
Corretto: A CUP of Java with GrappaA Tool for Parser GenerationLaura ApostoloiuYork University, Department of Computer Science4700 Keele Street, Toronto, Canada M3J 1P3November 26, 2002AbstractCUP is a parser generator. The generated parser recognizes valid sequences of tokens. Java snippets,known as action code, can be included in a CUP speci�cation such that the generated parser also buildsparse trees (also known as concrete syntax trees). However, writing this low level code is tedious anderror prone.In Java, the nodes of a syntax tree are represented by objects. Typically, for each construct a classis introduced. To represent a language like Java, a few hundred such classes are needed. Writing theseclasses by hand is tedious. Tools, like Grappa, have been developed that mechanically generate suchclasses from a speci�cation.Because a CUP speci�cation and a Grappa speci�cation have a lot in common and since the CUPaction code for building concrete syntax trees can be generated from the Grappa speci�cation, we havemerged the two speci�cations into one Corretto speci�cation. The tool Corretto extracts from a Correttospeci�cation the corresponding CUP and Grappa speci�cations.1 IntroductionCUP (Constructor of Useful Parsers) [6] serves the same role as the widely used program YACC [7]: givena speci�cation, CUP generates an LALR parser. A CUP speci�cation consists of a decorated grammar. Aparser takes as input a sequence of tokens, typically produced by a lexer, and checks if this sequence is partof the language speci�ed by the grammar. While YACC is entirely written in C, CUP is developed usingJava and produces parsers that are implemented in Java.Besides recognizing valid sequences of tokens, parsers often build parse trees, also known as concretesyntax trees. The productions of a CUP speci�cation can be augmented with snippets of Java code, knownas action, for this purpose. Adding action code is tedious and error prone. In Java, the nodes of a syntaxtree are represented by objects. Typically, we introduce a class for each construct of the language. For alanguage like Java, a few hundred such classes need to be introduced. Several tools have been developedto mechanically generate these classes from a speci�cation. In this report, we discuss one of them, namelyGrappa [1].Given a CUP and a Grappa speci�cation, using the tools CUP and Grappa, we can construct a parserand a collection of classes to represent concrete syntax trees. The generated parser not only recognizes validsequences of tokens, but also builds a parse tree for those sequences. A CUP speci�cation and a Grappaspeci�cation contain similar information. In particular, the productions have a lot in common. As we willsee, the action code of the CUP speci�cation can be extracted from the Grappa speci�cation. Therefore, wepropose to combine the CUP and Grappa speci�cation into one speci�cation. This saves us from creatingtwo speci�cations and keeping them consistent. Furthermore, we do not have to write the action code byhand as it can be generated mechanically. 1

Our tool, which we call Corretto1, extracts a CUP speci�cation and a Grappa speci�cation from thecommon speci�cation. These extracted speci�cations can subsequently be used to produce a parser and ahierarchy of classes. The parser uses these classes to build concrete syntax trees.Corretto speci�cation
��Corretto

