Guiding Probabilistic Model Checkers by
Reinforcement Learning

University of Oxford

Department of Computer Sience

Qiyi Tang
Kellogg College

A thesis submitted for the degree of

Master of Science

Trinity 2013

Abstract

In this thesis, we study different solution methods of reinforcement learn-
ing problems and adapt those methods for model checking Java code con-
taining probabilistic choices. In particular, we propose three new search
strategies: softmax search (SMS), e-greedy search (EGS) and reinforce-
ment learning search (RLS). SMS and EGS are inspired by choice selec-
tion in reinforcement learning and RLS is based on the popular Q-learning
method. We implement the above-mentioned search strategies within jpf-
probabilistic, an extension of the model checker Java PathFinder. Further-
more, we use a progress measure to compare the performance of different
search strategies on verifying a randomized version of quicksort.

Acknowledgements

I would like to express sincere gratitude to my supervisor, Prof. Franck
van Breugel, for his extensive guidance and generous support. With his
wisdom and experience as a trusted mentor, he encouraged me and moti-
vated me to learn throughout the project. I feel so grateful to have had
the opportunity to work with him. I'm also thankful for his expert advice
and feedback on my thesis writing.

I would also like to thank my course mates for their friendship, inspiration,
and support during this year at Oxford University. Without the thoughts
and laughter we shared together, my year in Oxford would not have been
so memorable.

Last but not least, many thanks to my family, for always believing in me,
understanding me, and being there for me. Without their everlasting love,
I would not have had the courage to explore the world away from home.

Contents

1 Introduction

1.1 Research Question
1.2 Proposed Method
1.3 Related work
1.4 Overview e

2 Background - Most Common Path Example

2.1 Most Commmon Path in a DTMC
2.2 Reinforcement Learning oL
2.3 RL Problem Formulation,
2.4 Solution Methods
2.4.1 Dynamic Programming
2.4.2 Temporal-Difference Learning

3 Java PathFinder

3.1 Virtual Machines oo
3.2 Search Strategies Lo
3.3 Listeners L
3.4 The jpf-probabilistic Extension

4 Algorithms of Search Strategies

4.1 DFS . .
4.2 BFS . .
4.3 PES
4.4 RS .
4.5 SMS . .
4.6 EGS . . .
4.7 RLS . . .
5 Evaluation of Search Strategies - Progress Measure
5.1 Measuring Progress for Invariants
5.2 Algorithm to Compute Progress

W N

S ot Ot

10
11

12
12
13
15
15

16
16
17
17
18
18
19
20

6 Experimental Results
6.1 Experiment Configuration
6.2 Randomized Quicksort
6.3 Experiment Results L.

7 Conclusion

7.1 Summary
7.2 Future Work

Appendix A Implementing a Search Strategy in JPF
A.1 The Structure of the Class
A2 BasicSearch
A.3 Other Components,
A.4 JPF Properties
A5 Notifications
A.6 Complete Search
AT BFS
A8 RS . .
A9 PES . .
ATOSMS . . o
AILTEGS

Appendix B Implementing a Listener in JPF
Appendix C An Example of Correctness Test
Appendix D TransitonsAndTime Listener
Appendix E Subproblems of Progress

Bibliography

62

64

67

68

Chapter 1

Introduction

The notorious state space explosion problem is one of the major challenges in model
checking in general and probabilistic model checking in particular (see, for example,
[BKO08]). Numerous techniques have been developed to tackle this problem. Experi-
mental studies have shown that combining different techniques is most effective (see

[Pel08]).

1.1 Research Question

The order in which the different alternatives of probabilistic choices are explored
by the model checker, also known as its search strategy, impacts its effectiveness.
Determining this order can be viewed as a planning problem. Techniques to address
planning problems can therefore be used to combat the state space explosion problem.
For example, the Monte Carlo method has been used in model checking (see, for
example, [GS05]). In this project, we focus on another technique to tackle planning
problems: reinforcement learning.

1.2 Proposed Method

One recent proposal to combat the state space explosion problem is to measure the
amount of progress that has been made by the model checker towards verifying the
property of interest (see [ZvB11]). Notions from reinforcement learning such as model,
policy, reward and value correspond in our setting to the model checker together with
the system being verified, probability distributions over the alternatives of probabilis-
tic choices, (the average of) the progress made so far, and the expected progress. In
this project, we design a new search strategy based on the notion of progress measure
using techniques of reinforcement learning.

The model checker Java PathFinder! [VHB'03] (JPF) provides search strategies
that do not take the probabilities into account such as depth-first search and breadth-
first search. An extension of JPF named jpf-probabilistic? [ZvB10] contains several

Ibabelfish.arc.nasa.gov/trac/jpf
Zbitbucket.org/discoveri/jpf-probabilistic

1.3 Related work CHAPTER 1. INTRODUCTION

search strategies that do take the probabilities into account, such as probability-
first search and random search. We implement our new search strategies within
this framework. Our new search strategies are variations of the strategies of jpf-
probabilistic. Furthermore, we also compare the performance of our search strategy
with the above mentioned search strategies.

1.3 Related work

The aim of our research is to exploit techniques from planning, in particular rein-
forcement learning, in model checking. The opposite, that is, exploiting techniques
from model checking for planning, has also been considered. In [GT99] Giunchiglia
and Traverso describe the “planning as model checking” paradigm. In this approach,
generating a plan amounts to determining whether a property is satisfied in a model.

Aragi and Cho [AC06] show how reinforcement learning can be used to test con-
current systems. In their approach, a concurrent system is modelled as a transition
system. Each state of the system is labelled with the atomic propositions that hold in
that state and each transition is labelled with the identifier of the process that corre-
sponds to the transition. They restrict to fair executions and they focus on response
properties. The latter can be expressed in linear temporal logic (LTL). For example,
O(p = ¢gq), where p and ¢ are atomic propositions, is a response property. Aragi
and Cho use the Q-learning method (see, for example, [SB98, Section 6.5]) to deter-
mine which execution of the system to test. To maintain fairness, a positive reward
is assigned to those outgoing transitions of the current state with the following prop-
erty: in the execution checked so far and extended with that transition, each process
takes the same number of transitions. In the search for violations of the response
property, a positive reward is assigned to those outgoing transitions of the current
state which satisfy one of the following two conditions: (1) in the execution checked
so far we have not yet encountered p and the target state of the transition satisfies p
but not ¢; (2) in the execution checked so far we have already encountered p and the
target state of the transition does not satisfy ¢q. Aragi and Cho have implemented
their approach and applied it to a model of Dijkstra’s mutual exclusion algorithm
and a model of the dining philosopher’s problem.

Behjati, Sirjani and Ahmadabadi [BSA09] also apply reinforcement learning to
model checking of concurrent systems. Both the system and the negation of the
property, expressed in LTL, are modelled as a Biichi automaton. In their approach
not only response properties but also other LTL properties can be checked. Also
Behjati et al. restrict to fair executions. They focus on finding counterexamples, that
is, fair executions of the system that do not satisfy the property. To find those, they
build the product of the two Biichi automata. A counterexample consists of a fair
cycle that is reachable from an initial state and contains an accepting state in the
product automaton. To find a counterexample, they assign a positive reward to those
transitions at the end of an unfair accepting cycle and a negative reward to the ones
at the end of a non-accepting cycle. Behjati et al. use the Monte Carlo method (see,
for example, [SB98, Chapter 5]) to find accepting cycles. If such a cycle is found,

1.4 Overview CHAPTER 1. INTRODUCTION

they check if it is fair. They have implemented their approach and applied it to the
dining philosophers problem.

A large variety of other techniques are used to develop search strategies. For an
overview, we refer the reader to [ES11].

1.4 Overview

The main contributions of this thesis are listed below:

e We designed three new search strategies softmax search (SMS), e-greedy search
(EGS) and reinforcement learning search (RLS);

e We implemented the above mentioned search strategies;

e We not only considered the implementation of random search (RS) that uses a
linked list, as described in Zhang’s thesis ([Zhal0]), but also a new implemen-
tation of RS that uses a red-black tree instead;

e We ran experiments to compare the performance of the new search strategies
with depth-first search (DFS) and breadth-first search (BFS), which are both
part of JPF, and probability-first search (PFS) and RS, which are part of the
extension jpf-probabilistic;

e We developed a blueprint for implementing search strategies in JPF using tech-
niques from reinforcement learning;

e We developed scripts to parallelize the computation of progress.

The structure of thesis is shown as follows. In the next chapter, we characterize the
reinforcement learning (RL) problems and the class of methods to solve RL problems.
To illustrate how the methods can be applied to RL problems, we construct a simple
example which is to find the most common path. We show how to formulate the RL
problem for this example and how to solve it using two solution methods. We also
discuss the suitable methods to develop a search strategy.

Chapter 3 introduces the explicit-state model checker Java PathFinder and its
extension jpf-probabilistic. There relationship with search strategies and listeners
are also covered in this chapter.

Chapter 4 provides the concept and algorithms of different search strategies. We
start with the basic DFS and BFS. Then we provide PF'S and RS proposed by Zhang
and van Franck ([ZvB11]) which take the probabilities of the transitions into account.
SMS and EGS are developed based on PFS and RS. We then propose RLS which is
based on a temporal-difference method called Q-learning method.

We use the so-called progress measure ([ZvB11]) to evaluate the different search
strategies and the algorithm is presented and explained in Chapter 5.

Chapter 6 describes the experiment settings and shows the results of the experi-
ment. The performance of different search strategies are compared and analysed.

3

1.4 Overview CHAPTER 1. INTRODUCTION

Finally, we summarise the thesis and conclude the thesis with some suggestions
of future work.

Chapter 2

Background - Most Common Path
Example

To introduce the readers to reinforcement learning, we will consider the following
problem. Given a discrete time Markov chain (DTMC), find a most common path.
That is, among all the infinite paths starting in the initial state of the DTMC, find
a path whose probability is maximal. Before introducing reinforcement learning, let
us first formalize the problem.

2.1 Most Commmon Path in a DTMC

Definition 2.1.1. A discrete time Markov Chain (DTMC) is a tuple (S, P, s¢) where

e S is a countable, non-empty set of states,

e P:S xS —|0,1] is the transition probability function such that for all states

se S,
ZP(s,s’) =1,

s'eS
e sy € S is the initial state.

We shall use the following DTMC as our running example for the rest of this
chapter.

Example 2.1.1. The DTMC depicted by

3
4
So > S1

Wi

2.2 Reinforcement Learning CHAPTER 2. BACKGROUND

has three states and five transitions where state sq is the initial state. The transition
probability function can be easily extracted from the above diagram. For example,
P(sp,51) = 3 and P(s9,s9) = 1.

Definition 2.1.2. Let M = (S, P, s) be a DTMC. A path of M starting in sq is an
infinite sequence sys1s . .. such that P(s;, s;11) > 0 for all i > 0. We denote the set
of paths of M starting in the initial state s by Paths(M).

For the DTMC of Example 2.1.1, the sequence 5951525252 ... is an example of a
path and so is sgs15187

Definition 2.1.3. Let M = (S,P,s) be a DTMC and let sosis2... € Paths(M).
The probability of sps1ss ... is defined by

prob(spsisy...) = nlggo H P(si, Sit1).

0<i<n

In the DTMC of Example 2.1.1, the probability of paths sps1525253... and s¢$1517...
are %L and 0, respectively.

Now that we have defined the probability of a path, we can formalize the most
common path problem as follows. Given an DTMC M, find a o € Paths(M) such
that prob(c) > prob(o’) for all o’ € Paths(M).

In Example 2.1.1, the paths sg$1528955 ... and 59828255 . .. are the two most com-
mon paths, both have probability of }1. All the other paths in the DTMC have smaller
probabilities.

Note that for the most common path problem, we restrict ourselves to DTMCs
which satisfy two conditions:

e the probability is less than one for all the transitions except self loops;

e and the DTMCs must contain self loops.

2.2 Reinforcement Learning

Reinforcement learning (RL) is a learning method in connection with an agent and its
environment. The agent aims to achieve a goal by interacting with the environment.
In the following section, we first describe the environment. Second, the role of agent is
introduced and the interaction between the environment and the agent is discussed.
Next, we show how the goal of a RL problem is formalized and explain the basic
elements of RL in detail. Finally, we formulate our own RL problem — finding a most
common path.

The environment is everything around the agent and can be modelled by a Markov
decision process (MDP).

Definition 2.2.1. A Markov decision process (MDP) is a tuple (S, Act, A, P, 59,7, R)
where

2.2 Reinforcement Learning CHAPTER 2. BACKGROUND

e S is a countable, non-empty set of states,

Act is a set of actions,
o A:S — 24 is the available action function,

e P: S x Act x S — [0,1] is the transition probability function such that for all
states s € S and actions a € Act,

Z P(s,a,s") € {0,1},

s'eS

so € S is the initial state.

v € [0, 1] is the discount rate,

o R:S x Act — R is the reward function. R(s,a) is the reward of taking action
a from state s and a € A(s).

For all state s € S, A(s) is the set of actions that are available in state s. A
reward function S x Act — R maps a state-action pair to a numerical number. The
reward function captures how good the action in the given state is.

If the task is divided into separate episodes, the environment also should include
terminal states. The environment could appoint a set of states to be terminal directly
or otherwise could specify a set of states to be terminal by some properties such as
no outgoing transitions.

The agent is a learner and decision maker. It is the agent’s role to determine
which action to take in a state of the environment. The agent interacts with the
environment. The interaction consists of choosing actions and observing state and
reward. It learns how good is each action for each state of the environment. Figure 2.1
shows an agent interacts with its environment in a sequence of discrete time step, t
=0, 1, 2, 3, At each time step t, the agent observes the current state of the
environment s; € S and selects a possible action a; € A(s;). One time step later, as
a consequence of selecting a, the agent receives a reward r;,,; and observes the new
environment state s;,;. At each time step, the agent selects an action according to
a policy which maps each state s of the environment to a probability distribution
on A(s). The reward is a number generated by the environment. It can be either
positive, zero or negative. We will talk about policy and reward in detail later.

The goal of a RL problem is to maximize the cumulative (discounted) rewards in
the long run. Upon visiting the sequence of states sy, s;11, ... ($; does not have to be
the initial state) with actions ay, asy1, ... the sum of the discounted rewards is given
by

R(ss,a0) + YR(st41, ar1) + V' R(s112, arg2) + -+ = >V R(s11, arps) (2.1)
k=0

2.2 Reinforcement Learning CHAPTER 2. BACKGROUND

i)
4 Agent
h)
state reward action
5 Tt 5]
F
! ¥ +1
| $t43 Environment
|
| .

