
Verification of Business Processes for Web Services

Mariya Koshkina

A thesis submitted to the Faculty of Graduate Studies
in partial fulfilment of the requirements

for the degree of

Master of Science

Graduate Programme in Department of Computer Science
York University
Toronto, Ontario

October 2003

ABSTRACT

The Business Process Execution Language for Web Services (BPEL4WS or sim-
ply BPEL) is a recently developed language, which is used to specify interactions
between web services. Among its features it allows specification of concurrent
behavior. Erroneous specification can lead to such problems as deadlock. In our
research we focus on the concurrency mechanism in BPEL. Our main goal is to
analyze processes in order to detect possible deadlocks. To achieve this we in-
troduce a process algebra called the BPE-calculus. It is a small language which
captures all the BPEL features relevant to the analysis. This process algebra is
modelled using a labeled transition system. An existing verification tool called
the Concurrency Workbench is customized to use our BPE-calculus. This tool
allows us to verify many properties of BPE-calculus processes specified in a logic
called the µ-calculus, including deadlock freedom.

iv

ACKNOWLEDGEMENTS

I would like to especially thank my supervisor Franck van Breugel for
his tremendous contributions to my thesis, for his constant guidance,
support, and encouragement. I am grateful for his many usefull com-
ments on this work and for the many things that I have learned from
him.

I also want to thank Bill O’Farrel and Jon Bennett at the IBM Toronto
Lab. I thank Bill for suggesting this interesting research topic and for
providing some insightful comments. I am grateful to Jon for helping
me understand BPEL and web services technology.

I want to express my gratitude to the Center for Advanced Studies at
the IBM Toronto Lab, in particular to Marin Litou, for providing me
with the comfortable working environment and the financial support
throughout my research.

Thanks to Rance Cleaveland for his much appreciated help with the
Concurrency Workbench.

I would also like to thanks members of the committee Yves Lesper-
ance, Parke Godfrey, and Markus Biehl for their time and for their
helpful comments.

Last but not least, I thank Computer Science Department of York
University for giving me this great opportunity to study, first at the
Bachelor, and then at the Master level.

v

TABLE OF CONTENTS

Abstract iv

Acknowledgements v

Table of Contents vi

1 Introduction 1

1.1 From HTML to Web Services . 1
1.2 Introducing BPEL . 4
1.3 Verification of BPEL . 11
1.4 Overview . 12
1.5 Alternative Approaches . 13

2 The BPE-Calculus 15

2.1 Basic Activities . 18
2.2 Sequence . 19
2.3 Pick and Switch . 19
2.4 While Loop . 21
2.5 Flow . 21
2.6 Links and Join Condition . 21
2.7 Syntax . 23
2.8 Conclusion . 27

3 Labelled Transition System 28

3.1 Preliminaries . 28
3.2 Basic Activity . 29
3.3 Sequence . 29
3.4 Switch . 30
3.5 Pick . 30

vi

3.6 Flow . 31
3.7 While . 31
3.8 Outgoing link . 32
3.9 Join Condition and Incoming Link 33
3.10 Termination . 34
3.11 Conclusion . 34

4 Process Algebra Compiler 36

4.1 Syntax Description File . 37
4.1.1 Abstract Syntax . 37
4.1.2 Concrete Syntax . 41
4.1.3 Rules Syntax . 43

4.2 Semantics Description File . 44
4.3 Conclusion . 50

5 Concurrency Workbench 51

5.1 Model Checking . 51
5.2 Preorder and Equivalence Checking 56
5.3 Conclusion . 58

6 Conclusion 59

Bibliography 61

vii

Chapter 1

Introduction

1.1 From HTML to Web Services

In the beginning, the information highway mainly carried hypertext markup lan-
guage (HTML) documents. Such a document contains a mixture of formatting
data and factual data. For example, in the HTML document

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<HTML>

<HEAD>

<TITLE>Example</TITLE>

</HEAD>

<BODY>

<CENTER>

<I>Hello world!</I>

<CENTER>

</BODY>

</HTML>

Example and Hello world! is the only factual data. The rest is mainly for-
matting data. Although the formatting data is usually essential for the use of
HTML documents by us humans, for their use by computer programs it is often
a burden. Several tools, like for example TeSS [CCD+03], have been developed
to parse HTML documents and extract the factual data. However, this so-called
screen scraping only has had limited success.

To address this and some related issues, the extensible markup language
(XML) [BPSMM00] was created. In an XML document, the factual data is

1

structured using tags. However, unlike in HTML, in XML the tags are not used
for formatting the factual data. The tags are only used to structure the data.
Moreover, unlike HTML that uses a number of predefined tags, XML allows users
to specify their own tags. For example, the factual data of the above HTML doc-
ument can be captured by the XML document

<?xml version="1.0"?>

<greeting name="Example"/>Hello world!</greeting>

In the above example, greeting is a user-defined tag that contains text and has
an attribute name.

The name and structure of XML tags are defined using XML schema. For
instance the greeting tag can be defined as

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="greeting">

<xsd:complexType>

<xsd:simpleContent>

<xsd:extension base="xsd:string">

<xsd:attribute name="name" type="xsd:string"/>

</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

</xsd:element>

An XML Schema [Fal01] can be as simple as defining a greeting tag. It can also
be as complex as defining a whole language. For example, WSDL, which is the
language discussed below, is defined in terms of an XML schema. There are a
variety of XML parsers available for different platforms. They allow one to parse,
validate and edit XML documents. Because of its simplicity and flexibility XML
has become very popular. It inspired several new technologies including a number
of XML-based languages that are becoming standards.

Web services make heavy use of XML. A web service is a way for programs
to interact with web sites. A web service is a program available over the Inter-
net. TerraService [BGE+02] is an example of such a web service. It provides
programmable access to the TerraServer database. This database contains 3.3
terabytes of high resolution aerial images of North America. Another example is
the Google web service. It allows us to query more than 3 billion web documents.

At the heart of web services technology lies the XML-based language WSDL
(Web Services Description Language). It provides the description of the web

2

services interface. The main purpose of this language is to enable platform-
independent communication between a web service and its clients. A WSDL
document provides all the information a client needs in order to use the web
service. WSDL was initially proposed by Ariba, IBM and Microsoft and is now
developed by a W3C working group. The latest working draft for WSDL 1.2
specifications was published in July 2002 [CGMW02].

For example, consider a web service that provides current weather conditions.
Part of its WSDL document will look as follows:

<message name="City">

<part name="body" element="xsd:string"/>

</message>

<message name="WeatherCondition">

<part name="body" element="xsd:weatherConditionType"/>

</message>

<portType name="weatherWebService">

<operation name="getWeather">

<input message="City"/>

<output message="WeatherCondition"/>

</operation>

</portType>

A web service communicates with its clients using messages. The WSDL
document provides the description of the messages used. A message can contain
several parts. Each part is either of a simple type (i.e., string, int, real) or of a
complex user-defined type. Type declarations (omitted from our example above)
specify user-defined data types such as the weatherConditionType. A port type
defines the actual operations performed by the web service. In our example,
the weatherWebService port type contains one operation called getWeather.
This operation takes as its input the message City and replies with the message
WeatherCondtions.

Web services are posted on the web, similarly to web pages. Alike regular
HTML pages, there are web directories of web services. For example, if we are
looking for a web service that provides current weather conditions we can browse
a web service directory to find such a service with its WSDL description. Several
weather web services from different providers can have the same interface. This

3

is a significant advantage, since a client program can be designed to dynamically
find an available weather web service and invoke it.

1.2 Introducing BPEL

Web services can be exploited in many different ways. For example, they can
be used to order an airline ticket over the Internet. In such an example, the
customer communicates with (the web service of) a travel agent, who sends a
request to one or more (web services of) airlines, waits for confirmations, returns
a reply to the customer, and starts a payment process. This business process
involves several interactions between a number of partners over some period of
time. It is important to be able to specify such business processes in a clear and
platform-independent way. To accomplish that BEA, IBM and Microsoft intro-
duced the Business Process Execution Language for Web Services (BPEL). The
initial public draft release of the BPEL specification can be found in [CGK+02].
Like WSDL, BPEL is XML-based. That is, its syntax is defined in terms of an
XML schema. For example, the BPEL snippet

<invoke partner="AirCanada"

portType="reservationsPT"

operation="makeReservation"

inputContainer="request"

outputContainer="confirmation">

</invoke>

invokes a flight reservation web service.
BPEL is used to specify the partners involved in the process, the content

of messages being passed between them, the flow of messages, process logic,
and fault handling. In BPEL, the basic activities include invoking web service
operations, receiving and replying to requests, and assigning data to messages.
These basic activities are combined into structured activities using sequencing,
switch constructs, while loops and selective communication, all of which be will
discussed in more detail below. BPEL also has mechanisms to handle exceptions
and to roll back the process in case of an error. This is accomplished by fault
and compensation handlers.

We present an example of a BPEL process for a travel agency (some details
are omitted). It starts with some definitions:

4

<process name = "travelAgentExample"

xmlns = "http://schemas.xmlsoap.org/business-process/"

xmlns:tns="urn:travelAgentExample"

suppressJoinFailure="yes">

<partners>

<partner name = "client"/>

<partner name = "AmericanAirlines"/>

<partner name = "BritishAirways"/>

<partner name = "AirCanada"/>

<partner name = "weatherService"/>

<partner name = "carRental"/>

</partners>

<containers>

<container name="request"

messageType="tns:RequestMessageType"/>

<container name="confirmation"

messageType="tns:ConfirmationMessageType"/>

<container name="forecast"

messageType="tns:WeatherMessageType"/>

<container name="reply"

messageType="tns:ReplyMessageType"/>

<container name="rentalConfirmation"

messageType="tns:ConfirmationMessageType"/>

</containers>

A BPEL document usually contains partner and data container definitions. The
former specifies partners participating in the given process, for example, client,
carRental and AirCanada. The latter specifies variables used to contain the
messages exchanged between web services, for example, request and reply.
Each container is defined by its messageType, which is specified in the WSDL
document.

The most interesting part of the BPEL document is the description of the
process logic. In this example, the following takes place. First, the client request
is received. Then, depending on the destination, a ticket is reserved from a
particular airline.

<sequence>

5

<receive partner="client"

portType="clientPT"

operation="makeTravelArrangements"

container="request"/>

<flow>

<links>

<link name="travel-canada"/>

<link name="travel-us"/>

<link name="rent-to-assign"/>

</links>

<switch>

<case condition =

"bpws:getContainerData(’request’,

’destination_country’)=’Canada’">

<invoke partner="AirCanada"

portType="reservationsPT"

operation="makeReservation"

inputContainer="request"

outputContainer="confirmation">

<source linkName="travel-canada">

</invoke>

</case>

<case condition =

"bpws:getContainerData(’request’,

’destination_country’)=’US’">

<invoke partner="AmericanAirlines"

portType="reservationsPT"

operation="makeReservation"

inputContainer="request"

outputContainer="confirmation">

<source linkName="travel-us"

transitionCondition =

"bpws:getContainerData(’request’,

’destination_city’)!= ’New York’"/>

</invoke>

</case>

<otherwise>

<invoke partner="BritishAirways"

6

portType="reservations"

operation="makeReservation"

inputContainer="request"

outputContainer="confirmation"/>

</otherwise>

</switch>

At the same time as the reservation takes place, the weather service is contacted.
It provides the weather forecast for the client’s destination.

<invoke partner="weatherService"

portType="weatherPT"

operation="getForecast"

inputContainer="request"

outputContainer="forecast"/>

After the reservation has been completed, the car rental service might be invoked.
This happens only if the city of destination is in Canada or US and is not New
York City.

<invoke partner="carRental"

portType="carRentalPT"

operation="rent"

inputContainer="request"

outputContainer="rentalConfirmation"

joinCondition = "bpws:getLinkStatus(’travel-canada’)

or bpws:getLinkStatus(’travel-us’)">

<target linkName="travel-canada"/>

<target linkName="travel-us"/>

<source linkName="rent-to-assign"/>

</invoke>

<assign>

<target linkName="rent-to-assign"/>

<copy>

<from container="rentalConfirmation"/>

<to container="reply" part="part2"/>

</copy>

</assign>

</flow>

7

Finally, the reply container is constructed by collecting confirmation(s) informa-
tion and the weather forecast. This container is sent back to the client.