vvm m
m m
m m
m m
m m
m m

))S
SS

SS
SS

SS
SS

SS
SSCUP speci�cation

��

Grappa speci�cation
��CUP

��

Grappa
��parser concrete syntax tree classesOur main contributions are two fold. First of all, we have implemented Grappa in Java. The toolwas originally implemented in Perl. In the interest of widespread utilization of the tool, we decided thatGrappa should be capable of running on all major platforms. We chose Java as it is platform independent.Furthermore, the current popularity of Java makes the inner workings of our tool accessible to a largeaudience. Secondly, we have designed a syntax for Corretto speci�cations and we have implemented Correttoin Java.The rest of this report is organized as follows. In Section 2, we describe the syntax of CUP. The toolsGrappa and Corretto are discussed in Section 3 and Section 4, respectively. An example Corretto speci�cationand the corresponding CUP and Grappa speci�cations are given in Section 5. In Section 6, we conclude anddiscuss future work.1.1 AcknowledgementsI would like to express my gratitude to Professor Franck van Breugel, my supervisor, whose expertise,understanding and patience have added considerably to my graduate experience. I strongly appreciate hisknowledge, skills and the invaluable assistance in writing this report.I would also like to thank Professor Richard Paige, whose valuable input and comments did improve thequality of this report.Department of Computer Science of York University and the entire academic and support sta� deservesmy appreciation for the valuable experience I gained through my years as graduate student here.I wish to acknowledge my very good friend, Razvan Dumitrescu, for encouraging me to pursue and �nisha graduate degree.Finally, I want to thank my family for the support they provided me through my entire life and inparticular, I must acknowledge my husband and best friend, Mihai, without whose love and encouragementI would not have �nished this thesis.2 CUP speci�cationA CUP speci�cation consists of �ve sections. Below, we discuss four of them. The �fth one allows forinclusion of snippets of Java code into the generated parser. Since the CUP speci�cations generated by ourtool Corretto do not need such a section, we will not discuss the �fth section here, but we refer the interested1In Italian, corretto means corrected. It is used for co�ee, in particular for espresso. In that case, the co�ee is correctedwith a dash of an alcoholic beverage like grappa. 2

reader to the CUP user's manual [6] for details. Below, we present the four remaining sections of a CUPspeci�cation. As we will see, some of them are optional. However, if present, the sections should appear inthe order they are presented below.As a running example, we consider simple arithmetic expressions over integers and lists of these expres-sions. The expressions are de�ned by the productionExpression ! Expression + Expressionj Expression - Expressionj Expression * Expressionj Expression / Expressionj (Expression)j Numberj 1where Number can be an arbitrary integer. The lists of expressions are captured by the productionList !j Expression ListWe assume that we already have a lexer that, given an arithmetic expression or a list of expressions,produces a sequence of tokens. Let us assume that the symbols +, -, *, /, (,) and 1 are represented by thetokens ADD, SUBTRACT, MULTIPLY, DIVIDE, LPAREN, RPAREN and INFINITY and that an integer is representedby the token NUMBER. Furthermore, we assume that the lexer associates an Integer object with each NUMBERtoken. This object represents the actual integer value. (Such a lexer can be generated by, for example,JFlex [8].) Next, we present the di�erent sections of a CUP speci�cation to generate a parser to recognizesequences of these tokens.2.1 Package and import speci�cationsThis �rst section is optional. It may contain a package declaration and one or more import declarations.These declarations have the same syntax and role as the package and import declarations in an ordinaryJava program.The package declaration is used to indicate which package the generated parser is part of. For example,to express that the parser for arithmetic expressions is part of the package expression, we writepackage expression;Any import declaration given in the CUP speci�cation will also appear in the generated parser. Thisallows us to make direct use of the imported classes in the action code (which we will discuss in Section 3.5).For example,import java.util.*;imports all the classes of the package java.util.*.2.2 SymbolsThis second part is required. It consists of the declaration of the terminal and nonterminal symbols thatappear in the grammar. In our example, we have two nonterminals, Expression and List, and eight nonter-minals represented by the tokens ADD, SUBTRACT, MULTIPLY, DIVIDE, LPAREN, RPAREN, INFINITY and NUMBER.These symbols can be declared as follows.nonterminal List;nonterminal Expression;terminal ADD, SUBTRACT, MULTIPLY, DIVIDE, LPAREN, RPAREN, INFINITY;terminal Integer NUMBER;The declaration of NUMBER speci�es that an Integer object is associated with a NUMBER token. How toexploit these Integer objects we will discuss in Section 3.5.3