Figure 2.1: The agent-environment interaction in reinforcement learning.

Equation (2.1) is called discounted return, R is the reward function and + is the
discount rate. The role of v is illustrated here. The future rewards are discounted
by 7. For example, the reward k time steps further than the current state s; is only
accounted 7* times the value it would be if it were the immediate reward. If v = 0,
only the immediate reward counts and all the future rewards are disregarded, which
makes the process quite nearsighted. As v becomes larger, the future rewards are
taken more into account.

There are four basic elements of a RL system: a policy, a reward function, a value
function and the model of the environment ([SB98]). The model of the environment
and the reward function have already been discussed earlier.

A policy tells the agent how to choose an action given the current state of the
environment. It is a function 7 : S x Act — [0, 1] such that) _, 7(s,a) = 1. It maps
a state s to a probability distribution on A(s). When for every state s, m(s,a) = 1
where a € A, the policy actually directly maps a state to a possible action. The policy
is changing alongside with the interaction between the agent and the environment.
The agent is learning towards an optimal policy.

A value function estimates how good each state is in the long run. It is the total
future (discounted) reward that is expected in a state continuing with the given policy.
The value of a state s under a policy 7, denoted V7™ (s), is given by

V7i(s) = Ew{z WkR(StJrk, Qryk)|se = s} (2.2)

The value of taking action a in state s under a policy 7, denoted Q7 (s, a), is given
by

Q" (s,a) = E”{Z Y*R(st1k, arik)|se = 5,0, = a} (2.3)
k=0

2.3 RL Problem Formulation CHAPTER 2. BACKGROUND

There are two types of RL tasks, episodic tasks and continuing tasks, which can be
differentiate according to if the task is broken into separate episodes. As mentioned
earlier, episodic task has a set of terminal states. Fach episode will end when reaching
one of the terminal state and start a new episode from the initial state. A continuing
task does not have terminal states so it will not terminate. Since episodic task will
not run infinitely long time, the cumulative discounted reward function (2.1) should
be modified. For one episode with T time steps, it is given by

T-1

R(st,a0) + . 47" R(sipro1, aroro1) = Y Y R(St4k, arg) (2.4)
k=0

Equation (2.2) and Equation (2.3) should be modified accordingly for episodic
tasks.

2.3 RL Problem Formulation

With all the elements explained, we formulate the elements of the RL problem -
searching for a most common path of a DTMC. There are lots of ways to formulate
the problem, the way we proposed is only one example among them.

The problem can be broken down into episodes when using Monte Carlo methods
and temporal-difference learning. The terminal states are the states with self loops.
Each time such a state is reached, i.e. a path is found, the current episode ends
and a task of finding a path is restarted from the initial state. The set of states of
the environment is the same as that of the DTMC. The transition in the DTMC are
all labelled differently. The set of actions Act in the environment is then {a,b, ¢, d}.
For each state s in the environment, available action function A(s) can be obtained
from Figure 2.3. For all the states s, s and action a, the transition probability func-
tion P'(s,a,s’) is set to be equal P(s,s'), where P(s,s’) is the transition probability
function of the DTMC. Discount rate 7 is set to be 1.

Our environment now is depicted by

For the most common path example, the agent’s goal is to find a path with the
greatest probability. We assign a negative value (e.g. —1) to the recurring state
with probability less than 1 and a positive value (e.g. 1) to the recurring state with
probability of exactly 1 and zero to all the other transitions. The reward of each step
is set to be —0.1.

2.4 Solution Methods CHAPTER 2. BACKGROUND

2.4 Solution Methods

There are three elementary solution methods: dynamic programming (DP) methods,
Monte Carlo methods and temporal-difference (TD) learning . We show how to apply
DP methods and TD learning to the most common path problem respectively. To
apply DP methods, we must have the full knowledge of the environment model, so
it does not fit our search strategy. We introduce it since it helps understand TD
learning methods.

2.4.1 Dynamic Programming

There are two forms of dynamic programming methods: policy iteration and value
iteration ([SB98]). Policy iteration starts with a random policy. The policy is eval-
uated and improved iteratively ([SB98, Section 4.3]). The evaluation is based on
Equation (2.2). Rewrite Equation (2.2) to be the form of Bellman equation for V™:

V7T(s) = E-{R(s,a) + YV (st11)|st = s} (2.5)

The value of each state s under policy 7 could be approximated by iteratively applying
Equation (2.5).

7'(s) = argmax, Q" (s,a) (2.6)

Assume the original policy is 7 and the policy after applying Equation (2.6) is 7.
For any state s, V;(s) < Q" (s, 7'(s)), then the policy 7" is better than the policy 7.
The proof is as follows.

Va(s) < Q7(s,7(s))
= E{R(st,a;) +yV7(s)]st = s,a; = a}
< Er{R(se, a0) + Q" (8141, 7 (8141)) |5 = 5,00 = a}
= Er{R(s,a1) + YEx{R(st11, ar1) + 7V (st42) } st = 5,00 = a}

< En{R(s1,a0) + YR(St41, ari1) + Y R(St42, arya) + o.lse = 5,0, = a}
= Vi (s)
For all state s, V,(s) < Vi(s). So the policy could be improved by applying Equa-
tion (2.6).
Value iteration is the truncated version of policy iteration ([SB98|). It applies

Equation (2.7) to all states in the RL system iteratively until the values of all states
become stable.

V™ (s) = arg max, Q" (s, a) (2.7)

After several iterations, if V7 (s) = V™ (s) holds for all state s, then the policy is
the optimal policy as it satisfies the Bellman optimality equation Equation (2.8). The

10

2.4 Solution Methods CHAPTER 2. BACKGROUND

derivation from V7(s) = V™ (s) to the Bellman optimality equation is shown below.

V™ (s) = max, B{R(ss, a;) + YV (s¢31)|5: = 5, a; = a}(substitute 7 by ')
V™ (s) = max, B{R (s, as,) + YV™ (s31)|5: = 8, a0 = a} (2.8)

We apply value iteration on the MDP shown in Figure2.3. The values of sy, and
s1 of the first two iterations are shown in Table 2.1. The values of sy and s; are
initialized to be 0. The values of states remain stable after the first iteration. The
optimal policy we obtain is then 7(sg) = b and 7(s;) = d, which is correct.

Table 2.1: Value iteration (DP method)

The 1st iteration: V(sg) =0.9 V(s;) =0.9.
The 2nd iteration: V(sg) =0.9 V(s1) = 0.9.

2.4.2 Temporal-Difference Learning

When model checking a probabilistic program, we do not know the state space of the
program at the beginning. We only know the part we have already model checked.
For this reason, DP methods can not be applied. Temporal-difference (TD) learning
can, however, learn from its experience without the full knowledge of the environment
([SB98, Page 133]).

Q(s,a) = Q(s,a) + alr + ymaxy Q(s', a’) — Q(s, a))] (2.9)

TD learning also involves policy evaluation and policy improvement. Here we present
one TD learning algorithm which is the Q-learning algorithm [SB98, Section 6.5]. In
Q-learning algorithm, the function which updates Q(s, a) is independent of the policy
being followed. Equation (2.9) is used to update the @ function. The algorithm is
shown in Algorithm 2.1.

Algorithm 2.1: Q-learning: TD learning Algorithm

initialize Q(s, a) for all s and q;
repeat
choose action a using policy derived from @ (e.g. e-greedy);
while state s is not the end state do
take action to state s’, observe reward r;
Q(s,a) < Q(s,a) + afr + ymaxy Q(s',a') — Q(s,a)l;
s« s,
end

until Q(s,a) for all s and a converges;

11

Chapter 3
Java PathFinder

There are two types of model checker: symbolic ones and explicit-state ones. The
former is often used to verify hardware whereas the latter is more suited to check
software. An explicit-state model checker visits the states of the system under test in
a systematic way. Each visited state is represented explicitly by the model checker. In
contrast, a symbolic model checker represents the set of visited states compactly by a
data structure such as a binary decision diagram. Since we are interested in verifying
Java (byte)code, we focus on explicit-state model checking. For a more detailed
comparison of symbolic and explicit-state model checking, we refer the reader to, for
example, [EP02].

Java PathFinder (JPF)! [VHBT03] is an explicit-state model checker. It can verify
Java (byte)code. JPF systematically visits the states of the system under test, that is,
the bytecode of a Java application. It goes from state to state traversing transitions.
These transitions correspond to sequences of bytecode instructions.

3.1 Virtual Machines

JPF is a virtual machine. To contrast JPF’s virtual machine with an ordinary Java
virtual machine we consider the following Java application.

import java.util.Random;

public class Example {
public static void main(String[] args) {
Random random = new Random();
System.out.print (random.nextInt (10)) ;
}
}

The execution of the above application by an ordinary Java virtual machine results
in the printing of a randomly chosen integer in the interval [0,9]. The execution of
the application by JPF’s virtual machine results in the following output.

'vabelfish.arc.nasa.gov/trac/jpf

12

babelfish.arc.nasa.gov/trac/jpf

10

11

3.2 Search Strategies CHAPTER 3. JPF

JavaPathfinder v6.0 (rev 1035+) - (C) RIACS/NASA Ames Research Center
system under test

Example.main()

search started:

0123456789

results

no errors detected

search finished:

In particular, the execution prints 0123456789, that is, it prints all integers in the
interval [0,9]. While an ordinary Java virtual machine carries out one of the ten
potential executions, JPF’s virtual machine performs all ten potential executions in
a systematic way.

Now, let us replace line 6 with

System.out.print(1 / random.nextInt(10));

In 80% of the cases, the execution by an ordinary Java virtual machine prints zero, in
10% it prints one, and in the remaining 10% it throws an exception. Of course, it may
take more than ten executions before we encounter the exception. In case we choose
an integer in the interval [0,99999] it may take many executions before encountering
the exception. If we execute the application one million times, there is a 36% chance
that we do not encounter the exception. In contrast, JPF’s virtual machine checks
all one million executions within ten seconds and reports the exception.

JavaPathfinder v6.0 (rev 1035+) - (C) RIACS/NASA Ames Research Center
system under test

Example.main()

search started:

error 1

gov.nasa. jpf.vm.NoUncaughtExceptionsProperty
java.lang.ArithmeticException: division by zero
at Example.main(Example.java:6)

search finished:

JPF is implemented in Java. Its virtual machine is implemented by means of the
class VM, which is part of the package gov.nasa. jpf.vm. Later, we will come back to
this class and its methods.

3.2 Search Strategies
JPF’s exploration of the state space can be seen as a graph traversal. The vertices

of the graph are the states of the system under test and the edges of the graph are
the transitions between the states. Just like graphs can be traversed in different

13

3.2 Search Strategies CHAPTER 3. JPF

ways, JPF can visit the states in different orders as well. JPF supports several search
strategies including depth-first search (DFS) and breadth-first search (BFS).

In case JPF cannot explore the whole state space (due to lack of memory or time),
different search strategies may visit different parts of the state space. Consider, for
example, the following Java application.

public class Example {
public static void main(String[] args) {
Random random = new Random();
long count = 0;
while (random.nextInt(2) == 0) {
count++;
}
}
+

By default, JPF uses DFS. In this case, JPF runs out of memory after roughly two and
a half minutes. During that time, it visits 272050 states. The states and transitions
explored by JPF can be depicted as follows.

0 1 2 e 272048 — 272049

The states are numbered in the order they are visited.

If we configure JPF to use BFS by setting the JPF property search.class to
gov.nasa. jpf.search.heuristic.BFSHeuristic, it also runs out of memory, this
time after less than two minutes. It only visits 6032 states. It runs out of memory
quicker and visits fewer states since the queue used to implement BE'S takes additional
memory. In this case, the states and transitions can be depicted as follows.

i 2 3 e 6030 6031

1 %

State 0 of the above diagram corresponds to state 0 of the DFS diagram. State 1 of
the BFS diagram is a final state and is not visited by DFS. State i, for ¢« > 0, of the
BFS diagram corresponds to state i+ 1 of the DFS diagram. Hence, there is one state
that is visited by BFS that is not visited by DFS, but there are many states visited
by DFS that are not visited by BFS.

Now, let us consider which executions DFS and BFS check. On the one hand,
DFS considers a prefix of a single execution, where in each iteration the randomly
chosen integer is zero. On the other hand, BFS checks 6031 executions, where in the
1 iteration the randomly chosen integer is one, for 0 < ¢ < 6030. We will come back
to this later when discussing progress. The algorithm of different search strategies

are presented in Chapter 4 and the detailed implementation of those search strategies
are given in Appendix A.

14

3.3 Listeners CHAPTER 3. JPF

3.3 Listeners

A listener allows us to extract information from JPF during its traversal of the state
space. For example, the listener SimpleDot, which is part of package gov.nasa.jpf
.listener, generates a dot-file that contains a graphical representation of the state
space of the system under test. Both the search and JPF’s virtual machine notify
listeners of particular events. How to implement a listener is shown in Appendix B.

3.4 The jpf-probabilistic Extension

The extension jpf-probabilistic? [ZvB10] of JPF allows us to associate probabil-
ities with transitions. For example, in the above Java application we may want to
associate probability 0.5 with each transition. For JPF to easily recognize these prob-
abilities, we use the method make of the class Choice, which is part of the package
probabilistic. For example, if

double[] p = { 0.4, 0.6 };

then the method invocation Choice.make (p) returns 0 with probability 0.4 and 1 with
probability 0.6. More generally, if p[0] + - - - 4+ p[p.length — 1] = 1.0 then the method
invocation Choice.make (p) returns i, where 0 < i < p.length, with probability p[i].
We can refactor the above Java application as follows.

public class Example {
public static void main(String[] args) {
final double[] p = { 0.5, 0.5 };
long count = 0;
while (Choice.make(p) == 0) {
count++;
}
}
}

The probabilities associated with the transitions can be used two different ways. First
of all, they can be exploited by search strategies. We will come back to this later.
Secondly, they can be used to measure the amount of progress JPF has made with
its verification effort. We will discuss this next.