<assign>

<copy>

<from container="confirmation"/>

<to container="reply" part="part1"/>

</copy>

<copy>

<from container="forecast"/>

<to container="reply" part="part3"/>

</copy>

</assign>

<reply partner="client"

portType="clientPT"

operation="makeTravelArrangements"

container="reply"/>

</sequence>

</process>

Here is the graphical representation of the above process:

receive

��

airCanada

travel ca))RRRRRRRRRRRRRR
⊕ americanAirlines

travel us

��

⊕ britishAirways

carRental

r2a
��

weatherForecast

assign1

assign2

��
reply

��

The flow is represented here as a dashed box. The sequential composition is
shown using dashed arrows. The links are represented as solid arrows.

8

The process logic in BPEL is described using activities. In BPEL specifica-
tions they are classified as basic activities and structured activities. An example
of a basic activity is receiving a request from the client. Another example would
be invoking a reservation web service of an airline. Basic activities also include
replying to requests, assigning data from one container to another, terminating
the process, waiting for some period of time, and doing nothing.

Structured activities define the flow control of the process. They include basic
programming constructs as sequencing,

<sequence>

activity1

activity2

...

</sequence>

while loops,

<while condition="bool-expr">

activity

</while>

and switch statements (as in the travel agent example presented above).
BPEL also includes a structured activity called pick. The pick construct

allows for selective communication. Consider, for example,

<pick>

<onMessage partner="client" operation="buyTicket">

<invoke partner="airline" operation="buy"/>

</onMessage>

<onMessage partner="client" operation="cancelReservation">

<invoke partner="airline" operaton="cancel"/>

</onMessage>

</pick>

On the one hand, if a message buyTicket is received from the client then the
activity buy is executed. In that case, the cancelReservation activity will not
be performed. On the other hand, the receipt of a message cancelReservation

from the client triggers the execution of the cancel activity and discards the
buy activity. In the case that both messages are received almost simultaneously,
the choice of activity to be executed depends on the implementation of BPEL.

9

This pick construct is similar to the nondeterministic choice construct found in
process algebras like the π-calculus [Mil99] and is also reminiscent to the choose
construct of Concurrent ML [Rep99].

Concurrency in BPEL is provided by the flow construct. For example, in the
travel agent process the switch activity, the invocation of a weather service, the
car rental service invocation, and the assignment activity are executed concur-
rently.

Synchronization is provided by specifying directed links between activities
with an optional transition condition for each such link. If two activities are linked
together then the target of the link can be executed only after the source activity
has completed. The transition condition is a boolean expression that depends
on data values of the input containers. The transition condition is evaluated
once the source activity completes. For example, in travel agent example there
is a link between the car rental activity and the assignment activity for rental
confirmation. The rent operation is the source of a link rent-to-assign. The
assignment activity is the target. There is no transition condition specified.
Therefore the default value, true, is used. Once a car rental operation completes
its outgoing link is activated and the assignment activity can start its execution.

Every activity that has incoming links also has a join condition associated
with it. A join condition is a boolean expression. It can only consist of statuses
of incoming links connected by boolean operators. A join condition can only
be evaluated if all of its incoming link are defined. That is, if all of the source
activities of those links have completed. If the join condition of an activity
evaluates to true then this activity is executed. If not, the activity is skipped.
For example, the car rental activity is executed only when one of its incoming
links has value true.

To make the use of links safer, some restrictions are applied. All links have
to be declared at the beginning of the corresponding flow. Each link has to have
exactly one source activity and one target activity. Moreover, two activities can
be connected by exactly one link. But each activity can have several outgoing
and incoming links.

In the travel agent example, if the client’s destination is neither Canada nor
US or if client is traveling to New York City, then the join condition for the car
rental activity becomes false. This activity is not executed, but what happens to
its outgoing links? If this link is left undefined then the assignment activity will be
waiting forever. The process will never terminate. In order to solve this problem,
a technique called dead path elimination (DPE) is introduced. This technique sets
all the outgoing links of skipped activities to false. This triggers propagation of

10

false link status. As a result of that, all skipped activities are garbage-collected
and the process can continue. In our example, once the car rental activity is
skipped its outgoing link is set to false, causing the assignment activity for the
rental confirmation to be skipped as well. After that the flow completes and
the next activity in sequence is executed. DPE is not used exclusively for join
condition failure. It is also used whenever an activity has to be skipped due to
pick or switch statements.

1.3 Verification of BPEL

It is well-known that concurrent programs are notoriously difficult to get right
[Sch98]. The fact that concurrency is one of the key ingredients of BPEL makes
specifying business processes in BPEL a far from trivial task. Therefore, the need
to build tools to support the development of BPEL documents is pressing.

Our initial goal was to develop a tool that can detect deadlocks in BPEL
specifications. Since it is desirable that BPEL specifications are deadlock free,
such a tool would be valuable for those who specify business processes in BPEL.

Deadlock can be caused by a control cycle in linking. Links form a control
cycle when a source activity cannot start until its target completes. This is
illustrated by the following example:

?>=<89:;a

ℓ1
��
?>=<89:;b

ℓ2

��
?>=<89:;c

ℓ3

AA

where a, b, and c are activities and ℓ1, ℓ2, and ℓ3 are links. In this example, a
cannot start until c has completed, but c cannot be executed until both a and b
have completed.

Another less obvious example of a control cycle is

<sequence>

<invoke partner="partnerA" operation="a">

<target linkName="BtoA"/>

</invoke>

11

<invoke partner="partnerB" operation="b">

<source linkName="BtoA"/>

</invoke>

</sequence>

This example can be depicted graphically as follows:

?>=<89:;a

��
?>=<89:;b

BtoA

DD

In this diagram the dashed arrow represents sequential composition.
In this example, although there is no link from a to b, activity b will only

start if a completes, since they are sequentially composed. Yet because of the
link BtoA, a cannot start unless b has completed.

As we will outline below, the tool we developed takes as input a BPEL process
and a property specified in a logic and checks if the BPEL process satisfies the
property. One can express deadlock freedom in the logic and, hence, the tool can
detect deadlocks. However, many other interesting properties can be captured
by the logic and, therefore, can be checked by our tool.

1.4 Overview

In order to efficiently analyze BPEL processes we need to considerably simplify
the model. All the information that is irrelevant for the analysis needs to be
omitted. To accomplish that we developed a small process algebra called the
BPE-calculus that is similar in flavour to calculi like, for example, CCS [Mil89].
It accurately models all of the BPEL process behavior related to control flow.
In Chapter 2 we present the BPE-calculus and describe the simplification steps
taken in order to derive it.

The BPE-calculus is modelled by means of a structural operational seman-
tics [Plo81]. In Chapter 3 we present a labelled transition system for the BPE-
calculus. The transitions of the systems are defined by a collection of rules.
Which rules apply to a BPE-process depends on its structure.

Having developed a process algebra and a labelled transition system, we reuse
an existing tool, the Concurrency Workbench (CWB), to do the analysis [CS96].
The CWB is a flexible verification tool that can be extended to support different

12

process description languages. It provides a capability to verify process prop-
erties, such as, for example, deadlock freedom, specified by µ-calculus [Koz83]
formulas. The CWB can be extended to support the BPE-calculus. In order to
do that we use a tool called the Process Algebra Compiler (PAC) [CS02]. The
PAC is designed to generate front-ends for verification tools, in particular, the
CWB. In Chapter 4 we describe how the PAC is used to generate the BPE-
calculus front-end for the CWB.

Once the CWB has been extended to support the BPE-calculus we can use
it to verify BPE-processes. Chapter 5 describes how the CWB can be used to
detect deadlock. It also demonstrates other verification methods provided by the
CWB.

1.5 Alternative Approaches

The above diagram of the BPEL process looks like a directed graph that contains
a cycle. Therefore the first solution that comes to mind is to represent processes
as directed graphs. In order to find the deadlock due to a control cycle it suffices
to find cycles in the graph. These can easily be detected using existing graph
algorithms. An advantage of this approach is its simplicity. On the other hand,
our approach gives rise to an analysis tool that allows us to verify many useful
properties (beside deadlock freedom) of business processes. The tool also provides
other verification techniques such as preorder checking and equivalence checking
that allow to verify if the process satisfies its specifications.

UML [BRJ98] statecharts and activity diagrams are often used to model busi-
ness processes. But although UML is a useful modelling language, it does not
provide the formal semantics necessary to perform analysis and verification as
pointed out in [DH01].

Another approach is to model processes using Petri nets [Rei85]. Constructs of
business processes that support sequencing, choice, concurrency, and iteration can
be easily represented by means of Petri nets. In fact, there has been a considerable
amount of research done in this area, for example, [Aal03, Aal00, DE00, NM02].
But such aspect of BPEL as DPE cannot be captured easily using this approach
as has been argued in [AH02].

We chose to apply the results of process algebra theory for several reasons.
First, it is a well-studied area which provides solid theoretical background. Sec-
ond, it allows us to model all of the behavior of BPEL relevant to the analysis.
Finally, there are customizable tools available for verification. There are a few

13

studies that chose the same approach. We discuss them next.
In [Sch99] Schroeder presents a translation of business processes specifications

into CCS. Subsequently, the CWB can be used for verification. The business
process language that is studied in that paper is considerably simpler than BPEL.
It is not clear how to capture DPE in CCS (it can be done though, since CCS
is Turing complete). Furthermore, if the CWB detects, for example, that two
processes are not bisimilar, then it will not produce a counterexample in terms
of the business processes but in terms of the underlying CCS-processes.

Also Piccinelli and Williams [PW03] present a calculus for business processes
that is similar to CCS. That calculus is much simpler than our BPE-calculus and
does not include advanced synchronization patterns like DPE.

Nakajima [Nak02] describes how to use the SPIN model checker to verify web
services flows. The language used to specify flows is WSFL (Web Services Flow
Language) which is one of BPEL’s predecessors. In order to do the verification
using SPIN, processes are first translated into the Promela specification language
provided by SPIN. The level of abstraction in this case is lower than in our ap-
proach. The advantage of the CWB over SPIN is that the former provides other
functionalities in addition to model checking. SPIN does not support preorder
and equivalence checking. In our opinion the BPE-calculus is better suited to de-
scribe business processes since it was designed for this purpose. The disadvantage
of translating business processes into a generic language for verification is that it
is not easy to relate the diagnostic information returned by the verification tool
to the original process. In case of the BPE-calculus the trace returned by the
CWB is closely related to the trace in the original BPEL process. The approach
in [KGMW00] that uses the LTSA toolkit and the FSP process algebra suffers
from the same weaknesses.

14

Chapter 2

The BPE-Calculus

The process algebra for BPEL has to accurately model the control flow of business
processes. Yet it should be simple and concise. In order to derive such an algebra
we start by simplifying BPEL. We throw away features of the language that are
irrelevant for the analysis.

We make a decision to disregard data in our analysis. This allows us to look
at the potential control flow in the process without concern about the unlimited
possibilities of data values. We also ignore fault and compensation handlers, since
we would like to look at the main process without concerning ourselves with error
handling. Such elements as partner definitions and process attributes can also be
ignored since they are irrelevant to the control flow.

After this initial abstraction step we end up with a set of activities that can
be combined to build a process. The attribute list of the activities is kept to
a minimum. Only the names of the partner, the port, and the operation are
required to identify a basic activity. Each activity has the optional target and
source elements, since any activity can have a number of incoming and outgoing
links. In the BPEL definition they are called standard elements:

standard-elements ::=
<source linkName=name transitionCondition=bool-expr?/>*

<target linkName=name />*

Also every activity has an optional join condition associated with it:

join-condition ::= joinCondition=bool-expr

These features are related to linking and therefore are very important for the

15

analysis. The grammar of the language resulting from the first simplification
step looks as follows.1

activity ::=basic-activity | structured-activity

basic-activity ::=
<receive partner=name portType=name operation=name join-condition?>

standard-elements

</receive>

| <reply partner=name portType=name operation=name join-condition?>

standard-elements

</reply>

| <invoke partner=name portType=name operation=name join-condition?>

standard-elements

</invoke>

| <terminate join-condition?>

standard-elements

</terminate>

| <wait for=duration-expr? until=deadline-expr? join-condition?>

standard-elements

</wait>

| <assign join-condition?>

standard-elements

</assign>

| <empty join-condition?>

standard-elements

</empty>

The structured activities are as follows:
structured-activity ::=
<sequence join-condition?>

standard-elements

activity+

1Here we use the same notation as used in [CGK+02] to describe the structure of BPEL.
Roughly, | indicates choice, ? indicates that the element can be omitted, * indicates that the
element can be repeated an arbitrary number of times, and + indicates that the element is used
at least once.

