ∈ Exec∗S]

=
∑

e∈Exec∗
S
∩{t1,...,tn}∗

µS(BS
e)

=
∑

e∈Exec∗
S
∩{t1,...,tn}∗

νS(BS
e) [µS extends νS]

=
∑

t′1...t′
k
∈Exec∗

S
∩{t1,...,tn}∗

νS(BS
t′1...t′

k

)

=
∑

t′1...t′
k
∈Exec∗

S
∩{t1,...,tn}∗

∏

1≤i≤k

probS(t′i)

=
∑

t′1...t′
k
∈Exec∗

S
∩{t1,...,tn}∗

∏

1≤i≤k

probS′(t′i) [probS(ti) = probS′(ti) for all 1 ≤ i ≤ n]

=
∑

t′1...t′
k
∈Exec∗

S
∩{t1,...,tn}∗

νS′(BS′

t′1...t′
k

)

=
∑

e∈Exec∗
S
∩{t1,...,tn}∗

νS′(BS′

e)

=
∑

e∈Exec∗
S
∩{t1,...,tn}∗

µS′(BS′

e) [µS′ extends νS′]

= µS′





⋃

e∈Exec∗
S′∩{t1,...,tn}∗

BS′

e





= µS′({ e(ttarget
S′(e))

ω | e ∈ Exec∗S ∩ {t1, . . . , tn}
∗ })

[BS′

e = {e(ttarget
S′(e))

ω} for all e ∈ Exec∗S ∩ {t1, . . . , tn}
∗]

For all k ∈ IIN,

⋃

e∈pref(ExecS)∩{t1,...,tn}k

BS
e ⊇

⋃

e∈pref(ExecS)∩{t1,...,tn}k+1

BS
e

61

Furthermore, µS(BS
ǫ) = 1.

We use the above to apply Proposition 2.1.8 below.

µS(Execω
S ∩ {t1, . . . , tn}

ω)

= µS





⋂

k∈IIN

⋃

e∈pref(ExecS)∩{t1,....tn}k

BS
e





= lim
k∈IIN

µS





⋃

e∈pref(ExecS)∩{t1,....tn}k

BS
e



 [Proposition 2.1.8]

= lim
k∈IIN

∑

e∈pref(ExecS)∩{t1,....tn}k

µS(BS
e)

= lim
k∈IIN

∑

e∈pref(ExecS)∩{t1,....tn}k

νS(BS
e) [µS extends νS]

= lim
k∈IIN

∑

t′1...t′
k
∈pref(ExecS)∩{t1,...,tn}k

νS(BS
t′1...t′

k

)

= lim
k∈IIN

∑

t′1...t′
k
∈pref(ExecS)∩{t1,...tn}k

∏

1≤i≤k

probS(t′i)

= lim
k∈IIN

∑

t′1...t′
k
∈pref(ExecS)∩{t1,...tn}k

∏

1≤i≤k

probS′(t′i)

[probS(ti) = probS′(ti) for all 1 ≤ i ≤ n]

= µS′(Execω
S ∩ {t1, . . . , tn}

ω) [by symmetric argument].

62

From the above we can conclude that

progS(t1, . . . , tn, �p)

= µS((Exec∗S ∩ {t1, . . . , tn}
∗) ∪ (Execω

S ∩ {t1, . . . , tn}
ω)) [Theorem 4.3.17]

= µS(Exec∗S ∩ {t1, . . . , tn}
∗) + µS(Execω

S ∩ {t1, . . . , tn}
ω)

= µS′({ e(ttarget
S′(e))

ω | e ∈ Exec∗S ∩ {t1, . . . , tn}
∗ }) + µS′(Execω

S ∩ {t1, . . . , tn}
ω)

= µS′({ e(ttargetS(e))
ω | e ∈ Exec∗S ∩ {t1, . . . , tn}

∗ } ∪ (Execω
S ∩ {t1, . . . , tn}

ω))

= µS′({ e′ ∈ ExecS′ | e′ does not contain t⊥ }).

The last step follows from

{ e′ ∈ ExecS′ | e′ does not contain t⊥ }

= { η(e) | e ∈ (Exec∗S ∩ {t1, . . . , tn}
∗) ∪ (Execω

S ∩ {t1, . . . , tn}
ω) }

= { e(ttargetS(e))
ω | e ∈ Exec∗S ∩ {t1, . . . , tn}

∗ } ∪ (Execω
S ∩ {t1, . . . , tn}

ω).

The set of those execution paths of the searched system which contain the

transition t⊥ can be captured as a set of execution paths that reach the state s⊥.

Corollary 4.4.6. Assume that the search t1, . . . , , tn has not found a violation of

�p.

progS(t1, . . . , tn, �p) = 1− µS′({ e′ ∈ ExecS′ | e′ contains t⊥}).

63

Several algorithms and tools are available to compute the probability of reaching

a particular state (see, for example, [1, Section 10.1]).

4.5 Maintaining the Searched System

As we have seen in the previous section, to compute the progress measure of a search

of a complete system for an invariant, we construct the corresponding searched

system (and compute the measure of the set of those execution paths in the searched

system that reach state s⊥). As the search of the model checker continues, we

would like to keep track of the progress. For a given complete system S, this can

be captured by the following diagram.

t1, . . . , tn //

��

t1, . . . , tn, tn+1

��

Sn Sn+1

Rather than constructing the searched system from scratch after a new transi-

tion has been explored by the model checker, we show that we can construct the

new searched system Sn+1 from the old searched system Sn and the transition tn+1

in constant time.

But first we characterize the searched system corresponding to the empty search.

Proposition 4.5.1. Let S0 be the searched system corresponding to the empty

search. Then S0 = {s0, s⊥}, T0 = {ts0 , t⊥}, AP0 = APS ∪ {⊥}, source0(ts0) = s0,

64

source0(t⊥) = s⊥, target0(t⊥) = s⊥, prob0(ts0) = 1, prob0(t⊥) = 1, label0(s0) =

labelS(s0) and label0(s⊥) = {⊥}. If s0 is final then target(ts0) = s0. Otherwise,

target(ts0) = s⊥.

Theorem 4.5.2. Let Sn and Sn+1 be the searched systems related to the searches

t1, . . . , tn and t1, . . . , tn, tn+1, respectively. Let ss = source(tn+1) and st = target(tn+1).

Then

Sn+1 = Sn ∪ {ss, st}.

and

Tn+1 =















































































































Tn ∪ {tn+1} ∪ {tss
} ∪ {tst

} if ss 6∈ Sn ∧ st 6∈ Sn∧probS(tn+1) < 1

Tn ∪ {tn+1} ∪ {tst
} if ss 6∈ Sn ∧ st 6∈ Sn∧probS(tn+1) = 1

Tn ∪ {tn+1} ∪ {tss
} if ss 6∈ Sn ∧ st ∈ Sn∧probS(tn+1) < 1

Tn ∪ {tn+1} if ss 6∈ Sn ∧ st ∈ Sn∧probS(tn+1) = 1

Tn ∪ {tn+1} ∪ {tst
} if ss ∈ Sn ∧ st 6∈ Sn∧probn(tss

) > probS(tn+1)

Tn ∪ {tn+1} ∪ {tst
} \ {tss

} if ss ∈ Sn ∧ st 6∈ Sn∧probn(tss
) = probS(tn+1)

Tn ∪ {tn+1} if ss ∈ Sn ∧ st ∈ Sn∧probn(tss
) > probS(tn+1)

Tn ∪ {tn+1} \ {tss
} if ss ∈ Sn ∧ st ∈ Sn∧probn(tss

) = probS(tn+1)

and

APn+1 = APn

65

and the function sourcen+1 : Tn+1 → Sn+1 satisfies

sourcen+1(t) =















































ss if t = tn+1

ss if t = tss

st if t = tst

sourcen(t) otherwise

and the function targetn+1 : Tn+1 → Sn+1 satisfies

targetn+1(t) =































































st if t = tn+1

s⊥ if t = tss

st if t = tst
∧ st is final

s⊥ if t = tst
∧ st is partial

targetn(t) otherwise

and the function probn+1 : Tn+1 → (0, 1] satisfies

probn+1(t) =































































probS(tn+1) if t = tn+1

probn(tss
)− probS(tn+1) if t = tss

∧ ss ∈ Sn∧probn(tss
) > probS(tn+1)

1− probS(tn+1) if t = tss
∧ ss 6∈ Sn∧probS(tn+1) < 1

1 if t = tst
∧ st 6∈ Sn

probn(t) otherwise

and the function labeln+1 : Sn+1 → 2APn+1 satisfies

labeln+1(s) =















labeln(s) if s ∈ Sn

labelS(s) otherwise

66

Algorithm 1 Implementation of Proposition 4.5.1 and Theorem 4.5.2

1: Initialize()

2: S ← empty set

3: T ← empty set

4: insert(S, s0); insert(S, s⊥)

5: source(t⊥)← s⊥; target(t⊥)← s⊥; prob(t⊥)← 1; insert(T, t⊥)

6: if s0 is final then

7: target(ts0)← s0

8: else

9: target(ts0)← s⊥

10: source(ts0)← s0; prob(ts0)← 1; insert(T, ts0)

11:

Require: t 6∈ T

12: Add(t)

13: ss ← source(t); st ← target(t)

14: insert(T, t)

15: if ss 6∈ S then

16: insert(S, ss)

17: if prob(t) < 1 then

18: source(tss
)← ss; target(tss

)← s⊥; prob(tss
)← 1− prob(t); insert(T, tss

)

19: else

20: if prob(t) < prob(tss
) then

21: prob(tss
)← prob(tss

)− prob(t)

22: else

67

The above results provide the correctness proof of Algorithm 1.

Proposition 4.5.3. The worst-case running time of Initialize is constant. The

amortized expected running time per Add is constant.

Proof. The only operations which may not be constant time are the tests in line 15

and 24, the inserts in line 16, 18 and 30, the look up of tss
in line 20, and the

remove in line 23. By exploiting dynamic perfect hashing, as discussed in [6], the

amortized expected running time can be shown to be constant.

68

5 Search Strategies

Explicit-state model checkers like JPF use search strategies such as depth-first

search (DFS) and breadth-first search (BFS) to traverse the state space of the

system under verification. First, we present the traditional search strategies DFS

and BFS within the model we presented in Chapter 3. Next, we present three

new search strategies. In contrast to DFS and BFS, these search strategies take

the probabilities associated with the random choices into account. As we shall

see in Chapter 9, these search strategies generally make progress faster than the

traditional search strategies DFS and BFS.