’bitbucket.org/discoveri/jpf-probabilistic

15

bitbucket.org/discoveri/jpf-probabilistic

Chapter 4

Algorithms of Search Strategies

In this chapter we provide the algorithms of different search strategies. We start with
depth-first search (DFS) and breadth-first search (BFS) and then introduce random
search (RS) and probability-first search (PFS) proposed by [Zhal0, page 71-76] which
take the probabilities of transitions into account. Then we propose two new search
strategies, softmax search (SMS) and e-greedy search (EGS), which are based on
RS and PFS and inspired by some selection methods in [SB98]. The details of the
implementation of these search strategies are given in the Appendix A.

4.1 Depth-First Search

Depth-first search (DFS) is part of JPF. As its name suggests, it starts at the initial
state and explores along each branch as far as possible before backtracking. It can
be implemented as Algorithm 4.1.

Algorithm 4.1: Depth-First Search

S <+ empty stack;
push the initial state s onto S;
while S is not empty do
pop(S);
for all transitions t from S do
if target(t) is not visited then
| push target(t) onto S ;
end

end

end

16

4.2 BFS CHAPTER 4. ALGORITHMS OF SEARCH STRATEGY

4.2 Breadth-First Search

Breadth-first search (BFS) is also part of JPF. It starts at the initial state and tra-
verses all its unexplored transitions. In the mean time, each of the newly discovered
states are stored into a queue. Then for each of the states in the queue in turn, it
traverses every unexplored transition and adds the newly discovered states into the
queue, and so on. An algorithm of BFS is shown in Algorithm 4.2.

Algorithm 4.2: Breadth-First Search

() + an empty queue;
enqueue the initial state;
while @ is not empty do
dequeue state s from Q);
for all transitions t from s do
if target(t) is not visited then
| enqueue target(t);
end
end

end

4.3 Probability-First Search

Now we describe several search strategies which take the probabilities of transitions
into consideration. These search strategies are provided in the jpf-probabilistic
extension of JPF.
probability-first search (PFS) is proposed in [ZhalO]. Tt uses the probability to
select the next state to explore, where the policy is always choosing the state whose
path along which it is discovered has the highest probability. The algorithm is as
follows.
Algorithm 4.3: Probability-First Search
() < an empty priority queue;
add the initial state with weight 1 to Q;
while () is not empty do
remove a state s with largest weight p from @Q;
for all transitions t from s do
if target(t) is not visited then
‘ add target(t) with weight prob(t) = p to Q;
end
end

end

The weight of the state is the probability of the path along which the state is
discovered. We use a priority queue as the container to store a state and its weight.
The priority queue orders its elements opposite to the natural ordering of their prob-
abilities, and the head of the queue corresponds to the state with the largest weight.

17

4.4 RS CHAPTER 4. ALGORITHMS OF SEARCH STRATEGY

4.4 Random Search

Random search (RS) is also proposed by Zhang ([Zhal0]). Similar to PFS, RS also
uses the probability to select the state to explore next, but the policy is that the
chance of choosing a state is proportional to the probability of the path along which
the state is discovered. Let us make that precise. Assume that {si,...,s,} is the
set of states that have been discovered but their outgoing transitions have not been
explored yet. Then RS chooses state s; with probability

p(s;) (
L 4.1)
> iz p(si)
where p(s;) is the probability of the path along which s; is discovered. The algorithm
is shown in Algorithm 4.4.

Algorithm 4.4: Random Search

distribution <— an empty distribution;
add the initial state with weight 1 to distribution;

while distribution is not empty do
remove a state s with weight p according to the above policy from

distribution;
for all transitions t from s do
if target(t) is not visited then
| add target(t) with weight prob(t) * p to distribution;
end

end
end

The weight is the same as in PFS. In Algorithm 4.4, the container to store the state
and its weight is called distribution. It supports the method to remove a state and
the probability of removing any state is proportional to their weight. We implement
distribution by means of a red-black tree whereas Xin implements it by a linked list
in [Zhal0].

4.5 Softmax Search

From now on, we show several search strategies designed and implemented by our-
selves. Inspired by softmax action selection [SB98, Section 2.3], we implement softmax
search (SMS) where the chance of choosing a state is based on Gibbs distribution. It
chooses state s; with probability

eP(s5)/T

S e

where p(s;) is the probability of the path along which s; is discovered and the constant
7 is called the temperature and should be a positive real number. As the temperature

(4.2)

18

4.6 EGS CHAPTER 4. ALGORITHMS OF SEARCH STRATEGY

approaches zero, SMS behaves more and more like PF'S. High temperatures cause the
states to become nearly equiproportional.

Since we can obtain Equation (4.2) by replacing p(s;) in Equation (4.1) with
eP()/7 we can change the weight of a state element to e?(*)/7. We can implement
SMS on the basis of RS with the weights of the states changed as follows.

Algorithm 4.5: Softmax Search

distribution <— an empty distribution;
add the initial state with weight /7 to distribution;

while distribution is not empty do
remove a state s with weight p according to the above policy from

distribution;
for all transitions t from s do
if target(t) is not visited then
‘ add target(t) with weight pP"**®) to distribution;
end

end

end

There are only two places in the above search method that are different from RS.
First, we add the initial state with weight e!/™ instead of 1 to distribution. Secondly,
the weight of the newly discovered state is calculated differently. Let p(s;) denote
the probability of the path along which s; is discovered. When we find a new state
s; starting from a restored state s,, p(s;) is equal to p(s,) * p(s,, s¢), where p(s,, s;)
denotes the probability of the transition from s, to s;. So the weight of s; can be
calculated as

eP(sr)*p(sr.st) /T

_ (POr)/mypr) (4.3)

where eP*")/7 is the weight of s,. According to Equation (4.3), we can obtain the
weight of s; by raising the weight of s, to the power of the probability of the transition.

4.6 e-Greedy Search

Inspired by another action selection method, the e-greedy method mentioned in [SB9S,
page 28], we implement the so-called e-greedy search (EGS). It combines RS and PFS
in such a way that with probability 1 — € it behaves like PFS, that is choosing the
state whose path along which it is discovered has the highest probability, and with
probability € it behaves like RS, that is the chance of choosing a state is proportional
to the probability of its path.

19

4.7 RLS CHAPTER 4. ALGORITHMS OF SEARCH STRATEGY

Algorithm 4.6: e-Greedy Search

distribution <— an empty distribution ;
add the initial state with weight 1 to distribution;
while distribution is not empty do
random < a random number in the range [0..1);
if random < e then
‘ remove a state s according to RS policy from distribution;
else
‘ remove a state s according to PFS policy from distribution;
end
for all transitions t from s do
if target(t) is not visited then
| add target(t) with weight prob(t) = p to distribution;
end

end

end

4.7 Reinforcement Learning Search

In a search strategy we need to decide
e which state to consider next, and
e which unexplored transition of that state to explore next.

For example, PFS selects a state which is not fully explored and the probability of
the path along which the state is discovered is maximal. It also selects the first
unexplored transition of that state.

Below, we will show how we can use reinforcement learning to select a state and
transition. We use temporal-difference learning [SB98, Chapter 6] as the basis of our
search strategy. In particular, we base it in Q-learning [SB98, Section 6.5]. In order
to explain our approach, we will again use the Example application of Section 3.4.
Below we present the states and transitions, where 0 is the initial state and 1 is a

final state.
005,09 05,9 05
Oﬁl%’)
1 0.5

At the level of states and transitions there is very little we can learn since we traverse
each transition at most once and we visit each state at most n + m times, where n
and m are the number of incoming and outgoing transitions of the state.

Since we restrict ourselves to sequential code, each state with multiple outgoing
transitions corresponds to an invocation of the Choice.make method. For example,
in the above example the states 0, 2, 3, ...all correspond to an invocation of the
Choice.make method. Note that such an invocation of the Choice.make method

20

4.7 RLS CHAPTER 4. ALGORITHMS OF SEARCH STRATEGY

may be executed multiple times. Hence, this suggests that we may be able to learn
something at the level of invocations of the Choice.make method.

Given an invocation Choice.make(p), different executions of this invocation may
use a different probability distributions p. We will see an example of this scenario
in Section 6.2. The invocations of the Choice.make method together with their
probability distributions p are the states of the MDP representing the environment.
We will call these the RL states, to distinguish them from the JPF states. Note that
multiple states visited by JPF may correspond to a single RL state. For each RL
state, we keep track of the set of corresponding JPF states by means of a function
Fs which maps RL states to sets of JPF states.

The alternatives of an invocation Choice.make (p), that is, the set {0,...,p.length—
1}, play the role of actions of the MDP. Hence, the actions of the MDP are nat-
ural numbers. The available action function of the MDP is defined in the obvi-
ous way. It maps the RL state corresponding to the Choice.make(p) to the set
{0,...,p.length — 1}.

An RL state s corresponding to an invocation Choice.make(p) has an RL tran-
sition for each alternative ¢, with 0 < ¢ < p.length. The probability of this RL
transition is p[i] and the transition leads to the RL state corresponding to the JPF
states that can be reached from Fg(s). Note that this may in general not be well
defined, but for the Example application, this defines a transition probability function
for the MDP representing the environment. The MDP representing the environment
of the Example application is shown below.

0.5

00.51

where 0 is the initial state and 1 is the final state.

However, for the randomized quicksort application, this does not define a proper
transition probability function. Recall that TD learning does not assume the full
knowledge of the environment (Section 2.4.2), we do not need to define a transition
probability function. For a state s, we only keep track of the most recent next states
of it. Improving our approach so that the transitions and transition probability
function are well defined is left for future research.

The initial RL state corresponds to the first invocation of Choice.make. Also this
may in general not be well defined, but again for all the examples we considered so
far, it is. Handling the general case we also leave for future work. We set the discount
rate v to one. That is, we do not discount the future.

Before we define the reward function, we briefly introduce a few notions that will
be considered in detail in Chapter 5. We call a JPF state fully explored if it is either
a final state or the probabilities of its explored outgoing transitions add up to one. In
case JPF has explored states 0, 1 and 2 in the above example, states 0 and 1 are fully
explored but state 2 is not. We call a JPF state processed if all its reachable states
are fully explored. In case JPF has explored states 0, 1 and 2 in the above example,
only state 1 is processed.

21

4.7 RLS CHAPTER 4. ALGORITHMS OF SEARCH STRATEGY

Recall that the reward function assigns a numerical value to each RL state. Given
an RL state s, we are interested in the fraction of corresponding JPF states that are
processed. That is, we define the reward function R as

{s" € Fg(s) | ' is processed }|
[Fs(s)| '

Now that we have defined all the ingredients defining the MDP representing the
environment, let us look at another reinforcement learning notion. In our setting,
a policy is a mapping from an RL state to a probability distribution on the actions
available in that state. Hence, it tells us given an invocation Choice.make (p) which
alternative of that invocation to choose. Therefore, it can be used to drive a search
strategy.

Recall that the value function assigns to each RL state the expected accumulative
reward. We estimate the value function using a simplified version of Equation (2.9)
shown below.

R(s) =

V(s) + V(s) + a[r + ymaxy V(s') — V(s)] (4.4)

Note that s’ in Equation (4.4) is chosen from the set of next states which is most
recently verified. The value of the final state is set to be the value of the source
state which leads to it. « is set to be the probability of the transition which leads
to the state with the largest value. For all the other state s, V (s) is initialized to be 0.

Algorithm 4.7: Reinforcement Learning Search

Qsma < an empty priority queue;
add initial state with value 0 to Qsmnau;
Qiarge <— an empty priority queue;
while true do
if Qgman s not empty then
remove state s with largest value from Qg01;
add all states in Qgsmau t0 Qrarge;
end
else if Q4rge is not empty then
‘ remove state s with largest value from Q4 ge ;
end
else
‘ end the search;
end
for all transitions t from s do
if target(t) is not visited then
| add target(t) with value V(target(t)) to Qumau;
end

end
end

22

4.7 RLS CHAPTER 4. ALGORITHMS OF SEARCH STRATEGY

RLS uses two priority queues to store the states with their values: Qgnqa; and
Qiarge- The policy m we follow is adding all next states available to Qsmqy and then
choosing the state with the largest value in Q4. All the other states in Q. are
added to Qarge. If for a state s, there are no next states available, we choose the state
with the largest value from Qq,4e. The search strategy is shown in Algorithm 4.7. It
is a greedy policy since RLS always chooses the state with the largest value.

We implement a new listener called NewTransitionsAndTime. It not only prints
the transitions and timing information but also maps the JPF states to the RL states.
In addition, it keeps track of the set of states which are processed. It updates the
value of each RL state. A separate thread is created to calculate the set of processed
states while model checking, which will affect the speed of search process as little as
possible. When RLS visits a new JPF state, it gets the corresponding RL state from
the listener and saves the JPF state along with the RL state in the priority queues.

23

Chapter 5

Evaluation of Search Strategies -
Progress Measure

In Section 4 we present the algorithms of seven different search strategies: DF'S, BFS,
PFS, RS, SMS, EGS and RLS. Next, we evaluate the different search strategies. In
this chapter we introduce the evaluation method proposed by [ZvB11].

5.1 Measuring Progress for Invariants

We restrict our attention to checking invariants for sequential code. Roughly speak-
ing, an invariant captures that each state of the system under test satisfies a particular
property. For example, “no state of the system under test throws an uncaught ex-
ception” is an invariant. For a formal definition of the notion of invariant, we refer
the reader to, for example, [BKO08, Section 3.3.1]. In particular when checking source
code, as we do, invariants play a key role. JPF can check for uncaught exceptions.
JPF’s extension jpf-numeric can check for overflow of integer valued variables. Both
are examples of invariants.!

Zhang and Van Breugel [ZvB11] introduced a general notion of progress. This is a
quantitative notion that captures the amount of progress the model checker has made
with its verification effort. The amount of progress is captured by a real number in
the interval [0, 1]. The larger the number, the more progress the model checker has
made.

As shown by Zhang and Van Breugel in [ZvB11], the progress measure provides a
bound on the probability that an error is encountered. Assume that the model checker
runs out of memory when verifying property ¢, does not detect any violations of ¢,
and has made 0.97 progress. Then the probability of encountering a violation of ¢
when running the code is at most 1 — 0.97 = 0.03.