16

</sequence>

| <switch join-condition?>

standard-elements

<case condition=bool-expr>+

activity

</case>

<otherwise>?

activity

</otherwise>

</switch>

| <while condition=bool-expr join-condition?>

standard-elements

activity

</while>

| <pick join-condition?>

standard-elements

<onMessage partner=name portType=name operation=name >+

activity

</onMessage>

<onAlarm for=duration-expr? until=deadline-expr?>*

activity

</onAlarm>

</pick>

| <flow join-condition?>

standard-elements

<links>?

<link name=name>+

</links>

activity+

</flow>

In the above description we omitted the specification of name, bool-expr,
duration-expr, and deadline-expr. Their description can be found in [CGK+02].

The original BPEL XML schema takes roughly 15 pages. In comparison, the
above language is much simpler. But our final goal is to derive a process algebra
like, for example, CCS [Mil89]. In order to achieve this we have to make a number
of other simplifications. Among other things, we would like to get rid of the XML

17

tags and introduce a more concise notation. We will call the resulting language
the BPE-calculus.

2.1 Basic Activities

In the simplified version of BPEL there are several different basic activities. They
are: invoke, receive, reply, terminate, wait, assign, and empty. Invoke, receive,
and reply are used for the interactions with the environment. They are observable
(external) basic activities. In order to simplify our model we would like to abstract
from the particulars of each of these activities. We know that whenever one of
these activities is invoked some interaction with the environment takes place.
We don’t need to distinguish between invoke, reply and receive. We introduce a
set Ae of external basic activities. The concept of external basic activity in the
BPE-calculus is analogous to that of action in other known process algebras such
as CCS [Mil89].

The basic activity that deserves some special treatment is termination. Ex-
ecution of this activity effects the whole process. Once it is executed the whole
process stops. In our process algebra it is represented by the activity end.

The empty activity performs no function. Nevertheless, it is important in the
analysis of control flow since it can be the source and/or the target of a link. The
empty activity is not observable (internal). We will use τ to denote the internal
activities in our process algebra.

The only two basic activities that we have not discussed so far are assign and
wait. The concept of time is not a part of our model. Therefore, the wait activity
performs no function. It is important for the analysis because it might contain
incoming and/or outgoing links. Therefore, the wait activity is dealt with in the
same way as the empty activity. The same applies to the assign activity. We
have abstracted from all the data in our model. Therefore the assign activity
serves no purpose, except that it might be the source and/or the target of a link.
Empty, wait, and assign are all internal basic activities and are denoted by τ .

Therefore, the basic activities are divided into external (or observable) basic
activities and internal (or unobservable) basic activities. Note, that when a basic
activity in BPEL is translated to the BPE-calculus as an internal basic activity
it looses its name and becomes simply a τ -activity. But when an activity is
external, it is uniquely identified by its name in the BPE-calculus process. The
conversion mechanism (from BPEL to the BPE-calculus) has a freedom to choose
which activities are external and which are internal. Deadlock detection is not

18

effected by this choice. That is, if there is a deadlock in the process it will be
detected in any case.

There are advantages and disadvantages for each classification of activities.
Defining all of the basic activities as external has an advantage of maintaining
more information about the original process. This is useful when we want to
relate back to the original BPEL process. For example, we found a deadlock and
we want to know the exact place it occurs. If we know that deadlock happened
after executing some external activity ai we can find the corresponding activity
in the original BPEL process. If, on the other hand, deadlock happened after
internal activity τ we might not know what is the corresponding activity in the
BPEL process. The advantage of defining some of the basic activities as internal
is that it provides a higher level of abstraction. It allows to use verification
methods such as equivalence checking. We refer the reader to Chapter 5 for more
details on verification methods.

As was mentioned above, we choose to consider receive, reply, and invoke to
be external activities. All other basic activities (excluding termination, which is
a special case) are considered to be internal basic activities.

2.2 Sequence

Sequence is a structured activity. It is one of the activities that defines the flow
of control. Instead of using XML tags we represent it in our process algebra using
a semicolon. For example,

buyT icket ; rentCar

translates as the activity buyT icket followed by the activity rentCar.

2.3 Pick and Switch

In BPEL a pick construct can contain one or more onMessage clauses and an
optional onAlarm clause. Each onMessage clause specifies what should be done
if a particular message is received. The alarm option can be used to set a timer
that triggers some action if no message is received within the specified period of
time. Only one of the clauses of the pick statement gets executed. If there are
multiple message clauses then the first message to arrive is picked. The alarm
clause gets picked if the timer expires. In the case that several messages arrive

19

simultaneously it is up to the implementation to decide which one is chosen. We
assume that in this case the choice is non-deterministic. Therefore the behavior of
pick is guided by the environment of the process. Considering this, pick resembles
the choice construct present in many different process algebras including CCS.

The arrival of the message is an interaction with the environment. It is mod-
elled as an external basic activity. As we mentioned before, the concept of time
is not a part of our model. Therefore, the expiration of an alarm is an internal
activity, similar to the wait activity. We represent it as a τ -action. To model the
fact that the clause of the pick activity is chosen after the message arrives or the
timer expires we represent each clause as: α ;P , where α is either a basic activity
or τ , and P is a process. This is a special case of sequence. As often done, a plus
sign is used to represent choice. For example, in

onBuy ; buyT icket + onCancel ; cancelReservation + τ ; sendReminder

either one of the messages is received or the timer expires and the corresponding
activity is executed.

Another construct of BPEL that offers a choice is the switch statement. The
switch construct contains a list of cases. The boolean expressions in the case
conditions are based on data values. Since in our analysis we disregard all the
data, these boolean expressions cannot be evaluated. All that is known to us
at this level of abstraction is that evaluation of an expression takes place and
that one of the cases is chosen. This can be modelled in the BPE-calculus as a
non-deterministic choice. There is a difference between the choice construct for
pick and the one for switch. The former depends on the environment, whereas
the latter does not. We represent the latter with the symbol ⊕. For example, in

flyAirCanada ⊕ flyBritishAirways

the activity will be chosen randomly. This simplification of a switch statement
results from our decision to ignore data in the analysis. Notice that, the resulting
construct still carries the information about the possible flow of control in the
process.

Therefore, the BPE-calculus has two choice constructs also known as external
(influenced by environment) and internal (non-deterministic) choice. It is not
uncommon for a process algebra to include both. For example, CSP [Hoa85] has
both flavours of choice constructs as well.

20

2.4 While Loop

Among other constructs, BPEL includes a typical while loop: while b do activity.
The boolean expression b depends on the data. Since we made the decision to
disregard the data in our analysis, the loop construct becomes non-deterministic
(similar to the switch statement described above). That means that the decision
to exit the loop or to continue the iteration is made randomly. In the BPE-
calculus we represent a loop as follows:

getWeather∗

where the activity getWeather is performed an arbitrary number of times.

2.5 Flow

Flow is the construct that we are most interested in, since it defines concurrency
in BPEL. The function of the flow construct is to list activities that are executed
in parallel. In our notation it is represented with ‖. As in, for example,

getWeather ‖ reserveT icket

where activities getWeather and reserveT icket are executed concurrently. The
synchronization between activities in a flow is achieved using links. We examine
them next.

2.6 Links and Join Condition

In BPEL the links are used inside of a flow to provide synchronization between
activities. Links have to be declared at the beginning of the flow. Each link can
be used only once in its scope. In order to simplify the model we omit scoping
and link declarations. We make the assumption that link names in a process
are unique. We can enforce this by renaming duplicate links when translating a
process from BPEL to the BPE-calculus.

Each link has a source and a target activity. When an activity is the source of
a link we say that it has an outgoing link. Outgoing links are denoted with ↑ in
the BPE-calculus. Every outgoing link has a transition condition associated with
it. The transition condition is a boolean expression based on the process data.
The default value is true. In our analysis we made the decision to disregard data.

21

Therefore we only consider three transition conditions. In the BPE-calculus, a
transition condition is either true, false, or ?. The latter represents the transition
condition that is either true or false. In this case, the choice (between true or
false) is nondeterministic. Therefore, we model the outgoing links as follows:
↑ ℓ tc activity, where tc can be either true, false, or ? and ℓ is a link name.

If an activity is the target of a link, we say it has an incoming link. Each such
activity has a join condition associated with it. The join condition is a boolean
expression formulated in terms of incoming links and boolean operators. The
default join condition is a disjunction of all incoming links. The operators allowed
in join conditions, according to [CGK+02], are: and, or, =, !=. The boolean
constants true and false are also allowed. In the BPE-calculus we extend the
list of boolean operators allowed in join conditions with negation operator ¬. The
expressive power of join conditions is not affected by this addition, since negation
can be expressed in BPEL as expr = false. Let us illustrate the behavior of the
target activity by means of the following example:

GFED@ABCa1
ℓ1

true
?

 B
BB

BB
BB

BB
GFED@ABCa2

ℓ2

true

~~||
||

||
||

|

GFED@ABCa3

The activity a3 has two incoming links ℓ1 and ℓ2. The transition condition of ℓ1

is non-deterministic and the transition condition of ℓ2 is true. The activity a3

has a join condition true. Initially all links are undefined. The target activity
a3 waits for all its incoming links to become defined before it can proceed. A
link becomes defined once its source activity has completed and its transition
condition has been evaluated. As a result of that, the link has been assigned
a value true or false. Once all of the incoming links have been defined, the
join condition can be evaluated. The target activity can proceed only if its join
condition evaluates to true.

In BPEL the join condition and the incoming links are specified separately.
In cases where all of the incoming links are used in the join condition this is
redundant. In order to simplify the model we will omit separate specification of
the incoming links. Instead we will re-write the join conditions to contain all of the
incoming links. For all incoming links of the activity, if some link ℓ is not used in
the join condition c, we change the join condition to be c∧(ℓ∨¬ℓ). For instance, in
the above example the join condition will be changed to true∧(ℓ1∨¬ℓ1)∧(ℓ2∨¬ℓ2).
The behavior of the process remains the same. In our model the join condition

22

will not be evaluated unless all links used in it (all the incoming links) are defined.
In the BPE-calculus we represent a join condition as follows:

c ⇒ activity

This process denotes that activity can be executed only if the join condition c
evaluates to true. For example,

↑ ℓ1 ? a1 ‖↑ ℓ2 true a2 ‖ true ∧ (ℓ1 ∨ ¬ℓ1) ∧ (ℓ2 ∨ ¬ℓ2) ⇒ a3

expresses the above example in the BPE-calculus.

2.7 Syntax

Before defining BPE-processes, we first fix

• a set Ae of external basic activities,

• a set of basic activities A = Ae ∪ {τ},

• an infinite set L of links.

Definition 1 The set P of BPE-processes is defined by
activity ::=
act (External Basic Activity)
| τ (Internal Basic Activity)
| end (Terminate)
| activity ; activity (Sequence)
| choice (Pick – external choice)
| activity ⊕ activity (Switch – internal choice)
| activity∗ (While)
| activity ‖ activity (Flow)
|↑ ℓ tc activity (Outgoing Link)
| c ⇒ activity (Join Condition)

choice ::= α ; activity | choice + choice

where act ∈ Ae, α ∈ A, ℓ ∈ L, c ∈ C, and tc ∈ {true, false, ?}

The set C of join conditions is defined as:
c ::= true | false | ℓ | ¬c | c ∧ c | c ∨ c | c = c | c 6= c

23

It is evident that the resulting process algebra is considerably simpler and
hence more manageable than BPEL. It captures all the features of the language
related to control flow. To illustrate this point, consider the travel agent exam-
ple presented in the introduction. It can be represented in the BPE-calculus as
follows:

receiveRequest;
(↑ ca true reserveAC ⊕ ↑ us ? reserveAA ⊕ reserveBA
‖ getWeatherForecast
‖ ca ∨ us ⇒↑ r2a true rentCar
‖ r2a ⇒ τ);
replyRequest

Note, that when translating BPEL process into the BPE-calculus we map any
transition conditions that are expressed in terms of data to the non-deterministic
condition ?. Transition conditions specified as boolean constants true and false
are left the same. Refer to Section 2.6 for further details about transition condi-
tions in the BPE-calculus.