2.3 Precedence and associativity speci�cationsThis third section is optional as well. It speci�es the precedence and associativity of the terminals. Forexample, to express that * and / have precedence over + and -, and that all are left associative, we writeprecedence left ADD, SUBTRACT;precedence left MULTIPLY, DIVIDE;The order of precedence, from highest to lowest, is from bottom to top. Any terminal whose precedenceis not declared has lowest precedence. Besides specifying that a terminal is left associative, we can alsospecify that it is right associative or nonassociative. There is no default for associativity.2.4 ProductionsThe fourth section is required. It contains the productions. For our example, this section amounts toList ::=| Expression List;Expression ::= Expression ADD Expression| Expression SUBTRACT Expression| Expression MULTIPLY Expression| Expression DIVIDE Expression| LPAREN Expression RPAREN| NUMBER| INFINITY;The start nonterminal is the left hand side of the �rst production. In our example, List is the startnonterminal. As we already mentioned in the introduction, fragments of Java code can be added to theproductions. We will discuss the addition of action code to the above production in Section 3.5. A moreelaborate CUP speci�cation is given in Section 5.2.For more details about CUP, we refer the reader to the CUP user's manual [6] and to Appel's textbook[2, pages 70{84].3 GrappaGrappa is a tool for automatically generating Java classes to represent syntax trees. The tool was designedby Antia [1]. It was originally implemented in Perl. In this section we discuss the tool and describe ourimplementation of the tool in Java. Before presenting the tool, we �rst discuss how to represent syntax treesin Java. For more details about Grappa, including a discussion of related tools, we refer the reader to Antia'sthesis [1].3.1 Syntax tree representation in JavaTo represent syntax trees in Java we use a rather standard approach. For a detailed discussion of thisapproach we refer the reader to the textbooks of Appel [2, pages 96{105] and of Watt and Brown [13,Section 4.4] and the thesis of Antia [1]. Here, we only present the approach by means of an example.Let us consider the arithmetic expressions over integers we introduced in the previous section. Thesequence of tokensNUMBER ADD NUMBER MULTIPLY INFINITY
4

is successfully recognized by the parser generated by CUP. Let us assume that the two NUMBER tokens containthe integer values 5 and 3, respectively. The corresponding parse tree, also known as concrete syntax tree,looks as follows. Expression
o o
o o
o o
o o
o o
o

OO
OO

OO
OO

OO
OExpression ADD Expression
o o
o o
o o
o o
o o
o

OO
OO

OO
OO

OO
ONUMBER5 Expression MULTIPLY ExpressionNUMBER3 INFINITYWe will represent the above parse tree by the Java objectnew Addition(new Number(new Integer(5)),new Multiplication(new Number(new Integer(3)),new Infinity()))The classes Addition, Multiplication and Number are part of the following inheritance hierarchy.NodeExpression

d d d d
d d d d

d d d d
d d d d

d d d d
d d d d

d d d d
d d d d

d d d d
d

f f f
f f f

f f f
f f f

f f f
f f f

f f f
f f

n n
n n
n n
n n
n n
n n

NN
NN

NN
NN

NN
N

VVV
VVV

VVV
VVV

VVV
VVV

V

YYYY
YYYY

YYYY
YYYY

YYYY
YYYY

YYYY
YYYAddition Subtraction Multiplication Division Parentheses Infinity NumberThe classes Node and Expression are abstract whereas all other classes are concrete. By making theseclasses abstract we disallow the creation of concrete syntax trees that correspond to incomplete parse trees.The class Node is a superclass of all the classes. This class contains information general to all classes like theposition within the original source �le of the characters from which this Node of the syntax tree is derived.The classes Addition, Subtraction, Multiplication and Division have two instance variables of typeExpression. These represent the �rst and second operand. The class Parentheses has an instance variableof type Expression. The class Number has an instance variable of type Integer, which holds the actualinteger value. The class Infinity does not have any instance variables.Let us look at another example. This time we consider the list of expressions represented by the sequenceof tokensNUMBER4 NUMBER2The corresponding concrete syntax tree looks as follows.List

o o
o o
o o
o o
o o
o o

LL
LL

LL
LL

LLExpression List
s s
s s
s s
s s
s s

E
EE

EE
E
EE

ENUMBER4 Expression ListNUMBER2This tree is represented by the Java object 5

new NonemptyList(new Number(new Integer(4)),new NonemptyList(new Number(new Integer(2)),new EmptyList()))The classes List, NonemptyList and EmptyList form the following inheritance hierarchy.NodeList
p p
p p
p p
p p
p p
p