When restricting to invariants and sequential code, the progress can be computed
as follows. Consider all the states and transitions that have been explored by the
model checker. We call an explored state fully explored if it is either a final state
or the probabilities of its explored outgoing transitions add up to one. Consider the

!pabelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-numeric

24

babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-numeric

5.1 Measuring Progress for Invariants CHAPTER 5. EVALUATION

Example presented Section 3.4. Assume that the code has been explored using DFS.
After three transitions, the following states and transitions have been explored.

0 0.5 1 0.5 9 0.5 3

No state is fully explored. If we use BFS instead, the following states and transitions
have been explored.

0-%5,9

A

1

State 0 is fully explored. Since state 1 is a final state and, hence, also fully explored.
State 2 is not fully explored yet.

To compute the progress for invariants for sequential code, we conceptually add
a new state, which we call the sink state and denote it by —1. For each state that
is not fully explored, we conceptually add a transition from that state to the sink
state. The probability of that transition is the “remaining” probability, that is, it is
1— (the sum of the probabilities of its outgoing explored transitions). In the case of
DFS, this gives rise to

and for BFS

]

0.5 92

0
0.5l A
1

As shown by Zhang and Van Breugel [ZvB11] the progress for invariants for sequential
code is equal to 1— (probability of reaching the sink state —1 from the initial state
0). Hence, DFS has made progress

1—(0.5x0.540.5x0.5x0.54+0.5%x0.5x0.5) =1—(0.2540.125+0.0625) = 0.5625
and BFS has made progress
1—-0.5x0.5=0.75.

We can map the progress in terms of the number of explored transitions as follows.

25

5.1 Measuring Progress for Invariants CHAPTER 5. EVALUATION

DFS vs BFS
119
- /
w 079
w
2
? oss / —BF5
o . / — DI FS
0.39 /
0.19 /
-0.01
o 2 4 & 8 10 12 14 16
Transitions
Figure 5.1: Progress vs transition
DFS vs BFS
1.19
099 s
‘0
+
079
+*
g
= 059
by + BFS
- *
o —DF5
039
019
001 *
0 50 100 150 200 250
Time (milliseconds)

Figure 5.2: Progress vs time

However, since different search strategies may take different amounts of time to
process a transition, one can also map the amount of progress versus the amount

26

5.2 Algorithm to Compute Progress CHAPTER 5. EVALUATION

of time it took to make that progress (Figure 5.2). BFS runs out of memory after
7 minutes and 6 seconds. DFS does not make any progress before running out of
memory in 7 minutes and 53 seconds.

In Chapter 6, we will use the latter type of graphs to compare the different search
strategies.

5.2 Algorithm to Compute Progress

As we have seen in the previous section, to compute the progress it suffices to compute
the probability of reaching the sink state from the initial state. Next, we sketch how
to compute such reachability probabilities. For more details we refer the reader to,
for example, [BK08, Section 10.1.1].

First, we determine the set of states Sy that cannot reach the sink state. This can
done by a simple graph algorithm. For these states, the probability of reaching the
sink state is zero. If the initial state belongs to Sy, then the progress is one. For the
BF'S example of the previous section, Sy = {1}.

Next, we determine the set of states S; that always reach the sink state. Also this
can be accomplished by a simple graph algorithm. For these states, the probability of
reaching the sink state is one. Note that the sink state is included in S;. If the initial
state belongs to S7, then the progress is zero. For the BFS example of the previous
section, S = {—1}.

The set of remaining states is denoted by S;. For the BFS example of the pre-
vious section, S; = {0,2}. In case the initial state belongs to S;, we compute the
reachability probabilities for the remaining states as follows.

Let P be the probability matrix, that is, the entry P[i,] is the probability of
going from state ¢ to state j. For the BFS example of the previous section,

0 0 0 O
0 0 05 0.5
b= 0 0 0 O
05 0 05 0

Next, we will compute the vector x, where the entry x[i] is the probability of reaching
the sink state from state i. Note that x[0] is the probability of reaching the sink state
from the initial state 0.

The vector x satisfies the equation

x[i] = Y Pli,j] x x[j] = (Z Pli, j] x x[j]) +> Plijl. (5.1)

JES JES, JEST

We define the vector b such that the entry b[i] = > . ¢ P[i, j] for each state i € S.
For the BFS example of the previous section, b = [0, 0,0, 0.5]. Hence, we can rewrite

Equation (5.1) as
x[i] = <Z Pi, j] x X[j]) + bli].

JES?

27

5.2 Algorithm to Compute Progress CHAPTER 5. EVALUATION

That is,
x=Pxx+b. (5.2)

Equation (5.2) can be rewritten as
(I-P)xx=b,
where I is the identity matrix. Now let A =1 — P. Then

1—P[i,j] ifi=j
—Pli,j] otherwise

Alidl = {

and
A xx=bh. (5.3)

We solve Equation (5.3) by means of the Jacobi method. For a detailed discussion
of the Jacobi method, we refer the reader to, for example, [Saa03, Section 4.1]. Our
implementation of the progress computation can be found in the CD.

28

Chapter 6

Experimental Results

In this chapter, we present the experimental results of the search strategies and anal-
yse the performance of them. To evaluate and performance of the search strategies
we proposed, we model checked a randomized version of quicksort for each of the
search strategies: DFS, BFS, RS, PFS, SMS and EGS. The last two ones are new.
All the search strategies except DFS store states in a container which is implemented
by means of a linked list or a red-black tree. RSlist and BFS use the linked list
based container while RSrbt, SMS and EGS use the red-black tree based container.
We compare the amount of progress different search strategies make and discuss why
some search strategies work better.

6.1 Experiment Configuration

To ensure the correctness of the new search strategies (SMS and EGS), before doing
an experiment for a newly proposed search strategy we first tested the implementation
of them. We automatically created 178508 simple applications that use the method
Choice.make. An example is shown in Appendix C.

We created a listener that keeps track of the number of states and transitions
visited by a search. A state is only counted when it is first discovered. For each test,
we ran DFS and a new search strategy and we made sure that the number of states
and transitions visited were the same for both search strategies. Both SMS and EGS
passed this correctness test.

For each search strategy, we model checked the randomized quicksort application
ten times. We will take a closer look at the application in Section 6.2. Below is some
information about the setting.

Experiment Setting

Machine: two AMD Athlon 64 X2 dual core processors
and 4 GB of memory.

Linux version: CentOS release 6.4

Java version: 1.7.0_25

JPF version: 7 (despite the fact that the output says 6)

29

10

11

12

13

14

15

16

17

18

19

6.1 Experiment Configuration CHAPTER 6. EXPERIMENTAL RESULTS

In the directory where we can find the randomized quicksort application QuickTest
.class, we create the application properties file named QuickTest.jpf with the
following contents.

Qusing=jpf-probabilistic

target=probabilistic.QuickTest

classpath=/cs/fac/packages/jpf/jpf-probabilistic/build/jpf-
probabilistic-examples. jar

search.class=.......

listener=TransitionsAndTime

The key target is set to be probabilistic.QuickTest as its value. probabilistic
.QuickTest is the name of the randomized quicksort application to be checked by
JPF. The key classpath has JPF’s classpath as its value. We set search.class to
be the search class we use for the model checking process. For example, if we use
PFS as the search strategy, it uses probabilistic.search.PFSearch as its value.
The key listener is set to TransitionsAndTime.

The listener TransitionsAndTime provided in Appendix D prints the transitions
and timing information. It prints the current time in milliseconds at the start of the
search. Then it prints the timestamps in milliseconds after every 1000 transitions
The transitions and timing information are saved to a file. In total, there are 442889
transitions. Here are the first few lines of the output for one of the experiments for
DFS.

T: 1374864281262
JavaPathfinder v6.0 (rev 1035+) - (C) RIACS/NASA Ames Research Center

system under
test
probabilistic.QuickTest.main()

search started:

7/26/13 2:44 PM
.07692307692307693 1
L1111111111111111 2
.16666666666666666 3
.2 4
.26 b
.3333333333333333 6
.57
.3333333333333333 8
.5 9 x
.5 9 x
.3333333333333333 10

~N 00 00 NO Ol WM+~ O
O OO OO O OO O o o

The first line shows the current time in millisecond when the search started. Line 2

30

10

11

6.2 Randomized Quicksort CHAPTER 6. EXPERIMENTAL RESULTS

shows the version and copyright information of JPF. Line 5-6 describes the system
under test which is the main method of the probabilistic.QuickTest class. Line 9-
19 shows the state transitions. Line 12 shows that it transfers from state 3 to state 4
with probability 0.2. Line 17 shows a transition from state 8 to state 9 with probability
0.5. This line also indicates that state 9 is a final state by means of the *.

This file is used as input for an application that computes the progress after every
1000 transitions. Since computing the progress usually takes a lot of time, we split up
the problem. Given number n and m, with n < m, the subproblem progress(n,m)
computes the progress after nx 1000 transitions, (n+1)% 1000 transitions, ..., m 1000
transitions. We split the problem progress(0,443) into 48 subproblems. The set of
subproblems are shown in Appendix E. The subproblems were run on 48 machines in
parallel. As a consequence, the time to compute the progress was reduced by almost
a factor 50.

A script started the progress computations on the different machines. Another
script combined the output produced by the 48 machines into a single file. Here are
the first few lines for one of the DFS experiments.

0 1.000000000F0 0O

1 0.9880638651 4168
2 0.9841100258 6193
3 0.9643806810 8045
4 0.9388524284 9836
5 0.9357091982 11591
6 0.8458966445 13190
7 0.8450928894 14808
8 0.8444630986 16657
9 0.8431126487 18148
10 0.8410406916 19618

where the first column is a counter, the second one represents 1 — progress, the third
one is the time (in milliseconds). For example, after 4,000 transitions it has made
1 —0.9388524284 =~ 0.06 of progress and it took 9836 milliseconds to check the 4,000
transitions.

6.2 Randomized Quicksort

The randomized algorithm which we model checked is the randomized quicksort appli-
cation. It is a three-step process for sorting a list of n integers list. Firstly, randomly
choose an element as pivot from list and partition list into two sublists list_smaller
and list_larger. All the elements of list_smaller are smaller than or equal to pivot
while all the elements of list_larger are larger than pivot. Then recursively sort
list_smaller and list_larger in the same way. Finally, combine the sorted lists. Al-
gorithm 6.1 implements randomized quickshort.

31

6.3 Experiment Results CHAPTER 6. EXPERIMENTAL RESULTS

Algorithm 6.1: Randomized_Quicksort(list)

Data: list (a list of integers)
Result: list (sorted in ascending order)
if list.size > 1 then
pivot <—an element randomly chosen from list;
for i < 0 to list.size — 1 do
if list.get(1) < pivot then
‘ add list.get(i) to list_smaller;
else
| add list.get (i) to list_larger;
end

end
Randomized_Quicksort(list_smaller);
Randomized_Quicksort(list_larger);
clear list;

add all elements of list_smaller to list;
add pivot to list;

add all elements of list_larger to list;
end

Recall that the amount of progress when JPF runs out of memory is of mainly
interest. Since running the experiments and computing their progress is very time
consuming, we simply do not have the time to consider a list such that the randomized
version of quicksort runs out of memory. Given time restrictions, we only consider
the list [10,7,13,1,2,11,6,8,4, 3,12, 9, 5] for which randomized quicksort terminates.

6.3 Experiment Results

Figure 6.1 shows the relationship between the progress measure and the running time
after model checking using EGS with € = 0.1 ten times.

The horizontal axis is the running time (in milliseconds) of the model checking
and the vertical axis is the amount of progress. As we can see from Figure 6.1, the
results of the ten experiments using EGS differ very little. The same applies for the
other search strategies except SMS.

The experiment results of SMS are shown in Figure 6.2. The chance of choosing
most states stored in the container are almost equal for SMS (7 = 0.5), so that the
result of each experiment appears to be very random. We did experiment on SMS
(1 = 1073%) and the results are shown in Figure 6.3. Compared to the other search
strategy, the difference of the ten data sets are quite large. The performance is getting
even worse, we will give the explanation later.

32

6.3 Experiment Results CHAPTER 6. EXPERIMENTAL RESULTS

EGS (epsilon = 0.1)

12

/"" —1
08 —1

—3

—]

=
@

Progress
J

@
T

e

—]

il e

i 9
ar —10
100000 200000 300000 400000 500000 600000 700000 800000 S00000 1000000

-0.2
Time (milliseconds)
Figure 6.1: The data sets of EGS.
SMS (tau = 0.5)

12
1

. - —1

0.8 o —an —_2

3

—]

—5

Progress
o
o
\
|

04
) —
02 —8
9
o]}
100000 200000 300000 400000 500000 600000 700000 800ODD 500000
02

Time (millisecond)

Figure 6.2: The data sets of SMS (7 = 0.5).

33

6.3 Experiment Results

CHAPTER 6. EXPERIMENTAL RESULTS

12

SMS (tau very small)

0.8

0.6

Progress

0.4

0.2

o 100000

200000

500000 400000 500000
Time (milliseconds)

600000

700000

BOODDOD

Figure 6.3: The data sets of SMS (7 = 107%).

In Table 6.1 and Figure 6.4, we take the data of the first experiment for each
search strategy except SMS. For SMS, we take the data of the fifth experiment. As
we can see in Figure 6.2 it is almost the middle line of the experiments.

Table 6.1: Comparison of different search strategy

Progress Measure

Search Strategies| 0.2 0.4 0.6 0.8 0.9 0.95 1

DFS 149812 605732 620992 713270 725882 728000 728495
BFS 113326 131972 149090 283343 313565 315148 799452
RSlist 52250 79144 130889 217445 346019 501025 2705955
RSrbt 31429 43756 63327 100297 145633 202982 1282618
PFS 24764 33368 43512 78134 114080 161882 911678
SMS (7 = 0.5) 77244 150661 246914 384888 507689 583092 775617
EGS (e =0.1) 26291 33939 45593 79854 116150 167627 881678
EGS (e =0.5) 28492 37361 54478 89380 127849 175273 975558
RLS 8084 20301 39973 105756 255427 294390 744878

Table 6.1 shows the time (in milliseconds) it takes JPF to achieve different amount
of progress for different search strategies. It is obvious from the table that DF'S takes
the least amount of time. However, we are not so much interested in the total amount

34

6.3 Experiment Results CHAPTER 6. EXPERIMENTAL RESULTS

of time it takes for JPF to verify the application. We are much more interested in
the time it takes to reach progress 0.8, 0.9, 0.95 etc.