5.1 DFS and BFS

Given a probabilistic transition system, a search strategy visits the states and the

transitions of the system in a systematic way. We are mainly focused on the order

in which the transitions are visited. Hence, a search strategy gives rise to a sequence

of transitions.

69

In our implementation of DFS we use a stack to store transitions. An algorithm

for DFS can be found in Algorithm 2.

Algorithm 2 Depth-first search

Require: no state is marked visited

1: st← empty stack

2: for all transitions t from s0 do

3: push(st, t)

4: mark s0 visited

5: while st is nonempty do

6: t← pop(st) ⊲ t is visited

7: if target(t) is not visited then

8: for all transitions t′ such that source(t′)=target(t) do

9: push(st, t′)

10: mark target(t) visited

In [18], Knuth and Yao show how a die can be implemented by means of a coin.

We use a biased version, presented in the next example, as our running example in

this chapter.

Example 5.1.1. An implementation of a biased die by means of a biased coin is

70

represented by the probabilistic transition system depicted below.

s0

0.3

yytttttttttttttttttt

0.7

&&L
LLLLLLLLLLLLLLLLLL

s1

0.3

����
��
��
��
��
�

0.7

��
88

88
88

88
88

88
s2

0.3

����
��

��
��

��
��

0.7

��
33

33
33

33
33

3

s3

0.3

33

0.7

��

s4

0.3

		��
��
��
��
��

0.7

��
++

++
++

++
++

s5

0.3

����
��
��
��
��

0.7

��
,,

,,
,,

,,
,,

s6

0.3

��

0.7

kk

s7 s8 s9 s10 s11 s12

For transitions, we use the same naming convention as in Example 3.1.2. Some-

times we add a - to enhance readability, as for example in t5−10.

A DFS can visit the transitions in the following order: t01, t13, t31, t37, t14, t48, t49, t02, t25,

t5−10, t5−11, t26, t6−12, t62

Instead of a stack, BFS uses a queue to store transitions. An algorithm for

BFS can be found in Algorithm 3. For the probabilistic transition system of Ex-

ample 5.1.1, BFS can visit the transitions in the following order: t01, t02, t13, t14,

t25, t26, t31, t37, t48, t49, t5−10, t5−11, t6−12, t62.

5.2 Probability-First Search

Search strategies such as DFS and BFS do not take the probability of transitions

into account. To let transitions with the highest probability be searched first,

71

Algorithm 3 Breadth-first search

Require: no state is marked visited

1: q ← empty queue

2: for all transitions t from s0 do

3: enqueue(q, t)

4: mark s0 visited

5: while q is nonempty do

6: t← dequeue(q) ⊲ t is visited

7: if target(t) is not visited then

8: for all transitions t′ from target(t) do

9: enqueue(q, t′)

10: mark target(t) visited

72

our probability-first search (PFS) strategy sorts the enabled transitions by their

probability. This search strategy is similar to A∗[13]. For the probabilistic tran-

sition system of Example 5.1.1, PFS visits the transitions in the following order:

t02, t26, t62, t01, t25, t14, t6−12, t5−11, t49, t13, t5−10, t48, t37, t31.

To implement PFS, we exploit a priority queue. Each key is a real number,

which represents a probability. The keys are ordered as follows:

p1 � p2 if p1 ≥ p2.

The elements of the priority queue are transitions. An algorithm for PFS can be

found in Algorithm 4.

5.3 Breadth-First Probability-Second Search

Our breadth-first probability-second search (BFPSS) is an enhancement of BFS

in which transitions at the same level are sorted by their probability. For the

probabilistic transition system of Example 5.1.1, BFPSS visits the transitions in

the following order: t02, t01, t26, t14, t25, t13, t62, t5−11, t49, t37, t6−12, t5−10, t48, t31

To implement BFPSS, we also exploit a priority queue. This time, each key is a

pair consisting of an integer, which represents a level, and a real, which represents

a probability. The keys are ordered as follows:

[ℓ1, p1] � [ℓ2, p2] if ℓ1 < ℓ2 ∨ (ℓ1 = ℓ2 ∧ p1 ≥ p2).

73

Algorithm 4 Probability-first search

Require: no state is marked visited

1: q ← empty priority queue

2: for all transitions t from s0 do

3: insert(q, 〈prob(t), t〉)

4: mark s0 visited

5: while q is nonempty do

6: 〈p, t〉 ← deleteMin(q) ⊲ t is visited

7: if target(t) is not visited then

8: for all transitions t′ from target(t) do

9: enqueue(q, 〈prob(t′)× p, t′〉)

10: mark target(t) visited

74

The elements of the priority queue are transitions. An algorithm for BFPSS can

be found in Algorithm 5.

Algorithm 5 Breadth-first probability-second search

Require: no state is marked visited

1: q ← empty priority queue

2: for all transitions t from s0 do

3: insert(q, 〈[1, prob(t)], t〉)

4: mark s0 visited

5: while q is nonempty do

6: 〈[ℓ,−], t〉 ← deleteMin(q) ⊲ t is visited

7: if target(t) is not visited then

8: for all transitions t′ from target(t) do

9: insert(q, 〈[ℓ + 1, prob(t′)], t′〉)

10: mark target(t) visited

5.4 Randomized Search

Our randomized search (RS) randomly selects an enabled transition. The chance

that a transition is selected is proportional to its probability.

To implement RS, we use a set. The elements of the set are pairs, each consisting

of a real, representing a probability, and a transition. The operation select(s)

75

removes an element 〈p, t〉 from the set and returns the element. The probability

that the element 〈p, t〉 is selected is

p
∑

〈p′,t′〉∈s p′
.

An algorithm for RS is given in Algorithm 6.

Algorithm 6 Randomized search

Require: no state is marked visited

1: s← empty set

2: for all transitions t from s0 do

3: add(s, 〈prob(t), t〉)

4: mark s0 visited

5: while s is nonempty do

6: 〈p, t〉 ← select(s) ⊲ t is visited

7: if target(t) is not visited then

8: for all transitions t′ from target(t) do

9: add(s, 〈prob(t′)× p, t′〉)

10: mark target(t) visited

76

5.5 Properties of Search Strategies

First, we present a property of the algorithms that we shall use in several proofs.

In this section, we use T0 to denote the set of those transitions that can be reached

from s0.

Proposition 5.5.1. All transitions added to the collection belong to T0.

Proof. We show that the fact that all transitions added to the collection belong to

T0 is a loop invariant of the loop in line 5-10. Obviously, the transitions added to

the collection in line 3 are reachable from s0 and, hence, belong to T0.

Next we show that this loop invariant is maintained by the loop in line 5-10. By

the loop invariant we know that t belongs to T0, i.e. t is reachable from s0. Since

target(t) = source(t′), t′ is also reachable from s0 and, hence, belongs to T0.

Like DFS and BFS, PFS, BFPSS and RS visit each transition at most once.

Proposition 5.5.2. In PFS, BFPSS and RS, each transition is visited at most

once. If T0 is finite then PFS, BFPSS, and RS visit all transitions in T0.

Proof. First, we prove that each transition is visited at most once.

• By inspecting the algorithms, we know once a state is marked visited, it

remains marked visited.

77

• From line 4 and line 10 of these algorithms, we know that after a transition

t has been added to the collection, which is a priority-queue for PFS and

BFPSS and a set for RS, source(t) is marked visited.

• From the precondition and line 7, we know that at the time a transition t is

added to the collection, source(t) is not marked visited.

So each transition t is added to the collection at most once. From this and line 6

of the algorithms, where a transition is visited and removed from the collection, we

can conclude that each transition is visited at most once.

Next, we prove that all transitions in T0 will be visited by contradiction. Let

us assume there exists some transition t in T0 that is not visited by the search

strategies. Because t is in T0, we know that t can be reached from s0 via a prefix

of an execution path. Say e is that prefix from s0 to source(t). Let t′ be the first

transition in et that has not been visited by the search strategies. Such a t′ exists

because t has not been visited.

Now we distinguish two cases.

• Assume that source(t′) = s0. In line 2 and 3, we have added all outgoing

transitions of s0 and hence t′ to the collection. From Proposition 5.5.1 we

know that all the transitions added to the collection belong to T0. Since also

T0 is finite, we can conclude that t′ is removed from the collection and hence

78

visited.

• Assume that source(t′) 6= s0. Let e′ be such that e′t′ is a prefix of et. Since t′

is the first transition that has not been visited, all transitions in e′ have been

visited. Let t′′ be the last transition of e′. Initially, state target(t′′) is not

marked visited. Consider the first time line 7 is executed for state target(t′′).

(Note that line 7 is executed at least once for state target(t′′) because t′′ has

been visited.) Then in line 9, transition t′ is added to the collection. The

remainder of the proof is the same as in the previous case.

Since PFS, BFPSS and RS take the probabilities into account, these search

strategies are not as efficient as DFS and BFS.

Proposition 5.5.3. If T0 is finite and

• a state can be marked visited in O(1) time,

• a state can be checked to be marked in O(1) time,

• the outgoing transitions of a state s can be enumerated in O(n) time, where

n is the number of outgoing transitions of s,

then the worst-case running time of PFS, BFPSS, and RS is O(|T0| log |T0|).

79

Proof. We represent the priority queue by means of a heap. Therefore, the worst-

case running time of insert and deleteMin are O(log(n)), where n is the size of the

priority queue. We represent the set by means of an augmented red-black tree [4,

Chapter 14]. Therefore, the worst-case running time of adding and selecting are

O(log n), where n is the size of the set. From the RS algorithm we can deduce that

whenever we add a transition to the set, that transition is not already in the set.

Hence, the running time of add is O(1). The worst-case running time of select is

O(n), where n is the size of the set.

• From Proposition 5.5.2, we know every transition in T0 will be visited once

and, hence, will be added to the collection once. So line 2–3 and line 8–9

will be executed |T0| times. From our assumptions we can conclude that the

running time for all the executions of these lines combined is O(|T0| log |T0|).

• Line 6 is executed |T0| times. In the worst case, there are |T0| transitions in

the collection. Thus, the worst-case running time for all the executions of

line 6 combined is O(|T0| log |T0|).

• Line 5 and 7 are executed |T0| times. Hence, in total they contribute O(|T0|)

to the running time.

• Line 10 is executed at most |T0| times. Hence, in total it contributes O(|T0|)

to the worst-case running time.

80

• Line 1 and 4 are executed once. Hence, in total they contribute O(1) to the

running time.

Adding the above leads us to the desired results.

