
A Simulator for Peer-to-Peer Overlay Algorithms

Vladimir Blagojevic

A thesis submitted to the Faculty of Graduate Studies
in partial fulfilment of the requirements

for the degree of

Master of Science

Graduate Programme in Computer Science
York University
Toronto, Ontario

June 2004

c© Copyright by
Vladimir Blagojevic

June 2004

ABSTRACT

The Peer-to-Peer (P2P) approach is not the first attempt to achieve large scale
Internet multimedia streaming. P2P multimedia streaming is born out of the
frustration that IP multicasting has not materialized even a decade after its ini-
tial specification. In P2P streaming overlays, peers are connected into a logical
overlay structure emulating a multicast network. Since data is replicated at the
application layer through a set of unicast connections formed at each peer, such
systems are undoubtedly less efficient than IP multicast. Although recently there
have been a multitude of P2P overlay streaming proposals, it is yet unclear which
ones present the best solutions. The major obstacle in reaching such a conclu-
sion involves the difficulties of evaluating large-scale overlay algorithms. Having
a continuing trend where each research team develops its own ad-hoc overlay
simulator would undoubtedly jeopardize the progress of this interesting field of
research. There is a pressing need for a unified and unbiased simulation frame-
work that enables a strong push forward for P2P overlay media streaming. It
is our opinion that the simulator we have developed is an important step in the
right direction. As far as we know we are the first to provide a unified and so-
phisticated P2P media streaming overlay simulator. We have demonstrated our
simulator’s extensibility and adaptability by implementing four leading media
streaming overlay algorithms. Our simulator comes with a rich set of join, dura-
tion, and bandwidth distributions as well as overlay metrics. Furthermore, the
size of the synthetic network, as well as the number of peers in the overlay in our
simulations, is two orders of magnitude larger than ever considered in simulations
of P2P tree-based overlay algorithms.

iv

ACKNOWLEDGEMENTS

First of all, I owe a debt of gratitude to my supervisor Franck van
Breugel. Without his insightful guidance and support, I could not
have completed this thesis. I am grateful for each and every hour he
has contributed to the development and refinement of the research
and writing.

Eshrat Arjomandi, my co-supervisor, has been extremely supportive
of me over the years, providing guidance, counsel, and generous fund-
ing.

I am grateful to the remaining members of my thesis examining com-
mittee, Jonathan Ostroff, Stephen Watson, and Suprakash Datta for
their time and helpful feedback.

Duc A. Tran from the University of Dayton has been very forthcom-
ing with answers to all of my questions regarding the ZIGZAG P2P
streaming system. Anukool Lakhina from Boston University has also
been extremely helpful with inquiries related to the BRITE topology
network generator.

v

Mojoj majci

vi

TABLE OF CONTENTS

Abstract iv

Acknowledgements v

Table of Contents vii

1 Introduction 1

1.1 Multimedia streaming . 2
1.2 Overlay algorithms and their simulation 3
1.3 Overview . 5

2 Performance metrics 8

2.1 Stress . 8
2.2 Stretch . 10
2.3 Control message overhead . 11
2.4 Robustness . 12

3 Overlay algorithms 15

3.1 Tree-first overlay algorithms . 16
3.2 SpreadIt . 17
3.3 HMTP . 19
3.4 OMNI . 21
3.5 ZIGZAG . 25

4 Simulator 29

4.1 Internet modeling . 30
4.2 Network topology . 33
4.3 Modeling interdomain routing . 36
4.4 Bandwidth distribution . 37

vii

4.5 Peer join and duration distribution 39

5 Simulation results 40

5.1 Previous simulation results . 40
5.1.1 SpreadIt . 40
5.1.2 HMTP . 41
5.1.3 OMNI . 43
5.1.4 ZIGZAG . 44

5.2 Verification of the previous simulation results 45
5.2.1 HMTP . 45
5.2.2 OMNI . 46
5.2.3 ZIGZAG . 49

5.3 Simulation results . 54
5.3.1 10K simulation results . 57
5.3.2 100K simulation results . 63
5.3.3 Other simulations . 68
5.3.4 SpreadIt . 69
5.3.5 HMTP . 73
5.3.6 OMNI . 77
5.3.7 ZIGZAG . 79

6 Conclusion 84

6.1 Overview . 84
6.2 Future directions . 86

Bibliography 87

viii

Chapter 1

Introduction

Beginning with the explosion of Napster in 1999, the advent of peer-to-peer (P2P)
computing has dramatically shifted attention from centralized systems to more
scalable, decentralized and distributed systems. P2P systems differ from more
conventional centralized network systems in the sense that the computing load is
more equally shared between all participating computer nodes, which are called
peers. Peers participate in P2P systems by sharing their resources toward a
common goal. In the case of Napster this goal is file sharing.

Although the Napster file sharing system has been presented as a poster child
of P2P computing, it cannot be regarded as a pure P2P system due to its central-
ized directory index. This central directory index stores information about files
available from all currently participating peers. Another often cited example of
a P2P system is the Gnutella network [2]. Gnutella is a completely decentralized
P2P file sharing system that does not have a centralized directory index like Nap-
ster. However, such a high degree of decentralization comes with an increased
searching cost. Gnutella uses an expanding search mechanism. A search query is
first performed at the peer nodes directly connected to the node that originated
the search. A search is then further expanded to the immediate neighbours of
those nodes queried in the first round and so forth.

There has been a significant renewal of interest in decentralized systems within
the research community as well. Most of the research has focused on solving lim-
ited scalability issues of the search mechanism employed in systems like Gnutella.
Several research groups have independently presented P2P systems that are es-
sentially based on distributed hash tables [36, 37, 39]. In these P2P systems,
objects are associated with keys and each peer node is responsible for storing a

1

certain range of keys. Given the key of the object, the operation lookup returns
the identity of the node storing that object. The lookup message is efficiently
forwarded among the nodes. The expected number of forwarding steps from the
node originating the search to the node hosting the desired object is O(log n)
[37], where n is the number of peer nodes in the system. In order to provide
better data availability and fault tolerance, the hashtable contents are usually
replicated.

1.1 Multimedia streaming

Another viable application area of P2P systems is multimedia streaming. One
of the biggest shortcomings of the classical client/server model of multimedia
streaming is the excessive bandwidth requirement usually associated with stream-
ing. In current working solutions, employing the classical client/server model, the
number of receiving clients scales linearly with costly resources (hardware and
bandwidth). For example, an Internet radio station streaming content at 128
kbps can hardly scale to thousands of clients due to both hardware and band-
width constraints and their costs.

Multimedia streaming is also possible through content delivery networks (CDN).
A CDN is a dedicated network of servers that enables content distribution from
geographically and Internet strategic locations. CDN companies like Akamai own
a network of powerful servers and offer services of content distribution to third
parties. A CDN transparently directs content consumers to the best available
network server. CDNs offer good quality of service, however, they are extremely
expensive.

One of the reasons that led to the recent emergence of CDNs was the unsuc-
cessful development and deployment of IP multicasting technologies [18]. The
development and deployment of IP multicasting has been plagued with issues
such as group management, congestion and flow control, security and network
management [20]. Under the current IP multicast model there is no mechanism
that prevents a host from creating a multicast group, from becoming a member
of a group or from sending data to a group. Thus, multicast networks would
be much more susceptible to malicious flooding attacks than unicast networks.
Multicast systems would be even more desirable as a flooding target due to the

2

opportunity of an attack of a larger scale than unicast networks. In their sem-
inal paper [17] arguing for a move of multicasting implementations from the IP
layer to the application layer, Chu, Rao and Zhang claim that IP multicasting
has been doomed to failure since it attempts to squeeze application layer func-
tionality into the stateless IP router layer. Current routers are stateless while
multicasting would require stateful routers to maintain per group information.
Internet Service Providers (ISPs) are also reluctant to deploy multicast routers
due to the lack of reliable network management and administration tools. All of
these shortcomings combined have ultimately led to a slow adoption rate of IP
multicasting by ISPs and Internet users.

The P2P approach to multimedia streaming is not the first attempt to mass-
scale multimedia streaming but is rather born out of the frustration that IP
multicasting (in theory the ideal solution) has not caught up even a decade after
its initial specification [21]. P2P based systems, almost exclusively implemented
in the application layer, could potentially present an effective solution to mass-
scaling of multimedia streaming. Indeed, most recent research studies in the
context of mass-scaling multimedia streaming involve building multicast P2P
structures in the application layer space. Such application layer structures are
also referred to as overlay networks since they are built on top of the conventional
IP networks. In P2P media streaming systems, rather than replicating packets
at the router level, packets are distributed through the application layer of the
participating peers.

1.2 Overlay algorithms and their simulation

Peers are connected into a logical overlay structure emulating a multicast net-
work. Since data is replicated at the application layer through a set of unicast
connections formed at each peer, such systems are undoubtedly less efficient than
IP multicast in terms of network usage. For example, in application level multi-
cast it is highly possible that sometimes multiple copies of the same packet might
travel through the same underlying physical network link. IP multicast is thus
usually used as a benchmark to measure the efficiency of P2P overlay structures
by providing a lower bound for performance measurements. An overlay tree is
efficient if the performance penalty induced by migrating multicast functionality
into the application level space does not significantly increase the network cost

3

compared to IP multicast. A good overlay tree will have a small deviation from
the IP multicast tree in regards to the defined network metrics. Essentially, we
are interested in the overhead incurred by using overlay structures instead of IP
multicast.

Although recently there have been a multitude of P2P overlay streaming pro-
posals, it is yet unclear which ones present a good solution. The major obstacle in
reaching such a conclusion involves difficulties of evaluating large-scale overlay al-
gorithms. One would have to develop and test a system consisting of thousands
of physical computer nodes. This is rather impractical if not almost impossi-
ble. In the absence of resources to test an overlay consisting of thousands of
nodes, one usually resorts to P2P overlay simulators. Simulators help in evalu-
ating overlay algorithms without having to deploy the overlay over thousands of
physical network nodes. However, there seems to be a strong tendency among
P2P overlay researchers to develop their own simulator. There are several draw-
backs to such an approach as well. The most important one is the use of ad hoc
simulators for research purposes. Banerjee et al. [4] have published the details
of their P2P overlay streaming simulator, while other research projects that we
have reviewed [19, 34, 41, 45] briefly mention the high-level details of their own
simulators. p2psim [7] is another example of a P2P simulator. However, it focuses
on distributed hash table based overlays rather than media streaming overlays.
Previously developed overlay streaming simulators used a synthetic network of
at most ten thousand nodes while the largest overlay size was two thousand
nodes, whereas our network has half-a-million nodes and ten thousand overlay
nodes. Utilizing appropriate join and duration node distributions is important
as well. A join distribution describes the rate of peer node arrival in the overlay
while a duration distribution determines the length of stay in the overlay for each
peer. Researchers have mostly used simple join and duration distributions that
can hardly be a representative model of the real Internet. In contrast, we have
carefully chosen join and duration distributions that reflect the unpredictable
nature of the Internet. In addition, all simulators we have reviewed used a peer
bandwidth distribution where all nodes have the same bandwidth capability or
the peer bandwidth distribution has been ignored altogether. Such a bandwidth
model is in clear contrast with the most recent research. In our simulations we
acknowledge the suggestion of Saroiu et al. [38] that there exists a high degree of
bandwidth heterogeneity among overlay peers.

Having a continuing trend where each research team develops its own over-

4

lay simulator would undoubtedly jeopardize the progress of this very interesting
field of research. We strongly believe that there is a pressing need for a unified
and unbiased simulation framework that enables a strong push forward for P2P
overlay media streaming. It is our opinion that the simulator we have developed
is an important step in the right direction.

1.3 Overview

In Chapter 2 we give a summary and definitions of the most commonly used
performance metrics in P2P simulations. Besides frequently used metrics such
as stress and stretch, we focus on control overhead as well. We give special
attention to join and leave control overhead since these two metrics can pinpoint
troubling tendencies for overlay scaling. We base our join and leave control
overhead measurements on the number of peer contacts. Join control overhead
records the number of peer contacts required to add the arriving node to the
overlay. Leave control overhead tabulates the number of peer contacts that are
required to repair an overlay after a node leaves or crashes. Finally we take
a closer look at the robustness metric. The robustness metric focuses on the
proneness of the overlay trees to fragility. In order to be robust, an overlay
should seamlessly and efficiently handle a node leave or crash as well as overlay
restructuring. We introduce two specific robustness metrics, namely glitch ratio
and shed ratio, which we believe are new.

Chapter 3 provides an overview of the three different approaches to build-
ing overlay trees, namely the tree-first, the mesh-first and implicit tree building
overlay algorithms. We discuss the differences between them as well as their ap-
plicability to media streaming. We focus specifically on tree-first overlays since
there is a general understanding in the research community that the tree-first
overlays are better suited for large-scale media streaming. We provide a review
of four recent tree-first overlay algorithms while using a consistent terminology
in presenting the overlays.

In Chapter 4 we explore the current state-of-the-art research in synthetic
Internet topology generation. In order to have a representative P2P overlay sim-
ulation environment the most suitable topology generator should be used. We
investigate the history of the Internet topology generators and give arguments for

5

choosing the BRITE Internet topology generator for our unified simulation frame-
work. Special attention is given to often-neglected simulation parameters, namely
peer bandwidth distribution as well as peer join and duration distributions. We
use a peer bandwidth distribution based on recent measurements studies [38]
of the Gnutella P2P network. We believe that this bandwidth distribution is a
good representative of the general Internet population that is interested in me-
dia streaming. Our simulation framework can accept any other distribution as
well. Join and duration distributions are other simulation input parameters that
have been usually overlooked in previous simulations. We also provide reasons
for choosing specific join and duration distributions in our simulations. Again
our simulation framework can accept any join and duration distribution, which
we demonstrate in Chapter 5. As far as we know, our simulator is the first that
takes the peer bandwidth distribution and the peer join and duration distribu-
tions seriously.

Chapter 5 gives an overview of previously conducted P2P overlay simulations
along with their accompanying results. P2P overlay simulators were mostly de-
veloped as part of the overall overlay algorithm research projects. Naturally, the
focus of those research projects was on the overlay algorithms themselves. We
give a detailed summary of the recent P2P simulation environments as well as the
simulation results. We then proceed to recreate these simulation environments
using our simulator and to verify the published simulation results. By repeating
the results of the previous simulations using our unified simulation framework we
achieve two things. Firstly, we demonstrate the ability of our simulator to effort-
lessly plug in the desired overlay algorithm as well as the simulation parameters
from the previous simulations. Secondly, we confirm that our implementations
of the simulated overlay algorithms are correct. Having asserted the correct im-
plementation of the four overlay algorithms, we can proceed to simulating the
overlay algorithms with simulation parameters that we believe are reasonable.
We provide a concluding overview for each of the four overlay algorithms that we
implemented and studied. Simulation result trends are discussed for each of the
defined metrics and various trade-offs are explained.

In Chapter 6 we give a summary of our research along with future directions.
As far as we know we are the first to provide a unified and sophisticated P2P
media streaming overlay simulator. We have demonstrated our simulator’s exten-
sibility and adaptability by implementing four leading media streaming overlay
algorithms [19, 34, 41, 45] along with a rich set of metrics. Furthermore, the size

6

of the synthetic network, as well as the number of peers in the overlay in our sim-
ulations, is two orders of magnitude bigger than ever considered in simulations
of P2P tree-based overlay algorithms.

7

Chapter 2

Performance metrics

While various P2P multimedia streaming research groups have considered differ-
ent overlay performance metrics, Banerjee and Bhattacharjee [10] have summa-
rized the most common performance metrics that various research groups have
measured: stress, stretch, control message overhead and robustness.

2.1 Stress

Stress is a metric intrinsically tied to the underlying physical network links. The
stress that an overlay induces on the underlying physical network has been a
focus of previous overlay research. Chu et al. [17] and Zhuang et al. [46] define
stress of a physical link as the number of identical copies of a packet carried over
that physical link. Banerjee and Bhattacharjee [10] expand this definition from
physical links to overlay nodes. They define stress as a metric defined per link or
router node of the topology that counts the number of identical packets sent by
the protocol over that link or router node.

In IP multicast there are no redundant packets sent over any physical network
link. Therefore, the stress on each physical link in IP multicast is 1. Stress
higher than 1 is an indicator of a deviation from an ideal solution. Overlay
nodes in certain instances send more than one identical packet through the same
underlying physical link.