In BPEL, each link should have a unique source and a unique target. We
capture this restriction by means of the following simple type system. Only if
a process satisfies this restriction, it can be typed. The type of a process a is a
pair: the set of links that are used as incoming in a, and the set of links that
are used as outgoing in a. One of the restrictions placed on links in BPEL is
that they cannot cross boundaries of a while activity. Therefore the while loop
can have only internal links. That is, activities inside of the while loop cannot
be linked to any outside activities. Therefore the sets of incoming and outgoing
links in the while loop have to be the same.

The notation used to describe rules in the type system is:

premises
conclusion

where if the premises hold then we may infer that the conclusion also holds. In
the case when there are no premises we just state conclusion.

conclusion

Definition 2 The relation m ⊆ P × 2L × 2L is defined by

(act) α m (∅, ∅)

24

(end) end m (∅, ∅)

(out)
a m (I, O) ℓ 6∈ O

↑ ℓ tc a m (I, O ∪ {ℓ})

(join)
a m (I, O) links(c) ∩ I = ∅
c ⇒ a m (I ∪ links(c), O)

(seq)
a m (Ia, Oa) b m (Ib, Ob) Ia ∩ Ib = ∅ Oa ∩ Ob = ∅

a ; b m (Ia ∪ Ib, Oa ∪ Ob)

(pick)
a m (Ia, Oa) b m (Ib, Ob) Ia ∩ Ib = ∅ Oa ∩ Ob = ∅

a + b m (Ia ∪ Ib, Oa ∪ Ob)

(switch)
a m (Ia, Oa) b m (Ib, Ob) Ia ∩ Ib = ∅ Oa ∩ Ob = ∅

a ⊕ b m (Ia ∪ Ib, Oa ∪ Ob)

(flow)
a m (Ia, Oa) b m (Ib, Ob) Ia ∩ Ib = ∅ Oa ∩ Ob = ∅

a ‖ b m (Ia ∪ Ib, Oa ∪ Ob)

(while)
a m (Ia, Oa) Ia = Oa

a∗ m (Ia, Oa)

In the above definition we use links(c) to denote the set of links that occur in
the join condition c. For the cases when the process is constructed by combining
two subprocesses, we need to ensure that the resulting set of outgoing links and
the resulting set of incoming links have only unique links. In order ensure that,
we specify the condition that corresponding sets of links of subprocesses should
not have any links in common (Ia ∩ Ib = ∅, Oa ∩ Ob = ∅).

Not every process can be typed. For example, the process ℓ ↑ true a ‖ ℓ ↑
true b cannot be typed. However, if a process is well-typed then its type is unique.
That is,

Proposition 1 If a m (I1, O1) and a m (I2, O2) then I1 = I2 and O1 = O2.

Proof We proof this by induction.

• Consider α m (I1, O1) and α m (I2, O2). Then I1 = I2 = ∅ and O1 = O2 = ∅.

• Consider ↑ ℓ tc a m (I1, O1) and ↑ ℓ tc a m (I2, O2). According to Definition 2,
a m (I1, O

′
1) for some O′

1 such that ℓ 6∈ O′
1 and O1 = O′

1∪{ℓ} and a m (I2, O
′
2)

and for some O′
2 such that ℓ 6∈ O′

2 and O2 = O′
2 ∪{ℓ}. By induction, I1 = I2

and O′
1 = O′

2, and, hence O1 = O′
1 ∪ {ℓ} = O′

2 ∪ {ℓ} = O2.

25

• Consider c ⇒ a m (I1, O1) and c ⇒ a m (I2, O2). According to Definition 2,
a m (I ′

1, O1) for some I ′
1 such that I ′

1∩links(c) = ∅ and I1 = I ′
1∪links(c) and

a m (I ′
2, O2) for some I ′

2 such that I ′
2 ∩ links(c) = ∅ and I2 = I ′

2 ∪ links(c).
By induction, O1 = O2 = O and I ′

1 = I ′
2, and, hence, I1 = I ′

1 ∪ links(c) =
I ′
2 ∪ links(c) = I2.

• Consider a ; b m (I1, O1) and a ; b m (I2, O2). According to Definition 2,
a m (Ia

1 , Oa
1) and b m (Ib

1, O
b
1), where I1 = Ia

1 ∪ Ib
1, Ia

1 ∩ Ib
1 = ∅, O1 = Oa

1 ∪Ob
1,

Oa
1∩Ob

1 = ∅ and a m (Ia
2 , Oa

2) and b m (Ib
2, O

b
2), where I2 = Ia

2 ∪Ib
2, Ia

2 ∩Ib
2 = ∅,

O2 = Oa
2 ∪ Ob

2, Oa
2 ∩ Ob

2 = ∅. By induction, Ia
1 = Ia

2 , Ib
1 = Ib

2, Oa
1 = Oa

2 , and
Ob

1 = Ob
2. Therefore, Ia

1 ∪ Ib
1 = Ia

2 ∪ Ib
2 and Oa

1 ∪ Ob
1 = Oa

2 ∪ Ob
2. It follows

that I1 = I2 and O1 = O2.

Furthermore, each type is finite. That is,

Proposition 2 If a m (I, O) then I and O are finite sets of links.

Proof We proof this by induction.

• Consider α m (I, O). By Definition 2, I = O = ∅. Therefore, I and O are
finite sets.

• Consider ↑ ℓ tc a m (I, O). By Definition 2, a m (I, O \ {ℓ}). By induction,
I and O \ {ℓ} are finite sets. Therefore, O is a finite set.

• Consider c ⇒ a m (I, O). According to Definition 2, a m (I \ links(c), O).
By induction, O and I \ links(c) are finite sets. Since links(c) is a finite set
of links used in the join condition, I is a finite set.

• Consider a ; b m (I, O). According to Definition 2, a m (Ia, Oa) and b m
(Ib, Ob), where I = Ia ∪ Ib and O = Oa ∪ Ob. By induction, Ia, Oa, Ib, and
Ob are finite sets. Therefore, Ia ∪ Ib = I and Oa ∪ Ob = O are finite sets.

An activity a satisfies the restriction that each link should have a unique
source and a unique target if a m (I, O) for some I and O such that I = O. The
condition I = O captures that each link should have a source and a target. For
example, in the activity ↑ ℓ true α which has type (∅, {ℓ}) the link ℓ has a source
but no target. In the activity ℓ ⇒ α which has type ({ℓ}, ∅) link ℓ has a target,
but no source.

26

2.8 Conclusion

In this chapter we have introduced the BPE-calculus – a small and manageable
language that models the behavior of BPEL. We will use this language to ana-
lyze BPEL processes. But before we can do that, we need to define the precise
semantics of the BPE-calculus. We present it next.

27

Chapter 3

Labelled Transition System

3.1 Preliminaries

In order to describe precisely the semantics of the BPE-calculus we use the Struc-
tured Operational Semantics (SOS) approach introduced by Plotkin [Plo81]. This
approach describes the semantics of a process in terms of the possible transitions
the process can make. A transition is a step in the execution of a process:

P
action
−−−−→ P ′

This means that P makes a transition to P ′ by performing action. The SOS
rules, defining the transitions, have the following format:

premises
conclusion

(side condition)

where if the premises and the side condition hold then we may infer that the
conclusion also holds. If the premises or the side condition are missing they are
assumed to be true. Consider, for example, the simplified SOS rule for sequence:

a
α
−→ a′

a ; b
α
−→ a′ ; b

It states that if a is capable of performing action α to become a′, then the
sequence a ; b is also capable of engaging in this action to become a′ ; b. The SOS
approach describes the behavior of the process based on the syntactic structure
of that process. We are going to describe the behavior of all the BPE-calculus
constructs using this type of rules.

The SOS rules define a labelled transition system. A labelled transition system
is a structure 〈Γ, A,−→〉, where Γ is a set of configurations, A is a set of basic

28

activities, and −→⊆ Γ×A×Γ is the transition relation. We use α ∈ A to denote
a basic activity.

In the execution of a BPE-process, the state of the process depends on the
structure of the process and also on the values of the links used in the process.
The value of a link can be true, false, or undefined. We denote the last one as
⊥. We introduce a set of link statuses Σ = L → {true, false, ⊥}, where L is the
set of links.

We introduce a nil process denoted ∅ which is not capable of any transitions.
We will use it to model successful termination.

We define the set of configurations (or states) Γ = P×Σ, where P is the set of
BPE processes (including ∅), and Σ is the set of link statuses. We denote σ ∈ Σ,
a and b ∈ P, ℓ ∈ L, and 〈a, σ〉 ∈ Γ. Initially all links are undefined.

In the definition of labelled transition system we use the notation σ[v/L] to
denote the substitution defined by σ[v/L](ℓ) = v if ℓ ∈ L and σ(ℓ) otherwise.
Instead of σ[v/{ℓ}] we often write σ[v/ℓ].

Next we describe the labelled transition relation −→⊆ (P×Σ)×A× (P×Σ)
using SOS-style rules.

3.2 Basic Activity

The process that consists of a basic activity is capable of making just one transi-
tion. This transition models the execution of the activity. After the basic activity
has been executed the process can no longer make any transitions. In other words,
it becomes the nil process. This is expressed by the following rule.

(Act) 〈α, σ〉
α
−→ 〈∅, σ〉

3.3 Sequence

In the process composed of a sequence of two activities, the second activity can
start executing only after the first one has finished. The process of the form a ; b
can proceed only if the first activity, a, can make some transition. If as a result
of this transition activity a completes (becomes the nil process), then activity b
can start executing. If not, then process a ; b is transformed into the process a′ ; b
where a′ is an activity resulting from a executing action α.

(Seq1)
〈a, σ〉

α
−→ 〈a′, σ′〉

〈a ; b, σ〉
α
−→ 〈a′ ; b, σ′〉

(a′ 6= ∅)

29

(Seq2)
〈a, σ〉

α
−→ 〈∅, σ′〉

〈a ; b, σ〉
α
−→ 〈b, σ′〉

The side condition (a′ 6= ∅) is required in order to ensure that if a becomes the
nil process as a result of executing α only the Seq2 rule is used. That is, the
transition 〈a ; b, σ〉

α
−→ 〈∅ ; b, σ′〉 is not possible. Note also, that transition α may

lead to a change in the link values, and therefore σ′ denotes the new link status.

3.4 Switch

The switch activity performs a non-deterministic choice. The environment has
no influence on this choice. The process a ⊕ b can make a transition to either
a or b. The choice is made internally. Therefore, we label this transition with
τ . The activity that is not chosen is simply discarded. Recall BPEL’s garbage
collecting mechanism, dead path elimination (DPE), described in Chapter 1. This
mechanism sets all of the outgoing links of a discarded activity to false. This is
done in order to eliminate execution paths that will never be taken. Therefore,
after the choice has been made the outgoing links of a discarded activity are set
to false.

(Switch1)
b m (Ib, Ob)

〈a ⊕ b, σ〉
τ
−→ 〈a, σ[false/Ob]〉

(Switch2)
a m (Ia, Oa)

〈a ⊕ b, σ〉
τ
−→ 〈b, σ[false/Oa]〉

3.5 Pick

Pick is an external choice construct. This means that the choice of the activity
is dictated by the environment. The activity that is capable of engaging in some
action is chosen. If both activities are equally capable of making progress then
the choice is made randomly. As a result of a pick, one activity is chosen, the
other one is discarded. DPE is then triggered and sets all the outgoing links of
the discarded activity to false.

(Pick1)
〈a, σ〉

α
−→ 〈a′, σ′〉, b m (Ib, Ob)

〈a + b, σ〉
α
−→ 〈a′, σ′[false/Ob]〉

30

(Pick2)
〈b, σ〉

α
−→ 〈b′, σ′〉, a m (Ia, Oa)

〈a + b, σ〉
α
−→ 〈b′, σ′[false/Oa]〉

Note, that execution of an action α can change σ to σ′. DPE is then applied to
a changed link assignment σ′.