5.6 Comparison

Our progress measure allows us to compare the amount of progress these different

search strategies make. Next we shall provide examples that show that the four

different search strategies of DFS, BFS, PFS, and BFPSS are incomparable. That

is, for each pair of search strategies, we shall construct a complete system such that

one strategy makes faster progress than the other.

The first example shows that DFS can make faster progress than BFS.

'&%$!"#

0.5

����
��

� 0.5

��
::

::
:

'&%$!"#

1.0
��

'&%$!"#

1.0
��

'&%$!"# '&%$!"#

DFS BFS

0 0

0.5 0

0.5 0.5

1.0 1.0

The second example shows the opposite, that is, BFS can make faster progress

than DFS.

81

'&%$!"#

0.1

����
��

� 0.6

��
::

::
:

'&%$!"#

1.0
��

'&%$!"#

'&%$!"#

BFS DFS

0 0

0.6 0.4

1.0 1.0

Our third example shows that both DFS and BFS can make progress faster

than PFS and BFPSS.

'&%$!"#

0.4

����
��

� 0.6

��
::

::
:

'&%$!"# '&%$!"#

0.6

����
��

� 0.4

��
::

::
:

'&%$!"# '&%$!"#

DFS BFS PFS BFPSS

0.4 0.4 0 0

0.4 0.4 0.4 0.4

0.76 0.76 0.76 0.76

1.0 1.0 1.0 1.0

The fourth example shows the opposite, that is, both PFS and BFPSS can make

faster progress than DFS and BFS.

'&%$!"#

0.4

����
��

� 0.6

��
::

::
:

'&%$!"# '&%$!"#

PFS BFPSS DFS BFS

0.6 0.6 0.4 0.4

1.0 1.0 1.0 1.0

Next, we present an example of a system for which BFPSS makes faster progress

than PFS.

82

'&%$!"#

0.4

����
��

� 0.6

��
::

::
:

'&%$!"# '&%$!"#

1.0
��

'&%$!"#

0.4

����
��

� 0.6

��
::

::
:

'&%$!"# '&%$!"#

BFPSS PFS

0 0

0.4 0

0.4 0.4

0.76 0.76

1.0 1.0

Finally, we show that PFS can make progress faster than BFPSS.

'&%$!"#

0.3

����
��

� 0.7

��
::

::
:

'&%$!"#

1.0
��

'&%$!"#

0.5

����
��

� 0.5

��
::

::
:

'&%$!"# '&%$!"# '&%$!"#

PFS BFPSS

0 0

0.35 0

0.7 0.3

0.7 0.65

1.0 1.0

As we have seen, DFS, BFS, PFS and BFPSS are in general incomparable. Since

RS can behave as any of them, RS is incomparable to the other search strategies as

well. In Chapter 9 we shall compare the progress made by these search strategies

for a number of randomized algorithms.

83

6 An Extension of JPF to a Probabilistic Model

Checker

We are interested in model checking randomized algorithms implemented in Java

using JPF. These randomized algorithms contain at least one randomized choice.

JPF does not know about the probabilities associated with the randomized choices.

However, JPF needs this information to, for example, keep track of its progress (the

need for a progress measure was already discussed earlier). To accomplish this, we

have to introduce several new classes and interfaces.

6.1 The Class Choice

One way to express a randomized choice in Java is to use the nextInt(int n)

method of the Random class. This method returns the integer i with probability

1
n

where 0 ≤ i < n. For example, consider a randomized version of Hoare’s quick-

sort [14]. This algorithm only contains a single randomized choice which is used

to randomly select a pivot to split the list. This randomized algorithm can be

84

implemented in Java as follows.

1 /∗∗

2 Sorts the element of the given l i s t .

3 @param l i s t the l i s t to be sorted .

4 @pre. a l l elements of the l i s t are distinct and different from null

.

5 ∗/

6 public static void quickSort(ArrayList<T> list) {

7 i f (list .size() != 0) {

8 //select a random pivot

9 Random random = new Random() ;

10 int index = random .nextInt(list .size()) ;

11 T pivot = list .get(index) ;

12 //partition l i s t into two

13 ArrayList<T> small = new ArrayList<T>(list .size()) ;

14 ArrayList<T> large = new ArrayList<T>(list .size()) ;

15 for (T element : list) {

16 i f (element .compareTo(pivot) < 0) {

17 small .add(element) ;

18 } else if (element .compareTo(pivot) > 0) {

85

19 large .add(element) ;

20 }

21 }

22 //recursively sort

23 quickSort(small) ;

24 quickSort(large) ;

25 //combine the sorted l i s t

26 list .clear() ;

27 list .addAll(small) ;

28 list .add(pivot) ;

29 list .addAll(large) ;

30 }

31 }

However, there are several other ways to implement randomized choices in Java.

For example, the above randomized choice can also be implemented as follows by

using the nextDouble method of the Random class.

int index = (int) (random.nextDouble() * input.size());

In the first approach, an invocation of the nextInt method represents a randomized

choice. Such an invocation can easily be detected by JPF. In the second approach,

86

a randomized choice is not just represented by an invocation of the nextDouble

method. In this case, it is a particular combination of the nextDouble method, the

size method, multiplication and casting. Detecting such a combination is much

more difficult in JPF.

Also in some cases we may need other distributions than the uniform distri-

bution. For instance, when we want to simulate a biased coin, we may want to

specify the probability of heads to be 0.7. This cannot be directly expressed using

the nextInt method.

Therefore, to express randomized choices we have introduced the class Choice

of the package probabilistic which contains the static method make. Given an

array p of doubles with
∑p.length−1

i=0 p[i] = 1, the invocation Choice.make(p)

returns i with probability p[i]. Hence, the invocation Choice.make(0.5, 0.5)

returns either 0 or 1, both with probability 0.5.

An invocation of the make method contains the probabilities of the randomized

choice. In our implementation of quicksort we first have to create an array p of

doubles, each of which has the value 1.0
list.size()

, and use the make method to make

the choice as follows.

1 double p [] = new double [list .size()] ;

2 for (int i = 0; i < list .size() ; i ++) {

3 p [i] = 1.0 / list .size() ;

87

4 }

5 int index = Choice .make(p) ;

We implement of the Choice class as follows

1 package probabilistic;

2 public class Choice {

3 /∗∗

4 Given an array p of probabilities , returns i with probability p[i

] , where 0 <= i < p. length .

5 @param p probabilities .

6 @pre. p[0] + . . . + p[p. length − 1] = 1.0.

7 @return i with probability p[i] .

8 ∗/

9 public static int make (double [] p) {

10 double sum = p [0] ;

11 double choice = Math .random() ;

12 int alternative = 0;

13 while (choice >= sum) {

14 alternative++ ;

15 sum += p [alternative] ;

88

16 }

17 return alternative ;

18 }

19 }

6.2 The Abstract Class ChoiceGenerator

Java programs give rise to different types of choices. For example, methods nextInt

and nextDouble give rise to randomized choices. And concurrent Java programs

give rise to nondeterministic choices due to the interleaving of different threads.

JPF needs to represent these choices. Therefore the class ChoiceGenerator has

been introduced.

Note that the class ChoiceGenerator is abstract. This provides us with flexi-

bility because it allows us to extend JPF so that it can handle randomized choices

without having to change any of the core classes of JPF. The only thing we need

to do is to develop a concrete class to extend the abstract class ChoiceGenerator.

This concrete class then can be used by JPF.

There are several subclasses of ChoiceGenerator in JPF.

• The subclass IntIntervalGenerator represents a choice among the integers

within a given interval. The bounds of the interval are given as arguments to

89

the constructor.

• The subclass DoubleChoiceFromSet represents a choice among a set of dou-

bles. The set of doubles is specified in a configuration file.

• The subclass ThreadChoiceFromSet represents a choice among a number of

threads.

Each choice consists of a number of alternatives of which one can be chosen.

In order to enumerate these alternatives, the class ChoiceGenerator contains the

following three abstract methods.

• The method getTotalNumberOfChoices returns the total number of alterna-

tives of this choice.

• The method getNextChoice returns the next alternative of this choice.

• The method hasMoreChoices tests whether there are more alternatives of

this choice.

In Section 6.4 we shall introduce the class ProbabilisticChoiceGenerator,

which extends the class ChoiceGenerator, to represent randomized choices.

90

6.3 The Interface Probable

To make it easy to extend JPF in the future with others ways to represent ran-

domized choices, we introduce the interface Probable. The interface contains the

abstract method getProbability. During model checking, after a randomized

choice has been made, we can invoke this method to retrieve the probability asso-

ciated with the alternative of the choice being checked by JPF.

1 package gov .nasa .jpf .jvm .choice ;

2 /∗∗

3 Objects of this type have a probability .

4 ∗/

5 public interface Probable {

6 /∗∗

7 Returns a probability .

8 @return a probability .

9 ∗/

10 public double getProbability() ;

11 }

The interface Probable provides flexibility. By using this interface we do not

need to specify which class we need when we want to extract the probability of the

91

current alternative of a choice. It allow us to add another class which represents

randomized choices without modifying our extension of JPF. For example, assume

that we want to extend JPF so that it can handle randomized choices expressed

by means of the method Coin.flip. This method returns true when the coin flip

results in heads and false otherwise. In such a case, we introduce a new class to

represent the choice among the alternatives of heads and tails. This class imple-

ments the interface Probable and, hence, contains the method getProbability

which returns 0.5 for each alternative.

6.4 The Class ProbabilisticChoiceGenerator

Since we need to keep track of the probabilities associated with randomized choices,

we introduce the class ProbabilisticChoiceGenerator. This class is an extension

of the class IntIntervalGenerator, which implements the interface ChoiceGenerator.

JPF can use the ProbabilisticChoiceGenerator object to enumerate the alter-

natives of a randomized choice. The class ProbabilisticChoiceGenerator im-

plements the interface Probable. Thus the class ProbabilisticChoiceGenerator

needs to provide the probability of the current alternative of a randomized choice.

The class ProbabilisticChoiceGenerator has only one constructor. This con-

structor takes an array of doubles as its argument. This array p represents the

probabilities of the alternatives of a randomized choice. In the constructor,

92

• we invoke the constructor of the super class IntIntervalGenerator with the

arguments 0 and p.length-1, which represents a choice among integers in

the interval [0, p.length − 1], and

• we keep a copy of the array p of probabilities so that even if the array is

modified by JPF later, it will not affect this randomized choice.

Whenever a JPF component invokes the method getProbability of a

ProbabilisticChoiceGenerator object, it returns the probability of the current

alternative of this choice.