By taking time-varied snapshots of the overlay structure and measuring the

8

��
��
��
�� ���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

���
���
���
���

��
��
��
��

R1
R2

R6

R8
R3

R4

A

B

E

D

C
R7

Figure 2.1: Stress on physical link R7-R8 is the highest

stress of the underlying physical links at those given instances we will be able to
deduce stress deviation of the overlay from IP multicast.

Overlay tree building algorithms should strive to achieve as low as possible
stress deviation from the IP multicast. Let L be the physical link that connects
source A to the rest of the network. If A has n children in the overlay tree, then
stress of the link L will be at least n. For example, in Figure 2.1 node A has
2 children, B and C, hence the stress on the physical link that connects node
A to network router R1 has a stress of at least 2. Overlay network building
algorithms can hardly influence stress of some backbone links since most of the
Internet traffic goes through them. For example, given the same physical network
in Figure 2.1 and the overlay tree where computer A is the source of the stream,
we can conclude that the highest stress of 3 for this instance of overlay is on
physical link R7-R8.

Link stress is trivially calculated by simply keeping track of physical links used
when overlay links are established and removed. We assume that the overlay link
between two nodes A and B is created on a shortest path between A and B within
the physical network. Figure 2.2 gives an outline of the algorithm. The running
time of the algorithm depends on the implementation of Dijkstra’s shortest path
algorithm. Assuming the priority queue is implemented using an array, finding a
shortest path takes at most O(V 2) where V is the number of physical nodes in

9

overlay_add(node n)

let p be parent of n in overlay

find shortest path sp between node n and p in physical network

for each physical link pl on that path sp

stress(pl) = stress(pl) + 1

overlay_remove(node n)

let p be parent of n in overlay

find shortest path sp between node n and p in physical network

for each physical link pl on that path sp

stress(pl) = stress(pl) - 1

Figure 2.2: Stress algorithm pseudocode

the network graph. Given that we have n parent/child pairs in the overlay, the
running time of the stress algorithm is at most O(nV 2).

2.2 Stretch

Stretch is a metric that evaluates the overall quality of the overlay by taking
measures for each node in the overlay. Chu, Rao and Zhang [17] defined stretch of
a node as the ratio of the path latency from the source to the peer node along the
overlay to the path latency of the direct unicast link. A unicast path between two
nodes has a stretch of 1. Ideally we would like to have each member’s stretch as
close as possible to 1. Clearly, it would be simple to construct a multicast overlay
where the source unicasts data to each of the n node members thus resulting in
each node having a stretch of 1. However such an overlay is constructed on the
expense of O(n) stress on the link L as discussed in previous section.

Returning to our example overlay from Figure 2.1 and assuming that each
edge has the same latency we can conclude that the shortest unicast path from
node E to the source is along the path E-R3-R2-R1-A, thus yielding path length
of 4 units. However, the path along the overlay between node E and the source
node A is 15 unit lengths. Therefore the stretch of the node E is 3.75.

10

stretch(n):

up = length of shortest path between n and source in physical network

p = parent of n in overlay

top = 0 //overlay path

until n = source

top += length of shortest path between n and p in physical network

n = p

p = parent of p in overlay

return top / up

Figure 2.3: Stretch algorithm pseudocode

The algorithm that computes the stretch of the particular node is straight-
forward. Although the algorithm outline is given in Figure 2.2, potential imple-
mentations vary depending on the actual data structures used in representing
the particular overlay. The running time of the stretch algorithm also depends
on the implementation of Dijkstra’s shortest path algorithm. Taking the same
assumption as in the stress algorithm, finding the n shortest paths corresponding
to the overlay paths from each node to the source takes at most O(nV 2) where
n is the number of nodes in the overlay and V is the number of physical nodes
in the network graph. Shortest paths are calculated on demand, using the same
algorithm as used in our stress calculations.

2.3 Control message overhead

Control message overhead is very important for overlay scalability. Overlay algo-
rithms maintain the overlay by exchanging control messages between peer nodes.
Ideally we would like to minimize peer control message communication overhead
and localize it to the neighbouring peers. There have been several proposals
to appropriately measure the control message overhead. One of these proposals
comes from Liben-Nowell, Balakrishnan and Karger [29]. They suggest that the
bandwidth percentage used on control message overhead in each node is the most
appropriate measurement for efficiency of overlay algorithm control overhead. If
the bandwidth consumed by peer nodes on the control overhead grows even lin-

11

early with the respect to the total number of peers then scalability of the P2P
network would be seriously limited.

Tran et al. [41], the authors of ZIGZAG overlay system, have a different
proposal. They have not measured the control overhead by the amount of band-
width taken but rather by the average number of nodes contacted during the
execution of the overlay mutating operations (i.e., join, leave, restructure). They
indicate that a successful control protocol should have the same overhead for
overlay maintenance regardless of the overlay size. Indeed, special attention has
been devoted to ensure that the number of nodes in the overlay does not affect
ZIGZAG’s control overhead. As discussed in Section 5.2.3, ZIGZAG’s control
overhead assumptions have been verified in simulations.

In our simulations we measure control overhead according to the latter ap-
proach. There are two main reasons for this choice. First, implementing a repre-
sentative simulation of the amount of bandwidth taken by the control protocol is
difficult and error prone. More importantly, the second reason is that the control
overhead proposal by Tran et al. quickly identifies problematic overlay tenden-
cies during various overlay operations. For example, such tendencies would be
that the control overhead scales linearly with the number of nodes in the overlay.
Overlay algorithms should have sublinear control overhead in order to scale to
thousands of nodes.

In the simulations we conducted special attention was given to join and leave
control overhead. The join overhead at peer node P is measured by the number
of the nodes P contacts during the join procedure. The leave or crash control
overhead measurement is not as straightforward. The details of the leave or
crash control overhead are very specific for different overlay algorithms. We have
abstracted the leave or crash control overhead measurements to the total number
of node contacts that resulted due to leave or crash of a certain node.

2.4 Robustness

Robustness concerns fragility of overlay trees. Overlay trees should have efficient
failover capabilities when nodes leave or crash. Robustness can be measured by
the percentage of nodes that have not received all the data during various leave

12

or crash scenarios. The amount of missing data is usually important as well -
depending on the context of the multicast application. In voice multicast stream-
ing even small amounts of lost data may cause the listener to notice annoying
glitches while in video streaming small amounts of missing data might not be so
perceptible.

We have identified two classes of overlay algorithms related to node leave or
crash events. The first type has an individual rejoin algorithm where nodes are
allowed to search for a new parent individually after their current parent leaves
or crashes. The second type has a coordinated rejoin algorithm where nodes are
coordinated in their search for a new parent. ZIGZAG, OMNI and some of the
SpreadIt rejoin algorithms are classified as coordinated rejoin algorithms. The
HMTP rejoin algorithm is an individual rejoin algorithm.

A simulator for the SpreadIt overlay streaming system [19] has especially
focused on modelling packet loss experienced during various join/leave scenarios.
Specific attention was given to this metric for a rather different reason. SpreadIt
data channels are based on the connectionless and lossy UDP protocol and thus
SpreadIt is susceptible to packet loss.

In our simulations we measure robustness in two ways resulting in two specific
robustness metrics - the overlay glitch ratio and the overlay shed ratio. The first
one is the percentage of nodes that were receiving the stream but are unable to
find a new stream source after restructuring in the overlay. These nodes would
be temporarily disconnected and in a real-life scenario experiencing annoying
streaming glitches. The ratio of the total number of nodes experiencing stream
interruptions and the total number of nodes in the overlay is the overlay glitch
ratio.

Note that we consider all the possible causes for overlay restructuring depend-
ing on the specifics of a certain overlay algorithm. Such causes include among
others join, leave, crash and regular overlay restructuring/maintenance as dic-
tated by a certain overlay algorithm.

The second, more fine-grained measurement is based on tracking the amount
of time ticks that the stream interruption is experienced in a certain node. If
a stream is not received in a certain time window the node is disconnected. In
this way we simulate the disgruntled users. The ratio of total number of nodes

13

disconnected in such a way and the total number of nodes in the overlay is the
overlay shed ratio.

We have also introduced two thresholds related to robustness. The first one,
the drop threshold, is the number of simulation ticks after which a node that is
temporarily disconnected from the overlay is dropped from the overlay. An or-
phaned peer node that is unable to rejoin the overlay is not immediately dropped
from the overlay. Such node is temporarily disconnected and unable to receive
streamed data. We have set the drop threshold to 3 ticks. If a temporarily discon-
nected node is unable to reconnect for 3 ticks it is dropped from the overlay. The
second robustness threshold, the delay threshold, is related to individual rejoin
algorithms. If a node running an individual rejoin algorithm is unable to find a
new parent in a given amount of time, it is dropped from the overlay as well. In
the case of the delay threshold we need a finer time metric than a number of ticks.
Thus in our simulations we track the delay accumulated while the rejoining node
is searching for a new parent. We have set this delay to be a hundred times the
average parent/child delay. Our reasoning is that since the average parent/child
delay on the Internet is in the hundreds of milliseconds scale the rejoin delay
threshold, in the real Internet, would be in the tens of seconds scale. We assume
that a peer stream receiver will be most certainly annoyed after not receiving any
media stream for more than ten seconds.

14

Chapter 3

Overlay algorithms

Although there exist various application layer multicast approaches, they all have
a common ingredient that comprises of data and control tree building algorithms.
Data tree algorithms construct a tree for data delivery while control algorithms
connect peers into a control data exchanging overlay. Depending on the order
of data and control overlay construction, P2P media streaming systems can be
classified into mesh-first, tree-first and implicit systems [10].

In a mesh-first based overlay [16, 17] nodes are connected in a mesh topology
of unicast links between peer nodes. The mesh is usually directly used for the
exchange of control messages between peers. Single source multicast trees are
then constructed on top of meshes by using well known IP multicast algorithms
[21]. In the mesh-first approach, overlays constructed are suitable for multisource
broadcasting.

Tree-first algorithms [19, 23, 27, 34, 45] organize peer nodes into a single
source data multicast tree directly without any prior mesh construction. After
a peer node joins the multicast tree it discovers a few other member nodes and
establishes control data exchange links with them. Tree-first overlays usually
consist of one broadcast node (source) and many receiver nodes (all other nodes).

In implicit tree building algorithms [11], the mesh and the multicast tree are
simultaneously constructed by the protocol and no additional member interac-
tions are needed to generate one from the other or vice versa.

Various P2P multicast streaming solutions focus on different overlay structure

15

properties in order to achieve good overlay trees. Protocols for node join and leave
are defined by taking into account those properties of the overlay. However, given
the fact that the number of peers participating in the system, like in other P2P
applications, changes rather rapidly, it is essential that P2P systems implement
a tree management algorithm that continually repairs the overlay. Tree manage-
ment protocols strive to achieve an ideal overlay structure given such a rapidly
changing system, but will most probably never achieve an ideal overlay structure.

One of the objectives of our research is creating a P2P streaming network
simulation environment where we will simulate various proposed application level
P2P streaming solutions. In order to be scalable to tens of thousands of nodes,
the simulator is based on a flow network level granularity rather than packet level
such as the ns2 [5], ssfnet [8] and javasim [3] simulators. By comparing various
proposed P2P streaming solutions we will verify their performance in terms of
the defined metrics.

In the rest of this chapter, we will overview the tree-first overlay algorithms
and in turn summarize each of the four tree-first overlay algorithms that we have
implemented.

3.1 Tree-first overlay algorithms

As previously mentioned, tree-first algorithms construct a shared tree for deliv-
ering streaming data in the overlay. In order to produce scalable overlays, each
peer in the overlay is aware of only a constant number of other peers. All tree
related algorithms are distributed in nature and invoked within peers themselves.
A join algorithm guides each new arriving member to a certain parent within the
tree, thus effectively leading to an explicit construction of the data delivery tree.
Subsequently, after a node has been added to the overlay, each node keeps track
of a set of “neighbour” nodes. The size of this “neighbour” set is bounded. In
some overlays, the nodes keep track of the “neighbour” set by either creating ad-
ditional links to the “neighbour” nodes or simply by keeping and refreshing the
state of the “neighbour”nodes. Such additional links, sometimes referred to as
mesh links [11], complement the data delivery tree in the sense that they increase
its robustness and help in node crash recovery.

16

A leave algorithm, initiated from the leaving node, removes the leaving peer
node from the overlay. Crashes are usually handled differently. When a node
crash is detected, peers affected by the crash have to be reorganized in the overlay.
If the leaving/crashing node did not have any children, the overlay data delivery
tree is not affected and no further actions have to be taken. Otherwise, a certain
type of tree restructuring has to be performed in order to keep the remaining peer
nodes connected. The mesh links and information about “neighbouring” nodes
is also updated to reflect the changes.

Besides join and leave algorithms some overlays define additional tree im-
provement algorithms. Tree improvement algorithms are invoked periodically
from certain peer nodes. Their goal is to improve the overlay tree with respect
to metric(s) of interest.

All tree-first algorithms have an explicit control over the maximum number
of children a node can have. Given a limited peer uplink bandwidth capacity B
and a data delivery stream rate R, each node can have in between 0 and B/R
children. Each peer node chooses its parent during execution of the join algorithm
itself. It may also choose a parent during tree improvement algorithm execution.
Furthermore after a node has been orphaned, it has to find a new parent.

In the following sections we present a summary of the SpreadIt, HMTP,
OMNI, and ZIGZAG tree-first overlay algorithms.

3.2 SpreadIt

The SpreadIt overlay algorithm [19] is an example of a tree-first overlay algorithm.
Peer node P, wishing to join a SpreadIt overlay, starts its join process by sending
a join request to the source node. SpreadIt node R, receiving a join request,
accepts the request if itself is unsaturated. Otherwise, R redirects the joining
node P to one of its immediate children nodes depending on the selected join
policy. The join policies are:

Random - P is redirected to a random child of R.

Round-Robin - P is redirected to one of R’s children in a round-robin fashion.

17

Smart-Placement (SP) - P is redirected to R’s closest, in terms of network
distance, child.

Knock-Down - if P is closer to R than any of R’s children then R redirects its
farthest child and accepts P. Otherwise, same as SP.

Smart-Bandwidth - if P’s bandwidth capacity is bigger than R’s, P takes the
place of R. R and all its children become children of P. Otherwise, any of
the above mentioned policies can be used.

The join algorithm proceeds recursively until a node R willing to parent P is
found. If, after a predefined number of recursive steps, no such node R is found,
the join fails and the algorithm exits.

The SpreadIt overlay treats the intentional leave and accidental crash sep-
arately. A leaving node P is first unsubscribed from its parent. If P happens
to be a leaf, no further action is necessary. Otherwise, if P is a non-leaf node,
P’s descendants have two options for recovery. Either immediate children of P
rejoin and the rest of the descendants rely on them, or each descendant rejoins
separately. Since a SpreadIt node does not keep any additional “neighbour” peer
state besides information about its parent and immediate children, the options
for rejoining are limited. The new parent for the orphaned descendants is selected
according to one of the following policies:

Grandfather-All (GFA) - P chooses its parent R as the new parent for all de-
scendants. P sends a message to all its descendants to rejoin at R.

Root-All (RTA) - P chooses the source as the new parent for all its descendants.
P sends a message to all its descendants to rejoin at the source.

Grandfather (GF) - P chooses its parent as the new parent for its immediate
children. The rest of the descendants rely on their parents to restore the
stream.

Root (RT) - P chooses the source as the new parent for all its immediate children.
The rest of the descendants rely on their parents to restore the stream.

18

In the case when non-leaf node P crashes, P’s descendants do not know the
identity of P’s parent. Thus the descendants can only use the RTA and RT
policies for the crash recovery.

The SpreadIt overlay does not employ any additional tree-improvement algo-
rithm nor do nodes keep track of any “neighbour” nodes except for the parent
and the immediate children.

3.3 HMTP

The Host Multicast Tree Protocol (HMTP) [45] is another example of a tree-
first overlay construction algorithm. Unlike SpreadIt, HMTP uses a rendezvous
node to discover the root of the tree. The node joining the HMTP tree “remem-
bers” parent nodes visited during join which allows the joining node to backtrack
and branch out in a search for unsaturated parent nodes. Also unlike SpreadIt,
HMTP uses periodic tree improvements to ensure that the overlay is as congru-
ent as possible with the underlying physical network. Finally, HMTP uses an
individual node rejoin algorithm which is in contrast with SpreadIt’s collective
join algorithms.