PFS and EGS (e = 0.1) take the least amount of search time to reach 0.8 of
progress, which remains the same for 0.9 and 0.95 of progress. EGS (e = 0.5) takes
slightly more time since it spends more time exploring. RSrbt takes less than half the
time of RSlist to achieve 0.8, 0.9 ,0.95 of progress. This is because the implementation
of the red-black tree is much more efficient than the linked list. RLS performs the best
until reaching the progress of 0.6. After that, it slows down its speed of progressing.
It takes almost the same amount of time as RSrbt to reach the progress of 0.8. It
takes less time to reach the progress of 0.9 and 0.95 than BFS. DFS performs worst.
It takes about 80% of the total time to achieve the progress of 0.4.

Figure 6.4 compares all the search strategies. It shows clearly that PFS and EGS
(e = 0.1) make the fastest progress. EGS (¢ = 0.5) and RSrbt are a little worse. BFS
and RSlist are comparable to each other. DFS makes the slowest progress because
DFS always tries to search as far as along each path and does not take probabilities
into consideration.

Comparisons

12

——BFS
——R&list
[%]
§ 06 ——RSrbt
g ——PFS
2
[-%
SMS
0.4 EGS 0.1
| EGS0.5
I SEMS small
02 HHAA ——RLS
[
o HJ
i} 200000 400000 600000 00000 1000000 1200000 1400000

Time (milliseconds)

Figure 6.4: Comparison of different search strategies.

SMS (7 = 0.5) makes a little faster progress than DFS since it chooses states
randomly. For the random quicksort application under checking, there are 13 numbers
in the list to sort. A small part of the state space of the application is shown below.

35

6.3 Experiment Results CHAPTER 6. EXPERIMENTAL RESULTS

Recall that in SMS, the weight of a state is determined by e”*)/7. Then the weight
of s1, sy and s3 is)
e15/9% ~ 1.163

respectively. The weight of s, is
e13*12/0% ~ 1.013

We can see that the weight of any state in the state space approaches 1. So the
probability of choosing any state is quite similar. A smaller value of 7 would not
improve the situation. Take 7 = 0.01 as an example. The weight of s1, so and s3 is

e13/00 ~ 2191.415
respectively. The weight of s4 is
e15*12/001 ~ 1,808

When the probability of the path along which the state is discovered becomes even
smaller, the weight approaches 1 again. There are only several states with large
weights.

With 7 = 1073%, the overflow occurs when computing the weight of each state.
All the states then are chosen completely random. In the situation that there is no
proper value of 7, we conclude that SMS is not a favourable search strategy.

RLS outperforms PFS at first and stops making progress at progress around 0.7.
It recovers its speed of making progress after some time and stops again when reaching
progress around 0.85. It stops making progress since it keeps choosing the JPF states
of which the corresponding RL states have big values but do not contribute to the
progress making. It suggests that the equation which estimates the values of states is
not optimal. Overall, RLS outperforms BFS and RSlist. Though our implementation
of RLS does not give the best performance, there is plenty of room for improvement
and we will suggest several methods in the conclusion.

36

Chapter 7

Conclusion

7.1 Summary

In this thesis we introduced three new search strategies softmax search (SMS), e
greedy search (EGS) and reinforcement learning search (RLS) which are all based on
some methods in tackling reinforcement learning problems. SMS is inspired by the
softmax action selection and EGS is inspired by e-greedy action selection. Dynamic
programming methods, Monte Carlo methods and temporal-difference methods are
studied. We showed how to solve a reinforcement learning problem using dynamic
programming methods and temporal-difference methods by a small example. We
then characterized the model checking problem into a reinforcement learning prob-
lem. and implemented RLS based on the popular Q-learning method which is a
kind of temporal-difference methods. We implement the search strategies within the
framework of an extension of JPF which is called jpf-probabilistic (Section 3.4).
Random search (RS), which is described in Xin’s thesis ([Zhal0]), is reimplemented
by a red-black tree. Furthermore, we developed scripts to parallelize the computation
of progress.

We measured the amount of progress in terms of the amount of time it took to
make that progress by different search strategy. Most of the time, model checkers like
JPF would suffer state explosion problem, so we are more interested in the progress
when JPF runs out of memory. We mainly focus on the time the search strategy
takes to reach progress of 0.8, 0.9, 0.95 etc. It is shown in Section 6.3, EGS is
comparable with PFS, while in most cases SMS chooses states randomly regardless of
the probability of the transition. Our implementation of RS in red-black tree performs
much better than the one in linked list. RLS shows its potential by outperforming
all the other search strategies before reaching progress 0.7, though it slows down
afterwards. Our implementation does provide a blueprint for applying the techniques
from reinforcement learning to search strategies in JPF.

37

7.2 Future Work CHAPTER 7. CONCLUSION

7.2 Future Work

To improve the performance of RLS, as mentioned in Section 4.7, we can formulate
the transitions and the transition probability function. When estimating the value of
RL state in Q-learning, instead of using the simplified version (Equation (4.4)), it is
suggested to replace the value function V(s) with the action-value function Q(s,a),
which results in the original equation Equation (2.9). As the performance of RLS
suggests, we could use a different reward function or a different value function so
that RLS would not keep choosing the states which have big values but are not the
most favourable ones. Moreover, to balance the exploration and exploitation ([SB9S,
Section 2.2]), when estimating the value function, the e-greedy method could replace
the greedy method to generate a new episode.

38

cos W N =

Appendix A

Implementing a Search Strategy in
JPF

In this appendix we first explain how to implement a search strategy within JPF. As a running
example, we use depth-first search (DFS). We name our class DFSearch. Later in this appendix, we
shall also consider BFS, PFS, RS, SMS and EGS.

A.1 The Structure of the Class

The Search class, which resides in the package gov.nasa. jpf.search, contains numerous attributes
and methods that may be of use for implementing a search strategy. Hence, we extend this class.

import gov.nasa.jpf.search.Search;
public class DFSearch extends Search {

}

The constructor of the Search class takes two arguments. The first argument is a Config
object. The class Config is part of the package gov.nasa.jpf. The Config object contains the
JPF properties. These properties can be set, for example, in the jpf.properties file. The second
argument is a VM object. The VM object provides the search a reference to JPF’s virtual machine. To
properly initialize the Search object, we add the following constructor to our DFSearch class (and
import the classes Config and VM).

public DFSearch(Config config, VM vm) {
super (config, vm);

}

If JPF is configured to use our DFSearch, JPF will construct a DFSearch object with a Config
object capturing JPF’s configuration and a VM object representing JPF’s virtual machine.

The Search class is abstract. It contains the abstract method search. This method drives the
search. It visits the states of the system under test in a systematic way by traversing transitions.
In our DFSearch we implement the search method. We develop our implementation of the search
method in a number of steps. We start with the implementation of

A.2 The Basic Search

To implement the basis of the search, we use the following three methods from the Search class
that categorize the current state. The method isNewState () tests whether the current state is new,

39

© W N O s W N =

[
o

A.2 Basic Search APPENDIX A. SEARCH STRATEGY IMPLEM. IN JPF

that is, it has not been visited before by the search. The method isEndState() tests whether the
current state is a final state. The method isIgnoredState() tests whether the current state should
be ignored by the search. States can, for example, be ignored by using in the system under test the
method ignoreIf(boolean) of JPF’s class Verify which is part of the package gov.nasa. jpf.vm.
Several other methods that characterize the current state can be found in the Search class.

To visit the states, the Search class provides the following two methods. The backtrack()
method returns the search to the source state of the transition along which the current state was
discovered by the search. The method returns a boolean: whether the backtrack was successful. A
backtrack fails, for example, in the initial state. In that case, the methods returns false and the
search stays in the same state. The forward() method moves the search from the current state to
another state along an unexplored transition. The method returns a boolean: whether the forward
was successful. A forward fails, for example, if there are no unexplored transitions from the current
state. In that case, the methods returns false and the search stays in the same state. The forward
() method also checks whether any property is violated after the unexplored transition has been
traversed (we will come back to this later).

The class VM contains the method restoreState (RestorableVMState) which restores the given
state, which has been visited before. The class RestorableVMState, which is part of package gov
.nasa.jpf.vm, represents a state that can be restored. Although we do not need the method
restoreState (RestorableVMState) to implement DFS, it comes in handy when implementing
BFS as we will show later.

Using the above mentioned methods, we can implement DFS as follows.

public void search() {
while (true) {
if ('isNewState() || isEndState() || isIgnoredState()) {
if (!'backtrack()) {
break;
}
}
forward();
}
}

Consider a system under test that gives rise to the following states and transitions.

7N,

Starting in the initial state 0, DFS gives rise to the following sequence of invocations of forward
and backward.

forward move from state 0 to state 1
forward move from state 1 to state 1
backtrack move from state 1 to state 1
forward fails; stay in state 1

backtrack move from state 1 to state 0
forward move from state 0 to state 2
backtrack move from state 2 to state 0
forward fails; stay in state 0

backtrack fails; stay in state 0

Below, we extend the above search() method in several ways by adding different, orthogonal,
aspects to search().

40

© W N O s W N

=
o

© 0w N O U R W N

—= e
=]

© W N O s W N

=
= o

A.3 Other Components APPENDIX A. SEARCH STRATEGY IMPLEM. IN JPF

A.3 Other Components

Other components of JPF, such as listeners, can end a search by setting the attribute done of the
class Search to true. This is reflected in the search() method as follows.

public void search () {
while (!done) {
if ('isNewState() || isEndState() || isIgnoredState()) {
if (!'backtrack()) {
break;
}
}
forward();
}
}

Other components of JPF can also request a search to backtrack by means of the method
requestBacktrack() of the class Search. This method simply sets the boolean attribute doBacktrack
to true. The method checkAndResetBacktrackRequest() of the class Search tests whether a
backtrack has been requested and resets the attribute doBacktrack to false. Requests of backtracks
can be addressed in our search method as follows.

public void search () {
while (true) {
if ('isNewState() || isEndState() || isIgnoredState() ||
checkAndResetBacktrackRequest()) {
if (!backtrack()) {
break;
}
}
forward();
}
}

A search can be configured in several ways. Next, we will introduce the JPF properties relevant
to a search.

A.4 JPF Properties

JPF can be configured to limit the depth of the search by setting the JPF property search.

depth_limit. The default value of search.depth_limit is Integer .MAX_VALUE. The Search

class contains the attribute depth that can be used to keep track of the depth of the search. It also

provides the method getDepthLimit () which returns the maximal allowed depth of the search.
We can limit the depth of the search as follows.

public void search () {
final int MAX_DEPTH = getDepthLimit();

depth = 0;
while (true) {
if (!isNewState() || isEndState() || isIgnoredState() ||

depth >= MAX_DEPTH) {
if (!backtrack()) {
break;

b
depth——;
3

41

12
13
14
15
16

© 0w N O U R W N

e e e
N N =)

gt W N

A.4 JPF Properties APPENDIX A. SEARCH STRATEGY IMPLEM. IN JPF

if (forward()) {
depth++;
+
}
}

Note that if the maximal depth has been reached, the search tries to backtrack. If that fails, the
search terminates.

The JPF property search.min_free captures the minimal amount of memory, in bytes, that
needs to remain free. The default value is 220, By leaving some memory free, JPF can re-
port that it ran out of memory and provide some useful statistics instead of simply throwing an
Out0fMemoryError. The method checkStateSpaceLimit () of the class Search checks whether the
minimal amount of memory that should be left free is still available.

We end the search if we run almost out of memory as follows.

public void search () {
while (true) {
if ('isNewState() || isEndState() || isIgnoredState()) {
if ('backtrack()) {
break;
}
}
if (forward()) {
if (!checkStateSpaceLimit()) {
break;
}
}
}
}

The JPF property search.multiple_errors tells us whether the search should report multiple
errors (or just the first one). The default value is false (that is, by default only the first error is
reported after which the search ends).

Recall that the forward() method also checks whether any property is violated after the un-
explored transition has been traversed. Immediately after an invocation of the forward() method,
the attribute currentError of the class Search is null if and only if no such a violation has been
detected. Furthermore, if a violation has been detected then the attribute done is set to true if and
only if JPF has been configured to report at most one error.

The method hasPropertyTermination() of the class Search checks whether a violation was
encountered during the last transition. The method returns true if and only if the value of the
attribute currentError is different from null and the value of the attribute done is true. We often
use the method hasPropertyTermination() as follows.

if (forward()) {
// forward succeeded
if (currentError != null) {
// violation detected
if (hasPropertyTermination()) {

In the above context, hasPropertyTermination() returns true if and only if JPF has been config-
ured to report at most one error. Furthermore, if hasPropertyTermination() returns false (which
in this context denotes that JPF has been configured to report multiple errors), then it also sets the
attribute doBacktrack requesting a backtrack to true.

public void search () {
while (!done) {
if ('isNewState() || isEndState() || isIgnoredState() ||

42

© 0w N O O

10
11
12
13
14
15
16
17

© W N O s W N =

== e
N o= O

A.5 Notifications APPENDIX A. SEARCH STRATEGY IMPLEM. IN JPF

checkAndResetBacktrackRequest()) {
if (!backtrack()) {

break;
}
}
if (forward()) {
if (currentError !'= null) {
if (hasPropertyTermination()) {
break;
}
}
}

In the case that the forward() method encounters a violation, it either terminates the search
(if JPF has been configured to report at most one error) or it requests a backtrack (if JPF has been
configured to report multiple errors).

A.5 Notifications

A search should also notify listeners of particular events. The Search class provides the following
methods. Note that the methods below correspond to the methods of the interface SearchListener
which can be found in the package gov.nasa. jpf.search. We have divided the methods into four
groups.

The first group contains methods that notify listeners of events related to the current state of the
search. The method notifyStateAdvanced () notifies the listeners that the current state has been
reached as a result of a successful forward() invocation. The method notifyStateProcessed()
notifies the listeners that the current state has been fully explored, that is, it has no unexplored
outgoing transitions. The method notifyStateBacktracked () notifies the listeners that the current
state has been reached by means of a backtrack.

The method notifySearchStarted() notifies the listeners that the search has started and the
method notifySearchFinished () notifies the listeners that the search has finished.

The method notifyPropertyViolated() notifies the listeners that a violation has been encoun-
tered in the current state.

The method notifySearchConstraintHit(String) notifies the listeners that the given con-
straint has been violated. The string specifies which constraint has been violated. For example, the
string "memory limit reached" can be used if we run almost out of memory.