6.5 The Native Peer Class JPF probabilistic Choice

JPF does not know about the probabilities associated with the randomized choices

expressed by means of the make method. However, JPF needs this information, for

example, to keep track of its progress. In order to extract this information, we in-

troduce a so-called native peer class named JPF probabilistic Choice. The class

JPF probabilistic Choice is named according to JPF’s convention for naming

native peer classes. Like the Choice class, this class also contains the method make.

Whenever JPF encounters an invocation of the probabilistic.Choice.make method,

it does not model check that method, but it executes (but not model checks) the

JPF probabilistic Choice.make method instead. The latter method provides

93

JPF with the probabilities associated with the randomized choice represented by

the make method.

Each method in a native peer class has two additional parameters, hence the

make method of class JPF probabilistic Choice has three parameters.

• The first parameter is a MJIEnv object. Using this object, we can retrieve

information of JPF, such as thread, state, and memory information.

• The second parameter is an integer. This is the integer used by JPF to

represent the entity on which the method is invoked. In our case it is the

Choice class. However, since we do not use it in the make method, we call it

dummy.

• The third parameter is an integer used by JPF to represent the parameter of

the make method, that is, the array of doubles. We use this integer to retrieve

the array through the MJIEnv object.

The JPF probabilistic Choice.make method returns an integer, which corre-

sponds to an alternative of the choice represented by the method Choice.make.

Its code is shown below.

1 /∗∗

2 This class is the native peer of the class probabilistic .Choice.

3 @see probabilistic .Choice

94

4 ∗/

5 public class JPF_probabilistic_Choice {

6 /∗∗

7 Returns the number of times this invocation of the make method has

been encountered before to JPF. This number corresponds to a

choice . The f i r s t return is ignored by JPF.

8 @param env JPF environment .

9 @param dummy arbitrary integer (plays no role in the method, but

this parameter is needed for JPF to work properly) .

10 @param pRef reference to the array p of probabilities .

11 @pre. p[0] + . . . + p[p. length − 1] = 1.0.

12 @return the number of times this invocation of the make method has

been encountered before .

13 ∗/

14 public static int make(MJIEnv env, int dummy , int pRef) {

15 ThreadInfo ti = env .getThreadInfo() ;

16 SystemState ss = env .getSystemState() ;

17 ChoiceGenerator cg ;

18 i f (!ti .isFirstStepInsn()) {

19 double [] p = env .getDoubleArrayObject(pRef) ;

95

20 cg = new ProbabilisticChoiceGenerator(p) ;

21 ss .setNextChoiceGenerator(cg) ;

22 env .repeatInvocation() ;

23 return −1; // JPF ignores this return

24 } else {

25 cg = ss .getChoiceGenerator() ;

26 return ((ProbabilisticChoiceGenerator) cg) .getNextChoice() ;

27 }

28 }

29 }

6.6 The Complete Picture

In the previous sections we have discussed all the classes and interfaces needed for

JPF to manipulate the randomized choices and to extract probabilities of these

choices. The UML diagram below shows the relationships among them.

96

Probable

getProbability():double

ChoiceGenerator

getTotalNumberOfChoices():int

getNextChoice():Integer

hasMoreChoices():boolean

IntIntervalGenerator

ProbabilisticChoiceGenerator
JPF probabilistic Choice

make(MJIEnv, int, int):int

When we are using JPF to model check the following simple example, we can

use our classes and interfaces to enumerate the alternatives of a randomized choice.

1 import probabilistic.∗ ;

2 public class SimpleExample {

97

3 public static void main(String [] args) {

4 long counter = 0;

5 while (Choice .make(0.5 ,0.5) == 1) {

6 counter++ ;

7 }

8 }

9 }

When JPF encounters the method invocation Choice.make(0.5,0.5), since we

introduced the native peer class JPF probabilistic Choice, instead of model

checking the method Choice.make, JPF executes the static method make of the

class JPF probabilistic Choice. Within this method we create an object of type

ProbabilisticChoiceGenerator and use this object to manipulate the two al-

ternatives of the choice. And since the class ProbabilisticChoiceGenerator

implements the interface Probable, we can retrieve the probability 0.5 for each

alternative of the choice by means of the method getProbability.

In future chapters we shall discuss how the probability of randomized choices

can be retrieved and how this probability can be used.

98

7 Implementation of the Progress Measure

As we showed in Chapter 6, we have extended the model checker JPF to a prob-

abilistic model checker. In Section 4.2, we introduced a notion of progress and in

Section 4.3 we gave a characterization of progress for invariants. In this chapter we

will discuss how we can implement the algorithm of Section 4.5 to compute progress

for invariants in JPF.

JPF is an event-driven system. In such a system, one can associate a so-called

event with a particular condition. For example, in JPF an event is associated with

the start of the model checking. When JPF starts its model checking, this event

is triggered. In an event-driven system, the triggering of an event may give rise

to the execution of some code by a so-called listener. Listeners can be associated,

also known as registered, to events at runtime. In JPF, the listeners are usually

specified in the properties file jpf.properties. For example, all registered listeners

are notified when JPF starts its search. In JPF, the code associated to an event

is defined in a method. For example, the code fragment triggered by the event

99

associated with the start of JPF is defined in a method named searchStarted.

When JPF starts its search, the method searchStarted of all registered listeners

is invoked. For more information on event-driven programming, we refer readers to

[11].

To implement the computation of the progress measure for invariants, as we

discussed in Chapter 4, we exploit event-driven programming. As we shall see, by

implementing a new listener, which we call ProbabilityListener, and by register-

ing this new listener in the file jpf.properties, we can extend JPF so that it keeps

track of its progress without modifying its core. This listener extracts information

from JPF, such as the current state, the choice being made, the current alternative

of the choice, the probability of the alternative and so on. It uses this informa-

tion and the algorithms presented in Section 4.5 to compute progress. Since the

algorithms make use of probabilistic transition systems, we introduce the classes

PTS and Transition to represent probabilistic transition systems and their transi-

tions, respectively. As we have seen in Section 4.3, the progress of invariants can

be characterized as the probability of reaching a particular state in a probabilistic

transition system. To compute that probability, we use the tool MRMC. MRMC

is a model checker developed by the Software Modeling and Verification (MOVES)

group at RWTH Aachen [17].

100

7.1 The Class ProbabilityListener

During model checking, JPF notifies the registered listeners when an event is trig-

gered. For example, when JPF finds a new state, it will trigger a stateAdvanced

event and a listener can act accordingly. There are three types of listeners in JPF.

Each type of listener is represented as an interface.

• SearchListener. A SearchListener is notified by a search strategy. For ex-

ample, when a search strategy starts, JPF notifies each registered SearchListener

of the event of searchStarted, that is, it invokes the searchStarted method

of each registered SearchListener object.

• VMListener. JPF notifies each registered VMListener when the JVM triggers

certain events. For example, when the JVM executes an instruction, JPF noti-

fies each registered VMListener of the event of instructionExecuted, that is,

it invokes the instructionExecuted method of each registered VMListener

object.

• PublisherExtension. A registered PublisherExtension is notified when

JPF reports the final results, such as whether there is violation of a property,

and statistics of memory usage. For example, when JPF finishes model check-

ing Java bytecode, JPF notifies each registered PublisherExtension of the

event of publishFinished, that is, it invokes the publishFinished method

101

of each registered PublisherExtension object.

JPF does not only have interfaces, but also provides a ListenerAdapter class,

which implements all the three interfaces with empty methods. So instead of im-

plementing the interfaces directly and providing an implementation for all the ab-

stract methods defined in the interfaces, we can simply override a method of the

class ListenerAdapter.

Our class ProbabilityListener extends the class ListenerAdapter. We use

this class to compute the progress measure which we defined in Chapter 4. In our

class we have overridden the following methods.

• searchStarted. This method is invoked when JPF starts a search. In this

event we create a new probabilistic transition system as we defined in Propo-

sition 4.5.1. We also retrieve information such as

probability.maximum.transitions, which allows us to specify the maxi-

mum number of transitions to be verified, from the configuration file.

• stateAdvanced. This method is invoked when JPF executes an instruction

and finds a new state. Since in this event a new state is found, we add

a new transition to the existing probabilistic transition system according

to Theorem 4.5.2. Here we compute the progress measure if the number

of transitions added to the probabilistic transition system is a multiple of

102

probability.measure.sampling interval, which is specified in the config-

uration file. When JPF reaches the number of transitions specified by

probability.maximum.transitions in the configuration file, we force JPF

to quit the model checking.

• stateBacktracked and stateRestored. These methods are invoked when

JPF moves to a previously visited state. In such an event we reset the current

state to the state to which JPF moved. This state may be needed as the source

of a new transition.

• searchFinished. This method is invoked when JPF finishes the search. In

this event we free the resources. We shall provide more details in Section 7.4.

As we discussed, we need to represent a probabilistic transition system including

its transitions. Therefore, we introduce the classes Transition and PTS in the next

two sections.

7.2 The Class Transition

We use the class Transition to represent a transition of a probabilistic transition

system. In this class, we represent the state of a probabilistic transition system by

an integer.

In a probabilistic transition system, a transition does not only include the

103

source and target state, but also the probability of the transition. Thus in our

class Transition we have the attributes source and target of type int, and

probability of type double.

Furthermore, since in the construction of the complete system (see Defini-

tion 4.4.1) we need to know whether a state is final, we introduce an attribute

isTargetFinal of the type of boolean as well.

These four attributes are not sufficient to identify transitions in a probabilistic

transition system generated by JPF, since in JPF there may be more than one tran-

sition with the same source, target and probability. Therefore, we introduce

an attribute id in the class Transition. The id represents the id of an alternative

of a randomized choice.

7.3 The Class PTS

As we have seen in Section 4.4, we use a probabilistic transition system to compute

the progress. We use the class PTS to represent a probabilistic transition system.

This class contains the following data.

• We use a set of Integers to represent the set of states.

• We use a set of Transitions to represent the set of transitions.

104

We follow the algorithm described in Section 4.5 to maintain the probabilistic

transition system.

• As we described in Proposition 4.5.1, the probabilistic transition system con-

tains an initial state s0 and a sink state s⊥, We introduce a state INITIAL

with value 0 and a state SINK with value −1.

• In the event stateAdvanced (see Section 7.1) when the new state is not final,

we add a transition to the sink state as described in Theorem 4.5.2.

• We use an object named sinkTransitions of type HashMap to store all tran-

sitions leading to the sink state. In this map, the key is the id of the source

state of a transition. Thus we can quickly locate such a transition.

Now that we have discussed how the probabilistic transition systems of Proposi-

tion 4.5.1 and Theorem 4.5.2 are represented, we shall show how we can use those

probabilistic transition systems to compute the progress measure in the next sec-

tion.