Peer node P wishing to join an HMTP overlay starts its join process by query-
ing the overlay’s Host Multicast Rendezvous Point (HMRP) node. An HMRP
is a rendezvous node allowing newly arriving peers to discover overlay member-
ship. Since the arriving peer node P starts its join process from the root, it first
contacts HMRP which knows the identity of the overlay root. Starting from the
root, P tries to locate an overlay member closest (by network latency) to itself
that is willing to be its parent. Such a node, having available bandwidth and
willing to parent node P is called a valid node. Peer P keeps a local stack of valid
potential parent nodes.

The HMTP join algorithm considers all overlay peer nodes as potential par-
ents. Each joining node has a stack S to keep track of the discovered potential
parents. The join algorithm executed by joining node P starts by pushing the
root node on the stack S. The join algorithm proceeds until a suitable parent
is found or the stack S of potential parents is empty. In the first step of the
join algorithm, the top of the stack S is declared the current potential parent T.

19

Round-trip network delays from a joining node P to T and each of its children are
measured. In each iteration of the join algorithm there are three possible options.
First, if there is no node among T and its children that has enough bandwidth
to serve P, then stack S is popped and the iterative step is repeated. Second, if
there exists a child C of T having available bandwidth and C is closer to P than
T itself then T is pushed on the stack S along with rest of its children. C is put
on the top of the stack S and the iterative step is repeated. Otherwise, in the last
remaining option, node T is picked as the parent of P and the algorithm exits.

An HMTP overlay peer keeps information about other peers on its path to
the root node. This path is called the root path. Peer node P wishing to leave the
overlay first notifies its parent and children nodes. If node P is a leaf no further
actions are necessary. If node P is not a leaf, each child C is responsible for finding
a new parent independently. Node C first removes itself and its parent P from
the root path and pushes its root path on to the stack such that its grandparent
is the first peer to be popped from the stack. After a random delay, the join
algorithm is run using the root path as a stack of potential parents. The random
delay is introduced in order to lower the probability of all children contacting the
grandparent at the same moment.

Since the network environment is constantly evolving, the HMTP overlay tries
to adapt by periodically running an improvement algorithm. Each peer node runs
the improvement algorithm separately by re-running the join algorithm. In order
to prevent overwhelming the root node with join requests, a random node from
the re-joining node’s root path is selected as a starting point for the improvement
algorithm.

In order to branch out in a search for closer nodes, peer nodes other than the
closest one can be selected as a potential parent. However, the parent switch is
made if and only if the new parent is closer than the current one by a certain
threshold. Introduction of a threshold prevents a peer node oscillation between
a pair of parents. The improvement algorithm invocation frequency is a function
of proximity to its current parent.

HMTP nodes do not explicitly create additional mesh links. However, besides
keeping root path information, each node caches information about a constant
number of other nodes visited during tree walks. The root path is used in cycle
detection and failure recovery. Each time peer node P switches its parent, the root

20

path of a new parent is verified not to contain P. Thus tree cycles are avoided.
The root path is also used by rejoining orphaned nodes as a list of potential
parents for rejoin. In rare cases of failure recovery when all nodes in the root
path are unavailable, cached nodes are used instead.

3.4 OMNI

OMNI [12] is yet another example of a tree-first overlay algorithm. The OMNI
overlay defines two types of peer nodes. Multicast service nodes (MSN) are
high bandwidth, dedicated peer nodes, providing efficient data distribution to
a set of peer nodes. MSNs provide the data stream to other MSNs as well as
to the client peer nodes. Clients are non-dedicated nodes that can also serve
other non-dedicated nodes but cannot serve MSNs. Thus MSNs are positioned in
levels closer to the root of the tree while other non-MSNs tend to move towards
the leaves. Unlike SpreadIt and HMTP, OMNI has both local and global tree
transformation. OMNI and HMTP have a similar join algorithm. However,
OMNI’s leave algorithm is a collective leave algorithm similar to SpreadIt.

Each MSN keeps the following state information:

• Path to the root

• Number of descendants

si = ci +
∑

j∈Children(i)

sj

where ci is the number of clients being directly served by i, Children(i) is
the set of MSNs being directly served by i and finally si represents number
of clients being directly served by all MSNs in the subtree rooted at i

• Aggregate subtree latency

Λi =

0 if i is a leaf MSN
∑

j∈Children(i)

sjIi,j + Λj otherwise

21

where Ii,j is the unicast latency between MSNs i and j

• Latency to its parent and children

The OMNI overlay defines tree improvement algorithms on two levels of the
overlay hierarchy. We will describe both local and global tree improvement trans-
formations in turn. Both types of tree improvement algorithms are executed by
MSNs only.

Local tree improvement algorithms require interactions between MSNs that
are at most two levels apart. Each MSN attempts to perform a local transfor-
mation periodically. A local transformation is performed if the average subtree
latency would be reduced by that local transformation. There are no thresholds
introduced to prevent possible oscillations.

Child-promote

If a grandparent G has available bandwidth, one of its grandchildren is pro-
moted to be its child, if such an operation reduces the aggregate latency at G.

Available

degree

G

P 3

1
2

C
1 2

P 3
C

G

Figure 3.1: Child-promote

Parent-child swap

In this local transformation, the parent P and a child C swap their places
if such a transformation reduces the aggregate latency at the grandparent G. If
child C has no available degree to be a parent to P, P itself becomes the parent
to one of C’s children. The child selected is the child that reduces the aggregate
latency the most. The degree needed at C to parent P is thus created.

22

G

P

1 2
3

4

5

C

Other

MSNs

G

P

1 2
3

4

5

C

Other

MSNs

Figure 3.2: Parent-child swap

Iso-level-2 swap

In this transformation MSNs X and Y that have a common grandparent are
swapped. Parent of X, P, becomes the new parent for Y and old parent of Y, Q,
becomes the new parent for X. This transformation is performed if it reduces the
aggregate latency at the grandparent node.

G

P Q

Y

X

1 2

G

P Q

X

Y

1 2

Figure 3.3: Iso-level-2 swap

Iso-level-2 transfer

The iso-level-2 transfer local transformation transfers node X from its current
parent to a new parent which is on the same level as its old parent. The new
parent has to have bandwidth available. Both the old and the new parent of X
have the same grandparent G. The iso-level-2 transfer is performed if it reduces
the aggregate latency at G.

23

G

P Q

X

Y

1 2

G

P Q

1 2

X

Y

Available

degree

Figure 3.4: Iso-level-2 transfer

Aniso-level-1-2 swap

This transformation involves two MSNs, X having a parent P, and Y having
P as grandparent. There is a restriction that X cannot be the parent of Y. Nodes
X and Y swap their positions. The operation is performed only if it reduces the
aggregate latency at P.

P

C

1 X

Y

2

3

P

C

1

2

3

X

Y

Figure 3.5: Aniso-level-1-2 swap

Local transformations lead to a local subtree aggregate latency minimum. If
multiple local transformations are possible the one that reduces the aggregate
latency the most is executed. However, as shown in [12] local transformations
cannot guarantee a global minimum. In each local transformation period, an
MSN chooses, with a low probability, to perform a global transformation as well.
In a global transformation MSN P switches its tree position with another MSN
Q. MSN P tries to find another MSN Q by performing a random tree-walk. P
and Q cannot be each other’s descendant or ancestor. The swap transformation
is performed with probability 1 if the aggregate latency of the least common
ancestor of nodes P and Q decreases and with probability of e−∆/T otherwise. T

24

is the temperature parameter of the simulated annealing technique [28] while ∆
represents the increase in the aggregate latency of the least common ancestor of
nodes P and Q.

The OMNI overlay specifies join and leave algorithms for MSNs while the
details of join and leave algorithms for client nodes are not given. A joining MSN
starts its join algorithm by sending a join request to the root MSN. At each level
of the tree, a joining MSN N has three options:

• If the currently queried MSN P has bandwidth available, N joins as a child
of P.

• N chooses child C of P and joins as parent of C and child of P. The cost of
this option can be calculated through interactions between nodes N, P, C
and the children of C.

• N retries the join process from some child of P, say R. The cost of this
option is approximated to a hypothetical cost if N would join as a child of
R.

The first option is always given precedence over the other two. If the first
option cannot be executed the lowest cost option among the remaining two is
chosen.

If a leaving MSN is a leaf then no further overlay restructuring is needed.
Otherwise, one of the departing MSN’s children is promoted to the position of
its departing parent. The specific child is chosen such that the aggregate latency
is minimized the most. The other children of the departing MSN simply execute
the join algorithm starting at the newly promoted child.

Banerjee et al. assume that MSNs fail rarely. Therefore, no crash recovery
algorithm has been specified for MSNs.

3.5 ZIGZAG

Compared to the previously reviewed algorithms, ZIGZAG [41] has some very
unique characteristics. The ZIGZAG overlay organizes peers into bounded-size

25

clusters and builds a data delivery tree on top of those clusters. ZIGZAG does
not have a rendezvous node and its join and leave algorithms are rather different
from those of SpreadIt, HMTP, and OMNI. ZIGZAG has strict enforcement rules
that guarantee the height of the tree to be O(logk N) and the node degree to be
O(k2), where N is number of peers and k is a constant parameter.

1 2 3 4 5 6 7

4 S

S

Shead non−head server

level 0

level 2

level 1

Figure 3.6: ZIGZAG overlay H=3 and k=4

In order to understand the join and leave algorithms we first have to look at
the logical organization of ZIGZAG overlay peers. Peers are logically organized
in a multi-layer hierarchy of clusters. ZIGZAG’s overlay tree construction is
governed by this logical organization. If H is the number of layers and k > 3 is
a constant, then the following holds:

• Layer 0 (bottommost) contains all peers. The top layer contains the server.
All peers of layer i are also part of layer i − 1. If two peers belong to the
same cluster in layer i then they belong to different clusters in layer i − 1.

• Top layer (H-1) has only one cluster of size [2, 3k] while all other layers have
clusters of size [k, 3k].

• One particular peer in every cluster is selected to be the head of the cluster.
The server is the head of the top layer cluster. If a peer is the head of a
cluster, it is a member of the cluster in the layer above. If a peer is a
head of cluster at layer i, then it is also the head of its clusters at layers
0, 1, ..., i− 1.

26

The data delivery tree is constructed on top of the logical peer organization.
The rules for the data delivery tree are the following:

• The server is the root of the data delivery tree.

• A peer can have data streaming links to other peers only when it is in its
highest layer. For example, peer 4 in Figure 3.6 has no links at layer 1. It
has links only at its highest layer, namely layer 2.

• Peer P, in its highest layer i, can only serve data to peers located at layer
i − 1. In addition, peer P serves data to all cluster members of a cluster
at layer i − 1 except the head of that cluster. However, peer P cannot
serve data to peers that belong to the same cluster as peer P in a cluster
at layer i− 1. Thus, for example, peer 3 in Figure 3.6, whose highest layer
is 1, serves data to cluster mates of node 4 at layer 0. The exception is
the server, which serves streaming data to its immediate top layer cluster
members.

The ZIGZAG join algorithm adheres to the rules specified above. Since there
is no dedicated rendezvous node, joining peers contact the server directly. If
the overlay logical organization has only one cluster, the joining peer node P is
simply added to the cluster and connected to the server. Otherwise, P is bumped
further down the multicast tree until finding the appropriate leaf peer X that will
parent P. Suppose that while walking down the multicast tree, node P sends a
join request to node X. There are two options at each recursive step:

• if X is addable, select a child of X, Y, that is addable and the overlay delay
from P to the source through Y is minimal.

• otherwise select a child Y such that Y is reachable and the overlay delay
from P to the source through Y is minimal.

A peer node X is addable if there exists a path in the overlay tree from X
to a layer 0 peer whose cluster size is smaller than 3k. This specific cluster size
is introduced to allow adding of a new node in that particular cluster without
violating the ZIGZAG cluster size requirement. A peer node X is reachable if
there exists a path in the overlay tree from X to a layer 0 peer. For example, node
5 in Figure 3.6 is both addable and reachable while node 7 is neither. The overlay

27

delay from a peer to the source is not measured using the physical network delay.
Instead, the path in the multicast tree from the peer to the source is considered.
For each pair of adjacent peers on this path, the delay between them is measured,
and these delays are added together.

The ZIGZAG overlay treats the peer voluntary leaves and crashes the same
way. Due to the specifics of the ZIGZAG control protocol, its parent and children
as well as the cluster mates become aware of P’s departure. If P’s highest layer
is layer 0 then no further work is necessary. Otherwise, both the logical and the
physical organization have to be changed.

Suppose P’s highest layer was level j in cluster A. For each child in a cluster
at level j − 1 that P parented, the head of cluster A, X, is responsible for finding
a new parent. X simply picks a cluster mate with a minimal degree.

Logical reorganization is equally simple. Since P used to be the head of j

many clusters at levels 0, 1, ..., j − 1 , the new head for those clusters has to be
elected. A randomly chosen layer 0 cluster mate of P, Y, replaces P as a head for
all clusters at levels 0, 1, ..., j − 1. In addition, Y selects its new parent to be the
same peer that was parenting node P. If the cluster size becomes smaller than k or
greater than 3k ZIGZAG specifies additional logical and physical reorganizations.
See [41] for details.

ZIGZAG does not explicitly create mesh links. However, in order to keep
track of its logical and physical organization, each ZIGZAG node P exchanges
state information with a constant number of other nodes. P communicates with
its parent, its children, and with its cluster mates in each cluster to which it
belongs. From the above rules, we can derive that each node has at most (3k−1)2

children. Furthermore, each node belongs to at most logk N clusters and each
cluster has at most 3k − 1 peers. Therefore, the worst-case control overhead is
O(logk N) - recall that k is a constant.

28

Chapter 4

Simulator

In recent years, intensified interest in peer-to-peer computing as well as in Internet
media streaming have resulted in the research and development of a variety of
P2P media streaming overlay protocols. While we have reviewed only four tree-
overlay protocols, in the coming years we will undoubtedly witness the creation
of many others.

Some overlay researchers, including Deshpande et al. [19], have implemented
real P2P overlay streaming applications to test their overlays. While verifying
P2P overlays in simulations can hardly compare to the ideal of real life applica-
tion testing, the vast majority of researchers do not have the resources for such
attempts and have thus resorted to simulations of P2P overlays.

Using simulators, researchers attempt to verify various quantifiable overlay
assumptions such as overlay tree depth and width, as well as commonly mea-
sured metrics such as link stress and stretch. However, having each P2P overlay
research team developing their own custom-designed simulators to test overlays is
disadvantageous in various ways. Firstly, developing an overlay simulator is not a
trivial task. It takes the resources away from the actual focus of the research - the
overlay design. Secondly, if each research team designs its own simulator, they
can hardly compare or verify each others results due to the bias introduced in such
an approach. For example, one research team would usually pay special attention
to all the intrinsic details of their own algorithms while possibly overlooking the
same level of details in other algorithms. Researchers also tend to arrange the
simulation setup and the input parameters which produce advantageous results
for their own algorithms compared to other algorithms.

29

Many of these issues can be addressed with a common overlay simulator. The
network research community has been successfully utilizing the ns simulator [14]
since 1996. One of the main benefits of the ns simulator is its ability to simu-
late fine-grained details of network phenomena. For example, researchers have
used ns to investigate low-level TCP details (selective and forward acknowledg-
ment, congestion notification), router queuing policies (random early detection,
class based queuing), multicast transport (scalable reliable multicast), multime-
dia (layer video, audio and video quality of service), wireless networking and
various other problems [14].

Although ns has been used for scalable reliable multicast (SRM) and mul-
ticasting in general [14], the simulations performed were very detailed. Such
simulations cannot be large-scaled. Indeed, while the ns design requirement al-
lows for the abstraction of low-level simulation details [14], there has been little,
if any, evidence that ns is able to scale simulations to the requirements of today’s
P2P overlays. Our doubts concerning the scaling of the ns simulator up to the
requirements of P2P overlays were confirmed by the ns manual chapter - “Tips
and Statistical Data for Running Large Simulations in NS” [26] that boasted
examples of network topologies containing one thousand network nodes. 1

In overlay simulations, OMNI researchers used a network topology of 10K
nodes and up to 512 peer nodes, while the ZIGZAG overlay was tested on a 3240
nodes network topology with up to 2000 peer nodes. HMTP simulations used a
network topology of 1K nodes and up to 500 peer nodes.

4.1 Internet modeling

To model the Internet effectively, a detailed understanding of underlying issues is
crucial. The Internet is constantly evolving, its large-scale topological structure
is hard to understand, and there has been little agreement about what determines
a good topology generator in general. Although there have been many attempts
to model the Internet, there is a consensus among Internet topology researchers
that the question of accurate Internet topology generation remains open [40].