Below, we present the simplest extension of the basic search so that we can introduce all the
notifications apart from notifyPropertyViolated() and notifySearchConstraintHit(). The
latter two types of notification will be added later.

public void search () {
notifySearchStarted();
while (true) {
if (!isNewState() || isEndState() || isIgnoredState()) {
if (!backtrack()) {
break;
}
notifyStateBacktracked();
}
if (forward()) {
notifyStateAdvanced();
} else {

43

A.6 Complete Search ~ APPENDIX A. SEARCH STRATEGY IMPLEM. IN JPF

13 notifyStateProcessed();
14 }

15 }

16 notifySearchFinished();
17}

A.6 The Complete Search

Combining all the above and adding the appropriate invocations of the notifyPropertyViolated()
and notifySearchConstraintHit () methods, we arrive at the following.

1 public void search () {

2 final int MAX_DEPTH = getDepthLimit();

3 depth = 0;

4 notifySearchStarted();

5 while (!done) {

6 if ('isNewState() || isEndState() || isIgnoredState() ||
7 depth >= MAX_DEPTH || checkAndResetBacktrackRequest()) {
8 if (!backtrack()) {

9 break;

10 }

11 depth--;

12 notifyStateBacktracked();

13 T

14 if (forward()) {

15 depth++;

16 notifyStateAdvanced();

17 if (currentError != null) {

18 notifyPropertyViolated();

19 if (hasPropertyTermination()) {

20 break;

21 }

22 }

2 if (depth >= MAX_DEPTH) {

24 notifySearchConstraintHit("depth limit reached");
25 }

26 if (!checkStateSpaceLimit()) {

27 notifySearchConstraintHit ("memory limit reached");
28 break;

29 }

30 } else {

31 notifyStateProcessed();

32 }

33 }

34 notifySearchFinished();

35}

The above search method is slightly different from the one in the DFSearch class of the gov.
nasa. jpf.search package.

44

© 0w N O s W N

=
o

© 0 N 3 ks W N

e e
B W N = O

15
16
17
18
19
20
21
22

-

© W N O s W N

A.7 BFS APPENDIX A. SEARCH STRATEGY IMPLEM. IN JPF

A.7 Breadth-First Search

As a second example, we implement BFS in a class named BFSearch. We start with extending the
class Search.

import gov.nasa.jpf.Config;
import gov.nasa.jpf.vm.VM;
import gov.nasa.jpf.search.Search;

public class BFSearch extends Search
{
public BFSearch(Config config, VM vm) {
super (config, vm);
}
}

To implement the basic search, we need a few new ingredients. To implement BFS, we not
only need forward() and backtrack(), but also restoreState(RestorableVMState). The latter
method restores the state given as an argument and can be found in the VM class. This class also
contains the method getRestorableState () which returns a RestorableVMState object represent-
ing the current state. The Search class contains an attribute named vm of type VM that represents
JPF’s VM.

public void search() {
List<RestorableVMState> currentlLevel = new LinkedList<RestorableVMState>();
currentLevel.add(vm.getRestorableState());
while (!currentLevel.isEmpty()) {
List<RestorableVMState> nextlLevel = new LinkedList<RestorableVMState>();
Iterator<RestorableVMState> iterator = currentlevel.iterator();
while (iterator.hasNext()) {
vm.restoreState(iterator.next());
while (true) {
if (!forward()) {
break;
} else {
if (isNewState() && !isEndState() && !isIgnoredState()) {
nextLevel.add(vm.getRestorableState());

}
backtrack();
}
}
}
currentLevel = nextLevel;

}
}

As before, the attribute done is used to end the search.

public void search() {
List<RestorableVMState> currentlLevel = new LinkedList<RestorableVMState>();
currentLevel.add(vm.getRestorableState());
while (!currentLevel.isEmpty() && !done) {
List<RestorableVMState> nextlLevel = new LinkedList<RestorableVMState>();
Iterator<RestorableVMState> iterator = currentlevel.iterator();
while (iterator.hasNext() && !done) {
vm.restoreState(iterator.next());
while (!done) {

45

10
11
12
13
14
15
16
17
18

20
21
22

A.7 BFS APPENDIX A. SEARCH STRATEGY IMPLEM. IN JPF

if (Mforward()) {
break;
} else {
if (isNewState() && !isEndState() && 'isIgnoredState()) {
nextLevel.add(vm.getRestorableState());

}
backtrack();
¥
}
}
currentLevel = nextLevel;

}
}

In our BFS implementation we decided not to support backtrack requests by other JPF com-
ponents to keep things simple. The class Search contains the method supportBacktrack() which
tests whether a search supports backtrack requests. This method of the Search class always returns
true. In our subclass BFSearch, we override this method as follows.

public boolean supportBacktrack() {
return false;

}
The depth of the search can be limited as follows.

public void search() {
final int MAX_DEPTH = getDepthLimit();
depth = 0;
List<RestorableVMState> currentlLevel = new LinkedList<RestorableVMState>();
currentLevel.add(vm.getRestorableState());
while (!currentLevel.isEmpty() && !done && depth < MAX_DEPTH) {
List<RestorableVMState> nextlLevel = new LinkedList<RestorableVMState>();
Iterator<VMState> iterator = currentlevel.iterator();
while (iterator.hasNext() && !done) {
vm.restoreState(iterator.next());
while (!done) {
if ('forward()) {
break;
} else {
if (isNewState() && !'isEndState() && !isIgnoredState()) {
nextLevel.add(vm.getRestorableState());

}
backtrack();
}
}
}
currentLevel = nextLevel;
depth++;

¥
}

To end the search when insufficient memory is available, we use the method checkStateSpacelLimit
() and the attribute done as follows.

public void search() {
final int MAX_DEPTH = getDepthLimit();
depth = 0;

46

© 0w N s W N

e e e e T o = T
® N O Ok W N = O

A.7 BFS APPENDIX A. SEARCH STRATEGY IMPLEM. IN JPF

List<RestorableVMState> currentlLevel = new LinkedList<RestorableVMState>();
currentLevel.add(vm.getRestorableState());
while (!currentLevel.isEmpty() && !done && depth < MAX_DEPTH) {
List<RestorableVMState> nextlLevel = new LinkedList<RestorableVMState>();
Iterator<VMState> iterator = currentlevel.iterator();
while (iterator.hasNext() && !done) {
vm.restoreState(iterator.next());
while (!done) {
if (Mforward()) {
break;
} else {
if (isNewState() && !'isEndState() && !isIgnoredState()) {
nextLevel.add(vm.getRestorableState());
}
backtrack();
}
if (!checkStateSpaceLimit()) {
done = true;
break;
}
}
}
currentLevel = nextLevel;
depth++;
}
}

The JPF property search.multiple_errors can be dealt with in the same way as in our
implementation of DFS.

In the notification code, we use two methods that we have not discussed before. The method
notifyStateStored() notifies the listeners that the current state has been stored (so that it can be
restored later). The method notifyStateRestored() notifies the listeners that the current state has
been restored (by means of the restoreState (RestorableVMState) method). Below, we introduce
all the notifications apart from notifyPropertyViolated() and notifySearchConstraintHit (
String).

public void search() {
final int MAX_DEPTH = getDepthLimit();
depth = 0;
List<RestorableVMState> currentlevel = new LinkedList<RestorableVMState>();
notifySearchStarted();
currentLevel.add(vm.getRestorableState());
notifyStateStored();
while (!currentLevel.isEmpty() && !'done && depth < MAX_DEPTH) {
List<RestorableVMState> nextlLevel = new LinkedList<RestorableVMState>();
Iterator<RestorableVMState> iterator = currentLevel.iterator();
while (iterator.hasNext() && !done) {
vm.restoreState(iterator.next());
notifyStateRestored();
while (!done) {
if (V'forward()) {
notifyStateProcessed();
break;
} else {

47

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

36
37
38
39
40
41
42

=

= W N

© oo ~ o«

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

A.7 BFS APPENDIX A. SEARCH STRATEGY IMPLEM. IN JPF

notifyStateAdvanced();

if (currentError != null) {
if (hasPropertyTermination()) {
break;
3
}

if (isNewState() && !'isEndState() && !isIgnoredState()) {
nextLevel.add(vm.getRestorableState());
notifyStateStored();
}
backtrack();
notifyStateBacktracked() ;
}
if (!checkStateSpaceLimit()) {
done = true;

break;
}
¥
}
currentLevel = nextLevel;
depth++;
}
notifySearchFinished();
}

We conclude by adding the appropriate invocations of the notifyPropertyViolated() and

notifySearchConstraintHit (String) methods.

public void search() {
final int MAX_DEPTH = getDepthLimit();
depth = 0;
List<RestorableVMState> currentlevel = new LinkedList<RestorableVMState>();
notifySearchStarted();
currentLevel.add(vm.getRestorableState());
notifyStateStored();
while (!currentLevel.isEmpty() && !done && depth < MAX_DEPTH) {
List<RestorableVMState> nextlLevel = new LinkedList<RestorableVMState>();
Iterator<RestorableVMState> iterator = currentlLevel.iterator();
while (iterator.hasNext() && !done) {
vm.restoreState(iterator.next());
notifyStateRestored();
while (!done) {
if (Mforward()) {
notifyStateProcessed();

break;

} else {
notifyStateAdvanced();
if (currentError !'= null) {

notifyPropertyViolated();
if (hasPropertyTermination()) {
break;
}
}
if (isNewState() && !'isEndState() && !isIgnoredState()) {
nextLevel.add(vm.getRestorableState());

48

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

47

15

16

A8 RS APPENDIX A. SEARCH STRATEGY IMPLEM. IN JPF

notifyStateStored();
}
backtrack();
notifyStateBacktracked();
}
if (!checkStateSpacelLimit()) {
done = true;
notifySearchConstraintHit ("memory limit reached");
break;
}
}
}
currentLevel = nextLevel;
depth++;
if (depth >= MAX_DEPTH) {
notifySearchConstraintHit("depth limit reached");
}
}
notifySearchFinished();
}

Although The above search method is quite different from the one in the class BFSHeuristic
of the package gov.nasa. jpf.search.heuristic, it introduced several ingredients that we will use
below.

A.8 Random Search

The policy of RS is that the chance of choosing a state is proportional to the probability of the path
along which the state is discovered.

RS is implemented in a class named RandomSearch. We start with extending the class Search as
before. To implement the basic search, we need a probability distribution to store weighted elements
where the element is a RestorableVMState object and its weight is the probability of the path along
which the state is discovered. The class named Weighted works as a blueprint for such weighted
elements. It implements the Comparable interface and overrides the compareTo() method, so that
the elements are ordered. Besides the compareTo() method and constructor, it also provides two
methods to give access to its element and weight. Weighted is a generic class parameterized over
the type of the element.

public class Weighted<T> implements Comparable<Weighted<T>> {
private T element;
private double weight;

Weighted (T element, double weight) {
super() ;
this.element = element;
this.weight = weight;

}

public T getElement() {
return this.element;

3

public double getWeight() {
return this.weight;

49

17
18

20
21
22
23
24
25
26
27
28

N

'

A8 RS APPENDIX A. SEARCH STRATEGY IMPLEM. IN JPF

}

}

public int compareTo(Weighted<T> other) {
if (this.weight < other.weight) {
return -1;
} else if (this.weight > other.weight) {
return 1;
} else {
return 0;
}
}

The methods supported by the probability distribution are listed in the interface which is called

Distribution. The method isEmpty () returns true if the distribution contains no element and false
otherwise. The method add(T,double) adds a weighted element to the distribution by giving the
element and its weight. The method remove () removes and returns a weighted element randomly
from the distribution according to the policy mentioned above.

public interface Distribution<T> {

}

public boolean isEmpty();
public void add(T element, double weight);
public Weighted<T> remove();

We implement the distribution by means of a linked list and a red-black tree in the classes List

and RedBlackTree, respectively. These two classes are provided in the Appendix.

Using the above mentioned methods along with forward(), backward() and restoreState(

RestorableVMState) we can implement RS as follows.

public void search() {

}

Distribution<RestorableVMState> distribution = new RedBlackTree<
RestorableVMState>() ;
distribution.add(vm.getRestorableState(), 1.0);
do {
Weighted<RestorableVMState> selected = distribution.remove();
RestorableVMState source = selected.getElement();
vm.restoreState (source);
while (true) {
if ('forward()) {
break;
} else {
if (isNewState() && !isEndState() && !'isIgnoredState()) {
double probability = selected.getWeight();
ChoiceGenerator<?> cg = vm.getChoiceGenerator();
if (cg instanceof Probabilistic) {
probability *= ((Probabilistic) cg).getProbability();
}
RestorableVMState target = vm.getRestorableState();
distribution.add(target, probability);
}
backtrack();
}
3
} while (!distribution.isEmpty());

50

w

© ~ (=] ot [

10
11
12
13
14
15
16
17
18
19
20

A8 RS APPENDIX A. SEARCH STRATEGY IMPLEM. IN JPF

Before starting to explore the state space in the search() method, we first define the earlier
mentioned distribution which stores states and their probabilities. It is named distribution. Then
we start the search from the initial state. We store the initial state in distribution first. In the
loop, distribution chooses a state selected to restore by calling the distribution.remove()
method.

Starting from the restored state s,., we traverse its unexplored outgoing transitions. If it ends
up in a new state s; that should neither be ignored nor is a final state, we add the state and the
probability of the path along which the state is discovered to distribution. Let p(s,) denote the
probability of the path along which s, is discovered. Then p(s,) is returned by selected.getWeight
0.

Roughly, a ChoiceGenerator represents the outgoing transitions of a state. The method
getChoiceGenerator () of the class VM returns the current ChoiceGenerator. JPF and its extension

jpf-probabilistic contain different types of ChoiceGenerator. The latter contains ChoiceGenerator

s that keep track of the probabilities of the transitions associated with the Choice.make method.
These ChoiceGenerators implement the interface Probabilistic. This interface contains the
method getProbability() which returns the probability of the latest traversed transition.

Let p(s,, s:) denote the probability of the transition from s, to s;. Then p(s,,s;) is returned
by ((Probabilistic)cg).getProbability() if the current ChoiceGenerator cg is an instance of
Probabilistic. In that case, the probability of the path along which s; is discovered is p(s,) *
(81, St)-

After traversing all the outgoing transitions and adding each of the visited states to distribution
, the loop condition is checked. If distribution is empty, the search completes. Otherwise it
continues by going back to the start of the loop.