7.4 The Computation of the Progress Measure

In order to compute the progress measure, we use the model checking tool MRMC.

MRMC is a model checker developed by the Software Modeling and Verification

105

(MOVES) group at RWTH Aachen [17]. It is capable of model checking proba-

bilistic transition systems (also known as discrete time Markov chains). MRMC

takes as input a file, which contains transitions. Each transition consists of the

source and target states and its probability. The states are represented by natural

numbers and the probability is represented by a real number in the interval [0, 1].

MRMC can compute the probability of reaching a particular state.

As we have seen in Section 4.3, the progress measure for invariants can be

characterized in terms of probability of reaching the state s⊥ of the searched system.

Hence, we can use MRMC to compute the progress measure for invariants.

On the one hand, MRMC is written in C. On the other hand, JPF and our

extension are developed in Java. To bridge the gap we use JNI. JNI is a two-way

interface to combine Java code with code written in another language, also known

as native code.

• It allows the native code to call a method in Java.

• It also allows Java code to call a function in native code.

By using JNI, the native code and the Java code are running in the same process.

Thus we can reduce the “overhead of copying and transmitting data across different

processes” [19]. And since we are using the same memory space, we can reduce the

memory usage as well.

106

When invoking a function written in C through JNI, there are a number of con-

ventions to follow. Consider, for example, the native method double getMeasure(int,

int) in the Java class PTS of the package probabilistic which is to invoke MRMC

to compute the progress measure. The corresponding function in C has the follow-

ing signature

JNIEXPORT jdouble JNICALL Java_probabilistic_PTS_getMeasure(JNIEnv *,

jobject, jint, jint)

• The name of the C function starts with Java , followed by its package name,

its class name, and its method name. In this case, they are probabilistic,

PTS, and getMeasure, respectively.

• The JNIEXPORT and JNICALL macros are part of the declaration of the func-

tion. JNIEXPORT is used to decorate the return type of the JNI function. And

JNICALL is used to decorate the JNI function. For more details, we refer the

reader to [19, Section 12.4]

• The types in the Java signature are mapped to types in C. For example, int

is mapped to jint, double is mapped to jdouble, boolean is mapped to

jboolean, object is mapped to jobject, and so on. For more details, we

refer the interested reader to [19, Chapter 12].

107

• The function in C has two additional parameters. These are the first two and

have types of JNIEnv* and jobject. The JNIEnv pointer refers to a set of

JNI functions, which can be used to access the JVM. And the jobject refers

to the object which calls the C function. In our example, this jobject is a

PTS object.

We develop a set of functions within the JNI framework to use MRMC to

compute the progress measure.

• MRMC uses a sparse matrix to store the transitions. Instead of constructing

this matrix entirely each time we compute the progress measure, we keep the

matrix in memory and incrementally add transitions to the matrix.

• The capacity of a matrix is determined by the maximum numbers of rows and

columns it can hold. For efficiency reasons, we double the number of rows

and columns, whenever the matrix reaches its capacity.

• We set all necessary arguments so that MRMC can run without user inter-

ference.

• We load the library mrmcCJavaInterface, which holds the above JNI meth-

ods used to access MRMC, in our PTS constructor instead of loading it in a

static context. Thus we are able to have a single instance of the library for

each PTS object.

108

• We declare this set of JNI methods in the class PTS to compute the progress

measure.

• We free the memory allocated for the matrix at the end of model checking.

7.5 The Complete Picture

In the previous sections we have discussed all the classes needed to compute the

progress measure for invariants. Here we put them together in the following UML

diagram to show their relationships.

109

<< interface>>

SearchListener

searchStarted(Search)

stateAdvanced(Search)

stateBacktracked(Search)

stateRestored(Search)

searchFinished(Search)

ListenerAdapter

ProbabilityListener

PTS

states:Set<Integer>

transitions:Set<Transition>

addTransition(Transition)
Transition

source:int

target:int

probability:double

id:int

*

When we use JPF to model check the class BiasedDie (see Example 5.1.1),

110

which also includes a counter to record the number of times the coin is flipped. We

set up the configuration file as follows, which uses breadth-first search and registers

our search listener ProbabilityListener.

listener = probabilistic.ProbabilityListener

search.class = gov.nasa.jpf.search.heuristic.BFSHeuristic

probability.maximum.transitions=100

probability.measure.sampling_interval=5

If we run JPF with its progress measure enabled, it will report the progress

for every 5 transitions, up to a maximum of 100 transitions. Below, we show the

output produced by JPF.

JavaPathfinder v5.x - (C) RIACS/NASA Ames Research Center

============================== system under test

application: randomized/BiasedDie.java

============================== search started: 5/4/10 4:20 PM

free=6055560, total=11010048, max=2524381184

111

0: 0.0

5: 0.0

10: 0.273

15: 0.6300000000000001

20: 0.6356700000000001

25: 0.8295000000000001

30: 0.8295000000000001

35: 0.8468376000000001

40: 0.917427

45: 0.917518854

50: 0.95962671

55: 0.95962671

60: 0.97175070363

65: 0.9802249611

70: 0.98022673257

75: 0.990310939527

80: 0.99031098735669

85: 0.99525242414115

90: 0.99525242414115

95: 0.9956797177345502

112

100: 0.9976736935687263

============================== results

no errors detected

============================== statistics

elapsed time: 0:00:00

states: new=54, visited=47, backtracked=101, end=48

search: maxDepth=19, constraints=0

choice generators: thread=1, data=50

heap: gc=101, new=271, free=530

instructions: 3749

max memory: 17MB

loaded code: classes=72, methods=857

============================== search finished: 5/4/10 4:20 PM

113

8 Implementation of the Search Strategies

In Chapter 5 we discussed our three new search strategies: priority-first search

(PFS), breadth-first priority-second search (BFPSS) and randomized search (RS).

All three of these search strategies take the probabilities of the enabled transitions

into account to choose the next transition. In this chapter we shall discuss our

implementation of these three search strategies in JPF.

8.1 The Abstract Classes Search and ProbabilitySearch

In JPF, a search strategy is implemented as a class. This class has to extend

the abstract class Search. In the class Search, there are multiple attributes and

methods, which can be accessed directly from a subclass. Next, we discuss those

that we shall use later in this chapter.

• The attribute vm of type JVM refers to JPF’s JVM. The JVM class has methods

such as getState to extract the VMState which JPF currently checks, and

getPathLength to extract the length of the execution path along which the

114

current state has been found by JPF.

• The boolean attribute done indicates whether there are no unchecked transi-

tion left. It can be used by listeners to terminate the search process.

• The method hasPropertyTermination returns true when a property has

been violated and the attribute done is true as well. Otherwise it will re-

turn false to continue the search.

• The integer attribute depth keeps tracks of the length of the path along which

the current state has been found. This corresponds to the level as used in

search strategies such as BFS and BFPSS discussed in Chapter 5.

• The boolean attributes isNewState, isEndState, and isIgnoredState spec-

ify whether the current VMState is new, is final and should be ignored, re-

spectively. A state is ignored when JPF encountered a violation of a property

in the state and JPF is configured to detect multiple violations.

• The method forward invokes the JVM method forward and returns a boolean

to indicate whether there are any more enabled transitions.

• The abstract method search is used by JPF to drive the model checking

process as we shall describe. A concrete search class overrides this method to

specify the order in which transitions are explored.

115

A search strategy can be registered through the configuration file jpf.properties.

For example, to use DFS, we add to the file jpf.properties the following line.

search.class = gov.nasa.jpf.search.DFS

During run time, JPF uses a concrete search class rather than the abstract class

Search. In a concrete search class, the method search usually contains a loop,

through which JPF can systematically explore the state space by using the three

methods of the JVM class: forward, backward, and restoreState.

• A search strategy can use restoreState(s) to instruct JPF to jump to the

state s.

• A search strategy can use the method forward to instruct JPF to advance to

another state. When there is an unvisited transition enabled in the current

state, JPF executes the sequence of bytecode instructions that takes it to the

other state and returns true; otherwise JPF simply returns false to indicate

there are no more transitions enabled.

• A search strategy can use the method backtrack to instruct JPF to go to

the previously visited state.

Furthermore, since all our new search strategies take the probabilities of transi-

tions into account, we developed our own abstract search class ProbabilitySearch,

116

which is an extension of the class Search. This abstract class contains the com-

mon part of our new search strategies. For example, we introduce an attribute

collection of the type Collection. This collection contains ProbabilisticTransitions.

A ProbabilisticTransition contains the source state, the target state, the depth

of the target state, and the probability of the execution path from the initial state to

the target state of this transition. We do not instantiate the attribute collection.

Instead a concrete class which extends this class should instantiate the attribute

and specify its type, for example, a priority queue or a set. As in the implementa-

tion of DFS and BFS in JPF, we restrict the depth of the search. For that purpose,

JPF introduces a property in the configuration file. The value of this property

can be retrieved by means of the method getMaxSearchDepth of the Search class.

Moreover, we introduce other attributes such as current of type VMState to keep

track of the current state, and transition of type ProbabilisticTransition to

store and retrieve the information of the selected transition.

In the class ProbabilitySearch and its extensions we follow the coding con-

vention of JPF. We notify a registered listener when we trigger an event such as

stateAdvanced and stateRestored. Also we keep checking the system properties

of JPF, such as the attribute done and the method hasPropertyTermination so

that a search strategy can react to other JPF components. Recall that we use

events to implement the computation of progress as discussed in Chapter 7.

117

An extended concrete class can override methods to determine the order in which

the transitions are explored. Our abstract class ProbabilitySearch implements

the abstract method search. Its code is shown below.

1 public void search () {

2 this .current = super .vm .getState() ;

3 super .notifyStateStored() ;

4

5 super .done = false ;

6 super .notifySearchStarted() ;

7

8 this .transition = null ;

9

10 i f (!super .hasPropertyTermination()) {

11 this .generateTransitions() ;

12 while (! this .collection .isEmpty() && !super .done) {

13 this .selectTransition() ;

14 this .generateTransitions() ;

15 }

16 }

17 super .notifySearchFinished() ;

118

18 }

This search method contains a loop (line 12 – 15), in which we extract a tran-

sition from collection by using selectTransition and assign it to transition,

and create new transitions by using generateTransitions and add them to

collection. Here we use the following methods.

• The method expandState extracts the target state from the selected

transition and invokes the JVM method restoreState to instruct JPF to

jump to the target state. The code is listed below.