LL
LL

LL
LL

LLNonemptyList EmptyListThe class List is abstract and the classes NonemptyList and EmptyList are concrete. NonemptyList hasinstance variables of type Expression and List and EmptyList does not have any instance variables.3.2 Grappa speci�cationGiven a speci�cation, the Grappa tool generates a collection of Java classes to represent syntax trees. Below,we present a speci�cation that gives rise to the classes to represent concrete syntax trees for the arithmeticexpressions and lists of these expressions.package expression;% List of expressions %List : % Empty list of expressions %EmptyListempty| % Nonempty list of expressions %NonemptyList% head : first expression of the list,tail : rest of the list %Expression List;% Arithmetric expression over integers %Expression : % Addition %Addition% first : first expression of the addition,second : second expression of the addition %Expression Expression| % Subtraction %Subtraction% first : first expression of the subtraction,second : second expression of the subtraction %Expression Expression| % Multiplication %Multiplication% first : first expression of the multiplication,second : second expression of the multiplication %Expression Expression 6

| % Division %Division% first : first expression of the division,second : second expression of the division %Expression Expression| % Parenthesized expression %Parentheses% exp : expression %Expression| % Infinity %Infinity| % Number %Number% value : integer value %Integer;A speci�cation consists of two parts. These two parts will be discussed below.3.2.1 Package and import speci�cationsThe �rst part is optional. It may contain a package declaration and one or more import declarations. Thesedeclarations have the same syntax and role as the package and import declarations in an ordinary Javaprogram.The package declaration is used to indicate which package the generated classes are part of. The classesgenerated from the above speci�cation are all part of the package expression.Any import declaration given in the Grappa speci�cation will also appear in all the generated classes.This allows us to make direct use of the imported classes in the generated classes. For example,import java.util.*;imports all the classes of the package java.util. Hence, we can use, for example, Vector rather thanjava.util.Vector in the rest of the speci�cation.3.2.2 ProductionsThe second part is required. It consists of the productions. There are two di�erent types of productions.The �rst type of production is of the form% comment for class C %C : % comment for class S1 %S1% v1;1 : comment for instance variable v1;1 ,...v1;n1 : comment for instance variable v1;n1 %T1;1 : : : T1;n1...| % comment for class Sm %Sm% vm;1 : comment for instance variable vm;1 ,7

...vm;nm : comment for instance variable vm;nm %Tm;1 : : : Tm;nm;where m � 2 and ni � 0 for i = 1; : : : ;m. From such a production, classes named C and S1; : : : ; Sm aregenerated. The abstract class C has subclasses S1; : : : ; Sm and the concrete class Si has instance variablesnamed vi;1; : : : ; vi;ni of type Ti;1; : : : ; Ti;ni . The production in the above Grappa speci�cation is of this �rsttype of production. If ni = 0 then the right hand side is of the form. . .| % comment for class Si %Si| . . .That is, the block of instance variable de�nitions is absent. Hence, the class Si has no instance variables.The fragment of one of the Sj 's may have the following form. . .| % comment for class Sj %Sjempty| . . .where empty is a Grappa keyword. Also in this case, the class Sj has no instance variables. The maindi�erence between Si and Sj is that Si is associated with a token, like, for example, the class Infinity isassociated with the token INFINITY, whereas Sj is not. We will come back to this di�erence in Section 3.4.The second type of production is of the form% comment for class C %C : % v1 : comment for instance variable v1 ,...vn : comment for instance variable vn %T1 : : : Tn;where n � 0. From this production a class named C is generated. The concrete class C has instance variablesnamed v1; : : : ; vn of type T1; : : : ; Tn. An example of a production of this second type is presented below.% Function declaration %FunctionDeclaration : % name : name of the function,parameters : parameters of the function,type : return type of the function,body : body of the function %Identifier FieldList Type Expression;The speci�cations of the classes Identifier, FieldList, Type and Expression are provided in Section 5.1.Given a set of productions, let C be the collection of class names that occur as C or Si in any of theproductions, and let T be the collection of class names that occur as Ti;j or Tj in any of the productions, andlet V be the collection of instance variable names that occur in any of the productions. A set of productionsshould satisfy the following conditions.1. C does not contain any duplicates. This prevents us from assigning the same name to di�erent classes.8