Similar to DFS and BFS, we extend the above search method in several ways by adding different,
orthogonal aspects to search().

The depth of the search is limited with the help of two methods defined in the Search class:
setStateDepth(int, int) and getStateDepth(int). In the search, we set the depth in terms of
the id of the state by invoking setStateDepth(vm.getStateId()+ 1, depth + 1). Here we add 1
to the state id since the initial state has id -1. So the depth can be retrieved by invoking the method
getStateDepth(vm.getStateId()+ 1). If the depth limit has been reached, the search will ignore
this state and restore another one. We limit the depth of the search with attribute done added as
follows.

public void search() {
final int MAX_DEPTH = getDepthLimit();
Distribution<RestorableVMState> distribution = new RedBlackTree<
RestorableVMState>() ;
distribution.add(vm.getRestorableState(), 1.0);
setStateDepth(vm.getStateId() + 1, 0);
do {
Weighted<RestorableVMState> selected = distribution.remove();
RestorableVMState source = selected.getElement();
vm.restoreState(source) ;
int depth = getStateDepth(vm.getStateId() + 1);
if (depth >= MAX_DEPTH) {
notifySearchConstraintHit ("depth limit reached: " + MAX_DEPTH);
continue;
3
while (!done) {
if (Mforward()) {
break;
} else {
if (isNewState() && !'isEndState() && !isIgnoredState()) {
double probability = selected.getWeight();

51

21
22
23
24
25
26
27
28
29
30
31
32
33

W N

© 0 N D«

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

A8 RS APPENDIX A. SEARCH STRATEGY IMPLEM

. IN JPF

ChoiceGenerator<?> cg = vm.getChoiceGenerator();
if (cg instanceof Probabilistic) {
probability *= ((Probabilistic) cg).getProbability();

}
RestorableVMState target = vm.getRestorableState();
distribution.add(target, probability);
setStateDepth(vm.getStateId() + 1, depth + 1);

}

backtrack();

}
}
} while (!distribution.isEmpty() && !done);
}

Insufficient memory and the JPF property search.multiple_errors are dealt with the same
way as before. The appropriate invocations of different notifications are added in the same way as

in DFS and BFS. The complete search class is given below.

public void search() {
notifySearchStarted();
final int MAX_DEPTH = getDepthLimit () ;
Distribution<RestorableVMState> distribution = new RedBlackTree<
RestorableVMState>(); // mew List<RestorablelMState>();
distribution.add(vm.getRestorableState(), 1.0);
setStateDepth(vm.getStateId() + 1, 0);
notifyStateStored();
do {
Weighted<RestorableVMState> selected = distribution.remove();
RestorableVMState source = selected.getElement();
vm.restoreState(source);
notifyStateRestored();
int depth = getStateDepth(vm.getStateId() + 1);
if (depth >= MAX_DEPTH) {
notifySearchConstraintHit ("depth limit reached: " + MAX_DEPTH);
continue;

}

while (!done) {
if (Mforward()) {

break;

} else {
notifyStateAdvanced();
if (currentError != null) {

notifyPropertyViolated();
if (hasPropertyTermination()) {
break;
}
}
if (isNewState() && !'isEndState() && !isIgnoredState()) {
double probability = selected.getWeight();
ChoiceGenerator<?> cg = vm.getChoiceGenerator();
if (cg instanceof Probabilistic) {
probability *= ((Probabilistic) cg).getProbability();
}
RestorableVMState target = vm.getRestorableState();

52

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

53

© W N O s W N

LT e e T S o S S S = S S
© W N O kR W N = O

1
2

A.9 PFS APPENDIX A. SEARCH STRATEGY IMPLEM. IN JPF

distribution.add(target, probability);
setStateDepth(vm.getStateId() + 1, depth + 1);
notifyStateStored();
if (!checkStateSpaceLimit()) {
notifySearchConstraintHit ("memory limit reached:
+ minFreeMemory) ;
done = true;
break;

3

}
backtrack();
notifyStateBacktracked();
}
}
} while (!distribution.isEmpty() && !done);
notifySearchFinished();

}

A.9 Probability-First Search

PFS is implemented in the class PFSearch which extends Search as before. Like for RS, we need
a container to store a state and the probability of the path along which the state is discovered.
We should be able to retrieve from the container the state with the largest probability. The class
PVMState contains a RestorableVMState and its probability. We impose a total ordering on the
state by implementing the Comparable interface and overriding its compareTo method. The ordering
on PVMStates is the opposite of the natural ordering of their probabilities. We then use the class
PriorityQueue as the container. The head of the queue can be obtained by invoking the poll()
method.

private static class PVMState implements Comparable<PVMState> {
private RestorableVMState state;
private double probability;

private PVMState(RestorableVMState state, double probability) {
this.state = state;
this.probability = probability;

}

public int compareTo(PVMState other) {
if (this.probability < other.probability) {
return 1;
} else if (this.probability > other.probability) {
return -1;
} else {
return O;
}
}
}

The basic search is almost the same as RS with Distribution in RS replaced by PriorityQueue
and Weighted by PVMState.

public void search() {
PriorityQueue<PVMState> queue = new PriorityQueue<PVMState>();

53

© 0w N o U oA W

10
11
12
13
14
15
16
17
18
19

© 0w N s W N

R e T = T ~ T = T =S
=~ O © ®m N O A W N P O

22
23
24
25
26
27
28
29
30
31
32
33
34

A.9 PFS APPENDIX A. SEARCH STRATEGY IMPLEM. IN JPF

queue.add(new PVMState(vm.getRestorableState(), 1.0));
while (!queue.isEmpty()) {
PVMState head = queue.poll();
vm.restoreState (head.state) ;
while (forward()) {
if (isNewState() && 'isEndState() && !isIgnoredState()) {
double probability = head.probability;
ChoiceGenerator<?> cg = vm.getChoiceGenerator();
if (cg instanceof Probabilistic) {
probability *= ((Probabilistic) cg).getProbability();
}
queue.add(new PVMState(vm.getRestorableState(), probability));
}
backtrack();
}
}
}

The complete search method adds all the other aspects to search() in the same way as RS and can
be found below.

public void search() {

notifySearchStarted();
final int MAX_DEPTH = getDepthLimit();
PriorityQueue<PVMState> queue = new PriorityQueue<PVMState>();
setStateDepth(vm.getStateId() + 1, 0);
queue.add(new PVMState(vm.getRestorableState(), 1.0));
notifyStateStored();
while (!queue.isEmpty() && !'done) {

PVMState head = queue.poll();

vm.restoreState (head.state);

notifyStateRestored();

int depth = getStateDepth(vm.getStateId() + 1);

if (depth >= MAX_DEPTH) {

notifySearchConstraintHit ("depth limit reached: " + MAX_DEPTH);

} else {
while (forward()) {
notifyStateAdvanced();
if (currentError != null) {

notifyPropertyViolated();
if (hasPropertyTermination()) {
break;
}
}
if (isNewState() && 'isEndState() && !isIgnoredState()) {
double probability = head.probability;
ChoiceGenerator<?> cg = vm.getChoiceGenerator();
if (cg instanceof Probabilistic) {
probability *= ((Probabilistic) cg).getProbability();
}
setStateDepth(vm.getStateId() + 1, depth + 1);
queue.add(new PVMState(vm.getRestorableState(), probability));
notifyStateStored();
}
backtrack();

o4

36
37
38
39
40
41
42
43
44
45

N OO s W N =

© ~ =] ot - W

e T S S S S
Uk W N = O

17
18
19
20
21

A.10 SMS APPENDIX A. SEARCH STRATEGY IMPLEM. IN JPF

notifyStateBacktracked();
b
notifyStateProcessed();
X
if (!checkStateSpaceLimit()) {
notifySearchConstraintHit ("memory limit reached: " + minFreeMemory);
done = true;
b
¥
notifySearchFinished();
}

A.10 Softmax Search

We implement SMS in a class named SoftmaxSearch and we start with extending the class Search.
The search can be configured by the user by specifying the temperature 7. The method invocation
config.getDouble("tau", 0.5) returns the value specified for tau if it has been configured by the
user. Otherwise, it returns the default value 0.5. A new field tau of type double which represents
the temperature is introduced in the class.

public class SoftmaxSearch extends Search {
private double tau;
public SoftmaxSearch(Config config, VM vm) {
super (config, vm);
tau = config.getDouble("tau", 0.5);
}
}

We can implement the basic search on the basis of RS with the weights of the states changed as
follows.

public void search() {
Distribution<RestorableVMState> distribution = new RedBlackTree<
RestorableVMState>();
distribution.add(vm.getRestorableState(), Math.exp(1.0 / tau));
do {
Weighted<RestorableVMState> selected = distribution.remove();
RestorableVMState source = selected.getElement();
vm.restoreState(source);
while (true) {
if ('forward()) {
break;
} else {
if (isNewState() && 'isEndState() && !isIgnoredState()) {
double probability = selected.getWeight();
ChoiceGenerator<?> cg = vm.getChoiceGenerator();
if (cg instanceof Probabilistic) {
probability = Math.pow(probability, ((Probabilistic) cg).getProbability
0);
}
RestorableVMState target = vm.getRestorableState();
distribution.add(target, probability);
}
backtrack();

55

A.10 SMS APPENDIX A. SEARCH STRATEGY IMPLEM. IN JPF

22 }

23 }

24 } while (!distribution.isEmpty());
25}

The complete search method adds all the other aspects to search() in the same way as RS and
PFS and can be found below.

1 public void search() {

2 notifySearchStarted();

3 final int MAX_DEPTH = getDepthLimit () ;

4 Distribution<RestorableVMState> distribution = new RedBlackTree<
RestorableVMState>();

5 distribution.add(vm.getRestorableState(), Math.exp(1.0 / tauw));

6 setStateDepth(vm.getStateId() + 1, 0);

7 notifyStateStored();

8 do {

9 Weighted<RestorableVMState> selected = distribution.remove();

10 RestorableVMState source = selected.getElement();

11 vm.restoreState (source);

12 notifyStateRestored();

13 int depth = getStateDepth(vm.getStateId() + 1);

14 if (depth >= MAX_DEPTH) {

15 notifySearchConstraintHit ("depth limit reached: " + MAX_DEPTH);

16 continue;

17 }

18 while (!done) {

19 if ('forward()) {

20 break;

21 } else {

22 notifyStateAdvanced();

23 if (currentError != null) {

24 notifyPropertyViolated();

25 if (hasPropertyTermination()) {

26 break;

27 }

28 }

29 if (isNewState() && !'isEndState() && !isIgnoredState()) {

30 double probability = selected.getWeight();

31 ChoiceGenerator<?> cg = vm.getChoiceGenerator();

32 if (cg instanceof Probabilistic) {

33 probability = Math.pow(probability, ((Probabilistic) cg).getProbability

0);

34 }

35 elseq{

36 System.out.println("not random");

37 }

38 RestorableVMState target = vm.getRestorableState();

39 distribution.add(target, probability);

40 setStateDepth(vm.getStateId() + 1, depth + 1);

41 notifyStateStored();

42 if (!checkStateSpacelLimit()) {

43 notifySearchConstraintHit ("memory limit reached: "

44 + minFreeMemory) ;

15 done = true;

56

46
47
48
49
50

51

i B> B L B R S

© 0w N O s W

10
11
12
13
14
15

17
18
19

A.11 EGS APPENDIX A. SEARCH STRATEGY IMPLEM. IN JPF

break;
}
}
backtrack();
notifyStateBacktracked();
}
}
} while (!distribution.isEmpty() && !done);
notifySearchFinished();
}

A.11 e-Greedy Search

EGS is implemented in a class named EpsilonGreedySearch by starting with extending the class
Search and adding a new field epsilon of type double. If the user does not specify a value for e,
then we set epsilon to 0.1.

public class EpsilonGreedySearch extends Search {
private double epsilon;
public EpsilonGreedySearch(Config config, VM vm) {
super(config, vm);
epsilon = config.getDouble("epsilon", 0.1);
¥
3

We based our search method on the search method of RS since with probability € it behaves
like RS. The Weighted class, which represents an element and its weight, can be reused. We add
a method removeMax() which returns the element with the highest weight to the Distribution
interface. Any class that implements the interface should implement the method removeMax (). In
the basic search, we generate a random value between 0.0 and 1.0 by invoking Math.random(). If
the value is greater than or equal to epsilon, we restore the state with the highest probability by
invoking distribution.removeMax(). Otherwise, like in RS we choose a random state to restore
by invoking the distribution.remove().

public void search() {
Distribution<RestorableVMState> distribution = new RedBlackTree<
RestorableVMState>();
distribution.add(vm.getRestorableState(), 1.0);
do {
double chance = Math.random();
Weighted<RestorableVMState> selected;
if (chance >= epsilon) {
selected = distribution.removeMax();
} else {
selected = distribution.remove();
}
RestorableVMState source = selected.getElement();
vm.restoreState (source) ;
int depth = getStateDepth(vm.getStateId() + 1);
while (true) {
if (!forward()) {
break;
} else {

57

20
21
22
23
24
25
26
27
28
29
30
31
32
33

W N

© 0 N D«

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

A.11 EGS APPENDIX A. SEARCH STRATEGY IMPLEM. IN JPF

if (isNewState() && 'isEndState() && !isIgnoredState()) {
double probability = selected.getWeight();
ChoiceGenerator<?> cg = vm.getChoiceGenerator();
if (cg instanceof Probabilistic) {

probability *= ((Probabilistic) cg).getProbability();

}
RestorableVMState target = vm.getRestorableState();
distribution.add(target, probability);

}

backtrack();

}
}
} while (!distribution.isEmpty());
}

The basic search is shown above and the complete search method which adds all the other
aspects to search() in the same way as RS, PFS and SMS can be found below.

public void search() {
notifySearchStarted();
final int MAX_DEPTH = getDepthLimit () ;
Distribution<RestorableVMState> distribution = new RedBlackTree<
RestorableVMState>();
distribution.add(vm.getRestorableState(), 1.0);
setStateDepth(vm.getStateId() + 1, 0);
notifyStateStored();
do {
double chance = Math.random();
Weighted<RestorableVMState> selected;
if (chance >= epsilon) {

selected = distribution.removeMax();
} else {

selected = distribution.remove();
}

RestorableVMState source = selected.getElement();
vm.restoreState(source);
notifyStateRestored();
int depth = getStateDepth(vm.getStateId() + 1);
if (depth >= MAX_DEPTH) {
notifySearchConstraintHit ("depth limit reached: " + MAX_DEPTH);
continue;
}
while (!done) {
if ('forward()) {

break;

} else {
notifyStateAdvanced();
if (currentError != null) {

notifyPropertyViolated();
if (hasPropertyTermination()) {
break;
}
}
if (isNewState() && !'isEndState() && !isIgnoredState()) {
double probability = selected.getWeight();

58

A.11 EGS

ChoiceGenerator<?> cg = vm.getChoiceGenerator();
if (cg instanceof Probabilistic) {
probability *= ((Probabilistic) cg).getProbability();
¥
RestorableVMState target = vm.getRestorableState();
distribution.add(target, probability);
setStateDepth(vm.getStateId() + 1, depth + 1);
notifyStateStored();
if (!checkStateSpacelLimit()) {
notifySearchConstraintHit ("memory limit reached:
+ minFreeMemory) ;
done = true;
break;

3

APPENDIX A. SEARCH STRATEGY IMPLEM. IN JPF

}
backtrack();
notifyStateBacktracked();
}
}
} while (!distribution.isEmpty() && !done);
notifySearchFinished();
}

59

-

[2 ™}

Appendix B

Implementing a Listener in JPF

In this section we provide a recipe for implementing a listener within JPF. As a first example, we
implement a listener which prints the states and transitions visited by the search in the following
simple format.