119

1 protected void expandState() {

2 this .current = this .transition .getTarget() ;

3 super .vm .restoreState(this .current) ;

4 super .depth = super .vm .getPathLength() ;

5 super .notifyStateRestored() ;

6 }

• The method generateTransitions extracts all transitions enabled from the

current state. We invoke the method forward to visit another state. If the

target state is a new state and satisfies some other conditions, such as not

being a final state and not exceeding the maximal depth specified in the

configuration file, we shall create a new ProbabilisticTransition and add

it to the collection. Its code is listed below.

1 protected void generateTransitions () {

2 while (!super .done) {

3 i f (!super .forward()) {

4 super .notifyStateProcessed() ;

5 return ;

6 }

7

120

8 super .depth++ ;

9 super .notifyStateAdvanced() ;

10 i f (super .hasPropertyTermination())

11 return ;

12

13 i f (!super .isEndState && !super .isIgnoredState) {

14 i f (super .isNewState && super .depth >= super .

getMaxSearchDepth()) {

15 super .notifySearchConstraintHit(DEPTH_CONSTRAINT) ;

16 } else {

17 double probability = this .computeTransitionProbability

() ;

18 ProbabilisticTransition t = new

ProbabilisticTransition(this .current , super .vm .

getState() , super .depth , probability) ;

19 this .collection .add(t) ;

20 }

21 super .notifyStateStored() ;

22 }

23 this .backtrackToParent() ;

121

24 }

25 }

• We define an abstract method called selectTransition; it is used to retrieve

and remove a transition t from the collection. Since each search strategy

uses a different data structure, we leave it to a concrete search class to im-

plement this method.

• The method backtrackToParent invokes the JVM method backtrack to back-

track to the previously visited state.

In the method generateTransitions we use the method

computeTransitionProbability to compute the probability of a transition. In

Chapter 6 we showed how to extend JPF to a probabilistic model checker. In such

a probabilistic model checker, each transition has a probability associated with

it. We invoke the method getProbability of the interface Probable to retrieve

the probability of a transition t enabled in the current state. This probability is

multiplied by the probability of the execution path from the initial state to the

current state (the latter probability is obtained in line 9). This product captures

the probability of the execution path from the initial state to the target state of

the transition t. The code is shown below.

1 protected double computeTransitionProbability(){

122

2 double probability = 1.0d ;

3 ChoiceGenerator cg = super .vm .getChoiceGenerator() ;

4 i f (cg instanceof Probable) {

5 probability = ((Probable)cg) .getProbability() ;

6 }

7

8 i f (this .transition != null){

9 probability=probability ∗ this .transition .getProbability() ;

10 }

11 return probability ;

12 }

8.2 The Classes PFS and BFPSS

Recall that probability-first search (PFS) sorts the enabled transitions by their

probabilities, and breadth-first probability-second search (BFPSS) is an enhance-

ment of BFS in which transitions at the same level are sorted by their probability.

Our concrete search strategies PFS and BFPSS extend the class ProbabilitySearch.

The abstract class ProbabilitySearch does not have a concrete data structure for

the attribute collection, which is left for a concrete search class to implement.

123

We have discussed in Chapter 5 how we use a priority queue to store the collec-

tion of transitions in these two search strategies. We create a priority queue with

a Comparator. This Comparator provides the definition of the ordering among

transitions. The Comparator class contains the compare method. Recall that

compare(t1, t2) has to return zero if t1 and t2 are equal (according to the ordering

defined in Section 5.2 and 5.3); a negative number if t1 is smaller than t2 (with

respect to the ordering); and a positive number if t1 is greater than t2. Since PFS

considers only the probability when comparing transitions, in the Comparator we

only compare the probabilities of the transitions. The code is listed below.

1 new Comparator<ProbabilisticTransition> () {

2 public int compare (ProbabilisticTransition t1,

ProbabilisticTransition t2) {

3 double p1 = t1 .getProbability() ;

4 double p2 = t2 .getProbability() ;

5

6 i f (Math .abs(p1−p2) < Double .MIN_VALUE)

7 return 0;

8 else if (p1 > p2)

9 return −1;

10 else

124

11 return 1;

12 }

13 }

BFPSS considers the depth of the transitions and their probabilities together,

so in its Comparator we compare both. The code is listed below.

1 new Comparator<ProbabilisticTransition> () {

2 public int compare (ProbabilisticTransition t1,

ProbabilisticTransition t2) {

3 int d1 = t1 .getDepth() ;

4 int d2 = t2 .getDepth() ;

5 double p1 = t2 .getProbability() ;

6 double p2 = t2 .getProbability() ;

7

8 i f (d1 == d2 && Math .abs(p1 − p2) < Double .MIN_VALUE)

9 return 0;

10 else if (d1 < d2 | | d1 == d2 && p1 > p2)

11 return −1;

12 else

13 return 1;

125

14 }

15 }

Furthermore, we have to implement the abstract method selectTransition.

In this method, we remove a ProbabilisticTransition t from the priority queue

using the method poll. We then use the method expandState to extract infor-

mation of the transition and instruct JPF to jump to the target state. The code is

listed below.

1 protected void selectTransition() {

2 this .transition = ((PriorityQueue<ProbabilisticTransition>)super .

collection) .poll() ;

3 super .expandState() ;

4 }

8.3 The Class RandomizedSearch

The third search strategy we proposed in Chapter 5 is randomized search (RS). RS

randomly selects an enabled transition. The chance that such a transition is selected

is proportional to its probability. Our concrete search class RandomizedSearch

extends the abstract class ProbabilitySearch as well. In Chapter 5 we showed

that the worst case running time of RS is O(|T0| log(|T0|)) if we represent the set

126

as an augmented red-black tree. However, RandomizedSearch simply uses a set of

type LinkedList as Collection to store the enabled transitions.

We have implemented the method selectTransition in class

RandomizedSearch. First we sum up the probabilities of the transitions in the

collection to totalProbability. Next we generate a random double in the interval

[0, totalProbability]. This allows us to randomly choose a transition t from the

collection with the probability
prob(t)

totalProbability . For example, if there are two

transitions in the collection, such that prob(t1) = 0.3, and prob(t2) = 0.5, then

the totalProbability is 0.8. We choose t1 with probability 0.375, and choose t2

with probability 0.625. We compute totalProbability each time when we make

choice. Thus the running time is O(|T0|
2). The code of selectTransition is listed

below.

1 protected void selectTransition () {

2 double totalProbability = 0.0;

3 for (ProbabilisticTransition t : super .collection){

4 totalProbability += t .getProbability() ;

5 }

6 double choice = random .nextDouble() ∗ totalProbability;

7

8 int i = 0;

127

9 double sum = 0.0;

10 for (ProbabilisticTransition t : super .collection){

11 sum += t .getProbability() ;

12 i f (sum >= choice | | i == super .collection .size() − 1){

13 super .transition = t ;

14 ((ArrayList)super .collection) .remove(i) ;

15 break;

16 }

17 i++ ;

18 }

19

20 super .expandState() ;

21 }

22 }

8.4 The Complete Picture

In the previous sections we have discussed all the classes needed for JPF to im-

plement the search strategies introduced in Chapter 5. The UML diagram below

shows the relationships among them.

128

Search

search()

ProbabilitySearch

search()

computeTransitionProbability():double

expandState()

selectTransition()

PFS

selectTransition()

BFPSS

selectTransition()

RS

selectTransition()

Probable

getCurrentProbability():double

Next, we use the three search strategies to model check the Java bytecode of

the BiasedDie class (see Section 5.1), which also includes a counter to record the

number of times the coin is flipped. The following diagram shows the resulting

progress for 200 transitions. Again this result confirms that the search strategies

are not comparable.

129

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

P
ro

gr
es

s
M

ea
su

re

Number of Transitions

BFPSS
PFS

RS

So far, we have discussed the implementation of our theory. In the next chapter,

we shall show how to use our extension of JPF to keep track of its progress when

model checking randomized Java code.

130

9 Case Studies

In the previous chapter we presented the implementations of our three new search

strategies. As we already discussed in Chapter 5 the amount of progress made by

the search strategies is incomparable. In this chapter we shall compare the amount

of progress different search strategies make when model checking implementations

of seven randomized algorithms.

When we use JPF to model check the implementation of randomized algorithms,

we enable our probabilistic extension of JPF to compute the progress. We run JPF

for all five search strategies: JPF’s DFS and BFS, and our three new ones PFS,

BFPSS and RS. For each algorithm we plot the amount of progress against the

number of transitions checked by JPF for each of the search strategies. For these

graphs, all search strategies, including RS, are run once only. We also show the

time it takes JPF to make 0.1, 0.2, . . . , 0.9, 0.99, 0.999, . . . progress. We run JPF

five times for each search strategy and report the average time. If a search takes

more than an hour, we stop it.

131

9.1 Die and Biased Die

In [18], Knuth and Yao showed how a fair die can be implemented by means of a

fair coin. We implemented this randomized algorithm in Java and added a variable

to record the number of times the coin was flipped. We then used JPF to model

check the Java bytecode for uncaught exceptions. The diagram below shows the

relationship between our progress measure and the number of transitions. Note

that we only show the first 100 transitions because after that the progress is so

close to 1.0 that we cannot see any difference in the diagram.

132

From the diagram, we can see that DFS makes no progress at all. This algorithm

gives rise to extremely long execution paths, in which the number of transitions is

bounded by the number of values of type long in Java. DFS searches one of these

execution paths. On the one hand, BFS, PFS and BFPSS are almost identical

because the coin is fair, thus all outcomes of the die have the same probability. As

a consequence all execution paths have the same structure in terms of their proba-

bility. This means that all three of these search strategies make roughly the same

amount of progress. The following chart shows the running time (in milliseconds)

to achieve different values of the progress measure.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99 1−10−9

DFS

BFPSS 155 192 224 231 237 244 248 251 259 263 305

PFS 158 189 214 229 238 245 253 257 262 270 303

RS 168 194 215 241 245 250 256 262 269 273 313

BFS 164 195 219 231 241 249 255 262 266 274 311

Since DFS makes no progress, we cannot report the time. The other four search

strategies take almost the same amount of time to make a certain amount of progress

because the die is fair. However we notice that none of the search strategies can

finish model checking because of the extremely long execution paths we discussed

133

above. After roughly one hour of running, we stop all searches.

Furthermore when we replace the fair coin with a biased coin, which has prob-

ability 0.7 of heads and 0.3 of tails, we obtain a biased version of a die. When we

model check this algorithm, comparing it with the regular die, the search strate-

gies make very different amounts of progress as we show in the following diagrams.

Again we only show the first 100 transitions in the diagram below.