2. Each class name in C and each instance variable name in V consists of a sequence of Java letters andJava digits, the �rst of which must be a Java letter, and the name is di�erent from a Java keyword(see [5, x 3.9]), true, false, null and the Grappa keyword empty. A character is a Java letter if themethod Character.isJavaIdentifierStart returns true. A character is a Java letter or a Java digitif the method Character.isJavaIdentifierPart returns true. Note that the characters :, %, | and ;,which play a special role in Grappa speci�cations, are neither Java letters nor Java digits. This secondcondition ensures that the names of the generated classes and the names of the instance variables ofthe generated classes are valid according to the Java language speci�cation [5].3. Each class name in C is di�erent from the name of any class in the package java.lang or in any of theimported packages. This avoids confusion between generated classes and imported classes.4. The collections of instance variables vi;1; : : : ; vi;ni and v1; : : : ; vn do not contain any duplicates. Thisensures that the names of the instance variables of a generated class are all di�erent.5. Each class name in T is either in C or is part of the package java.lang or any of the imported packages.This ensures that all the instance variables of the generated classes have a well-de�ned type.The productions of the above Grappa speci�cation satis�es all the above conditions. The current implemen-tation of Grappa does not check these well-formedness constraints.3.3 Grappa grammarNext, we present the grammar that de�nes the syntax of Grappa speci�cations. This syntax has beendesigned such that it can easily be integrated with a CUP speci�cation into one speci�cation. This integrationis discussed in the next section. Furthermore, in the design we aimed for speci�cations that are easy to read.Finally, the syntax has been designed such that the Grappa tool is easy to implement.In the grammar we use [x] to denote zero or one occurrences of x and fxg to denote zero or moreoccurrences of x.Below, we use Identi�er for names of classes, instance variables and packages. As we already mentionedbefore, such a name consists of a sequence of Java letters and Java digits, the �rst of which must be a Javaletter, and the name is di�erent from a Java keyword, true, false, null and the Grappa keyword empty.A ClassComment consists of a sequence of characters di�erent from % and an InstanceVariableCommentconsists of a sequence of characters di�erent from %, : and ,.A Grappa speci�cation has two parts: declarations and productions.Speci�cation ! Declarations ProductionsThe declaration part may contain a package declaration and one or more import declarations.Declarations ! [PackageDeclaration] f ImportDeclaration gPackageDeclaration ! package Identi�er f . Identi�er g ;ImportDeclaration ! import Identi�er f . Identi�er g [.*] ;There are two types of productions.Productions ! Production f Production gProduction ! % ClassComment % Identi�er : De�nitions ;De�nitions ! SubClassDe�nitionsj ClassDe�nitionThe �rst type of production de�nes a class and its subclasses.SubClassDe�nitions ! SubClassDe�nition | SubClassDe�nition f | SubClassDe�nition gSubClassDe�nition ! % ClassComment % Identi�erj % ClassComment % Identi�er emptyj % ClassComment % Identi�er % InstanceVariableDe�nitions9