The following rule defines the behavior of each individual clause of the pick
construct. This rule is a special case of Seq2 rule.

(Pick3) 〈α ; a, σ〉
α
−→ 〈a, σ〉

3.6 Flow

The flow construct is analogous to the parallel composition in calculi like, for
example, CCS [Mil89], and has a very similar set of rules. The activities a and b
are executed in parallel.

(F low1)
〈a, σ〉

α
−→ 〈a′, σ′〉

〈a ‖ b, σ〉
α
−→ 〈a′ ‖ b, σ′〉

(a′ 6= ∅)

(F low2)
〈b, σ〉

α
−→ 〈b′, σ′〉

〈a ‖ b, σ〉
α
−→ 〈a ‖ b′, σ′〉

(b′ 6= ∅)

(F low3)
〈a, σ〉

α
−→ 〈∅, σ′〉

〈a ‖ b, σ〉
α
−→ 〈b, σ′〉

(F low4)
〈b, σ〉

α
−→ 〈∅, σ′〉

〈a ‖ b, σ〉
α
−→ 〈a, σ′〉

3.7 While

In the while loop, a∗, activity a can be repeated an arbitrary number of times.
After every iteration there is a non-deterministic choice to either stop or go on
for another iteration. This choice is an internal step, and therefore the transition
is labelled with τ .

(While1)
a m (Ia, Oa)

〈a∗, σ〉
τ
−→ 〈a; (a∗), σ[⊥/Oa]〉

31

(While2) 〈a∗, σ〉
τ
−→ 〈∅, σ〉

Recall that there is a restriction placed on linking in while loops. If a process is
well-typed there are no incoming or outgoing links that cross the boundary of a
while loop. Since there cannot be any outgoing links from the loop, DPE does
not have to be triggered. The loop can have a number of internal links. Before
entering the loop all of these links are undefined. During the execution of the
body of the loop the link values will change. In order for each iteration to use
links properly we need to reset them back to ⊥ after each iteration of the loop.
Recall also that the type of a while loop is (Ia, Oa) where Ia = Oa, therefore
setting Oa to ⊥ sets all of the links used inside of a while loop to ⊥.

3.8 Outgoing link

The outgoing link of an activity is represented by ↑ ℓ tc a, where tc is a transition
condition that can be true, false or ?. The link becomes activated only when the
source activity a completes. At this point, the link status of link ℓ changes from
undefined to either true or false. If the transition condition is true or false then
the link status is set to the value of the transition condition. If the transition
condition is ? then the link status is chosen non-deterministically. This reflects
the fact that the transition condition depends on data values (which we ignore)
and can evaluate to true in some cases and to false in other cases.

(OutLink1)
〈a, σ〉

α
−→ 〈∅, σ′〉

〈↑ ℓ true a, σ〉
α
−→ 〈∅, σ′[true/ℓ]〉

(OutLink2)
〈a, σ〉

α
−→ 〈∅, σ′〉

〈↑ ℓ false a, σ〉
α
−→ 〈∅, σ′[false/ℓ]〉

(OutLink3)
〈a, σ〉

α
−→ 〈∅, σ′〉

〈↑ ℓ ? a, σ〉
α
−→ 〈∅, σ′[true/ℓ]〉

(OutLink4)
〈a, σ〉

α
−→ 〈∅, σ′〉

〈↑ ℓ ? a, σ〉
α
−→ 〈∅, σ′[false/ℓ]〉

An additional rule for the outgoing link specifies that the source activity can
make any number of steps before it completes.

(OutLink5)
〈a, σ〉

α
−→ 〈a′, σ′〉

〈↑ ℓ tc a, σ〉
α
−→ 〈↑ ℓ tc a′, σ′〉

(a′ 6= ∅),

32

where tc ∈ {true, false, ?}.

3.9 Join Condition and Incoming Link

In BPEL the join condition can only be evaluated when all the incoming links of
the target activity are defined. Note that in the BPE-calculus all of the incoming
links are included in the join condition. Therefore the join condition can be
evaluated only after all of its links are defined. We will consider the join condition
evaluated only if its value is true or false. Recall that the join conditions are
defined as:

c ::= true | false | ℓ | ¬c | c ∧ c | c ∨ c | c = c | c 6= c
To model the evaluation of join conditions, we introduce a function C : C → Σ →
{true, false,⊥}. We only give the interpretation of the operators ¬, ∧ and ∨.
These are defined as

∨ true false ⊥
true true true ⊥
false true false ⊥
⊥ ⊥ ⊥ ⊥

∧ true false ⊥
true true false ⊥
false false false ⊥
⊥ ⊥ ⊥ ⊥

¬ true false ⊥
false true ⊥

Note, that if at least one of the links in the join condition is undefined then
the join condition is also undefined. This models the behaviour of BPEL, since
in BPEL the target activity waits for all the incoming links to become defined
(either true or false) before evaluating the join condition.

In case that the join condition evaluates to true the target activity will be
executed. In case that the join condition is false, the activity is skipped. In
addition to skipping the activity, DPE is triggered in that case. It sets all the
outgoing links of this activity to false. The τ -transition is used in both cases, since
the evaluation of a join condition and the execution of DPE are both internal
actions.

(Join1)
C(c)(σ) = true

〈c ⇒ a, σ〉
τ
−→ 〈a, σ〉

(Join2)
C(c)(σ) = false, a m (Ia, Oa)

〈c ⇒ a, σ〉
τ
−→ 〈∅, σ[false/Oa]〉

33

3.10 Termination

The terminate activity, denoted end in the BPE-calculus, stops the whole process.
When this activity is encountered all branches of the execution are abandoned
and the process stops. Below, we introduce a set of rules to model this behavior.
Note, that the activity end by itself is incapable of performing any transitions.

(Seq3) 〈end ; a, σ〉
τ
−→ 〈end, σ〉

(F low5) 〈end ‖ a, σ〉
τ
−→ 〈end, σ〉

(F low6) 〈a ‖ end, σ〉
τ
−→ 〈end, σ〉

(While3) 〈end∗, σ〉
τ
−→ 〈end, σ〉

(OutLink6) 〈↑ ℓ tc end, σ〉
τ
−→ 〈end, σ〉, where tc ∈ {true, false, ?}

3.11 Conclusion

We have defined the behavior of all the BPE-calculus constructs. We can now
simulate the execution of a process according to the above rules. Consider this
sample process:

↑ ℓ1 true get ⊕ ↑ ℓ2 ? put ‖ ℓ1 ∨ ℓ2 ⇒ print

It has a switch construct in parallel with a join activity. Activities get, put
and print are basic activities. Basic activities get and put both have outgoing
links. Activity get has the outgoing link ℓ1 with the default transition condition
true. Activity put has the outgoing link ℓ2 with the non-deterministic transition
condition ?. Activity print is the target of those links. Recall, that when one of
the clauses of a switch construct is chosen and all others are discarded the garbage
collection mechanism DPE is triggered. DPE assigns false to all the outgoing
links of the discarded activities. Therefore, if put activity is chosen then get is
discarded and its outgoing link ℓ1 is set to false. If activity get is chosen then
ℓ2 is set to false. Note that initially all links are undefined. We denote the initial
link status as σ⊥. There are several possible execution paths for this process. We
show one of them.

〈↑ ℓ1 true get ⊕ ↑ ℓ2 ? put ‖ ℓ1 ∨ ℓ2 ⇒ print, σ⊥〉

34

τ
−→ 〈↑ ℓ2 ? put ‖ ℓ1 ∨ ℓ2 ⇒ print, σ⊥[false/ℓ1]〉 (Switch2), (F low1)

put
−−→ 〈ℓ1 ∨ ℓ2 ⇒ print, σ⊥[false/ℓ1][true/ℓ2]〉 (Act), (OutLink3), (F low3)

τ
−→ 〈print, σ⊥[false/ℓ1][true/ℓ2]〉 (Join1)

print
−−−→ 〈∅, σ⊥[false/ℓ1][true/ℓ2]〉 (Act)

The final state is 〈∅, σ⊥[false/ℓ1][true/ℓ2]〉. It is not capable of any transitions.
In this section we have modelled the behavior of BPEL using a labelled tran-

sition system. Therefore, the BPE-calculus is defined both syntactically and
semantically. Now we are ready to analyze BPEL-processes.

35

Chapter 4

Process Algebra Compiler

In order to analyze BPE-calculus processes we are going to use a tool called
the Concurrency Workbench of New Century (CWB) [CS96]. This tool provides
automatic verification of finite-state concurrent systems specified using a process
algebra such as CCS. The CWB supports several verification methods. It allows
to verify the properties of the system specified using µ-calculus formulas. It
also supports different types of behavioral equivalences and preorders between
systems. A key feature of the CWB is its flexibility. Due to its modular design it
can be extended to support another specification language. Extending the CWB
to support the BPE-calculus will allow us to use various verification techniques
to analyze BPE-calculus processes.

Implementing a module for supporting a new language for the CWB would be
a time consuming task if not for the Process Algebra Compiler (PAC) [CS02]. The
PAC is a tool designed to generate front-ends for verification tools, in particular
the CWB. Given the syntax and the semantics of the language, the PAC produces
routines for the language support. These routines include parsers, unparsers, and
semantic routines. The generated code can then be incorporated in the CWB to
allow verification of processes specified in that language.

We use the PAC in order to generate a BPE-calculus front-end for the CWB.
The PAC takes as its input two files. One file contains the description of the
syntax of the language, the other file describes the semantics of the language.
The syntax is specified using a yacc-like grammar. The semantics is specified
in the form of SOS rules presented in the previous section. Running the PAC
generates source code in Standard ML. This generated code along with a few
user-defined routines is incorporated into the CWB. The resulting version of the
CWB can verify BPE-process specifications. The following picture shows the

36

overall architecture.

�� ��

�� ��

syntax of
BPE-calculus

++WWWWWWWWWWW

�� ��
�� ��PAC //

�� ��
�� ��modules

��

�� ��

�� ��

semantics of
BPE-calculus

33ggggggggggg

�� ��
�� ��BPE-process P

++XXXXXXXX

�� ��
�� ��CWB //

�� ��
�� ��does P satisfy φ?

�� ��
�� ��property φ

33ggggggggg

The above picture only shows model checking. Note, however, that our tool also
supports equivalence checking and preorder checking.

Below, we will describe the two files that the PAC will use to generate a
front-end for the CWB to adapt it to the BPE-calculus.

4.1 Syntax Description File

The syntax description file contains the definition of the syntax of the BPE-
calculus. The file is logically divided into three parts. The first part presents
the abstract syntax(structural essence of a language), the second describes the
concrete syntax (specific strings used in the language), and the third contains
some additional syntactic constructs that are used to specify the rules defining
the semantics.

4.1.1 Abstract Syntax

The description of the abstract syntax consists of a sorts section, a cons sec-
tion and a funs section. The sorts section lists all the types of entities of the
language. For the BPE-calculus, these are

sorts

id, link, act, activity, agent, boolean, join,

new_bool, status, env, automaton, state, trans, int

The sort activity corresponds to the nonterminal activity in Definition 1.
The sorts act, link, and join correspond to the sets A, L, and C. We also

37

declare the sort new bool that extends the Boolean type with ⊥. This sort will
be used to represent the value of a link. Status (status) of a link is a pair of a
link name and its new bool value. The sort env corresponds to the set Σ that
keeps track of link statuses. We also introduce a sort agent which represents the
set of configurations Γ = P × Σ. These configurations were denoted as 〈a, σ〉 in
the previous chapter. The rest of the sorts are id, boolean, automaton, state,
trans, and int. The first two of those are simple auxiliary types. The rest are
required by the PAC for any language definition in order to define automata for
that language. We refer the reader to [Sim99] for more details on the automata
definition.