As we can see, DFS still does not make any progress for the same reason as for

the regular die. Other than DFS, in the first 10 transitions, PFS makes relatively

slow progress in terms of our measure because the transition of one long execution

134

path has a high probability, which causes our PFS to prefer this long execution path

at first. Then PFS starts to choose other execution paths, since the probability of

the long execution path decreases. Moreover BFPSS is faster than BFS because

BFPSS chooses the high probability transitions at the same level first. The running

time (in milliseconds) is shown in the following chart.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99 1−10−9

DFS

BFPSS 177 206 246 257 264 276 279 284 288 294 397

PFS 163 193 216 234 245 249 256 259 265 275 338

RS 169 209 230 253 261 268 273 277 280 290 342

BFS 164 187 204 227 234 247 252 259 266 274 371

From the above chart we can see that BFPSS uses more time than BFS because

BFPSS needs more time to sort the transitions so that it can choose the next

transition as we discussed in Chapter 5. PFS takes less time to make progress

because it can make more progress by searching fewer transitions.

135

9.2 Randomized Quicksort

The second algorithm which we implemented and model checked is a randomized

version of quicksort introduced by Hoare [14]. In this algorithm in order to sort an

array of objects, we select the first element as pivot, and divide the array into two:

an array in which the objects are smaller than the pivot; and an array in which

the objects are greater than the pivot. Then we recursively sort these two arrays

unless there is either no or only one object in these arrays in which cases the array

is sorted. After we put all the objects back into one array, we get a sorted array.

In the worst case, when an array of size n is already sorted, quicksort makes O(n2)

comparisons. The randomized version chooses a random pivot instead of a fixed

one. This lowers the expected number of comparisons needed to sort the array. In

our implementation we try to sort an array of 14 integers. When we model checked

our implementation, all search strategies ran out of memory after roughly 1,300,000

transitions.

As we show in the diagram below, PFS makes the fastest progress because PFS

always chooses the execution path with highest probability. BFPSS is better than

BFS because BFPSS chooses higher probability transitions at the same level. DFS

makes the slowest progress because in this algorithm, the first several execution

paths which DFS searches have lower probability.

136

The table below of the running time (in seconds) shows that PFS makes progress

the fastest. It takes BFPSS and BFS longer time to make the same progress be-

cause these two search strategies explore the transitions level by level. Since DFS

always tries to explore one execution path before another and has no knowledge of

probabilities, at first it takes more time for DFS to make progress than BFPSS and

BFS. However it catches up with BFS and BFPSS after it searches some execution

paths with high probability. Since the system is too large for any search strategy

to finish its search within an hour, we stopped them.

137

0.1 0.2 0.3 0.4 0.5 0.8 0.9 0.99 0.9999 0.99999

DFS 21 408 868 870 880 1400 2136 2228

BFPSS 107 185 263 352 498 977 1865 3708

PFS 26 33 39 47 54 152 266 1147 3476 3934

RS 40 60 87 120 166 483 864 3145

BFS 141 179 253 354 527 905 1702 3489

9.3 Random Select

The next randomized algorithm is randomized select. This algorithm is to find the

nth smallest object from an array. Like randomized quicksort, we randomly choose

a pivot, and divide the array into two by comparing with the pivot. Assume that

the size of the array with the smaller objects is k. Then either the pivot is the nth

object if k = n − 1; or recursively we find the nth object in the array of smaller

objects if k > n; or the (n− k − 1)th object in the array with larger objects. In the

implementation we try to find the 6th of 20 integers. The following diagram shows

the progress measure of model checking.

138

As expected, the results are very similar to random quicksort. PFS makes the

fastest progress, followed by BFPSS and BFS. DFS makes the slowest progress in

terms of the progress measure. RS makes progress bounded by PFS and BFS. On

the one hand DFS runs out of memory after it searches 3,000,000 transitions, and

can only make progress of less than 0.3. On the other hand, PFS, BFS, BFPSS

and RS run out of memory after searching 1,000,000 to 1,500,000 transitions, but

all of them make progress between 0.98 and 0.99.

The running time (in milliseconds) chart below shows a similar pattern. Af-

ter an hour, DFS only makes progress of 0.2, and BFS, PFS, BFPSS and RS all

139

make progress of 0.9. Among these four search strategies we can see that PFS is

the fastest to make progress, and RS uses more time due to the time needed to

compute the sum of the probabilities as we discussed in Section 8.3. BFPSS makes

slower progress than BFS because the priority queue used by BFPSS needs time to

keep the enabled transitions sorted.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

DFS 12344 90719

BFPSS 965 1555 2617 5769 8656 20786 38746 153601 800357

PFS 914 1122 2288 3032 5007 10410 15075 46220 179341

RS 918 1610 2679 4623 7874 14048 30235 100350 661621

BFS 740 1608 2674 4980 9011 18022 35859 116643 562527

9.4 Skiplist

The next algorithm we shall present is a skiplist [24]. We do not present the details

of the algorithm here, but we refer the interested reader to, for example [22, Sec-

tion 8.3]. We randomly choose the height of each tower. Here we focus on adding

15 integers to an empty skiplist. The following diagram shows the progress measure

of model checking the algorithm.

140

DFS makes the slowest progress among all five search strategies because at

first it searches the execution paths with the lowest probability. After searching

1,200,000 transitions the progress it made does not exceed 0.1. PFS has a slightly

better performance than BFPSS and BFS. Note that all our search strategies ran

out of memory after searching 950,000 to 1,200,000 transitions.

In the running time chart (in seconds) below, we see that DFS does not reach

0.1 within one hour for the same reason as we discussed in the previous section.

RS takes more time to make a random choice as we explained in Section 8.3 and

for this reason RS makes progress between 0.4 and 0.5 in an hour. Both PFS and

141

BFS make progress of 0.6 and PFS is slightly better than BFS. BFPSS is slower

than BFS and reports a progress of 0.5 after an hour.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

DFS

BFPSS 57 180 465 1054 2105

PFS 43 132 364 853 1727 3442

RS 83 343 928 2062

BFS 47 137 350 828 1777 3459

9.5 Random Matrix Equation

The next randomized algorithm which we introduce is random matrix equation [22,

Theorem 7.1]. In this algorithm, assume that there are three n×n matrices A, B, C,

and in order to verify whether AB = C, we randomly create a vector r of size n

and test whether ABr = Cr. Assume that the values in the vector are randomly

chosen in the range of [1, m]. If ABr 6= Cr then obviously the algorithm reports

AB 6= C. If, however the algorithm verifies that ABr = Cr, then the probability

that AB 6= C is at most 1
m

. In our implementation, we have n = 4 and m = 29.

The progress of model checking is shown below.

142

In this case all execution paths consist of a small number of transitions, and

on the same level each transition has the same probability. Thus for all five search

strategies there is an almost linear relationship between the progress being made

and the number of transitions being checked. DFS is slightly better than the other

four search strategies because it always explores one execution path before moving

to another. On the other hand, there is no visible difference among PFS, BFPSS

and BFS. The running time (in seconds) is listed in the following chart. All five

search strategies have similar running time. However, BFS takes the least amount

143

of time to make progress, followed by PFS. Both of them reported a progress of 0.9

after an hour. And RS is the slowest of all five search strategies.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

DFS 492 943 1369 1795 2203 2613 3025 3456

BFPSS 588 1144 1699 2301 2884 3453 3948

PFS 437 859 1267 1674 2081 2489 2898 3307 3620

RS 507 993 1533 2034 2485 2956 3394 3837

BFS 432 842 1255 1671 2080 2490 2897 3304 3622

9.6 Scissors Game

The next randomized algorithm which we shall model check is called the scissors

game [22, Section 2.2.1]. In this algorithm, we simulate two players playing the

scissors-paper-rock game. Players randomly choose scissors, paper, or rock. The

rule to determine the winner is that rock beats scissors, scissors beats paper, and pa-

per beats rock. We do not only determine the winner, but also record the number of

wins for both players. The following diagram shows the progress of model checking.

144

Since there are extremely long execution paths in which the number of transi-

tions is bounded by the number of values of type long in Java and DFS searches

one of these paths first, it cannot make any progress at all. This also means that

PFS makes slower progress than BFS and BFPSS because PFS will search a prefix

of these execution paths as well. BFS and BFPSS make similar progress. After 250

transitions, BFS, BFPSS, PFS and RS all make progress very close to 1.0, so we

only show the first 250 transitions in the diagram. The running time (in millisec-

onds) shows the same result.

145

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99 1−10−9

DFS

BFPSS 283 286 291 293 296 300 317 342 368 424 1107

PFS 406 409 411 414 417 429 460 489 628 709 2061

RS 299 301 304 307 310 365 407 454 548 688 2037

BFS 278 282 285 289 295 299 313 329 357 418 1066

On the one hand BFS runs the fastest since it does not need to sort the tran-

sitions. On the other hand PFS makes slow progress, and hence it uses more time

to model check. Although BFS and BFPSS make the same amount of progress per

transition, BFPSS takes more time to make progress since it needs time to sort the

transitions in its priority queue.

9.7 Stable Marriage

The next algorithm we shall present checks how to use the proposal algorithm [22,

Section 3.5] to solve the stable marriage problem. In the stable marriage problem

there is a set of men and women. Each of them has a preference list which contains

people of the opposite sex in a decreasing order. The problem is to find each a

partner so that the couple can maintain stable relationships. In other words, for

any two couples X ↔ x and Y ↔ y, it should not be the case that X prefers y

146

over x and y prefers X over Y . Otherwise X may break up with x, Y may break

up with y, and X and y may form a new couple. The proposal algorithm lets

every unmatched man propose to a woman in his preference list in order. A woman

can either accept the proposal if she is not in a relation or her current partner is

less preferable than the current proposer; or she can simply reject the proposal if

she wants to maintain the current relation. We have four men and four women

in the set. Furthermore we create a random preference list for each person. Then

we use the proposal algorithm to match them one by one and check if they are in

a stable relation. The progress of model checking is shown in the following diagram.

147

Since the probabilistic transition system corresponding to the Java bytecode is

so huge, we are unable to fully model check the bytecode. DFS searches 3,000,000

transitions and then runs out of memory. All other search strategies run out of

memory after approximate 1,500,000 transitions. DFS makes the most progress.

Because in this system, there are no extremely long execution paths as in the scissor

game, and all execution paths have the same structure in terms of probability, DFS

can make faster progress.