The second type of production de�nes a single class.ClassDe�nition ! [% InstanceVariableDe�nitions]For each instance variable, we specify its name and a description of the instance variable in the form of acomment and its type.InstanceVariableDe�nitions ! Identi�er : InstanceVariableComment % Identi�erj Identi�er : InstanceVariableComment , InstanceVariableDe�nitions Identi�erThe productions should satisfy the �ve conditions discussed in Section 3.2.2.3.4 Generated classesNext, we present some of the classes generated from the above Grappa speci�cation. We start with the classNode. This class is the root of the generated inheritance hierarchy of classes. In a Node, we only keep trackof the position within the original source �le of the token represented by the Node (see, for example, [2,page 101]).package expression;/*** Node of a syntax tree.*/abstract class Node{ private int left;private int right;/*** Node of a syntax tree.** @param left position in input stream of left side of token represented by the node.* @param right position in input stream of right side of token represented by the node.*/Node(int left, int right){ this.left = left;this.right = right;}}This class is extended by the class Expression.package expression;/*** Arithmetic expression over integers.*/abstract class Expression extends Node{ /*** Expression.** @param left position in input stream of left side of token represented by the node.* @param right position in input stream of right side of token represented by the node.10

*/Expression(int left, int right){ super(left, right);}}This class is extended by a number of classes including Additionpackage expression;/*** Addition.*/class Addition extends Expression{ private Expression first;private Expression second;/*** Addition.** @param left position in input stream of left side of token represented by the node.* @param right position in input stream of right side of token represented by the node.* @param first first expression of the addition.* @param second second expression of the addition.*/Addition(int left, int right, Expression first, Expression second){ super(left, right);this.first = first;this.second = second;}}and Infinity.package expression;/*** Infinity.*/class Infinity extends Expression{ /*** Infinity.** @param left position in input stream of left side of token represented by the node.* @param right position in input stream of right side of token represented by the node.*/Infinity(int left, int right){ super(left, right);}} 11

The expression 5 + 3 * 1 is represented by the sequence of tokens NUMBER5 ADD NUMBER3 MULTIPLYINFINITY and by the Expression objectnew Addition(0, 8, new Number(0, 0, new Integer(5)),new Multiplication(4, 8, new Number(4, 4, new Integer(3)),new Infinity(8, 8)))Since the class Infinity represents the token INFINITY, we keep track of the position of this tokenwithin the original source �le in the instance variables left and right of the corresponding Infinityobject. The class EmptyList does not represent a token and, therefore, no positional information is neededin an EmptyList object.package expression;/*** Empty list of expressions.*/class EmptyList extends List{ /*** Empty list of expressions.*/EmptyList() {}}We introduced the keyword empty to distinguish between classes like Infinity and EmptyList.3.5 Building syntax trees with CUPAs we already mentioned in the introduction, we can add fragments of Java code to the productions of aCUP speci�cation. Such a Java snippet, which is also known as action code, is executed at the point whenthe right hand side of the production has been recognized. For example,Expression ::= ...| NUMBER{: System.out.println("number"); :};prints number whenever a NUMBER token is recognized.In the example CUP speci�cation presented in Section 2, we associated an Integer object with theterminal NUMBER. This object can be accessed using a label. For example,Expression ::= ...| NUMBER:value{: System.out.println(value); :};labels the object associated with NUMBER as value. This label can be used in the action code. As a result,whenever a NUMBER token is recognized, its Integer value is printed.CUP allows us to associate objects to nonterminals as well. We associate an Expression object with thenonterminal Expression. This object represents the parse tree rooted at the nonterminal. This associationis speci�ed as follows.nonterminal Expression Expression;In the action code we can associate a Number object, which is an Expression object according to theinheritance hierarchy, with the Expression nonterminal as follows.12