1It must be noted that there have been some successful attempts to scale ns simulations to
50K nodes using several custom extensions and modifications [35].

30

Researchers, however, agree that the Internet should be modelled at two dis-
tinct detail levels. The first level is the autonomous system (AS) level. In the
Internet, an autonomous system is the unit of router policy. It is either a single
network or a group of networks that is controlled by a common network admin-
istrator (or group of administrators) on behalf of a single administrative entity
(such as a university, a business enterprize, or a business division). Nodes and
edges in the AS level topology graph thus represent peering relationships be-
tween different ASes. The second representation is the router level, where nodes
represent routers and edges are one hop IP-level links. There are various ongo-
ing projects that are attempting to map the Internet on the router level using
traceroute-like utilities [25]. Obviously, the router graph represents the Internet
at a much finer level of granularity than the AS graph.

Internet topology generators have various modelling goals, focusing on a cer-
tain aspect of the Internet. Based on those modelling goals, Internet topology
generators are usually classified into three categories: random, hierarchical and
degree-based generators.

The first Internet topology generators were random graph generators. The
main representative of the random graph generators is the Waxman generator
[43]. This generator randomly assigns nodes to points in a plane and creates
links between the nodes based on a probability function of the Euclidian distance
between the nodes. The closer the node, the higher the probability that an edge
is created between them.

The hierarchical topology generators appeared next. Hierarchical generators
started with an assumption that the Internet is not a random graph but that it
has a rather distinctive hierarchical structure. Hierarchical generators, as their
name implies, focused on replicating the Internet’s hierarchical structure. GT-
ITM [15] is a representative of hierarchical topology generators and one of the
first Internet topology generators to gain wide attention in general. GT-ITM, and
its Transit-Stub generation model received wide acceptance due to its ability to
reasonably replicate the Internet’s hierarchical structure. GT-ITM equates stub
domains to the interconnected local area networks and the transit domains to
wide- or metropolitan-area networks. GT-ITM’s Transit-Stub generation model
first creates a connected random graph where each node represents an entire
transit domain. Each transit domain node is then transformed into a connected
random graph, representing a transit backbone, where each node could be a

31

gateway to a stub domain or a router to other transit domains. Finally, stub
domains are generated and attached to the each node in the transit backbone.

GT-ITM has been considered the state-of-the-art Internet topology generator
until a seminal paper by Faloutsos et al. [22] revealed that the Internet’s de-
gree distribution is a power-law. Degree distribution refers to the network node
connectivity distribution on both the intra and the inter AS level. A power-
law relationship between two scalar quantities x and y is of the form y = xk,
where k is a constant. Using real Internet traces, Faloutsos et al. observed four
power-laws:

• P1 (rank exponent) relationship between the outdegrees of nodes sorted in
decreasing order and the ranks of the nodes in such order. The outdegree
dv of the node v is proportional to the rank of the node, rv, to the power
of some constant.

• P2 (outdegree exponent) the frequency of an outdegree, fd, is proportional
to the outdegree d to the power of some constant.

• P3 (hop-plot exponent) the total number of pairs of nodes, P (h), within h

network hops is proportional to h to the power of some constant.

• P4 (eigen exponent) the eigenvalues, λi, of the adjacency matrix of a topol-
ogy, sorted in decreasing order are proportional to i raised to some constant
power.

Since the hierarchical generators do not produce power-law adhering topolo-
gies, some members of the research community have concluded [40] that the hi-
erarchical generators are unsuitable for Internet modelling after all. The seminal
paper of Faloutsos et al. has been a motivator for a new generation of Inter-
net modelling generators that aim to replicate the Internet power-law degree
distributions - degree based generators. Several degree-based Internet topology
generators emerged recently [9, 30].

After the emergence of the degree-based generators, Zegura, the principal
author of the GT-ITM topology generator, agreed [44] that the GT-ITM does
indeed not adhere to power-law distributions and that it is probably not suit-
able for AS network representation. However, Zegura claims that their topology
generator is still a suitable candidate for the generation of moderate size router

32

level topologies. Zegura has argued that their method builds topologies whose
high-level structure fairly well reflects the high-level structure of the Internet.

It is a widespread belief [40] that it is more important for topology generators
to accurately model the large-scale structure of the Internet, for example its
hierarchical structure, rather than modelling the local phenomena like the degree
distribution. Since we needed large-scale network topologies for our simulations
we wondered if degree-based generators would be the best fit for our simulations
after all? Which class of generators do indeed most accurately resemble the
Internet when looking at the large-scale properties?

Tangmunarunkit et al. [40] compared hierarchical and degree-based generators
using various topology metrics in an attempt to find out which class of genera-
tors more accurately models the large-scale structure of the Internet. Following
the belief that topology generators that are focused on the Internet’s large-scale
structure properties model the Internet more accurately, Tangmunarunkit et al.
started with an assumption that hierarchical generators would thus generate more
accurate large-scale Internet topologies. Much to their own surprise their findings
pointed in the opposite direction. Tangmunarunkit et al. found that degree-based
generators are significantly better at representing large-scale Internet topologies
at both the AS and the router level. This paradoxical finding would lead to a con-
clusion that degree-based generators must create hierarchical topologies as well
since it is well known that the Internet has hierarchical structure. And indeed
Tangmunarunkit et al. found that although degree-based generators do not aim
at representing hierarchical properties of the Internet, the power-law nature of
degree distributions results in a substantial level of hierarchy.

4.2 Network topology

Selecting a particular topology generator depends on the several factors, including
the nature of the research, the size of required topology, as well as the importance
of the various Internet characteristics for a certain research project. As discussed
above, the most appropriate solution for the large-scale P2P simulations would be
a generator from the degree-based class of generators. The BRITE [30] Internet
topology generator has recently emerged as a universal topology generator. We
believe that BRITE is the best choice from the degree-based generators, and

33

Internet topology generators in general, for several reasons:

• Representativeness - BRITE produces accurate large-scale synthetic In-
ternet topologies. Accuracy is reflected in both hierarchical and degree-
distribution properties of the Internet.

• Flexibility - BRITE generation models can easily be enhanced by additional
node and link metadata like, for example, firewalls, bandwidth and delay.

• Extensibility - BRITE’s object-oriented architecture provides an extendible
model framework for adding entirely new generation models.

• Efficiency - BRITE generates large-scale topologies of more than 500,000
nodes using reasonable CPU and memory resources.

• Interpretability - BRITE is able to import topologies from various topology
generators and combine them with other topologies. BRITE can also import
real Internet traces and use them in a topology generation model. Besides
standard BRITE export format, several other export formats are built-in
and new formats can be easily added.

• Portability and user friendliness - BRITE is implemented in both C++ and
Java and includes a GUI.

From the vast array of available Internet topology generation models provided
by BRITE, we have the chosen a hierarchical generation model. BRITE’s hier-
archical generation model allows a separate generation model for the AS and the
router level representations. In the light of recent power-law research by Falout-
sos, Tangmunarunkit’s comparison of hierarchical and degree-based generators,
we could have selected a one level power-law adhering model. The main reason
for choosing the hierarchical model is the necessity for the Internet wide area
network representation in P2P overlay simulations. The real life deployment sce-
nario for most of the P2P overlay media streaming systems is most likely the
Internet itself. The combination of inter AS policy routing and intra AS shortest
path routing determine a routing structure on any wide scale network of peers. In
order to capture these important routing phenomena in our simulation we need
a two level hierarchy.

The actual BRITE generation model we used is the top-down hierarchical
topology generation model. BRITE allows for the use of a different model for

34

each hierarchy level. Since Tangmunarunkit et al. have found power-law graphs on
both the AS and the router level we have used the power-law adhering Barabasi-
Albert [13] generation model for both levels of the hierarchical generation model.
Barabasi and Albert suggested that there are two reasons for the emergence of
a power law [22] in the frequency of outdegrees observed in network topologies:
incremental growth and preferential connectivity. Incremental growth refers to
continually enlarging networks formed by the addition of new nodes. Preferen-
tial connectivity is described as a tendency of newly added nodes to connect to
existing nodes that are highly connected or popular. Medina et al. [31] consider
two additional factors that might be a cause for emergence of power-laws: geo-
graphical distribution of nodes and locality of edge connections. Medina et al.
argue that geographical distributions of nodes that are skewed (e.g. heavy-tailed)
appear to be a realistic cause for power-laws. Locality of edge connection mimics
node distribution in a sense that those few heavily populated areas have highly
connected nodes, while the rest of the nodes are loosely connected. All of the
four factors are implemented in the BRITE topology generator.

The top-down generation model approach first generates the AS level topol-
ogy. In a second step, each AS level node is expanded into a router level topology
using the same generation model.

Router level topologies from different AS nodes are interconnected according
to the connectivity of the AS level topology. If (i, j) is a link in the AS level
topology, then a node u from the router level topology associated with AS node
i, and a node v from the router level topology associated with the AS node j,
can be connected in four different ways:

• Random: u and v are picked randomly.

• Smallest degree: u and v are nodes with the smallest degrees in the respec-
tive router topologies.

• Smallest degree non-leaf: u and v are nodes of smallest degree in respective
topologies but not leaves (i.e. having a degree of at least 2).

• Smallest k-degree: u and v are nodes from the respective topologies having
a smallest degree which is at least k where k is a user specified constant.

35

For our simulations we have selected the smallest k-degree connection method.
We have set k to 5 in all generated topologies. This connection method exhibits
some form of preferential connectivity between the nodes from different ASes. To
the best of our knowledge it is unknown how to best represent AS interconnection.
There are many issues involved when two ASes connect and it is not clear if the
largest degree routers in two ASes should have a link between them.

4.3 Modeling interdomain routing

Representative simulation of Internet routing has been a challenging task [33]. In
order to properly model the complex Internet routing one needs to have a detailed
understanding of interdomain routing. Interdomain routing in the Internet is
governed by the policy-based border gateway protocol (BGP). BGP allows each
AS to administer its own routing policy. A BGP router at AS A can selectively
broadcast to other ASes that are reachable from A. These routing policies are
constrained by the contractual commercial agreements between ASes.

Since routing in the Internet is determined by BGP, physical node connectivity
does not always imply Internet traffic reachability. Relationships between various
ASes determine whether or not traffic can flow between physically connected
nodes. For example, a customer AS can set its policy so that it does not provide
transit traffic between its providers. More specifically, it is not hard to envision
a scenario where a customer AS is connected to two provider ASes, A and B. A
customer AS has no obligation and probably no interest to set its routing policy to
allow traffic flow between its two providers. Thus even though there is a physical
path from provider A to provider B (through a customer AS) no traffic will be
exchanged between the two providers through that customer AS. In order to
simulate Internet routing, AS topologies, generated by topology generators, have
to be annotated with the additional metadata representing peering relationships
between the corresponding AS nodes.

Naturally, peering relationships have a dynamic nature and are continuously
changing. How can we model interdomain routing if the peering relationships
between various ASes are constantly evolving? Gao [24] suggested to abstract
from details and focus on AS relationships. In particular she presented a heuristic
algorithm that classifies the types of AS peering relationships. Gao distinguished

36

three AS relationship types: customer-provider, peering, and sibling relation-
ships. The real Internet BGP traces available publicly from the Route-Views
project were used. After obtaining BGP traces, Gao ran her heuristic AS rela-
tionship classifier algorithm to find out that 90.5% of AS pairs are in customer-
provider relationships, 8% are in peering relationships and finally only 1.5% are
in sibling relationships. Gao verified the inferred results with AT&T’s internal
routing information and confirmed that 99.1% of the inferred relationships are
correctly identified. Also more than half of the inferred sibling-sibling relation-
ships were confirmed using the WHOIS lookup service.

As previously discussed, we use BRITE generated synthetic AS and router
topologies for the simulations conducted. Obviously the synthetic AS topology as-
is does not have any additional metadata about the AS peering relationships. In
order to use AS topologies with annotated AS relationships, as suggested by Gao,
one would have to take the following steps. First, the real BGP traces have to be
obtained that are available from various public BGP tracers, one of them being
the Route-Views. Second, Gao’s AS relationship or possibly some new algorithm
should be run over the obtained BGP traces. The created AS topology annotated
with inferred peer relationships should be imported by BRITE. BRITE’s node
and edge model has to be updated to accommodate the additional node and edge
metadata.

After these steps have been performed, the inter domain routing algorithm can
use the additional node and edge metadata to have a more representative inter
AS routing. As previously discussed in Section 4.2, we have intentionally made a
distinction between inter AS and intra AS routing so that routing improvements
can be easily incorporated in the future.

4.4 Bandwidth distribution

Although the P2P overlay simulators that we have reviewed have chosen to ab-
stract from peer Internet bandwidth connection characteristics in their respective
simulations, we think that the heterogeneous nature of P2P peers, as observed in
a peer measurement study by Saroiu et al. [38], is an important peer characteristic
to be captured in P2P overlay simulations.

37

BRITE has the ability to assign bandwidth to the generated network links
and thus the available bandwidth between two network nodes can be determined
by the slowest link on the path between them. However, in our simulations we
have not calculated the bandwidth by traversing the path that connects two peer
nodes but have rather assumed that the slowest link is usually the last hop link
that connects the peer to the Internet. A peer’s Internet connection bandwidth,
determined by its last hop link, is a property that remains constant for the lifetime
of a simulation. In fact, in order to simplify the model, we have ignored BRITE’s
link bandwidth assignment altogether. We have not modelled a peer’s downlink
bandwidth distribution and have assumed that a peer has an appropriate amount
of downlink bandwidth to receive the media stream.

The distinction between uplink and downlink bandwidth is important since
the available uplink bandwidth of the computers serving content is of a greater
importance. If a media stream being served from a peer P to a peer Q, P’s uplink
is more likely to be exhausted or congested than Q’s downlink thus resulting in
a stream interruption for peer Q. Congestion problems lead to a bad quality of
service experienced by peer Q. While the Internet user in a corporate or academic
environment may not experience significant service degradation when the uplink
is used by a P2P application, many users who connect to the Internet through a
consumer broadband connection such as cable or DSL experience such problems.
In order to serve a data stream to other peers, a peer needs to have available
uplink bandwidth. Available uplink bandwidth is a peer’s property that may
change during the lifetime of the peer’s participation in the overlay. Available
uplink bandwidth for peer P depends on P’s uplink connection bandwidth as well
as the number of peers that currently receive their stream from peer P.

Using a specifically designed bandwidth-measuring tool named SProbe, Saroiu
et al. have conducted an Internet bandwidth connectivity measurement study of
the Gnutella and the Napster P2P peers. Saroiu et al. first used a specialized
crawler to collect over a million IP addresses of the Gnutella network peers as
well as over half-a-million Napster IP peer addresses. A set of half-a-million
randomly selected Gnutella nodes were used for the active bandwidth measure-
ments probing. Downlink bandwidth measurements were successfully conducted
on 223,552 Gnutella peers, while uplink bandwidth measurements were success-
fully conducted on 16,252 Gnutella peers. The Napster measurements were not
as successful since there were a number of Napster users complaining about the
active crawler probing. However, Saroiu et al. believe that 2,049 successfully

38

measured Napster peers are a good enough representation of the entire Napster
peer population.

The overlay simulator we have developed can accept any specified peer band-
width distribution as one of the simulation parameters. However, for easy refer-
encing and benchmarking we have used the Gnutella peer distribution as captured
by Saroiu et al.

4.5 Peer join and duration distribution

One of the most recognizable characteristics of a fully decentralized distributed
system and especially a P2P overlay-streaming system is the highly unpredictable
nature of peer node joins and leaves. It is common practice [32] to model these
systems in a stochastic, continuous-time setting. We have modelled the join of
peer nodes in the overlay by a Poisson distribution and the lifetime of a peer
node participation in the overlay by an exponential distribution.

Since we wanted to observe overlay behavior on the various peer population
scales we have set the arrival and lifetime parameters accordingly.

39

Chapter 5

Simulation results

Before delving into the details of our simulation results we will give a brief
overview of the simulation experiments conducted by those who developed the
SpreadIt, HMTP, OMNI and ZIGZAG overlay algorithms.

5.1 Previous simulation results

All of the reviewed simulation experiments used small ad hoc network topologies
and simplified simulation parameters like peer outdegree distributions as well as
peer join and duration distributions. After the overview of all four overlay algo-
rithms’ simulation results, we describe how those simulations can be replicated
within our simulation environment and we compare our results with theirs.