In the following time chart (in seconds), apart from DFS, the other four search

strategies do not make 0.1 progress. This is because of JPF ran out of memory

148

before it reaches a progress of 0.1.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

DFS 4476 10188 16483 26658 38674

BFPSS

PFS

RS

BFS

9.8 Summary

As we have seen, whenever there is an extremely long execution path and DFS

searches this path, it will stop making progress. However it uses a simple data

structure to store the enabled transitions, and hence it needs less memory. On

the other hand, BFS, PFS and BFPSS usually make progress. Since both PFS and

BFPSS take the probabilities into account, they often can make faster progress when

considering the number of transitions. For most cases, PFS is the fastest search

strategy. Compared with BFS, BFPSS can make slightly faster progress when

considering the number of transitions. However when the size of system grows, the

difference becomes smaller. The overhead of sorting the transitions makes BFPSS

use more time to model check. The curves of RS are always smoother than the

149

other four, and is usually close to the curve of PFS. Since RS makes a random

choice among the enabled transitions, the probability that it searches an extremely

long execution path is small.

In conclusion, to model check a randomized algorithm, we suggest using PFS

first. If the model checker runs out of memory, we suggest trying DFS next.

150

10 Conclusion

10.1 Overview

In this thesis we introduced the notion of a progress measure and characterized

the progress of a search made by such a probabilistic model checker when it ver-

ifies an invariant. This is the major contribution of this thesis. We have also

shown an algorithm which we used to compute the progress measure for invariants.

Furthermore, we introduced three new search strategies probability-first search,

breadth-first probability-second search and randomized search, which all take the

probabilities of transitions into account when choosing the next transition. We

compared them with depth-first search and breadth-first search.

We have implemented our theoretical framework within JPF. We implemented

a number of randomized algorithms in Java and used our extension of JPF to

model check them and compute the progress measure. For most examples, our new

search strategies made progress faster than JPF’s original depth-first search and

breadth-first search.

151

10.2 Future Work

In this thesis we took the first steps towards a theory to measure the progress

of probabilistic model checkers and implemented this theory with a probabilistic

extension of JPF. This work suggests numerous directions for future research. Next

we briefly discuss some.

1. Currently the progress measure can only be applied to sequential randomized

algorithms. One direction for future research is to extend our theory so that

we can measure the progress when we model check concurrent randomized

algorithms. In that case, we not only have to consider probabilistic choices,

but we also have to deal with nondeterministic choices and, hence, we have

to consider schedulers.

2. Our algorithm to compute the progress measure can only handle invariants.

However there are many other linear time properties that we may want to

verify. One may want to develop algorithms to compute our progress measure

for other classes of linear time properties.

3. Although in most cases our new search strategies PFS and RS make faster

progress than DFS and BFS, in other cases DFS outperforms other search

strategies. One may want to develop other search strategies, possibly based

on ideas from directed model checking [9].

152

4. We believe that our developed theory can be adapted to symbolic probabilistic

model checkers. This is another direction for future research.

5. From our experiments, we found that it takes a lot of time to compute progress

measure. As a consequence, one may want to exploit a GPU to compute

progress. Also, we may consider distributing the computation over multiple

CPUs.

6. We believe that we need to implement more randomized algorithms and use

our extension of JPF to model check them and measure the progress by

different search algorithms, so that we may categorize randomized algorithms

and possibly determine the best search strategies for each category.

7. Although we model checked some algorithms with a large state space such

as the stable marriage problem, one may want to model check algorithms

with even bigger state spaces, and compare the progress for different search

strategies.

8. In our case studies, we ran the model checker JPF only five times for each

search strategy and used the average running time. However we found that

there is relatively big variance among the running times. So in the future one

may want to run them more often and statistically analyze the results.

153

Although the first steps towards measuring the progress of probabilistic model

checkers have been made, a lot of work remains to be done in this new area of

research.

154

Bibliography

[1] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The
MIT Press, Cambridge, 2008.

[2] P. Benyon-Davies. Information Systems Failure: The Case of the London
Ambulance Service’s Computer Aided Dispatch Project. European Journal of
Information Systems, 4(1):171–184, August 1995.

[3] Patrick Billingsley. Probability and Measure. Wiley-Interscience, New York,
1995.

[4] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson.
Introduction to Algorithms. McGraw-Hill Higher Education, second edition,
2001.

[5] Richard de Neufville. The baggage system at Denver: Prospects and lessons.
Journal of Air Transport Management, 1(4):229–236, December 1994.

[6] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohnert,
and R.E. Tarjan. Dynamic perfect hashing: Upper and lower bounds. SIAM
Journal on Computing, 23(4):738 – 761, August 1994.

[7] E.W. Dijkstra. Structured programming. In J.N. Buxton and B. Randell,
editors, Software Engineering Techniques, pages 84–88. NATO Science Com-
mittee, Rome, October 1969.

[8] Satadip Dutta. An introduction to Abbot. Java Developer’s Journal, April
2003.

[9] Stefan Edelkamp, Viktor Schuppan, Dragan Bosnacki, Anton Wijs, Ansgar
Fehnker, and Husain Aljazzar. Survey on directed model checking. In Doron A.
Peled and Michael J. Wooldridge, editors, Proceedings of the 5th Interna-
tional Workshop on Model Checking and Artificial Intelligence, volume 5348 of
Lecture Notes in Computer Science, pages 65–89, Patras, Greece, July 2008.
Springer-Verlag.

155

[10] Cindy Eisner and Doron Peled. Comparing symbolic and explicit model check-
ing of a software system. In Dragan Bošnački and Stefan Leue, editors, Proceed-
ings of the 9th International SPIN Workshop on Model Checking of Software,
volume 2318 of Lecture Notes in Computer Science, pages 230–239, Grenoble,
France, April 2002. Springer-Verlag.

[11] Ted Faison. Event-Based Programming: Taking Events to the Limit. Apress,
Berkeley, 2006.

[12] Gerard J. Holzmann. The SPIN Model Checker: Primer and Reference Man-
ual. Addison-Wesley Professional, first edition, September 2003.

[13] P.E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems Science
and Cybernetics, 4(2):100–107, February 1968.

[14] C. A. R. Hoare. Algorithm 64: Quicksort. Communications of the ACM,
5(7):321, July 1961.

[15] Richard M. Karp. The probabilistic analysis of some combinatorial search
algorithms. In J. F. Traub, editor, Proceedings of a Symposium on New Direc-
tions and Recent Results in Algorithms and Complexity, pages 1–19. Academic
Press, Pittsburgh, 1976.

[16] Richard M. Karp. An introduction to randomized algorithms. Discrete Applied
Mathematics, 34(1-3):165–201, November 1991.

[17] Joost-Pieter Katoen and Ivan S. Zapreev. Safe on-the-fly steady-state detec-
tion for time-bounded reachability. In Proceedings of the 3rd International
Conference on the Quantitative Evaluation of Systems, pages 301–310, River-
side, September 2006. IEEE Computer Society Press.

[18] Donald E. Knuth and Andrew C. Yao. The complexity of nonuniform random
number generation. In J.F. Traub, editor, Proceedings of a Symposium on New
Directions and Recent Results in Algorithms and Complexity, pages 375–428,
Pittsburgh, 1976. Academic Press.

[19] Sheng Liang. Java Native Interface: Programmer’s Guide and Specification.
Addison Wesley, first edition, 1999.

[20] J. L. Lions. Ariane 5 flight 501 failure report by the inquiry board.
http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html,
July 1996.

156

http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html

[21] Donald W. Loveland. Automated theorem proving: a logical basis. North-
Holland, 1978.

[22] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cam-
bridge University Press, Cambridge, first edition, August 1995.

[23] Esteban Pavese, V́ıctor Braberman, and Sebastian Uchitel. My model checker
died! How well did it do? In Proceedings of 2010 ICSE workshop on Quan-
titative Stochastic Models in the Verification and Design of Software Systems,
pages 33–40, Cape Town, May 2010. ACM.

[24] William Pugh. Skip lists: A probabilistic alternative to balanced trees. Com-
munication of ACM, 33(6):668–676, June 1990.

[25] M. O. Rabin. The complexity of nonuniform random number generation. In
J.F. Traub, editor, Proceedings of a Symposium on New Directions and Recent
Results in Algorithms and Complexity, pages 21–40. Academic Press, Pitts-
burgh, 1976.

[26] S. Biffl, A. Aurum, B. Boehm, H. Erdogmus, P. Grunbacher, editor. Value-
based software engineering. Springer, first edition, 2006.

[27] Roberto Segala. Modeling and Verification of Randomized Distributed Real-
Time Systems. PhD thesis, Massachusetts Institute of Technology, June 1995.

[28] A. Sokolova, E.P. de Vink, and H. Woracek. Coalgebraic weak bisimulation for
action-type systems. Scientific Annals of Computer Science, 19:93–144, 2009.

[29] Ana Sokolova. Coalgebraic Analysis of Probabilistic Systems. PhD thesis,
Eindhoven University of Technology, Eindhoven, the Netherlands, November
2005.

[30] Willem Visser, Klaus Havelund, Guillaume Brat, SeungJoon Park, and Flavio
Lerda. Model checking programs. Automated Software Engineering, 10(2):203–
232, April 2003.

[31] Adriaan Cornelis Zaanen. Integration. North-Holland, Amsterdam, The
Netherlands, 1967.

157

	Abstract
	Acknowledgements
	Table of Contents
	Introduction
	Some Probability Theory
	A Model of a Probabilistic Model Checker
	A Probabilistic Transition System
	A Set of Execution Paths
	A Measurable Space of Execution Paths
	A Search of a Probabilistic Transition System

	A Progress Measure
	Extension of the Search
	Definition of Progress
	Characterization of Progress for Invariants
	Computation of Progress for Invariants
	Maintaining the Searched System

	Search Strategies
	DFS and BFS
	Probability-First Search
	Breadth-First Probability-Second Search
	Randomized Search
	Properties of Search Strategies
	Comparison

	An Extension of JPF to a Probabilistic Model Checker
	The Class Choice
	The Abstract Class ChoiceGenerator
	The Interface Probable
	The Class ProbabilisticChoiceGenerator
	The Native Peer Class JPF_probabilistic_Choice
	The Complete Picture

	Implementation of the Progress Measure
	The Class ProbabilityListener
	The Class Transition
	The Class PTS
	The Computation of the Progress Measure
	The Complete Picture

	Implementation of the Search Strategies
	The Abstract Classes Search and ProbabilitySearch
	The Classes PFS and BFPSS
	The Class RandomizedSearch
	The Complete Picture

	Case Studies
	Die and Biased Die
	Randomized Quicksort
	Random Select
	Skiplist
	Random Matrix Equation
	Scissors Game
	Stable Marriage
	Summary

	Conclusion
	Overview
	Future Work

	Bibliography