Expression ::= ...| NUMBER:value{: RESULT = new Number(..., ..., value); :};Whenever a NUMBER token is recognized, a Number object, containing the Integer object value, is createdand this Number object is associated with the Expression nonterminal. Hence, the nonterminal at the lefthand side of a production is always implicitly labelled as RESULT.Besides an Integer object that represents the actual integer value, a Number object also contains twointegers that represent the position of the left and right most character of the token in the original inputstream. We assume that the lexer keeps track of these two integers for each token. (A lexer generated by,for example, JFlex supports this feature.) These integers can be accessed in the action code as follows.Expression ::= ...| NUMBER:value{: RESULT = new Number(valueleft, valueright, value); :};Even if we do not associate an object with a token, we can still obtain its position by labelling the tokenand post�xing the label with left and right, like inExpression ::= ...| LPAREN:LPARENfirst Expression:exp RPAREN:RPARENlast{: RESULT = new Parentheses(LPARENfirstleft, RPARENlastright, exp); :}...We can add action code to the production presented in Section 2.4 resulting in the following decoratedproduction.List ::= {: RESULT = new EmptyList(); :}| Expression:head List:tail{: RESULT = new NonemptyList(headleft, tailright, head, tail); :};Expression ::= Expression:first ADD Expression:second{: RESULT = new Addition(firstleft, secondright, first, second); :}| Expression:first SUBTRACT Expression:second{: RESULT = new Subtraction(firstleft, secondright, first, second); :}| Expression:first MULTIPLY Expression:second{: RESULT = new Multiplication(firstleft, secondright, first, second); :}| Expression:first DIVIDE Expression:second{: RESULT = new Division(firstleft, secondright, first, second); :}| LPAREN:LPARENfirst Expression:exp RPAREN:RPARENlast{: RESULT = new Parentheses(LPARENfirstleft, RPARENlastright, exp); :}| NUMBER:value{: RESULT = new Number(valueleft, valueright, value); :}| INFINITY:INFINITYlast{: RESULT = new Infinity(INFINITYlastleft, INFINITYlastright); :}; 13

The parser generated from this speci�cation not only recognizes valid sequences of tokens. It also buildsa List or Expression object that represents the parse tree for the sequence of tokens. This object cansubsequently be used in the semantic analysis phase of a compiler.3.6 Grappa implementationGrappa has originally been developed by Antia in Perl. The current implementation, written in Java, usesCUP to parse the Grappa speci�cation. Action code added to each production is exploited to generate thedesired results. In order to keep the CUP speci�cation clean and easy to maintain, the code snippets onlycontain calls to the methods of an imported class named Grappa. For example, the CUP production for thegrammar ruleSpeci�cation ! Declarations Productionswould look likeSpecification ::= Declarations:decls Productions:prods{: RESULT = Grappa.specification(decls, prods); :}where the labels decls and prods are associated with strings. Those strings represent the declarations andthe productions. The method Grappa.specification combines the two strings into a string representingthe speci�cation. This string contains all the information for the classes to be generated. The classes caneasily be extracted from the string.4 CorrettoAs we have seen in the foregoing sections, we can exploit the tools CUP and Grappa to automaticallygenerate from a CUP and a Grappa speci�cation a parser that not only recognizes a sequence of tokens butthat also builds a concrete syntax tree. If we compare the CUP and Grappa speci�cation for our simpleexample of (lists of) arithmetic expressions, we note that the productions contain similar information. If weleave out the terminals and the action code from the CUP speci�cation and we remove the comments, thesubclasses and the instance variables from the Grappa productions, then we end up with roughly the sameproductions. As we will show, the action code in the CUP speci�cation can be automatically generated fromthe Grappa speci�cation. Therefore, we propose to combine the CUP and Grappa speci�cation into onespeci�cation. This saves us from creating two speci�cations and keeping them consistent. Furthermore, wedo not have to write the action code by hand as it can be generated automatically.The tool Corretto extracts from the common speci�cation, which from now on is called the Correttospeci�cation, a CUP and a Grappa speci�cation. These two speci�cations can subsequently be used toproduce a parser and a hierarchy of classes to represent concrete syntax trees.The rest of this section is organized as follows. First, we discuss the syntax of a Corretto speci�cation.Second, we describe how the CUP and Grappa speci�cation are extracted from a Corretto speci�cation.Next, we give an overview of our implementation of the tool Corretto. Finally, we discuss related work.4.1 Corretto speci�cationA Corretto speci�cation should contain enough information so that we can extract a CUP and a Grappaspeci�cation from it. While designing the syntax to capture this information, we focused on the followingthree objectives. First of all, we want a Corretto speci�cation to be easy to read and easy to write. Sec-ondly, the Corretto tool should be easy to implement. Thirdly, we do not want a Corretto speci�cation tocontain a lot of redundant information. These three objectives are conicting. For example, unlike a CUPspeci�cation, the nonterminals need not be declared in a Corretto speci�cation since they can be inferredfrom the productions. However, removing this redundant information from the speci�cation will increasethe complexity of the Corretto tool and may lead to a less readable speci�cation, but may make it easier towrite the speci�cation. Therefore, trade-o�s need to be made.14