5.1.1 SpreadIt

The SpreadIt simulator aims at creating a representative simulation model of
the actual SpreadIt streaming architecture. In [19] no mention was made of the
topology generator used. The size of the peer overlay contained a maximum of
1000 nodes and a maximum outdegree of 10 was allowed. Since SpreadIt data
channels are based on the lossy UDP protocol, the focus was mostly on mod-
elling the packet loss experienced by the peers in the various join/leave algorithm
setups.

A peer node, as modelled by the SpreadIt simulator, can be in three states:

40

inactive, active and transient. A node is inactive when it is not subscribed to the
stream. A node is active when it is subscribed to the stream and is receiving the
stream and finally a node is transient when it is subscribed to the stream but is
not receiving the stream.

Simulated SpreadIt peers change states in a probabilistic fashion. A peer can
make a transition from one state to another at each time tick. For example, an
inactive node can move to the transient state with some fixed probability. If
a node is in the active state it can move to the inactive state with some fixed
probability and so on.

Deshpande et al. simulated the various combinations of SpreadIt join and leave
policies and observed the packet loss in such simulation setups. They predicted
that the P2P approach would lead to an increase in packet loss since the pack-
ets travel more hops from the source to the peers compared to the client/server
approach. They found that their SP join policy results in only 2.5 times more
packets loss on average per peer node than the classic client/server approach.
The increase factor is equal to the average height of a node in the overlay tree.
The cause of the increased packet loss is attributed to the cumulative packet-loss
effect. Deshpande et al. also concluded that leave policies that intensively com-
pact the overlay tree (GFA, RTA) suffer more packet loss than less intensive tree
compacting leave policies (GF, RT). This finding is somewhat counterintuitive
since one would expect that less intensive compacting policies would result in
higher trees which in turn would lead to a higher packet loss.

Deshpande et al. also investigated the flash crowd effect and concluded that
any join policy will perform ten times better than the classical client/server
model. They attribute the degradation of performance to the server becom-
ing a bottleneck in handling the setup of streaming data for each client. In the
P2P approach a server quickly distributes incoming clients away from the server
towards the overlay leaves who then eventually setup the stream for the incoming
peers.

5.1.2 HMTP

Zhang et al. [45] performed simulations of their P2P streaming overlay using a
random flat topology generated by the Waxman topology generator. The gener-

41

ated topology had 1000 nodes representing routers and 3300 edges (links). Some
additional nodes representing end hosts were generated and attached to router
nodes. There was no mention of how many additional nodes were attached to the
routers. Peer heterogeneity simulation was simplified as well. No specific peer
bandwidth distribution was used and the maximum node degree was set to 8.
Three metrics were used to measure the quality of the overlay.

The first one is the tree cost which is defined as the sum of delays on the
trees’ links. The goal of this metric is to capture the total amount of network
resources used by the tree. The ratio of the overlay tree’s cost to the IP multicast
tree cost is thus the tree’s cost ratio. The simulation setup included growing the
overlay from 20 to 500 nodes. The tree cost ratio for HMTP ranged from 1.2 for
20 members up to 1.5 for 500 members. To put it in perspective, IP multicast
has a tree cost ratio of 1 while the original client/server model, as simulated by
HMTP researchers, had a tree cost ratio ranging from 1.7 for 20 members up to
3.5 for 500 members.

The second metric used in the simulation was the tree delay. The tree delay
represents the node delay from one node to another node along the overlay’s
links. The ratio between the tree delay and the unicast shortest path is the delay
ratio. This metric is somewhat similar to link stretch except that Zhang et al.
have measured tree delays not only between the source and an arbitrary node but
between other tree nodes as well. The reason this metric was defined between
two arbitrary nodes is that HMTP does not prevent any node to multicast data.
They also defined the group diameter as the maximum delay between any pair
of nodes. The ratio of the group diameter and the IP multicast tree diameter is
called the group diameter inflation. Using the same simulation setup as in the
first metric observation Zhang et al. have found that most of the pairs have a
delay ratio of 5 while the worst case delay ratio was 12.

The third and final metric is the link load. The link load is equivalent to the
link stress. The simulation setup consisted of a 100 member overlay. More than
half of the physical links used had a link load of 1. About 90% of the links had a
link load of less than 4. There were only a few links having a link load between
4 and 8.

42

5.1.3 OMNI

The OMNI simulations were conducted on a ten thousand node network topol-
ogy generated by the GT-ITM network topology generator. MSN peer nodes
were randomly attached to the network topology. The number of MSN nodes in
various simulation setups varied between 16 and 512 nodes. There was no par-
ticular distribution model for simulating peer arrivals and leaves. A predefined
set of MSN peers was simulated to join and leave the overlay at particular time
instances. The bandwidth model was a uniform distribution with MSN nodes
being able to serve between 1 and 5 other MSN nodes.

As the OMNI P2P overlay system has an objective to minimize the average
tree latency, most of the simulations were focused on gathering the results for
determining the average tree latency. More specifically, the conducted simula-
tions focused on the tree latency results affected by varying the overlay input
parameters. The first simulation scenario, the convergence, implied that as the
probability of random swap operations increases the search for a global minimum
becomes more aggressive. Besides the probability of the random swap parame-
ter, the effect of the temperature parameter was also observed. Higher values of
the temperature parameter imply that a random swap that leads to an average
tree cost increment is permitted with a higher probability and thus to higher
oscillation in aggregate tree latency.

The second simulation scenario, the adaptability, examines the adaptation of
the overlay to the various join and leave scenarios. The distractibility measures
how quickly the overlay converges to the optimum average tree latency. The
setup included an initial overlay tree consisting of 248 MSNs. 64 MSNs would
either join or leave every constant number of ticks. Banerjee et al. have found
that OMNI reaches to within 6% of the optimal average tree latency very quickly.
Such prompt adaptation has been attributed to local transformations.

Banerjee et al. have also verified their assumption that the MSNs that serve
more clients would move up the overlay tree towards the source while the MSNs
that serve less clients move towards the leaves of the overlay tree.

43

5.1.4 ZIGZAG

The ZIGZAG overlay simulator used the GT-ITM topology generator to create
a 3240 node network topology. The simulation setup included 2000 simulated
peers. Simulation input parameters have been customized to create the ZIGZAG
clusters containing at most 15 and at least 5 peers. Peers were assumed to
have an infinite uplink bandwidth. However, Tran et al. have tracked in their
simulations the peer uplink distribution required to create the ZIGZAG overlay.
The simulations included three different scenarios: a node failure-free setup, a
setup where node failures were allowed and finally a simulation setup comparing
ZIGZAG to the NICE [11] P2P streaming system.

In the first simulation scenario 2000 peers were subsequently added to the
overlay and the statistics about the control overhead, the node degree, the peer
stretch, and the link stress were collected. Tran, Hua and Do have found that the
control overhead for joins is not significant. On average a new peer contacts only
2.4% of the whole overlay peer population. The overall control overhead was also
low. In order to manage ZIGZAG clusters each peer node exchanged state with
on average only 12 other peers. The average outdegree of a peer that forwards
its stream to other peers was 10 while the highest outdegree observed was 22.
Taking into account that this simulation setup consisted of 2000 peers placed on
a network of 3240 nodes the link stress and the stretch were surprisingly good.
In this particular simulation setup ZIGZAG had a stretch of 3.45 for most of the
peers and link stress of 4.2 for most of the network links used.

In the second simulation setup 2000 peers that were subsequently added to
the overlay were subsequently failed in batches of 200 until 1000 were left in
the overlay. Most of the failures affected the layer-0 peers and thus no additional
restructuring was needed. The control overhead for failures is that on average 0.96
nodes are contacted no matter what the population size is. This finding supports
the theoretical analysis that failure overhead doesn’t depend on population size.
Similar findings were observed in cluster merges.

Tran et al. have provided neither the results of node outdegrees nor those of
link stress and stretch in the second simulation scenario. We believe that they
have assumed that the results of those metrics would have been similar to the
first simulation scenario.

44

5.2 Verification of the previous simulation re-

sults

Before conducting any detailed simulation experiments and comparing of the
implemented overlay algorithms we wanted to verify the individual simulation
results of the HMTP, OMNI, and ZIGZAG overlay algorithms as reported by their
respective authors. We have not tried to reproduce the results of the SpreadIt
overlay algorithm. Trying to reproduce the SpreadIt simulation results would
require a significant change in our overlay simulator. The SpreadIt simulations
focus on the packet loss experienced by the peers in the various join and leave
algorithm scenarios. Our implementation of the SpreadIt overlay and all other
overlays does not involve simulating the probability of packet loss but we rather
assume lossless data channels. However, since the SpreadIt overlay construction
algorithm is much simpler than the other algorithms that we have implemented
we are confident in the correctness of our SpreadIt simulation implementation.
High correlation of our simulation results with the published simulation results
would indicate the flexibility of our own P2P simulator to reproduce the particular
simulation scenarios as well as the correctness of the implemented algorithms.

5.2.1 HMTP

The first step in replication of the HMTP simulation environment was the cre-
ation of an approximately similar network topology used in the original HMTP
simulations by Zhang et al. However, Zhang et al. do not specify the exact num-
ber of the network nodes they used in their simulations except that 1000 nodes
were created to represent the routers. An unspecified number of end-host nodes
were subsequently added to each router.

We used BRITE’s top-down hierarchical topology generation model where
both the AS and the router level were created using the Waxman topology gen-
eration model. The number of ASes was set to 100 and each AS had 100 routers.
Thus the total number of nodes in the network topology was 10000 nodes. In
order to replicate HMTP’s peer heterogeneity bandwidth model from simulations
conducted by Zhang et al. we created a single type of peer node having an uplink
outdegree of 8.

45

The quality of the created HMTP overlay, in the original simulation by Zhang
et al. was verified with three overlay metrics: the tree cost, the tree delay and
the link load.

0.4

0.6

0.8

1

1.2

1.4

1.6

0 10 20 30 40 50 60 70 80 90 100

S
tr

es
s

Time ticks

mean
stddev

Figure 5.1: HMTP link stress

Since our set of predefined metrics includes the link stress (link load) we
have proceeded to verify their link stress findings. The simulation setup involved
building a 100 peer node HMTP overlay and taking link stress measurements.
Figure 5.1 depicts mean and standard deviation of the link stress during 100
simulation ticks. HMTP nodes are added in batches of ten in the first ten ticks
and half of the nodes are failed in between ticks 50 and 70. The link stress
simulation results are very similar to the link load results of Zhang et al.

5.2.2 OMNI

In order to replicate the OMNI simulation environment, we used the BRITE
generator to create a ten thousand node network topology. We used the top-
down hierarchical topology generation model where both the AS and the router
level were created using the Waxman topology generation model. The number of
ASes was set to 100 and each AS had 100 routers. Since the OMNI simulations
used a predefined set of MSN peers leaving and joining the overlay at particular

46

time ticks, we used our discrete peer arrival and duration distribution model. In
order to replicate OMNI’s peer heterogeneity bandwidth model from simulations
conducted by Banerjee et al. we created five different types of MSNs each having
uplink outdegree between 1 and 5.

17

17.5

18

18.5

19

19.5

20

20.5

21

21.5

22

22.5

5 10 15 20 25 30

A
ve

ra
ge

 tr
ee

 la
te

nc
y

Time ticks

p=0.02
p=0.05
p=0.10

No random swap

Figure 5.2: Varying the probability for random-swap in 256 MSN convergence
setup

The first OMNI simulation we conducted was the 256 MSN convergence sim-
ulation. We added 256 MSN nodes to the OMNI overlay and then attached
between 1 to 5 clients chosen uniformly at random to each MSN. The final setup
included 256 MSN nodes serving a total of 359 clients.

Figure 5.2 shows the results of the 256 MSN convergence simulation. We
conducted 4 simulation runs each having a different probabilistic random swap
transformation parameter. When the parameter is set to 0, no random transfor-
mations occur. The stable value of 20.1 ms average tree latency is reached rather
quickly. In this case the fall in average tree latency is accounted to the local
transformations only. As we can see in Figure 5.2, the higher the value of the
probabilistic random swap transformation parameter the more contentious the
search for the global minimum becomes. Using the parameter value of 0.1 allows
the OMNI overlay tree to achieve an average tree latency of less than 17.5 ms
in about 30 simulation ticks. In this case both the local and the random swap

47

operations account for the drop in average tree latency.

0

5

10

15

20

25

30

35

40

20 40 60 80 100 120

A
ve

ra
ge

 tr
ee

 la
te

nc
y

Time ticks

average tree latency

Figure 5.3: Join leave experiments with 248 OMNI nodes

The second OMNI simulation we conducted was the 248 MSN node adapt-
ability simulation. We added 248 MSN nodes to the OMNI overlay in a sequence
of 128, 8, 16, 32 and 64 nodes every ten time ticks. Thus at simulation time tick
40 there were 248 MSN nodes. Figure 5.3 plots the average tree latency. Notice
how each addition of MSN nodes causes an increase in the average tree latency
for each five MSN node addition instances.

At time tick 50 we started crashing 48 MSN nodes in intervals of every twenty
time ticks. Notice how similarly to the node addition, node crashes also cause an
increase in the average tree latency. However, after both additions and crashes,
the average tree latency quickly converges back toward the global average tree
latency minimum.

Comparison with the original OMNI simulation results

By verifying the results of OMNI’s convergence and adaptability simulations we
can assert the correctness of our own OMNI overlay implementation. We were

48

able to closely reproduce both the results of the convergence and adaptability
simulations.

Similar to the results of the corresponding 256 MSN convergence simulation
conducted by Banerjee et al. we have also found that as the probability of ran-
dom swap operation increases the search for a global minimum becomes more
aggressive. The average tree latency results of 256 MSN convergence simulation
as published by Banerjee et al. are different from our average tree latency results
due to the different MSN unicast latency distribution used in these two simula-
tion scenarios. Banerjee et al. used unicast latencies that varied from 1 to 200
ms between various MSNs while in our simulation the average latency between
parent/child MSNs was 6.2 ms with a standard deviation of 1.2. The lowest mea-
sured unicast delay between parent/child MSNs was 0.9 ms while the maximum
was 14 ms. However, the percentage drop of the average tree latency from the
start to the end of the simulation is very similar.

The results of the adaptability simulations are very similar to the adaptability
simulation results observed by Banerjee et al. as well. Both the bulk node joins
and the leaves or crashes cause the spikes in the average tree latency and just
as Banerjee et al. observed the average tree latency converges back towards the
global average tree latency minimum.

5.2.3 ZIGZAG

The first step in replicating the ZIGZAG simulation environment involves creating
a 3200 node network topology. We used BRITE’s top-down hierarchical topology
generation model where both the AS and the router level were created using the
Waxman topology generation model. The number of ASes was set to 32 and
each AS had 100 routers resulting in a network topology of 3200 nodes. In the
ZIGZAG simulations a predefined set of peers joins and leaves the overlay at
each particular time tick. Therefore, we used our discrete distribution model for
both peer joins and leaves. Since the ZIGZAG peer heterogeneity bandwidth
model has nodes of unlimited uplink bandwidth capacity, we defined a single
uplink bandwidth type having an uplink outdegree of 2000 nodes. Since all the
ZIGZAG simulation scenarios involve at most 2000 peers we could possibly have
a case when the source is parent to all the nodes hence requiring uplink capacity
of 2000.

49

0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Jo
in

 o
ve

rh
ea

d

Time ticks

join overhead

Figure 5.4: Join overhead

The first simulation setup that we replicated was the “no failure” simulation
conducted by Tran et al. In that simulation scenario 2000 peers were added to
the ZIGZAG overlay and no nodes were allowed to leave or crash. Tran et al.
collected fine grained results of their simulations by recording each join, leave,
split or merge event. In order to replicate the results on that granularity level we
ran our simulator for 2000 simulation ticks and joined one ZIGZAG node in each
tick. Since our simulator collects data after each tick we were also able to detect
relevant data regarding split, merge and leave events.

Figure 5.4 shows the results of the join overhead metric. Join overhead is
measured by the number of peers each newly arriving peer has to contact during
the join procedure. As illustrated in Figure 5.4, a joining peer has to contact on
average around 80 other peers or about 4% of the total peer population.

The second metric recorded was the split overhead. Split overhead is measured
by the number of reconnections required during each cluster split operation. Fig-
ure 5.5 shows the number of peer reconnections required during each tick. There
is a possibility of more than one cluster split occurring in a particular tick. In
total we recorded 280 clusters splits. For each split, there were on average about
9.5 peer reconnections needed. Notice how each high value in split overhead de-
picted in Figure 5.5 coincides perfectly with a high downfall in the join overhead

50

depicted in Figure 5.4.