The next section of the file defines constructors for the sorts introduced. Con-
structor signatures are specified in the following format:

Name: domain → codomain

Based on this description the PAC will generate the actual source code for each
constructor. Here are the constructors for the activities:

cons

Nil: unit -> activity

End: unit -> activity

Action: act -> activity

Flow: activity * activity -> activity

Sequence: activity * activity -> activity

Pick: activity * activity -> activity

Switch: activity * activity -> activity

While: activity -> activity

Outgoing: link * boolean * activity -> activity

OutgoingVar: link * activity -> activity

Join: join * activity -> activity

This definition corresponds closely to Definition 1. There is a constructor defined
for each type of activity (flow, sequence, switch, etc.). For example, the Nil

constructor takes no argument, represented by the Standard ML type unit, and
produces an activity. The Flow constructor takes two activities and produces
another activity. There are two constructors for an outgoing link activity: one
for the outgoing link with boolean transition condition (Outgoing), another with
the transition condition ? (OutgoingVar).

In order to conveniently define the pick construct in the PAC we represent it
simply as activity + activity. Note, that this is a more general definition than

38

the one given in Definition 1. The resulting version of CWB will handle the pick
construct correctly as well as allow a more general definition of choice.

The constructors for join are as follows:

SimpleJoin: link -> join

BoolJoin: boolean -> join

NotJoin: join -> join

And: join * join -> join

Or: join * join -> join

Equal: join * join -> join

NotEqual: join * join -> join

They are the same as specified in Definition 1.
We also specify constructors for the new bool sort.

True: unit -> new_bool

False: unit -> new_bool

Undef: unit -> new_bool

This sort consists of three constants: true, false, and undef. Each of the con-
structors takes no parameters and returns a new bool.

As was mentioned above status is a pair of a link and its new bool value.
The constructors for link statuses are specified as follows:

Status: link * new_bool -> status

Env: (status list) -> env

We represent env as a list of link statuses. We will keep track of the link statuses
during the execution of the process by updating this list.

Constructors for some simple sorts are not defined in the cons section. In-
stead, they are listed in the funs section. Constructors in this section are not
generated by the PAC and have to be written by the user. This is done in order
to give the user an opportunity to program simple types efficiently or to re-use
existing code.

funs

% constructors

link_parse: id -> link

id_parse: string -> id

boolean_parse: string -> boolean

39

act_parse: id -> act

tau: unit -> act

delta: unit -> act

gamma: unit -> act

We provide constructors for such simple sorts as link, id, boolean, and act.
We introduce a couple of actions delta and gamma. These actions is going to
be used for transitions involving the end activity and nil activity. We need this
new actions for verification purposes, in order to distinguish between normal
termination and termination due to the end activity. Note that the act sort has
four constructors: one for external basic activities (act parse), one for internal
basic activities (tau), one for delta (delta), and one for gamma (gamma).

The user of the PAC should also provide some functions for the semantics
description. We include such functions as join conditions evaluation, dead-path
elimination, and link environment functions. The funs section specifies the sig-
natures for all the user-defined functions.

% environment functions

insert: env * link * new_bool -> env

defined: env * join -> bool

eval_join: env * join * new_bool -> bool

trans_cond: boolean -> new_bool

dpe: env * activity -> env

reset: env * activity -> env

% misc

not_nil: activity -> bool

not_end: activity -> bool

We provide Standard ML code for these routines. The function insert inserts
a link with its new bool value into the environment. The function defined is
used for the join condition evaluation. It checks if all of the incoming links of the
given activity are defined. The eval join function takes care of the join condition
evaluation. It takes three parameters: an environment, a join condition and a
new bool value. It then evaluates the join condition and returns true if it is equal
to the given new bool value. It returns false otherwise. The function trans cond

is used to translate a boolean transition condition value into a new bool value of
a link. The function called dpe implements the dead-path-elimination. It assigns
false to all the outgoing links of the given activity. The function reset is used in

40

the while loop to reset the values of the links after each iteration. The functions
not nil and not end check whether the given activity is not a nil activity and
not an end activity (respectively). We will describe some of these functions in
more detail later.

4.1.2 Concrete Syntax

The next part of the syntax description file specifies the concrete syntax of the
language using a yacc-like grammar. This description is used by the PAC to
generate parsers for the BPE-calculus. This part of the file consists of a tokens

section, an optional priorities section, a nonterminals section, and a grammar

section. Here are some of the tokens used by the BPE-calculus:

tokens

"t" => TAU

"nil" => NIL

"end" => END

"\;" => SEMICOLON

"\?" => QMARK

"\=\>" => ARROW

"\|\|" => PAR

"out" => OUT

They are used in the description of the grammar.
The priorities section allows to specify associativity and priority values for

tokens. For example,

priorities

left 1 PAR

left 3 SEMICOLON

means that ”;” has a higher priority than ”‖”. Therefore, the expression (a ;b) ‖ c
can be written without parentheses as a ; b ‖ c.

The nonterminals section declares every nonterminal used in the grammar
description. The declaration is of the form:

name of sort

where the name is the name of the nonterminal and the sort is its type which is
one of the sorts declared in the sorts section. For example,

41

nonterminals

activity of activity

link of link

join of join

act of act

The grammar section describes the concrete syntax for the BPE-calculus. It
uses tokens and nonterminals declared previously. For example, this is a part of
the syntax description for the activities:

grammar

activity:

NIL (Nil())

| END (End())

| act (Action (act))

| activity PAR activity (Flow(activity1, activity2))

| activity PLUS activity (Pick (activity1, activity2))

| join ARROW activity (Join (join, activity))

| activity STAR (While(activity))

Every production of the grammar is associated with a corresponding constructor
defined in the cons or funs section. For example, two activities with a ”‖” in
between correspond to the Flow constructor.

The BPE-syntax defined for the PAC is for the most part the same as defined
in Definition 1. There is one important difference. In the definition of the BPE-
calculus the link statuses (σ) and, hence, the state (〈activity, σ〉) were semantic
entities. We need to keep track of the link statuses during the execution of
the BPE-calculus processes. Unfortunately, due to the limitation of the PAC we
cannot accomplish that with σ being a semantic entity. This limitation originates
from the manner in which the CWB calculates the possible transitions for the
process. We can easily overcome this problem if we make σ and, consequently,
〈activity, σ〉 syntactic entities. As mentioned before, we call σ an environment
and 〈activity, σ〉 an agent. We introduce the syntactic representation for the
agent:

env : activity

where env is a list of statuses separated by commas. The list is enclosed in square
brackets. The concrete syntax for agent, env, and status is defined below.

42

agent: env COLON activity (Agent(env,activity))

env: status_list (Env(status_list))

status: LPAREN link COMMA new_bool RPAREN (Status(link,

new_bool))

where status list is defined as follows:

lists

status_list is empty_list LSQUARE COMMA RSQUARE of status

4.1.3 Rules Syntax

After defining the syntactic structure of the language we introduce some addi-
tional syntax for the SOS rules in the RULES SYNTAX section. We describe the
syntax of those constructs that are used in the BPE-calculus semantics descrip-
tion but that are not part of the language. This includes semantic functions such
as dead-path-elimination (dpe) and join condition evaluation (eval join). We
also describe the syntax of the labelled transition relation. The RULES SYNTAX

section of the file has a format similar to the concrete syntax description. It
also has tokens and grammar sections. Here is a fragment of the RULES SYNTAX

section.

RULES SYNTAX

tokens

"-" => DASH

"-\>" => SHORTARROW

"dpe" => DPE

grammar

bool: env COLON join EQUALS new_bool (eval_join(env,

join, new_bool))

env: DPE LPAREN env COMMA activity RPAREN (dpe(env, activity))

relation: agent DASH act SHORTARROW agent (transition(agent1,

act, agent2))

This description is used by the PAC to parse the semantics description file. Ac-
cording to the above fragment, when the PAC encounters a statement of the

43

format e:j = b, where e is an environment, j is a join condition and b is a
new bool value, the PAC will invoke the user-defined function eval join. The
syntax for the dead-path-elimination function is simply dpe(e, a) where e is an
environment and a is an activity. To denote the transition relation we use the
labelled arrow, as defined in Chapter 3, a - opr -> b, where a and b are agents
and opr is a basic activity.

4.2 Semantics Description File

The semantics of the language is defined in the PAC by means of SOS rules
similar to those introduced in Chapter 3. Their format is very similar except
that in the PAC the side conditions are written on the same line as the premises.
We use the syntax introduced in the syntax description file to re-write the SOS
rules introduced in Chapter 3. First, all the variables used in the file are defined:

RULE_SET transition

vars

a, b, a’, b’: activity

l: link

opr: act

e, e’: env

j: join

c: boolean

The type of a variable is one of the sorts defined in syntax description file.
The following is a rule for the basic activity. It corresponds to the Act rule

in Chapter 3.

rules

act_rule

--

e: opr - opr -> e: nil

One of the properties we would like to be able to check is deadlock-freedom.
The activity is in a deadlocked state if it is incapable of any transitions. Ac-
cording to the semantics of the BPE-calculus described in Chapter 3, when the

44

process terminates it is incapable of any transitions. Therefore, in order to check
deadlock-freedom it is necessary to distinguish between termination and deadlock.
There are a couple of solutions to this problem. First we discuss the approach
that we have chosen.

In order to distinguish between a terminated state and a deadlocked state we
introduce additional rules for activities in the terminated state. We add a transi-
tion from the terminated state to itself. Introduction of this loop ensures that a
terminated state always has a transition leaving it. Therefore, it is semantically
different from deadlock. There are two possibilities: the activity can successfully
complete, becoming the nil activity, or it can be terminated with the end ac-
tivity, becoming the end activity. We introduce rules for each case. In order to
distinguish termination from deadlock it would be enough to add a τ -transition
from nil to nil and from end to end. But we also might want to distinguish if
the process completes successfully or is terminated using an end activity. In or-
der to make this verification possible, we introduce special transitions delta and
gamma. Transition delta signals that the process was terminated using the end
activity. Transition gamma signals that the process has completed successfully.
Here are the two rules:

nil_rule

e: nil - gamma -> e: nil

end_rule

e: end - delta -> e: end

This ensures that if an activity terminates then it is not considered a deadlock,
since it is capable to making either a gamma-transition or a delta-transition. It
also provides us with the capability to distinguish between successful completion
and termination using the end activity.

There is an alternative solution. Instead of changing the original semantics of
the termination by adding a loop, we can introduce an additional activity stop.
It will represent the terminated state. This state will have no transitions leaving
it, therefore being semantically the same as the deadlocked state. The difference
between the two will be that before ending up in the stop state a process has
to perform either a delta or a gamma transition. Based on this difference we

45

can distinguish between the state right before the terminated state and the state
right before the deadlocked state. These states are different because in order to
terminate successfully the process executes either a delta or a gamma and then
has no transitions. If the process deadlocks then it performs some other action
and then has no transitions. Using this approach we can also express deadlock-
freedom. There is one major drawback in this approach: we cannot identify a
deadlocked state since it is semantically the same as terminated state. Therefore
if we want to find where exactly deadlock happens in the process, we can only
find the state before the deadlocked state. This is an unpleasant limitation.

Both approaches presented introduce a slight change to the BPE-calculus syn-
tax and semantics. We choose the approach of introducing a loop in a terminated
state, since it allows to directly identify a deadlocked state if needed. It is also,
in our opinion, a more natural way to approach the problem.

The rules for the flow look as follows:

flow_1

e: a - opr -> e’: a’, not_nil(a’), not_end(a)

--

e: a || b - opr -> e’: a’ || b

flow_2

e: b - opr -> e’: b’, not_nil(b’), not_end(b)

--

e: a || b - opr -> e’: a || b’

flow_3

e: b - opr -> e’: nil

e: a || b - opr -> e’: a

flow_4

e: a - opr -> e’: nil

e: a || b - opr -> e’: b

flow_5

46

e: end || a - t -> e: end

flow_6

e: a || end - t -> e: end

The rules flow 1 and flow 2 correspond to the rules F low1 and F low2. The
side condition (a′ 6= ∅) is expressed using the user-defined function not nil.
There is also an additional side condition (a 6= end) which is expressed by the
function not end. This condition became needed since we added the end rule

which states that the end activity can make a delta-transition. Therefore, this

side condition is necessary in order to disallow the transition end ‖ a
delta
−−−→ end ‖

a when the flow 5 rule should be applied.
Note, that the not nil function is applied to a’ and the not end function is

applied to a. The reason is that in the first case we would like to eliminate the
scenario when a becomes nil as a result of a transition. In case of end we want
to disallow use of the flow 1 rule whenever a is itself the end activity.