0->1
1 ->2
0->3
3 ->4
4 -> 2

The above tells us that the search started in the initial state 0 and made a transition to a new
state 1. From state 1 it made a transition to a new state 2. Next, it made a transition from state 0
to state 3. Etcetera. We name our class StateSpacePrinter.

As we already mentioned earlier, both the search and JPF’s virtual machine notify listeners
of particular events. The methods corresponding to those events can be found in the interfaces
SearchListener and VMListener, which are part of the packages gov.nasa.jpf.search and gov.
nasa. jpf.vm, respectively. A listener implements either one of these or both interfaces.

Since usually we are only interested in a few events, we can provide the methods corresponding to
the remaining events with a default implementation (since all methods are void, we can just provide a
method with an empty body). To avoid coding these methods, JPF has already provided the classes
SearchListenerAdapter and ListenerAdapter, which are part of the packages gov.nasa.jpf.
search and gov.nasa. jpf, respectively. The former provides default implementations for all the
methods specified in the SearchListener interface, and the latter provides default implementations
for all the methods specified in the SearchListener and VMListener interface.

In our StateSpacePrinter, we are only interested in the events signalling a change of state.
Therefore, we implement the SearchListener interface. Since we are not interested in all event noti-

fications by the search, we start from default implementations by extending the SearchListenerAdapter

class. Hence, we arrive at the following method header.

public class StateSpacePrinter extends SearchListenerAdapter implements
SearchListener

In order to print a transition, we need both the source and target state of the transition. As we
will see, it is sufficient to introduce an attribute that keeps track of the source state. In JPF each
state has a unique identifier, which is a nonnegative integer.

private int source;
We initialize this attributes in the constructor to an unknown state, which we represent by -1.

public StateSpacePrinter() {
source = -1;

}

60

© 0w N O U R W N

e e
gk W N = O

APPENDIX B. LISTENER IMPLEMENTATION

The only three methods that signal a state change are stateAdvanced(Search), stateBacktracked
(Search) and stateRestored(Search). These can be implemented in the following straightforward
way.

public void stateAdvanced(Search search) {
int target = search.getStateId();
if (source != -1) {
System.out.printf("%d -> %d%n", source, target);
}
source = target;

}

public void stateBacktracked(Search search) {
source = search.getStateId();

}

public void stateRestored(Search search) {
source = search.getStateId();

}

Note that these methods receive a reference to a Search object as an argument. This Search
object contains information about the search of the state space by JPF. In our implementation of
the methods we use search.getStateId() to get the identifier of the current state.

61

Appendix C

An Example of Correctness Test

import probabilistic.Choice;
public class Test46445 {
public static void main(String[] args) {
while (true) {

double[] p = { 0.75, 0.25 };
switch (Choice.make(p)) {
case O:
double[] p1 = { 0.5, 0.5 };
switch (Choice.make(pl)) {
case O:
double[] p11l = { 1.0 };
switch (Choice.make(p11)) {
case O:
break;
}
break;
case 1:
while (true) {
double[] p12 = { 0.5, 0.5 };
switch (Choice.make(p12)) {
case O:
break;
case 1:
break;
}
}
}
break;
case 1:
double[] p2 = { 0.75, 0.25 };
switch (Choice.make(p2)) {
case O:
while (true) {
double[] p21 = { 1.0 };
switch (Choice.make(p21)) {
case O:
break;

}

62

39
40
41
42
43
44
45
46
47
48
49
50
51
52

APPENDIX C. AN EXAMPLE OF CORRECTNESS TEST

}
case 1:
double[] p22 = { 1.0 };
switch (Choice.make(p22)) {
case O:
break;
}
break;
}

break;

63

Appendix D

TransitonsAndTime Listener

-

package probabilistic.listener;

N
*

Copyright (C) 2013 Xin Zhang, @iyi Tang and Franck wvan Breugel

This program s free software: you can redistribute it and/or modify
1t under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later wversion.

© 0w N O s W N

This program ts distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more detatls.

11
12
13
14
15 You can find a copy of the GNU General Public License at

<http://www.gnu.org/licenses/>.

,_.
S
*¥ % ¥ ¥ X X % X X * * * *

16
17 */
18 1import gov.nasa.jpf.ListenerAdapter;

19 import gov.nasa.jpf.vm.ChoiceGenerator;

20 1import gov.nasa.jpf.search.Search;

21 import gov.nasa.jpf.search.SearchlListener;
22 import probabilistic.vm.Probabilistic;

23 /*k*

24

*

This listener prints the states and the transitions visited by the search in
the following formats: 0 0.5 1, denoting that there ts a transition from
state O to state 1 with probability 0.5, and 0 1.0 1, denoting that there is
a transition from state O to state 1. Transitions to an end state are
followed by a ’*’. After each 1000 transitions, the current time in
milliseconds preceeded by "T: " %s printed.

25
26
27
28
29
30
31 @author Xin Zhang

@author iyt Tang

33 C@author Franck wvan Breugel

34 */

35 public class TransitionsAndTime extends ListenerAdapter implements
36 SearchListener {

37 private int source; // td of the source of the next transition
38 private int count;

32

* % X X ¥ ¥ x x x

64

APPENDIX D. TRANSITONSANDTIME LISTENER

private static int INTERVAL = 2;

/%
* Initializes the listener.
*/

public TransitionsAndTime() {
source = -1; // -1 represents undefined
count = 0;

}

/%
* Fxecuted whenever the search advances to the next state.
*/

public void stateAdvanced(Search search) {
count++;

int target = search.getStateId();
if (source != -1) {
ChoiceGenerator<?> cg = search.getVM() .getChoiceGenerator();
if (cg instanceof Probabilistic) {
double probability = ((Probabilistic) cg).getProbability();

System.out.print(source + " " + probability + " " + target);
} else {
System.out.print(source + " 1.0 " + target);

}
if (search.isEndState()) {
System.out.print (" *");
}
System.out.println();
}
source = target;
if (count == INTERVAL) {
System.out.println("T: " + System.currentTimeMillis());
count = 0;
}
}
/*
* Ezecuted whenever the search backtracks.
*/
public void stateBacktracked(Search search) {
source = search.getStateId();
}
/*
* @param search object that provides information about the search.
*/
public void stateRestored(Search search) {
source = search.getStateId();
}
/*
* Erecuted when the search starts.
*/
public void searchStarted(Search search) {
System.out.println("T: " + System.currentTimeMillis());
}
/*
* Ezecuted when the search finishes.

*/

65

APPENDIX D. TRANSITONSANDTIME LISTENER

}

public void searchFinished(Search search) {
System.out.println("T: " + System.currentTimeMillis());

}

66

Appendix E

Subproblems of Progress

progress
progress
progress
progress
progress
progress
progress
progress
progress
progress

208, 216), progress(216, 224), progress(224, 232), progress(232,
244, 250), progress(250, 256), progress(256, 262), progress(262,
274, 280), progress(280, 286), progress(286, 292), progress(292,
304, 310), progress(310, 316), progress(316, 321), progress(321,
331, 336), progress(336, 341), progress(341, 346), progress(346,
356, 361), progress(361, 366), progress(366, 371), progress(371,
381, 386), progress(386, 391), progress(391, 396), progress(396,

) (()

)

406, 411), progress(411, 416), progress(416, 421), progress(421,
431, 435), progress(435, 439), progress(439, 443),

PP~~~

67

238
268
298
326
351
376
401
426

)
)
)
)
)
)
)
)

3

progress(238,
progress (268,
progress(298,
progress(326,
progress(351,
progress(376,
progress(401,
progress(426,

0, 125), progress(125, 165), progress(165, 190), progress(190, 200), progress(200, 208),

)
244),
274),
304),
331),
356),
381),
406),
431),

Bibliography

[ACO6]

[BKOS]

[BSA0Y]

[EP02]

[ES11]

[GS05]

[GT99]

[Pel08]

[Saa03]

Tadashi Araragi and Seung Mo Cho. Checking liveness properties of con-
current systems by reinforcement learning. In Stefan Edelkamp and Alessio
Lomuscio, editors, Proceedings of the 4th Workshop on Model Checking
and Artificial Intelligence, volume 4428 of Lecture Notes in Computer Sci-
ence, pages 84-94, Riva del Garda, Italy, August 2006. Springer-Verlag.

Christel Baier and Joost-Pieter Katoen. Principles of Model Checking.
The MIT Press, Cambridge, MA, USA, 2008.

Razieh Behjati, Marjan Sirjani, and Majid Nili Ahmadabadi. Bounded
rational search for on-the-fly model checking of 1tl properties. In Farhad
Arbab and Marjan Sirjani, editors, Revised Selected Papers of the 3rd
IPM International Conference on Fundamentals of Software Engineering,
volume 5961 of Lecture Notes in Computer Science, pages 292-307, Kish
Island, Iran, April 2009. Springer-Verlag.

Cindy Eisner and Doron Peled. Comparing symbolic and explicit model
checking of a software system. In In Proc. SPIN Workshop on Model
Checking of Software, volume 2318 of LNCS, pages 230-239. Springer,
2002.

Stefan Edelkamp and Stefan Schrodl. Heuristic Search: Theory and Ap-
plications. Morgan Kaufmann, Waltham, MA, USA, 2011.

Radu Grosu and Scott A. Smolka. Monte Carlo model checking. In Nico-
las Halbwachs and Lenore D. Zuck, editors, Proceedings of the 11th In-
ternational Conference on Tools and Algorithms for the Construction and

Analysis of Systems, volume 3440 of Lecture Notes in Computer Science,
pages 271-286, Edinburgh, UK, April 2005. Springer-Verlag.

Fausto Giunchiglia and Paolo Traverso. Planning as model checking. In
Susanne Biundo and Maria Fox, editors, Proceedings of the 5th Furopean
Conference on Planning, volume 1809 of Lecture Notes in Artificial Intel-
ligence, pages 1-20, Durham, UK, September 1999. Springer-Verlag.

Radek Pelanek. Fighting state space explosion: Review and evaluation. In
Darren D. Cofer and Alessandro Fantechi, editors, Revised Selected Papers
of the 15th International Workshop on Formal Methods for Industrial Crit-
ical Systems, volume 5596 of Lecture Notes in Computer Science, pages
37-52, L’Aquila, Italy, September 2008. Springer-Verlag.

Yousef Saad. Iterative Methods for Sparse Linear Systems. Society for
Industrial and Applied Mathematics, Cambridge, MA, USA, 2nd edition,
2003.

68

BIBLIOGRAPHY BIBLIOGRAPHY

[SBYS]

[VHB*03]

[Zhal0]

[ZvB10]

[ZvB11]

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: an
introduction. The MIT Press, Cambridge, MA, USA, 1998.

Willem Visser, Klaus Havelund, Guillaume Brat, SeungJoon Park, and
Flavio Lerda. Model checking programs. Automated Software Engineering,
10(2):203-232, April 2003.

Xin Zhang. Measure progress of model checking randomized algorithms.
Master’s thesis, York University, Toronto, July 2010.

Xin Zhang and Franck van Breugel. Model checking randomized al-
gorithms with Java PathFinder. In Proceedings of 7th International
Conference on Quantitative Fvaluation of Systems, pages 157158,
Williamburgh, VA, USA, September 2010. IEEE.

Xin Zhang and Franck van Breugel. A progress measure for explicit-
state probabilistic model-checkers. In Luca Aceto, Monika Henzinger, and
Jirl Sgall, editors, Proceedings of the 38th International Colloquium on
Automata, Languages and Programming, volume 6756 of Lecture Notes
in Computer Science, pages 283-294, Zurich, Switzerland, July 2011.
Springer-Verlag.

69

	Introduction
	Research Question
	Proposed Method
	Related work
	Overview

	Background - Most Common Path Example
	Most Commmon Path in a DTMC
	Reinforcement Learning
	RL Problem Formulation
	Solution Methods
	Dynamic Programming
	Temporal-Difference Learning

	Java PathFinder
	Virtual Machines
	Search Strategies
	Listeners
	The jpf-probabilistic Extension

	Algorithms of Search Strategies
	DFS
	BFS
	PFS
	RS
	SMS
	EGS
	RLS

	Evaluation of Search Strategies - Progress Measure
	Measuring Progress for Invariants
	Algorithm to Compute Progress

	Experimental Results
	Experiment Configuration
	Randomized Quicksort
	Experiment Results

	Conclusion
	Summary
	Future Work

	Appendix Implementing a Search Strategy in JPF
	The Structure of the Class
	Basic Search
	Other Components
	JPF Properties
	Notifications
	Complete Search
	BFS
	RS
	PFS
	SMS
	EGS

	Appendix Implementing a Listener in JPF
	Appendix An Example of Correctness Test
	Appendix TransitonsAndTime Listener
	Appendix Subproblems of Progress
	Bibliography