0

20

40

60

80

100

120

140

160

180

200

0 200 400 600 800 1000 1200 1400 1600 1800 2000

S
pl

it
ov

er
he

ad

Time ticks

split overhead

Figure 5.5: Split overhead

The last metric recorded during the “no failure” simulation setup was the
average outdegree of the nodes that are serving other peers. Figure 5.6 shows
that a peer that serves content to other peers, does so to about 10 other peers.
The initial spike in the outdegree is credited to the source serving many peers
before the first split.

We have also replicated the second “failure possible” simulation scenario. In
this simulation setup, in total 2000 peers were added to the ZIGZAG overlay in
the first 1000 simulation ticks. Half of the 2000 peers were then subsequently
crashed between ticks 1000 and 2000. Since we used a uniform duration distri-
bution, each tick resulted in approximately one peer leave or crash. At tick 2000
there were 1006 peers left in the overlay.

The first metric we have measured in this simulation scenario was the failure
overhead. Failure overhead is captured by the number of required peer recon-
nections triggered due to a node leave or crash. As depicted in Figure 5.7 most
of the failures do not cause any reconnections since these represent failures of
the layer 0 nodes. Although a duration distribution function was set to crash
one thousand nodes in a thousand ticks there is a possibility that more than one

51

0

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 1400 1600 1800 2000

O
ut

de
gr

ee

Time ticks

average
stdev

Figure 5.6: Average node outdegree

non-layer 0 node leave or crash occurred in a particular tick. For example, the
worst case of failure overhead requiring 24 reconnection was probably caused by
more than one non-layer 0 node crash or leave occurring in that particular tick.
Non-layer 0 node failures required on average 4.5 peer reconnections.

0

5

10

15

20

25

1000 1200 1400 1600 1800 2000

F
ai

lu
re

 o
ve

rh
ea

d

Time ticks

failure overhead

Figure 5.7: Failure overhead

52

The last metric measured in the second simulation scenario was the merge
overhead. Merge overhead is represented by the number of peer reconnections
required during cluster merge operations. Figure 5.8 shows the total number
of reconnections due to cluster merge calls in each simulation tick. There is a
possibility of more than one cluster merge occurring in a particular tick. For
example, the worst case of merge overhead was 31 peer reconnections but it was
caused by 2 merge calls. We recorded a total of 114 merge calls each requiring
on average 5.5 peer reconnections.

0

5

10

15

20

25

30

35

1000 1200 1400 1600 1800 2000

M
er

ge
 o

ve
rh

ea
d

Time ticks

merge overhead

Figure 5.8: Merge overhead

Comparison with the original ZIGZAG simulation results

Arguing the correctness of our ZIGZAG overlay implementation is intrinsically
tied to reproducing the original results published by Tran et al. Similarities are
most evident from the simulation result data patterns, primarily from the cor-
relation between the split and the join overhead. Other similar data patterns
worth mentioning are the “heart-rate” like nature of the join overhead as well as
the occasional spikes in the split overhead. Similar spikes are noticeable in the
failure and the merge overhead as well.

Both Tran et al. and we got the exact same average outdegree of 10 for the
data stream forwarding peer nodes. The join and the split overhead results that

53

we got were somewhat higher than the average values in join and split overhead
from the original simulations. Namely, the average join overhead that Tran et
al. got in their simulations was around 50 peer contacts while the average split
overhead was 5 peer reconnections. In contrast, we got an average join overhead
of 80 peer contacts and the split overhead of 9.5 peer reconnections. Interestingly
enough the simulation results of the non-0 layer failure overhead and the merge
overhead that we got were somewhat lower than the original results. We have
recorded the non-0 layer failure overhead of 4.5 and the merge overhead of 5.5 peer
reconnections while Tran et al. observed 10 and 11 peer reconnections respectively.

How do we attribute these minor differences in the simulation results? The
most likely causes are the intricate details of the cluster split and merge. We
suspect that we did not use the same frequency and threshold of cluster split and
merge as Tran et al. did. However, overall there is a great degree of similarity
between our results and the original simulation results published by Tran et al.

5.3 Simulation results

After verifying that our implementations of the HMTP, OMNI, and ZIGZAG
overlay algorithms are reasonable representations of their original counterparts we
can proceed to administer a detailed comparison of these overlay algorithms in our
P2P simulator. Conducting a detailed comparison of the overlay algorithms in our
P2P simulation environment involves using a predefined set of input parameters
that we will review in turn.

Network topology

In Section 4.2 we have reviewed in detail the reasons to use the BRITE network
topology generator in our simulations. We have mentioned that we used the two
level top-down hierarchical model where both the AS and the router level use the
power-law adhering Barabasi-Albert generation model.

The largest network topology used in the P2P media streaming simulations,
to the best of our knowledge, was a 10K network topology used in the OMNI

54

simulations. We thought that it would be beneficial to observe the overlay behav-
ior on larger, more realistic network topologies. We have conducted simulations
on two network topology sizes. Both network topologies used the same parame-
ters that adhere to the model we found the most suitable, as defined in Section
4.2. We have conducted overlay simulations on 10K and 100K network topolo-
gies. Hereafter, when referring to the specific network topologies used in our
simulations we will consistently use the terms 10K and 100K.

Bandwidth distribution

As far as we can tell, most of the previously conducted P2P overlay simulations
used various simple peer bandwidth heterogeneity models. In our P2P media
simulations we have used a peer bandwidth heterogeneity reference model based
on research conducted by Saroiu et al. [38]. We will refer to this bandwidth ref-
erence model as the Saroiu bandwidth model. Using the Gnutella peer upstream
bandwidth distribution observed by Saroiu et al. we picked one of the following
five bandwidths (distributed uniformly):

• 50 kbps

• 400 kbps

• 800 kbps

• 3500 kbps

• 15000 kbps

Each generated peer node that joins an overlay is assigned an upstream band-
width capability based on a bandwidth reference model used in that particular
simulation. For simplicity, we have assumed a stream rate of 128 kbps for all
simulations. The highest number of peers to which each peer can possibly stream
data in a P2P overlay system is thus bounded by: upstream bandwidth capability
/ 128 kbps.

55

Peer join and duration distribution

We have modelled the peer join and duration distributions using Poisson and
exponential distributions respectively. We have used the popular scientific library
Colt [1] that supports numerous distributions. We have set the parameters of
the Poisson and exponential distribution to achieve the desired peer overlay size
during various simulations. For simulations involving a network topology of 10K
physical nodes we have used the Poisson random distribution with an average
rate of 30 peer node joins per simulation tick. For the 100K simulations the
average join rate was 60 peer nodes per tick.

Recall that the probability distribution function of an exponential distribu-
tion is given by expλ(x) = λe−λx. We have set the exponential distribution’s
λ parameter to 0.01 for all simulations. The effect of the λ having the value
of 0.01 is best understood by looking at the Figure 5.9. The probability that a
peer node will stay in the overlay a certain number of time ticks is equal the area
underneath the exponential probability distribution function in that specific time
span. Thus, for example, a peer will more likely stay in the overlay in between
0-20 ticks rather than 80-100 ticks.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 20 40 60 80 100

pr
ob

ab
ili

ty
 d

en
si

ty

x

exponentital PDF with lambda = 0.01

edf(x)

Figure 5.9: Exponential duration distribution

56

5.3.1 10K simulation results

We will first take a look at the results of the simulations with the following
simulation parameters:

• a network topology of 10K physical nodes;

• the Saroiu bandwidth reference model;

• peer join and duration distributions as described in Section 5.3;

Node count

The node count metric is used to show the overlay size growth during the per-
formed simulation. As depicted in Figure 5.10, OMNI and ZIGZAG are able to
sustain the desired growth to around 3000 overlay nodes. The HMTP overlay
loses nodes during overlay tree restructuring caused by node leave/crash events.
Not all orphaned nodes are able to find a suitable parent within a specified delay
threshold. The SpreadIt overlay seems to be incapable to grow beyond 800 over-
lay nodes. We have discovered that the SpreadIt overlay join algorithm is not able
to efficiently find the unsaturated peer nodes which can accommodate arriving
nodes. In this particular simulation setup, the SpreadIt overlay is increasingly
unable to find unsaturated nodes after tick 32.

Stretch

Stretch, as defined in Section 2.2, gives us some insight in the deviation from
the ideal unicast paths between the root of the overlay tree and the peer nodes.
Recall that a unicast path between two nodes has a stretch of 1. Figure 5.11
shows average peer stretch values for each of the overlays. HMTP’s average
stretch is below 3 while other overlays’ average stretch stays above 3 for most
of the simulation. There are two reasons for such an impressive stretch in the
HMTP overlay. HMTP has an exhaustive join algorithm that helps a joining node
cleverly search for the closest parent node. However, the HMTP join algorithm,
as we will later see, results in a somewhat higher control overhead as well. The
second and less prevalent reason for the impressive HMTP stretch results is the
HMTP periodical tree improvement algorithm. Even if we completely turn of

57

0

500

1000

1500

2000

2500

3000

3500

0 50 100 150 200 250 300 350 400 450 500

N
um

be
r

of
 p

ee
rs

 in
 o

ve
rla

y

Time ticks

OMNI
HMTP

SpreadIt
ZIGZAG

Figure 5.10: 10K node count

the HMTP periodical tree improvement algorithm, HMTP still achieves the best
stretch results.

1

1.5

2

2.5

3

3.5

4

4.5

0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 p
ee

r
st

re
tc

h

Time ticks

OMNI
HMTP

SpreadIt
ZIGZAG

Figure 5.11: 10K stretch

58

Stress

Stress as defined in Section 2.1 measures the stress that the overlay exhorts on
the underlying network. Low stress indicates a small number of duplicate packets
being sent across the physical network connections. Figure 5.12 shows average
physical network stress for each of the overlays. OMNI and ZIGZAG exhort
more or less the same stress on the underlying physical network. Their stress
values stabilize between 6.5 and 7. The SpreadIt overlay instigates somewhat
lower stress than OMNI and ZIGZAG with stress oscillating between 4 and 5.
However, HMTP has an impressively low stress, significantly better than all other
overlays, with a steady stress value of 2.5 to 2.8.

1

2

3

4

5

6

7

8

0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 p
hy

si
ca

l n
et

w
or

k
st

re
ss

Time ticks

OMNI
HMTP

SpreadIt
ZIGZAG

Figure 5.12: 10K stress

Control overhead

As previously mentioned in Section 2.3, we measure control overhead in terms of
the number of peer contacts during peer join and leave. Figure 5.13 shows the
average join control overhead for the SpreadIt, HMTP and ZIGZAG overlays.
We have not measured join and leave control overhead for the OMNI overlay.
Although OMNI has defined a join and leave algorithm for MSN nodes, the details
of the regular client nodes’ join and leave algorithm have been left unspecified.

59

Since Banerjee et al. [12] intentionally left the join and leave algorithm details
ambiguous we thought that it would be inappropriate to make any claims about
the OMNI overlay control overhead.

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 n
um

be
r

of
 p

ee
r

co
nt

ac
ts

 d
ur

in
g

jo
in

Time ticks

HMTP
SpreadIt
ZIGZAG

Figure 5.13: 10K join overhead

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 n
um

be
r

of
 p

ee
r

co
nt

ac
ts

 d
ur

in
g

le
av

e

Time ticks

HMTP
SpreadIt
ZIGZAG

Figure 5.14: 10K leave overhead

The SpreadIt overlay has the lowest join control overhead, rarely surpassing

60

20 peer node contacts on average. However, given SpreadIt’s inability to grow
beyond a thousand nodes this fact does not come as a surprise. The ZIGZAG
overlay exhibits the familiar, previously discussed “heartbeat-like” join control
overhead while HMTP’s join control overhead seems to be oscillating around 70
to 80 node contacts.

The HMTP overlay has the highest leave control overhead. The main rea-
son for the high leave control overhead is the rejoin algorithm that allows each
orphaned node to individually look for a new parent. In the case when a high
upstream bandwidth capable node that serves many peers leaves or crashes, each
orphaned node rejoins individually thus resulting in a high number of the rejoin
contacts. Figure 5.14 shows the average number of peer contacts during leave
events. The HMTP overlay has significant spikes in leave control overhead that
reach above 200 peer contacts.

Robustness

Robustness, as defined in Section 2.4, concerns the fragility of overlay trees dur-
ing tree restructuring. We have excluded ZIGZAG and OMNI from robustness
measurements since these two overlays employ a coordinated rejoin algorithm.
Coordinated rejoin algorithms, at least in theory, require only a bounded number
of contacts to reorganize the overlay tree. For example, in the ZIGZAG rejoin
algorithm, the cluster head redirects orphaned nodes to rejoin at a cluster mate
of the leaving/crashed node thus requiring only one message for each orphaned
node.

As you recall from Section 2.4 we defined and measured two robustness metrics
- glitch ratio and shed ratio. The glitch ratio represents the percentage of nodes
that were receiving the stream but unable to find a new stream source after
restructuring in the overlay. Figure 5.15 shows the SpreadIt overlay having a
considerable glitch ratio. The HMTP overlay has a somewhat smaller but still
noticeable glitch ratio.

The second robustness metric, the shed ratio, represents the percentage of
nodes that have had stream interruption for a certain number of ticks, ultimately
resulting in a peer disconnecting from the overlay. We have used shed ratio to
simulate the disgruntled users. Figure 5.16 shows the shed ratio for the simulated

61

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 50 100 150 200 250 300 350 400 450 500

G
lit

ch
 r

at
io

Time ticks

HMTP
SpreadIt

Figure 5.15: 10K glitch ratio

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 50 100 150 200 250 300 350 400 450 500

S
he

d
ra

tio

Time ticks

HMTP
SpreadIt

Figure 5.16: 10K shed ratio

overlays. Again, similar to the glitch ratio, the SpreadIt overlay experiences
a significantly higher shed ratio compared to the HMTP overlay. Notice how
spikes in HMTP’s shed ratio coincide with drops in HMTP’s node count from
Figure 5.10.

62

5.3.2 100K simulation results

We will first take a look at the results of the simulations with the following
simulation parameters:

• a network topology of 100K physical nodes;

• the Saroiu bandwidth reference model;

• peer join and duration distribution as described in Section 5.3.

Node count

As depicted in Figure 5.17, OMNI and ZIGZAG are able to sustain the desired
growth to around 6000 overlay nodes. Just as in the 10K simulation, HMTP
loses nodes during overlay tree restructuring caused by node leave/crash events.
Similarly to the 10K node count simulation results, the SpreadIt overlay does not
grow above a thousand overlay nodes.

0

1000

2000

3000

4000

5000

6000

7000

0 50 100 150 200 250 300 350 400 450 500

N
um

be
r

of
 p

ee
rs

 in
 o

ve
rla

y

Time ticks

OMNI
HMTP

SpreadIt
ZIGZAG

Figure 5.17: 100K node count

63

Stretch

Figure 5.18 shows average peer stretch values for each of the overlays. Along with
the under-performing SpreadIt overlay, the OMNI overlay has the best stretch
results. OMNI’s average stretch hovers just above 2. ZIGZAG has significantly
better stretch results in the 100K than in the 10K simulation. While at certain
points of the 10K simulation ZIGZAG’s stretch reaches 4.5, the stretch in the
100K simulation is steadily below 2.8. An interesting twist is that HMTP’s
stretch results are not lower in the 100K simulation as are the stretch results in
the other three overlays.

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 p
ee

r
st

re
tc

h

Time ticks

OMNI
HMTP

SpreadIt
ZIGZAG

Figure 5.18: 100K stretch

Stress

We have found that, as depicted in Figure 5.19, HMTP has superior stress results
in the 100K simulation as well. ZIGZAG’s stress is very similar to the stress in
the 10K stress results. The OMNI overlay performed slightly better than the
ZIGZAG overlay. In fact we can see essentially the same trend in the stretch re-
sults for ZIGZAG and OMNI overlays in both the 10K and the 100K simulations.
SpreadIt exhorts more or less the same stress on the underlying physical network
in both simulation setups as well.

64

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 p
hy

si
ca

l n
et

w
or

k
st

re
ss

Time ticks

OMNI
HMTP

SpreadIt
ZIGZAG

Figure 5.19: 100K stress

Control overhead

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 n
um

be
r

of
 p

ee
r

co
nt

ac
ts

 d
ur

in
g

jo
in

Time ticks

HMTP
SpreadIt
ZIGZAG

Figure 5.20: 100K join overhead

Figure 5.20 shows the average join control overhead for the SpreadIt, HMTP
and ZIGZAG overlays. Just as HMTP’s join control overhead was slightly below

65

60 peer contacts in the 10K simulation the same pattern is repeated in the 100K
simulation except that the join control overhead is slightly below 80 peer contacts.
The SpreadIt overlay has roughly the same join control overhead as in the 10K
simulation, rarely surpassing 20 peer node contacts on average. The ZIGZAG
overlay exhibits the familiar, previously discussed “heartbeat-like” join control
overhead with a slightly higher average number of contacts.