The code for the not nil and not end functions is written in Standard ML.
It uses some of the PAC-generated functions. The not nil function looks as
follows:

fun not_nil (a) = not(is_Nil(a))

The function is Nil is one of the PAC-generated functions. The rest of the flow
rules are exactly as they are defined in Chapter 3.

The rules for sequence, switch, pick, and while are as they are defined in
Chapter 3.

Next we look at the rules for the outgoing links. Recall that in the syntax
description we have defined two kinds of outgoing links. One with the boolean
transition condition and another with the transition condition ?. We specify a
separate set of rules for each type of outgoing link.

out_link_1

e: a - opr -> e’: nil

e: out l c a - opr -> insert (e’, l, trans_cond(c)): nil

out_link_2

47

e: a - opr -> e’: a’, not_nil(a’), not_end(a)

e: out l c a - opr -> e’: out l c a’

out_link_3

--

e: out l c end - t -> e: end

out_link_var_1

e: a - opr -> e’: nil

e: out l ? a - opr -> insert (e’, l, tt): nil

out_link_var_2

e: a - opr -> e’: nil

e: out l ? a - opr -> insert (e’, l, ff): nil

out_link_var_3

e: a - opr -> e’: a’, not_nil(a’), not_end(a)

e: out l ? a - opr -> e’: out l ? a’

out_link_var_4

--

e: out l ? end - t -> e: end

The rule out link 1 represents the rules OutLink1 and OutLink2 defined in
Chapter 3. The rules out link var 1, and out link var 2 correspond to the
rules OutLink3, and OutLink4 respectively. The rules out link 2 and out link var 3

correspond to the rule OutLink5. The other two rules correspond to the rule for
termination OutLink6. The user-defined function trans cond used in the rules
translates a boolean transition condition into a new bool value. Another user-
defined function used in this set of rules is insert. It is used to insert the new
link and value pair into the environment. The environment is represented as a
list of such pairs. All the link names in the list have to be unique. Therefore,

48

if the link to be inserted is already in the list then its value should be updated
to a new one. Here is the code for the recursive implementation of the insert

function:

insert (e, l, b) =

let fun insert_list([], l, b) = Status(l, b)::[]

| fun insert_list (hd::tl, l, b) =

let val (temp, _) = Status_inv(hd)

in

if BpecUserDecls.link_eq(temp, l) then Status(temp, b)::tl

else hd::insert_list(tl, l, b)

end

in

Env(insert_list(Env_inv(e), l, b))

end

The insert function uses a helper function insert list that finds the given link
in the list and replaces its value. If the link is not found then it is added to the
end of the list.

Initially the environment is empty. Every insert operation either adds a new
link or updates an existing one. Here is an example of the execution path of an
activity with outgoing links:

"[]:out l1 true a || out l2 ? b || (l1 and l2) => c" - a ->

"[(l1, tt)]: out l2 ? b || (l1 and l2) => c" - b ->

"[(l1, tt),(l2, ff)]: (l1 and l2) => c" - t ->

"[(l1, tt),(l2, ff)]: nil"

Another interesting set of rules to look at are the rules for the join condition:

join_1

defined(e, j), e: j = tt

e: j => a - t -> e: a

join_2

defined(e, j), e: j = ff

e: j => a - t -> dpe(e, a): nil

49

These rules contain a number of user-defined functions. The function defined

checks if all of the links used in the join condition are defined (have a value either
true or false). Expression e:j = tt (or ff) invokes the eval join function.
This function returns true if the join condition j evaluates to the new bool value
specified. The function dpe assigns false to all the outgoing links of the activity.
In order to accomplish this, it uses a helper function mk outgoing that scans
the given activity in order to find all its outgoing links. Then the value of each
outgoing link is set to false using the insert function. Here is a Standard ML
code snippet for the dpe function:

fun dpe (e, a) =

let fun dpe_helper (e, []) = e

| dpe_helper (e, hd::tl) =

dpe_helper(insert(e, hd, False()), tl)

in

dpe_helper(e, mk_outgoing(a))

end

To illustrate how the dpe function works consider a sample execution path for
this small process:

"[]: out l1 false a || l1 =>(out l2 true (out l3 true b))"-a->

"[(l1, ff)]: l1 => (out l2 true (out l3 true b))"-t->

"[(l1, ff), (l2, ff), (l3, ff)]: nil"

When the activity a is executed its outgoing link l1 is set to false because the
transition condition for this link is false. The join condition for activity b

evaluates to false. Therefore, activity b is discarded. The dpe function is called.
It collects all the outgoing links of the discarded activity, assigns their value to
false and inserts them into the environment.

4.3 Conclusion

After we have expressed the syntax and the semantics of the BPE-calculus in the
required format, we can run the PAC. It produces a number of files. We add
user-defined routines and recompile the CWB. That provides us with a version
of the CWB that is capable of analyzing the BPE-calculus processes.

50

Chapter 5

Concurrency Workbench

The Concurrency Workbench (CWB) [CPS93] is a verification tool originally
developed at North Carolina State University. It provides various analysis tech-
niques for systems specified in a process algebra. We have extended the CWB to
support the BPE-calculus. We use it to verify BPE-calculus processes.

The CWB provides three basic verification methods: equivalence checking,
preorder checking and model checking. Equivalence checking allows to verify
whether the system implementation satisfies the system specification. The speci-
fication is given in terms of the same process algebra as the implementation. The
preorder method verifies that a process meets its minimum requirement, which
is also specified as a high-level process. The process can satisfy the minimum
requirement while possibly doing additional work. The third and final verifica-
tion method is model checking. Using it we can verify that a system satisfies
some desired property formulated in a logic. An example of such property is
deadlock-freedom.

Once we have extended the CWB to support the BPE-calculus, we can use any
of the analysis techniques provided by the CWB to verify BPE-calculus processes.

5.1 Model Checking

We are going to use the model checker to verify deadlock-freedom and other
interesting properties.

The logic used in the CWB is the µ-calculus [Koz83] extended with some
computational tree logic (CTL) [CES86] operators. These operators are syntactic
sugar and include:

• A – for all possible execution paths

51

• E – there exists an execution path

• G – always (for every state of the execution path)

• F – eventually (there exists a state in the execution path)

Therefore, the property AG φ means that for every state along every execution
path φ should hold. For more details about the syntax of the logic used in the
CWB we refer the reader to [CS98].

In order to verify deadlock-freedom we first specify the property in the µ-
calculus. Then we run the model checker on the process to check if the property
holds. A state is deadlocked when there are no transitions from the state. There-
fore, the state is deadlocked if the following property holds:

prop deadlock = not <->tt

where - denotes ”any transition”. For a process to be deadlock-free all of its
possible states should be free of deadlock. This is expressed by the following
property:

prop deadlock_free = AG(not deadlock)

The model checker can be invoked using the following command:

chk process property

Consider our travel agent example presented earlier:

[]: receiveRequest;

(out ca true reserveAC ++ out us ? reserveAA ++ reserveBritish

||getWeatherForecast

|| (us or ca => out r2a true rentCar)

|| (r2a =>t));

replyRequest

Execution of the model checker to verify deadlock-freedom for this example pro-
duces the following output:

Invoking alternation-free model checker.

Building automaton...

States: 44

Transitions: 69

Done building automaton.

TRUE, the agent satisfies the formula.

Execution time (user,system,gc,real):(0.060,0.000,0.000,0.053)

52

We can verify other interesting properties for this example as well:

prop always_reply = AF <replyRequest>tt

prop reply_on_receive = AG [receiveRequest] always_reply

prop always_reserve = AF (<reserveAC>tt \/ <reserveAA>tt

\/ <reserveBA>tt)

prop can_reply = EF <replyRequest>tt

prop reply_once = AG [replyRequest](not can_reply)

The always reply property states that in every execution the process eventually
sends a reply. We use this property to express the reply on receive condition.
It states that whenever the request is received, the process eventually replies to it.
We can also formulate the condition that a ticket is always reserved. Since there
are three possible ways to reserve a ticket, the always reserve property states
that in every execution at least one reservation should be made. The reply once

property states that once the reply was sent the process should be incapable of
replying again.

Let us look at a more advanced example adapted from an example in [Aal03].
Consider a book ordering process.

receive order

��

check stock

ℓ1?

��

ℓ2

? ((QQQQQQQQQQQQQ
calculate price

��
replenish

��

ship order
ℓ4

true
// send bill

��
reply; end ⊕ update

ℓ3

true

66mmmmmmmmmmmm

(receive payment ; τ + τ ; send reminder)∗

��
process payment

In the diagram the solid arrows represent links and the dotted arrows rep-
resent the flow of control in a sequence. The dotted frame denotes a flow and
incorporates all of the activities in the flow.

53

The process starts when the order is received. The order is processed by
checking if the book is in stock and by calculating the price of the order concur-
rently. If the book is in stock then the order is shipped. The activity send bill

waits until the order is shipped and then executes. The process then waits to
receive a payment from the customer. If the payment is not received in a given
period of time, the process sends the customer a reminder and starts waiting
again. When the payment is received, it is processed by the process payment

activity. If the book is not in stock, then an attempt is made to re-stock by the
replenish activity. If the attempt is successful the stock is updated and the
order is shipped. If the attempt fails a reply is sent to the customer notifying
them that the order cannot be completed. The process is then terminated using
the end activity.

We can use the model checker to verify a number of interesting properties for
this process, including deadlock freedom. Here are some of them:

prop can_ship = AG [replenish](EF <ship_order>tt)

prop can_complete_order = AG [receive_order]

(EF <process_payment>tt)

prop will_end = AF <delta>tt

prop can_terminate = EF <gamma>tt

The first property states that it is possible to ship the order after replenishing
stock. The second property states that it is possible to complete the order af-
ter the receive order is executed. Note, however that it is not always possible
to complete the order in this business process. Another property we can check
is will end. It checks whether the process will always terminate using the end
activity. In order to specify this property we make use of the delta action. This ac-
tion is executed when the process becomes an end activity. In the case of the book
ordering process the property will end does not hold, since in some executions
of the process activity end will not be reached. The last property can terminate

is similar to will end. It makes use of the special transition gamma that is used
to signal successful termination. This property checks whether it is possible for
the process to complete successfully becoming a nil process. The can terminate

property holds for the given process.
Consider now that we would like to change the process to ship the order only

after the payment is received and processed. In order to do that we add another

54

link ℓ5. The process now looks as follows:

receive order

��

check stock

ℓ1?

��

ℓ2

? ((QQQQQQQQQQQQQ
calculate price

��
replenish

��

ship order
ℓ4

true
// send bill

��
reply; end ⊕ update

ℓ3

true

66mmmmmmmmmmmm

(receive payment ; τ + τ ; send reminder)∗

��
process payment

ℓ5

true

XX

The resulting process has a control cycle since the link ℓ4 was not removed. We
can use CWB’s graphical user interface to verify this process. The graphical
version of the CWB provides a built-in function Find Deadlock. The CWB
detects the deadlock in our process. When the deadlock is found the program
invokes the simulator to show the path that was taken before the deadlock state
occurred. Therefore, the CWB provides the user not only with the information
that there is a deadlock in the process, but also shows the exact place where it
occurs. Here is a snapshot of the simulator screen:

55

The History window shows the path taken before the deadlock occurred. The
last state is a deadlock state. The current state and the state after the transition
is made are shown in the Current State and Next State windows respectively.
These two windows display the state currently selected by the user. The user can
select a state by putting mouse over the state number in the History window.
The selected state in the snapshot is the deadlock state.

5.2 Preorder and Equivalence Checking

As was mentioned before the CWB also supports other verification methods.
One of them is preorder checking. It is used to verify that a process fulfills

56

its minimum requirements. The minimum requirements are specified using a
higher level process. The CWB offers two types of preorders: must preorder and
may preorder (refer to, for example, [NH84] for more details). We are going to
illustrate the use of preorder checking by verifying that the book ordering process
satisfies its minimum requirements. We use the may preorder and we specify the
requirements as follows:

receive_order;(check_stock || calculate_price);ship_order;

send_bill;receive_payment;process_payment

The CWB confirms that this process is in the may preorder relation with the
book ordering process. If the CWB finds that two processes are not related by
the preorder it returns some diagnostic information. This information can help
the user to identify the problem in the process. In the case of the may preorder
checking the CWB returns a trace of the more general process that cannot be
matched by the more specific one. For example, consider the following minimum
requirements for the second version of the book ordering process:

receive_order;(check_stock || calculate_price);

send_bill;receive_payment;process_payment;ship_order

The requirements are that the order is shipped only after the payment is received
and processed. Recall, that this changed version of the book ordering process
contains an error. It does not satisfy its minimum requirements. The CWB
determines that and returns the following trace:

receive_order check_stock calculate_price send_bill

This sequence of actions cannot be executed by the book ordering process since
it has a deadlock.