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 n
um

be
r

of
 p

ee
r

co
nt

ac
ts

 d
ur

in
g

le
av

e

Time ticks

HMTP
SpreadIt
ZIGZAG

Figure 5.21: 100K leave overhead

Similarly to the 10K simulation the HMTP overlay has the highest leave
control overhead in the 100K simulation as well. HMTP’s leave control overhead
is higher than in the 10K simulation. Figure 5.21 shows the average number of
peer contacts during leave events. The SpreadIt and ZIGZAG overlays have a
lower leave control overhead.

Robustness

Figure 5.22 shows the SpreadIt overlay again having a considerable glitch ratio.
However, while SpreadIt exhibits similar glitch ratio tendencies from the 10K
simulation, HMTP does not. HMTP’s has significant spikes in glitch ratio not
exhibited in the 10K simulation setup.

66

0

0.05

0.1

0.15

0.2

0.25

0 50 100 150 200 250 300 350 400 450 500

G
lit

ch
 r

at
io

Time ticks

HMTP
SpreadIt

Figure 5.22: 100K glitch ratio

0

0.05

0.1

0.15

0.2

0.25

0 50 100 150 200 250 300 350 400 450 500

S
he

d
ra

tio

Time ticks

HMTP
SpreadIt

Figure 5.23: 100K shed ratio

Figure 5.23 shows the shed ratio for the SpreadIt and HMTP overlays. Sim-
ilarly to the 100K glitch ratio results, the shed ratio is evidently problematic in
the HMTP overlay. Notice how big spikes in glitch ratio at ticks 145, 335 and
490 perfectly coincide with HMTP node count drops observed in Figure 5.17.

67

5.3.3 Other simulations

Besides the previously described 10K and 100K simulations we have conducted
numerous other simulations. More specifically, we were intrigued by the HS and
LS BRITE topology parameters and their effect on simulation results. The HS
and LS parameters are used to specify the planes that host the physical network
topology generated by BRITE. HS represents the size of the high-level plane
while LS represents the size of the low-level plane. When generating a topology
BRITE assigns nodes to a plane divided into HS × HS squares. Each HS square
of the plane is in turn subdivided into smaller LS × LS squares. Finally, each
node is assigned one LS square. Each LS square can only hold one node.

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 p
ee

r
st

re
tc

h

Time ticks

OMNI
HMTP

SpreadIt
ZIGZAG

Figure 5.24: Stretch

Varying the HS and LS parameters did not have a major impact on the
simulation results except in terms of stretch. However, the stretch result impact
is easily interpreted. If the HS and LS parameters are set such that generated
nodes are compacted closely together, the stretch results might not be as obvious
as in a case where the nodes are spread apart from one another. We have used the
same HS and LS parameters for our 10K and 100K simulations. We have set HS
to 1000 and LS to 100. Figure 5.11, depicting stretch results for 10K, shows larger
stretch results variations between the four algorithms than in 100K simulation
stretch results depicted in Figure 5.18. We repeated the 100K simulation while

68

setting HS to 10000 and LS to 1000. As anticipated, the stretch results, shown
in Figure 5.24, are easier to interpret.

We were also interested to see how large a topology network and how large
an overlay we can create. We were able to construct a half-a-million network
topology using a two-level, top-down hierarchical model where both the AS and
the router level utilize the power-law adhering Barabasi-Albert generation model.
We have only tried this simulation with the ZIGZAG overlay. We used the Poisson
random distribution with an average rate of 125 peer joins per simulation tick
for the join distribution. We used the exponential distribution with λ having the
value of 0.01 to model the duration distribution. Just as we did for all other
ZIGZAG simulations we used a single bandwidth type having a large uplink
outdegree. This combination of input parameters resulted in a ZIGZAG overlay
reaching over 13,000 nodes. The results of this simulation are reviewed in Section
5.3.7.

Having provided a detailed summary of the simulations we have conducted
along with the accompanying results, we can now delve into the interpretation
of these simulation results. We summarize the complete simulation results for
each overlay algorithm individually and identify trends and trade offs between
the various metrics. Furthermore, we try to pinpoint causes for these results,
trends and trade offs.

5.3.4 SpreadIt

Of the four tree-first overlay algorithms we have reviewed, the SpreadIt overlay
algorithm is the simplest in terms of its overlay construction and is the easiest to
implement. However, the simplicity comes with an attached cost. The SpreadIt
overlay achieves acceptable scores in all metrics except for the robustness metrics
of the glitch and shed ratio. In the following discussion, we provide a brief
overview of SpreadIt’s performance for the metrics we have recorded.

SpreadIt stretch and stress, as depicted in Figure 5.25 and 5.26, display lit-
tle distinction between the 10K and 100K simulation results. Both stretch and
stress results are modest compared to the other three overlay algorithms we have
reviewed.

69

1

1.5

2

2.5

3

3.5

0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 p
hy

si
ca

l n
et

w
or

k
st

re
tc

h

Time ticks

10K
100K

Figure 5.25: SpreadIt stretch comparison

1.5

2

2.5

3

3.5

4

4.5

5

5.5

0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 p
hy

si
ca

l n
et

w
or

k
st

re
ss

Time ticks

10K
100K

Figure 5.26: SpreadIt stress comparison

As shown in Figure 5.27 and 5.28 SpreadIt join and leave control overhead
is fairly consistent for both 10K and 100K simulations. Join and leave control
overhead is admirable compared to that of HMTP, OMNI, and ZIGZAG overlay
algorithms.

70

0

5

10

15

20

25

30

0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 n
um

be
r

of
 p

ee
r

co
nt

ac
ts

 d
ur

in
g

jo
in

Time ticks

10K
100K

Figure 5.27: Join control overhead comparison

However, SpreadIt’s excellent join and leave control overhead results do not
come as a surprise. Namely, since the SpreadIt overlay was unable to grow
beyond a thousand nodes in both 10K and 100K simulation, join and leave control
overhead was never an issue to begin with.

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 n
um

be
r

of
 p

ee
r

co
nt

ac
ts

 d
ur

in
g

le
av

e

Time ticks

10K
100K

Figure 5.28: Leave control overhead comparison

71

The robustness metrics of the SpreadIt overlay exhibit problematic tenden-
cies. As shown in Figure 5.29 and 5.30 the SpreadIt glitch and shed ratio are
unacceptable. In both 10K and 100K simulations, roughly 10% of the SpreadIt
nodes in the overlay were experiencing glitches while roughly 5% of the SpreadIt
nodes were shed at each simulation tick.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 50 100 150 200 250 300 350 400 450 500

G
lit

ch
 r

at
io

Time ticks

10K
100K

Figure 5.29: SpreadIt glitch ratio comparison

One of the biggest advantages of SpreadIt is the simplicity of join and leave
algorithms. It would not be hard to implement a full-scale SpreadIt overlay, just
as Deshpande, Bawa and Garcia-Molina actually did. However, as we have seen
in our simulations results, such a SpreadIt overlay implementation seems only
applicable to small-scale media streaming.

We suspect that SpreadIt overlays can be easily enhanced to address the
above-mentioned issue. One may be able to improve the original SpreadIt join
algorithm by including additional state tracking for each node. For example,
HMTP employs a stack of previously discovered potential parents to allow each
node more possibilities in a search for a new parent. Similar information may be
exploited in SpreadIt to improve scalability.

72

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 50 100 150 200 250 300 350 400 450 500

S
he

d
ra

tio

Time ticks

10K
100K

Figure 5.30: SpreadIt shed ratio comparison

5.3.5 HMTP

The HMTP overlay algorithm is an elegant and simple tree-first overlay algorithm
that manages to accomplish respectable results according to the metrics that
we employed. HMTP’s stress and stretch results are among the best we have
recorded.

As depicted in Figure 5.31 HMTP’s stretch results exhibit no specific corre-
lation between the 10K and 100K simulation setups. However, only the OMNI
overlay in its 100K stretch results exhibits better stretch than HMTP.

HMTP is a stellar performer when it comes to stress. In both simulation
scenarios we observed similar stress results that rarely reached values higher than
2.5. To put these results in perspective, ZIGZAG and OMNI have stress values
that vary between 5 and 7 in both simulation setups.

HMTP exhibits seemingly good control overhead characteristics as well. Join
control overhead scales sub-linearly with the number of peer nodes in the overlay.
The average number of peer join contacts for the 10K simulation was 65, and
for the 100K simulation it was 75. In addition, HMTP’s leave control overhead
scales sub-linearly with the number of nodes in the overlay. The average number

73

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 p
hy

si
ca

l n
et

w
or

k
st

re
tc

h

Time ticks

10K
100K

Figure 5.31: HMTP stretch comparison

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 p
hy

si
ca

l n
et

w
or

k
st

re
ss

Time ticks

10K
100K

Figure 5.32: HMTP stress comparison

of peer leave contacts for the 10K simulation was 46 and for 100K it was 48.
There is, however, an interesting tendency for certain peer crashes or leaves to
cause very high jumps in control overhead. Figures 5.14 and 5.21 illustrate this
finding.

74

0

20

40

60

80

100

120

140

0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 n
um

be
r

of
 p

ee
r

co
nt

ac
ts

 d
ur

in
g

jo
in

Time ticks

10K
100K

Figure 5.33: HMTP join control overhead comparison

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 n
um

be
r

of
 p

ee
r

co
nt

ac
ts

 d
ur

in
g

le
av

e

Time ticks

10K
100K

Figure 5.34: HMTP leave control overhead comparison

HMTP’s robustness performance is affected by random jumps in glitch ratio
and shed ratio. There are no obvious patterns to shed and glitch ratio in each
individual simulation, nor between the different simulation setups.

Undoubtedly, one of the best aspects of the HMTP overlay is its original

75

0

0.05

0.1

0.15

0.2

0.25

0 50 100 150 200 250 300 350 400 450 500

S
he

d
ra

tio

Time ticks

10K
100K

Figure 5.35: HMTP shed ratio comparison

0

0.05

0.1

0.15

0.2

0.25

0 50 100 150 200 250 300 350 400 450 500

G
lit

ch
 r

at
io

Time ticks

10K
100K

Figure 5.36: HMTP glitch ratio comparison

and simple join algorithm. We have shown that HMTP’s join algorithm is a
primary factor that leads to impressive stress and stretch results. Rejoin and
tree improvement algorithms are equally appealing as well. In addition, such
admirable stress and stretch results are not achieved at the expense of join and
leave control overhead. Join and leave control overhead are reasonably good and

76

scale sub-linearly with the number of nodes in the overlay.

One of HMTP’s weaker aspects is the peculiar spikes in leave control overhead.
Although the average number of peer leave contacts grows sub-linearly with the
number of nodes, there is a tendency for high and relatively frequent jumps in
leave control overhead. We suspect that there are two major reasons that may
be causing high oscillations in leave control overhead. Firstly, since the leaf to
non-leaf ratio is 2:1, there is a high number of parent nodes that by crashing
or leaving the overlay can potentially cause spikes in leave control overhead.
Secondly, HMTP’s rejoin algorithm allows each orphaned node to individually
search for a new parent. When a high upstream bandwidth capable node that
serves many peers leaves or crashes, each orphaned node runs the rejoin algorithm
individually, thus, ultimately resulting in high spikes in leave overhead. Recall
that the number of contacts by the orphaned nodes is included in the leave control
overhead of the node that left or crashed.

5.3.6 OMNI

As the objective of the OMNI overlay is to minimize the average tree latency,
one would expect that OMNI should perform above average when it comes to
stretch. Indeed, our assumptions were confirmed by our simulations. OMNI has
a relatively good stretch performance in both simulation setups. The stretch
results have a tendency to be relatively stable during the duration of simulations.
In the 10K simulation only HMTP has a better stretch, while in the 100K OMNI
has the best results.

In the results overview of HMTP we have seen that the stress and stretch
results have a tendency to correlate. As will be discussed subsequently, ZIGZAG
exhibits the same stress and stretch correlation. Poor results in stress tend to
be mirrored by poor results in stretch while good results in stress tend to be
mirrored by good stretch results. Interestingly enough, however, OMNI, which
has better than average stretch results, exhibits as bad stress as ZIGZAG. In
both simulation scenarios we can observe the progression of similar stress results.
While ZIGZAG exhibits the worst stress among all overlays, OMNI’s stress is
approximately only 10% better across both simulation setups.

As previously indicated, we have not measured join and leave control overhead

77

1

1.5

2

2.5

3

3.5

0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 p
ee

r
st

re
tc

h

Time ticks

10K
100K

Figure 5.37: OMNI stretch comparison

1

2

3

4

5

6

7

0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 p
hy

si
ca

l n
et

w
or

k
st

re
ss

Time ticks

10K
100K

Figure 5.38: OMNI stress comparison

for the OMNI overlay since Banerjee et al. [12] intentionally left the join and leave
algorithm details unspecified. Robustness measurements were not taken either
for the same reason.

One of OMNI’s better aspects is, as its design requirements specify, keeping

78

the aggregate tree latency as low as possible. We were able to reproduce and
confirm the simulation results conducted by Banerjee et al. Although we have
not taken any control overhead measurements for the OMNI overlay, we suspect
that OMNI would have join control overhead very similar to HMTP. Both HMTP
and OMNI use a variation of a depth-first search algorithm when joining a new
node. OMNI’s MSN join algorithm is rather convoluted but undoubtedly contains
aspects of depth-first search. However, OMNI’s leave algorithm is conceptually
different from HMTP’s. While HMTP allows each immediate orphaned node
to search for a new parent individually, OMNI employs an coordinated rejoin
algorithm. Although very elegant and simple, the individual rejoin algorithm
employed by HMTP exhibits some troubling aspects in our simulations. We
believe that OMNI’s coordinated rejoin algorithm would perform better in leave
control overhead.

5.3.7 ZIGZAG

The ZIGZAG overlay algorithm is the most complex overlay algorithm out of the
four tree-first overlay algorithms that we have reviewed. Besides the poor stress
and stretch results, ZIGZAG excels in every other metric that we have recorded.
In the following paragraphs we will try to pinpoint the causes for those results.

ZIGZAG’s stretch results manifest similar trends between the 10K, 100K and
500K simulation setups. ZIGZAG’s stretch performance has a tendency to be the
worst out of the four overlays.

In all three simulation scenarios we can observe similar stress results tenden-
cies. ZIGZAG exhibits the worst stress among all overlays in all simulation setups.
ZIGZAG’s performance is the worst in the 10K simulation while performing only
slightly better in 100K and 500K simulations.

ZIGZAG exhibits excellent control overhead characteristics. Join overhead
scales sub-linearly with the number of peer nodes in the overlay and the network
size. The average number of peer join contacts for the 10K simulation was 92;
for the 100K simulation it was 125; finally, for the 500K the average number was
126.

If we count only non-leaf node crashes or leaves the average number of peer

79

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 p
ee

r
st

re
tc

h

Time ticks

10K
100K
500K

Figure 5.39: ZIGZAG stretch comparison

1

2

3

4

5

6

7

8

0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 p
hy

si
ca

l n
et

w
or

k
st

re
ss

Time ticks

10K
100K
500K

Figure 5.40: ZIGZAG stress comparison

leave contacts for the 10K simulation was 15, 28 for the 100K, and 51 for the
500K. However, when leaf node crashes or leaves are included then ZIGZAG leave
control overhead scales sub-linearly with the number of nodes in the overlay.

Recall that we did not take any robustness measurements for ZIGZAG since

80

0

50

100

150

200

250

0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 n
um

be
r

of
 p

ee
r

co
nt

ac
ts

 d
ur

in
g

jo
in

Time ticks

10K
100K
500K

Figure 5.41: ZIGZAG join control overhead comparison

0

20

40

60

80

100

120

140

160

0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 n
um

be
r

of
 p

ee
r

co
nt

ac
ts

 d
ur

in
g

le
av

e

Time ticks

10K
100K
500K

Figure 5.42: ZIGZAG leave control overhead comparison

we assigned essentially an unlimited uplink bandwidth to all ZIGZAG overlay
nodes.

Overall, ZIGZAG is one of the best if not the best tree-first overlay algorithm
among the ones that we have reviewed. Through a series of empirical simulations

81

described previously in Section 5.2.3 we have verified the claims of Tran et al. [41]
about ZIGZAG’s performance. ZIGZAG’s logical clustering organization leads to
excellent control overhead tendencies. Join overhead is growing sub-linearly with
the number of nodes, which is crucial for overlay scaling to thousands of peer
nodes. We have also verified that ZIGZAG indisputably creates very low-depth
overlay trees but not at the expense of significantly overloading certain peer nodes.
We have observed roughly the same average outdegree as well as the maximum
peer outdegree for all three simulation setups. The maximum node outdegree
does not grow beyond a hundred nodes and the average outdegree has constantly
lingered between 8 and 9.

One of ZIGZAG’s weaker points is its stress and stretch performance. In fact,
we suspect that the reasons for poor stretch and stress results are intertwined.
We believe that there are two major factors that contribute to the poor stretch
results.

The first factor is ZIGZAG’s ratio of leaf to non-leaf nodes. An interesting
aspect of the ZIGZAG overlay is that the majority of nodes are leaves. In fact,
the ratio of leaf nodes to non-leaf nodes varies between 8:1 and 10:1 while this
ratio for HMTP was 2:1. Recall that most of the leaves are guaranteed to be at
the same depth and that the height of the tree is bounded by O(logk N) where N

is the number of nodes in an overlay and k is a parameter that was set to 5 in our
simulations. In all three simulations the leaves were at a depth of between 4 and
5. Given that the vast majority of the nodes have a depth of O(logk N), it is not
hard to conjecture that ZIGZAG’s stretch results might be less than impressive.

The second factor that contributes to the poor stretch results is the poor
stress results, which are in turn caused by the join algorithm. In order to have
good stress results, an overlay tree should closely match the underlying physical
network. This, in turn, requires that a newly joined node be solely guided to
its new parent by the network distance metric. The HMTP join algorithm, for
example, does this guidance very well. Recall that the ZIGZAG join algorithm
joins new nodes strictly at the bottommost layer clusters. The vast majority of
the nodes that serve no other nodes are in the bottommost layer clusters. As the
join algorithm pushes a joining node towards the leaves it takes the network delay
into account. However, the join algorithm has only O(logk N) levels to refine that
network delay. Recollect that the ZIGZAG overlay tree is a relatively balanced
tree as well. ZIGZAG’s overlay does not closely match the underlying physical

82

network and therefore ZIGZAG’s stress performance cannot be impressive. Those
suspicions were confirmed in the performed simulations.

83

Chapter 6

Conclusion

In recent years we have witnessed the emergence of numerous P2P overlay algo-
rithms. While many of these overlay algorithms focus on the sharing and search-
ing of distributed computer resources, there is a subset of overlay algorithms that
attempt to solve the problem of large-scale Internet multimedia streaming. Be-
fore the emergence of large-scale Internet multimedia streaming algorithms there
was a void left by IP Multicast and Content Delivery Networks (CDNs) that
needed to be filled. The current buoyancy of Internet streaming overlay algo-
rithms has been a result of unsuccessful IP Multicast deployment and the high
cost associated with CDNs. The renewed interest in more scalable, distributed
and decentralized overlay networks has contributed to the emergence of Internet
streaming overlay algorithms as well.

6.1 Overview

However, as new P2P overlay algorithms emerge, the trend wherein each research
team uses their own makeshift simulators continues and thus, we believe, jeop-
ardizes the progress of this interesting research field. As far as we know, we are
the first to provide a generic and unified tree-first overlay simulator for multime-
dia streaming. Until now, all tree-first overlays have utilized individual, ad-hoc
simulators which do not provide the opportunity to compare multiple overlay
algorithms in the same simulation environment. Through the implementation of
four leading tree-first overlay algorithms, we have demonstrated that our sim-
ulator is easily adaptable to various tree-first overlay algorithms. Furthermore,

84

our simulator provides a set of API extensions which allows new overlay algo-
rithms to be added seamlessly. Our simulator uses network topologies generated
by the power-law adhering BRITE topology generator. The BRITE topology
generator has recently emerged as one of the more promising universal topology
generators. We have also shown that our simulator is easily customizable. Our
simulator can accept one of a multitude of predefined join, duration and peer
bandwidth distributions. In addition, new join, duration and peer bandwidth
distributions can easily be contributed. Recall that simulator parameters include
a set of overlay metrics as well. We have provided a rich set of metrics that are
readily available to others. Additional metrics can be defined and transparently
added to our simulator. Just as we have allowed customization of any simulation
input parameter, multiple data output formats can be used simultaneously. We
have provided XML, Excel, and Gnuplot simulation output formats. Additional
output formats can be defined and added effortlessly. All our simulation graphs
were generated using the Gnuplot output format. By using our simulator, re-
search teams can readily compare the algorithm that they are developing with
a set of already developed algorithms. Thus an overlay research team is able to
cost-effectively receive immediate feedback about the algorithm being developed.
Finally, we have shown the ability to large-scale simulations in our simulator us-
ing a BRITE generated topology network of more than half a million nodes and
an overlay with tens of thousands of peer nodes.

The generic simulator allowed us to simulate four leading tree-first overlay
algorithms with the exact same input parameters in the same simulation environ-
ment. After verifying that our implementations of the SpreadIt, HMTP, OMNI,
and ZIGZAG overlay algorithms are reasonable representations of their original
counterparts, we administered a detailed comparison of these overlay algorithms
in our simulator. We believe that we were the first to have an opportunity to
gain a unique insight by performing those simulations. We were able to spot non-
apparent trade-offs between various metrics as well as gain extraordinary insight
in certain aspects of all four overlays. We describe these findings at length in
Section 5.3.4, 5.3.5, 5.3.6, and 5.3.7. We also believe that we were the first to
formally introduce two new robustness metrics: glitch ratio and shed ratio.

85

6.2 Future directions

A generic overlay simulator presents an essential component in a P2P overlay
researcher’s toolbox. The simulator should play a key role when comparing an
algorithm in development against a set of existing overlay algorithms. Having
theoretical aspects of the overlay confirmed empirically is the next best thing to
developing the full-blown Internet version of the overlay. We believe that besides
focusing on theoretical aspects of the overlay algorithms, special attention should
be given to empirical aspects as well. A simulator provides immediate empirical
feedback about an overlay’s prospects. A generic simulator allows P2P overlay
researchers to combine and experiment with multiple combinations of various
overlay characteristics at a much lower cost than before.

A simulator is also an important tool in identifying tradeoffs between various
overlay metrics. As we have seen in Section 5.3.4, 5.3.5, 5.3.6, and 5.3.7, we were
able to provide insights into some of the metric tradeoffs for the four overlays
with which we have experimented. We believe that we were the first to provide
such an insight as a result of our simulator. However, it is evident that further
studies into tradeoffs between various overlay metrics is fundamental.

As new overlay algorithms for multimedia streaming are being developed we
believe it would be invaluable to compare them to the four algorithms already
implemented in our simulator. We believe we have made a compelling case for
overlay research teams to use our simulator. We have made our simulator publicly
available [6] and encourage research teams to use it. Although we encourage
others to implement new algorithms in our simulator, we have plans of our own.
For example, we would like to implement a recently released ZIGZAG algorithm
variation [42] and compare it to the original ZIGZAG algorithm.

We are continuing to explore and experiment with additional overlay metrics.
We would like to understand tradeoffs between various metrics better. We believe
it would invaluable to identify and formally present tradeoffs between the defined
overlay metrics. Even trivial additional metrics can sometimes be very useful to
empirically verify assumptions observed in simulations. For example, we have
assumed that ZIGZAG’s overlay has a higher leaf to non-leaf ratio than the
other three overlay algorithms. After implementing the leaf to non-leaf metric
we have found that leaf to non-leaf ratio differences between ZIGZAG and other

86

algorithms are rather significant.

Long running simulations are inevitable for large-scale overlays. Most of the
simulations that we ran lasted not longer than a day. However, some lengthier
simulations ran for a week. On several occasions we had to restart simulations
that were interrupted due to power failures. We believe that a backup and restore
of individual simulation runs is a crucial functionality for such circumstances. The
simulator could backup the simulation state in a specified frequency of safe-points.
Individual simulations could be restarted from any of the backup safe-points, thus
enabling long running large-scale simulations.

We will continue to experiment with variations and modifications of the simu-
lation setups of the four overlay algorithms. More specifically, we would like to see
the effect of varying the k parameter in ZIGZAG overlays as well as varying the
temperature parameter and probability of performing random-swap operations
for OMNI overlays. We are also interested in exploring how simple modifications
to the SpreadIt overlay would affect its performance.

87

BIBLIOGRAPHY

[1] Colt. http://hoschek.home.cern.ch/hoschek/colt/.

[2] Gnutella. http://gnutella.wego.com.

[3] Javasim network simulator. http://www.javasim.org.

[4] myns simulator. http://www.cs.umd.edu/˜suman.

[5] ns network simulator. http://www-nrg.ee.lbl.gov/ns/.

[6] p2pns. http://p2pns.sourceforge.net/.

[7] p2psim. http://www.pdos.lcs.mit.edu/p2psim/.

[8] Ssf network simulator. http://www.ssfnet.org.

[9] William Aiello, Fan Chung, and Linyuan Lu. A random graph model for
massive graphs. In Proceedings of the 32nd Annual Symposium on Theory
of Computing, pages 171–180, Portland, May 2000. ACM.

[10] S. Banerjee and B. Bhattacharjee. A comparative study of application layer
multicast protocols, 2002.

[11] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable application
layer multicast. In Proceedings of ACM SIGCOMM, pages 205–220, Pitts-
burgh, PA, August 2002. ACM.

[12] Suman Banerjee, Christopher Kommareddy, Koushik Kar, Bobby Bhat-
tacharjee, and Samir Khuller. Construction of an efficient overlay multicast
infrastructure for real-time applications. In Proceedings of IEEE INFOCOM
2003, pages 1521–1531, San Francisco, April 2003. IEEE.

88

[13] A. Barabasi and R. Albert. Emergence of scaling in random networks. Sci-
ence Magazine, 286:509–512, 1999.

[14] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy, P. Huang,
S. McCanne, K. Varadhan, Y. Xu, and H. Yu. Advances in network simula-
tion. IEEE Computer, 33(5):59–67, May 2000.

[15] Kenneth L. Calvert, Matthew B. Doar, and Ellen W. Zegura. Modeling
Internet topology. IEEE Communications Magazine, 35(6):160–163, June
1997.

[16] Y. Chawathe, S. McCanne, and E. Brewer. An architecture for Internet
content distribution as an infrastructure service, 2000.

[17] Yang-Hua Chu, Sanjay G. Rao, and Hui Zhang. A case for end system
multicast. In Proceedings of ACM SIGMETRICS 2000, pages 1–12, Santa
Clara, June 2000. ACM.

[18] S.E. Deering. Host extensions for IP multicasting, 1989. Internet RFC 1112.

[19] H. Deshpande, M. Bawa, and H. Garcia-Molina. Streaming live media over
a peer-to-peer network. Technical report 2001-31, Stanford University, 2001.

[20] Christophe Diot, Brian Neil Levine, Bryan Lyles, Hassan Kassem, and Doug
Balensiefen. Deployment issues for the IP multicast service and architecture.
IEEE Network, 14(1):78–88, January/February 2000.

[21] D.Waitzman, C.Partridge, and S.E Deering. Distance vector multicast rout-
ing protocol. Request for comments - 1075, IETF Network Working Group,
1988.

[22] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law
relationships of the Internet topology. In Proceedings of ACM SIGCOMM,
pages 251–262, Cambridge, MA, September 1999. ACM.

[23] Paul Francis. Yoid: Your own Internet distribution, April 2000.
http://www.aciri.org/yoid.

[24] Lixin Gao. On inferring autonomous system relationships in the Internet. In
Proceedings of IEEE Global Telecommunications Conference, pages 387–396,
San Francisco, November/December 2000. IEEE.

89

[25] Ramesh Govindan and Hongsuda Tangmunarunkit. Heuristics for Internet
map discovery. In Proceedings of IEEE INFOCOM 2000, pages 1371–1380,
Tel Aviv, Israel, March 2000. IEEE.

[26] ISI ns-2 online manual. The Network Simulator ns-2: Tips
and Statistical Data for Running Large Simulations in NS.
http://www.isi.edu/nsnam/ns/ns-largesim.html.

[27] John Jannotti, David K. Gifford, Kirk L. Johnson, M. Frans Kaashoek,
and James W. O’Toole, Jr. Overcast: Reliable multicasting with an overlay
network. In Proceedings of USENIX Symposium on Operating System Design
and Implementation, San Diego, October 2000. The USENIX Association.

[28] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220, 4598:671–680, May 1983.

[29] David Liben-Nowell, Hari Balakrishnan, and David Karger. Observations on
the dynamic evolution of peer-to-peer networks. Lecture Notes in Computer
Science, 2429:22–33, 2002.

[30] Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John Byers. BRITE:
Universal topology generation from a user’s perspective. Technical Report
BUCS-TR-2001-003, Boston University, January 2001.

[31] Alberto Medina, Ibrahim Matta, and John Byers. On the origin of power
laws in Internet topologies. ACM Computer Communication Review, 30:18–
28, April 2000.

[32] Gopal Pandurangan, Prabhakar Raghavan, and Eli Upfal. Building low-
diameter p2p networks. In Proceedings of IEEE Symposium on Foundations
of Computer Science, pages 492–499, Las Vegas, October 2001. IEEE.

[33] Vern Paxson and Sally Floyd. Why we don’t know how to simulate the
Internet. In Proceedings of the 29th conference on Winter simulation, pages
1037–1044, Atlanta, December 1997. IEEE.

[34] Dimitris Pendarakis, Sherlia Shi, Dinesh Verma, and Marcel Waldvogel.
ALMI: An application level multicast infrastructure. In Proceedings of the
3rd USENIX Symposium on Internet Technologies and Systems (USITS ’01),
pages 49–60, San Francisco, March 2001. The USENIX Association.

90

[35] S. Raman, S. McCanne, and S. Shenker. Asymptotic scaling behavior of
global recovery in SRM. In Proceedings of SIGMETRICS/PERFORMANCE
98, Joint International Conference on Measurement and Modeling of Com-
puter Systems, pages 90–99, Madison, Wisconsin, June 1998. ACM.

[36] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Schenker. A scalable content-addressable network. In Proceedings of the
ACM SIGCOMM 2001, pages 161–172, San Diego, August 2001. ACM.

[37] Antony Rowstron and Peter Druschel. Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. In IFIP/ACM
International Conference on Distributed Systems Platforms (Middleware),
pages 329–350, Heidelberg, Germany, November 2001. ACM.

[38] Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble. A measurement
study of peer-to-peer file sharing systems. In Proceedings of Multimedia
Computing and Networking 2002 (MMCN ’02), San Jose, January 2002.

[39] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari
Balakrishnan. Chord: A scalable peer-to-peer lookup service for Internet
applications. In Proceedings of the ACM SIGCOMM 2001, pages 149–160,
San Diego, 2001. ACM.

[40] H. Tangmunarunkit, R. Govindan, S. Jamin, S. Shenker, and W. Willinger.
Network topology generators: Degree-based vs structural. In Proceedings of
ACM SIGCOMM, pages 147–159, Pittsburgh, PA, August 2002. ACM.

[41] D. Tran, K. Hua, and T. Do. Zigzag: An efficient peer-to-peer scheme for
media streaming. In Proceedings of IEEE INFOCOM 2003, pages 1283–1292,
San Francisco, April 2003. IEEE.

[42] Duc A. Tran, Kien A. Hua, and Tai T. Do. A peer-to-peer architecture
for media streaming. IEEE Journal on Selected Areas in Communications,
22:121–133, January 2004.

[43] Bernard M. Waxman. Routing of multipoint connections. IEEE Journal on
Selected Areas in Communications, 6(9):1611–1622, December 1988.

[44] Ellen Zegura. Thoughts on router-level topology modeling, January 2001.
The End-to-end interest mailing list.

91

[45] B. Zhang, S. Jamin, and L. Zhang. Host multicast: A framework for deliver-
ing multicast to end users. In Proceedings of IEEE INFOCOM 2002, pages
1366–1375, New York, June 2002. IEEE.

[46] S. Zhuang, B. Zhao, A. Joseph, R. Katz, and J. Kubiatowicz. Bayeux: An
architecture for scalable and fault-tolerant widearea data dissemination. In
Proceedings of the Eleventh International Workshop on Network and Oper-
ating System Support for Digital Audio and Video (NOSSDAV 2001), Port
Jefferson, New York, June 2001. ACM.

92