Another way to check if the process works according to its specification is
to use the equivalence checking method provided by the CWB. The equivalence
checking method takes as its input two processes and determines if they are re-
lated by the behavioural equivalence relation. It can be used to check if a process
is behaviourally equivalent to its specification. Several behavioural equivalences
are supported by the CWB including bisimulation and observational equivalence.
If the processes are not equivalent some diagnostic information is displayed. In
order to help the user to determine the difference in the behaviour of the two
processes the CWB returns a property that one of the processes satisfies and the
other does not.

57

5.3 Conclusion

The CWB allows us to verify deadlock freedom along with other useful properties.
It also provides preorder and equivalence checking. A very valuable feature of
the CWB is that it provides diagnostic information to help the user determine
the problem. Using the CWB we have successfully verified a number of small
business processes. In the future, it would be interesting to apply it to verify
large real life BPEL-processes.

58

Chapter 6

Conclusion

It is well known that it is not easy to get a concurrent program right. Concurrency
is a key ingredient of the business process language BPEL. Therefore the need to
develop verification tools for BPEL is pressing. In this thesis we presented such
a tool. We have introduced a process algebra called BPE-calculus that contains
the main control flow constructs of BPEL. We modelled our BPE-calculus by
means of the labelled transition system. The grammar defining the syntax of the
BPE-calculus and the rules defining the semantics of the BPE-calculus were used
as input to the PAC. The PAC produced modules for the CWB so that the latter
can be exploited for equivalence checking, preorder checking and model checking
of BPE-processes.

In order to analyze a BPEL process it first has to be translated into the BPE-
calculus. Since BPEL is an XML-based language this is a straightforward task. It
can be done with the help of one of the publicly available XML parsers (like, for
example, the Xerces parser [Xer]). The resulting process is then verified by the
CWB using one of the available verification methods. We can check for deadlock
using model checking. If deadlock can occur in the process, the CWB returns
some diagnostic information. This can be related back to the BPEL process to
assist the user in finding the source of the problem. Any other property that can
be expressed in the µ-calculus can also be verified.

The BPE-calculus was designed specifically to model the control flow of BPEL
processes. Two major benefits arise from that fact. First, the BPE-calculus
models all of BPEL’s control flow constructs including DPE, which cannot be
captured by Petri nets [AH02]. Second, when the CWB finds a deadlock in the
process it returns diagnostic information in terms of a trace of the BPE-process.
This can be easily related to the original BPEL process (it would not be as
easy with generic language representations of the process). Using the CWB as

59

the verification tool also proved to be very beneficial, since it allows not only
to detect deadlock but also to verify other useful properties. It also provides
preorder and equivalence checking that other tools like, for example, SPIN do
not provide.

In the BPE-calculus we have abstracted from data, therefore making BPE-
processes more generic than the corresponding BPEL processes. A BPE-process
includes all of the execution paths in the BPEL process but possibly also some
paths that are never executed in the BPEL process. For example, consider the
following BPEL fragment:

<switch>

<case condition = ’true’>

activity_a

</case>

<case condition = ’false’>

activity_b

</case>

</switch>

In this example activity b will never be executed. In the BPE-calculus the
switch activity is modelled as a non-deterministic choice. Therefore, the above
fragment will be translated into the following BPE-process:

activity a ⊕ activity b

Hence, in the BPE-calculus version of the BPEL fragment activity b can be
executed. Now consider the situation where activity b contains a deadlock and
activity a does not. Then, the CWB will indicate that this BPE-process may
deadlock, even though the original BPEL process is deadlock free. Therefore, if
the deadlock is found by the model checker it is not necessarily present in the
BPEL process. But if the CWB indicates that the process is deadlock free it
means that there is no possibility of deadlock on any possible execution path in
the process. Therefore, the original BPEL process is deadlock free (provided that
neither time nor fault and compensation handlers play an essential role in the
BPEL specification).

In the BPE-calculus we have abstracted from fault handlers, compensation
handlers and time. The CWB will not be able to verify processes that rely
on these constructs in an essential way. In the future one of the possible im-
provements to the BPE-calculus would be to model fault handlers, compensation

60

handlers, and possibly even time. This extended calculus could form the basis
for an even more accurate verification tool for BPEL.

BPEL processes often communicate with each other. In the future it would
be interesting to use CWB to analyze the behavior of multiple communicating
processes. In order to do that, a system of several processes can be expressed
as a singe BPE-calculus process. This process can then be used as an input to
CWB in the same way as a simple BPE-process.

Another interesting direction for future research would be to introduce some
data into the model. Data approximation will allow us to check some of the
interesting properties of BPE-processes, such as dead code and termination, with
greater accuracy.

61

BIBLIOGRAPHY

[Aal00] W.M.P. van der Aalst. Workflow verification: Finding control-flow
errors using Petri-net-based techniques. In W.M.P. van der Aalst,
J. Desel, and A. Oberweis, editors, Business Process Management:

Models, Techniques, and Empirical Studies, volume 1806 of Lecture

Notes in Computer Science, pages 161–183. Springer-Verlag, Berlin,
2000.

[Aal03] W.M.P. van der Aalst. Challenges in business process management:
Verification of business processes using Petri nets. Bulletin of the

EATCS, (80):174–199, 2003.

[AH02] W.M.P. van der Aalst and A.H.M. ter Hofstede. Workflow patterns:
on the expressive power of (Petri-net-based) workflow languages.
In K. Jensen, editor, Proceedings of the Fourth Workshop on the

Practical Use of Coloured Petri Nets and CPN tools, volume 560 of
DAIMI PB series, pages 1–20, Aarhus, August 2002. University of
Aarhus.

[BGE+02] T. Barclay, J. Gray, S. Ekblad, E. Strand, and J. Richter. Ter-
raService.NET: An introduction to web services. Technical Report
MS-TR-2002-53, Microsoft Research, Redmond, WA, June 2002.

[BPSMM00] T. Bray, J. Paoli, C.M. Sperberg-McQueen, and E. Maler. Exten-
sible Markup Language (XML) 1.0 (second edition). W3C Recom-
mendation, available at http://www.w3.org/TR/REC-xml, Octo-
ber 2000.

[BRJ98] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling

Language User Guide. Addison Wesley, Reading, MA, 1998.

62

[CCD+03] S. Chandrasekaran, O. Cooper, A. Deshpande, M.J. Franklin, J.M.
Hellerstein, W. Hong, S. Krishnamurthy, S.R. Madden, V. Raman,
F. Reiss, and M.A. Shah. TelegraphCQ: Continuous dataflow pro-
cessing for an uncertain world. In Proceedings of the 1st Semiannual

Conference on Innovative Data Systems Research, Asilomar, CA,
January 2003.

[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verifica-
tion of finite-state concurrent systems using temporal logic specifi-
cations. ACM Transactions on Programing Languages and Systems,
8(2):244–263, April 1986.

[CGK+02] F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller,
S. Thatte, and S. Weerawarana. Business Process Execu-
tion Language for Web Services, version 1.0. Available at
http://www.ibm.com/developerworks/library/ws-bpel/, July 2002.

[CGMW02] R. Chinnici, M. Gudgin, J.-J. Moreau, and S. Weerawarana. Web
Services Description Language (WSDL), version 1.2. W3C Working
Draft, available at http://www.w3.org/TR/wsdl12, July 2002.

[CPS93] R. Cleaveland, J. Parrow, and B. Steffen. The concurrency work-
bench: A semantics-based tool for the verification of concurrent
systems. ACM Transactions on Programming Languages and Sys-

tems, 15(1):36–72, January 1993.

[CS96] R. Cleaveland and S. Sims. The NCSU concurrency workbench. In
R. Alur and T. Henzinger, editors, Proceedings of the 8th Conference

on Computer-Aided Verification, volume 1102 of Lecture Notes in

Computer Science, pages 394–397, New Brunswick, NJ, July 1996.
Springer-Verlag.

[CS98] R. Cleaveland and S. Sims. The concurrency workbench of North
Carolina: User’s manual. http://www.cs.sunysb.edu/∼cwb/, May
1998.

[CS02] R. Cleaveland and S.T. Sims. Generic tools for verifying concurrent
systems. Science of Computer Programming, 42(1):39–47, January
2002.

63

[DE00] J. Desel and T. Erwin. Modeling, simulation and analysis of busi-
ness processes. In W.M.P. van der Aalst, J. Desel, and A. Ober-
weis, editors, Business Process Management: Models, Techniques

and Empirical Studies, volume 1806 of Lecture Notes in Computer

Science, pages 129–141. Springer-Verlag, Berlin, 2000.

[DH01] M. Dumas and A.H.M. ter Hofstede. UML activity diagrams as
a workflow specification language. In M. Gogolla and C. Kobryn,
editors, Proceedings of the 4th International Conference on the Uni-

fied Modeling Language, volume 2185 of Lecture Notes in Computer

Science, pages 76–90, Toronto, October 2001. Spring-Verlag.

[Fal01] D.C. Fallside, editor. XML Schema, Part 0: Primer. W3C Recom-
mendation, http://www.w3.org/TR/xmlschema-0, May 2001.

[Hoa85] C. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[KGMW00] C. Karamanolis, D. Giannakopoulou, J. Magee, and S.M. Wheater.
Model checking of workflow schemas. In Proceedings of Enter-

prise Distributed Object Computing Conference, pages 170–179,
Makuhari, September 2000. IEEE Computer Society Press.

[Koz83] D. Kozen. Results on the propositional µ-calculus. Theoretical Com-

puter Science, 27:333–354, 1983.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[Mil99] R. Milner. Communicating and Mobile Systems: the π-Calculus.
Cambridge University Press, 1999.

[Nak02] S. Nakajima. Verification of web services flows with model-checking
techniques. In Proceedings of the First International Symposium

on Cyber Worlds, pages 378–386, Tokyo, November 2002. IEEE
Computer Society Press.

[NH84] R. De Nicola and M. Hennessy. Testing equivalences for processes.
Theoretical Computer Science, 34:83–133, 1984.

[NM02] S. Narayanan and S.A. Mcllraith. Simulation, verification and auto-
mated composition of web services. In Proceedings of the Eleventh

International World Wide Web Conference, pages 77–88, Honolulu,
May 2002. ACM.

64

[Plo81] G.D. Plotkin. A structural approach to operational semantics. Tech-
nical Report DAIMI FN-19, Aarhus University, 1981.

[PW03] G. Piccinelli and S.L. Williams. Workflow: A language for compos-
ing web services. In W.M.P. van der Aalst, A.H.M. ter Hofstede,
and M. Weske, editors, Proceedings of the International Conference

on Business Process Management, volume 2678 of Lecture Notes

in Computer Science, pages 1–12, Eindhoven, June 2003. Springer-
Verlag.

[Rei85] W. Reisig. Petri nets: an introduction, volume 4 of EATCS mono-

graphs on theoretical computer science. Springer-Verlag, 1985.

[Rep99] J.H. Reppy. Concurrent Programming in ML. Cambridge University
Press, 1999.

[Sch98] F.B. Schneider. On concurrent programming. Communications of

the ACM, 41(4):128, April 1998.

[Sch99] M. Schroeder. Verification of business processes for a correspon-
dence handling center using CCS. In A.I. Vermesan and F. Coenen,
editors, Proceedings of European Symposium on Validation and Ver-

ification of Knowledge Based Systems and Components, pages 1–15,
Oslo, June 1999. Kluwer.

[Sim99] S. Sims. The process algebra compiler: User’s manual.
http://www.reactive-systems.com/papers/pac-user.pdf, 1999.

[Xer] http://xml.apache.org/xerces-j/.

65