In the design of the syntax of Corretto speci�cations we have tried to stay close to the CUP syntax.This has several advantages. First of all, many prospect users of Corretto will probably be familiar withCUP. Having a similar syntax will make it easier for those users to read and write Corretto speci�cations.Furthermore, for many languages, like, for example, Java and XML, a CUP speci�cation has been developed.These CUP speci�cations can be extended fairly easily to Corretto speci�cations. Finally, CUP and Correttohaving a similar syntax will make it easy to extract a CUP speci�cation from a Corretto speci�cation.Like a CUP speci�cation, a Corretto speci�cation has four sections. Next, we present these sections inthe order in which they should appear in a Corretto speci�cation. Again, we will use the (lists of) arithmeticexpressions over integers as our running example.4.1.1 Package and import speci�cationsThe �rst section is optional. This section plays the same role and has the same syntax as the correspondingsection in a CUP or Grappa speci�cation. Since this section only contains (at most) one package declaration,the extracted CUP and Grappa speci�cation both inherit this declaration. Therefore, the generated parserand the generated syntax tree classes are part of the same package. For our example, this �rst sectionamounts topackage expression;4.1.2 TerminalsThe second part is required. It contains the declaration of the terminal symbols. Each terminal consists ofa sequence of Java letter and Java digits, the �rst of which must be a Java letter, and it is di�erent froma Java keyword, a CUP keyword (see [6]), true, false, null and the Grappa keyword empty. Each typedterminal should be di�erent from the name of any class in the package java.lang or in any of the importedpackages. Its type should be part of the package java.lang or any of the imported packages.In contrast to a CUP speci�cation, a Corretto speci�cation does not contain a list of the nonterminalsymbols. Every symbol used in the productions that is not declared in this section as a terminal is assumedto be a nonterminal. Such a nonterminal should appear exactly once on the left hand side of a production.For the arithmetic expressions, the terminals can be declared as follows.terminal ADD, SUBTRACT, MULTIPLY, DIVIDE, LPAREN, RPAREN, INFINITY;terminal Integer NUMBER;4.1.3 Precedence and associativity speci�cationsThis section is optional as well. It is identical to the third section of a CUP speci�cation. For our example,this section amounts toprecedence left ADD, SUBTRACT;precedence left MULTIPLY, DIVIDE;4.1.4 ProductionsThe �nal section is required. It consists of the productions. For the (lists of) arithmetic expressions, wehave the following productions.% List of expressions %List : % Empty list of expressions %EmptyList| % Nonempty list of expressions %NonemptyList% head : first expression of the list,tail : rest of the list % 15

Expression List;% Arithmetric expression over integers %Expression : % Addition %Addition% first : first expression of the addition,second : second expression of the addition %Expression ADD Expression| % Subtraction %Subtraction% first : first expression of the subtraction,second : second expression of the subtraction %Expression SUBTRACT Expression| % Multiplication %Multiplication% first : first expression of the multiplication,second : second expression of the multiplication %Expression MULTIPLY Expression| % Division %Division% first : first expression of the division,second : second expression of the division %Expression DIVIDE Expression| % Parenthesized expression %Parentheses% exp : expression %LPAREN Expression RPAREN| % Infinity %InfinityINFINITY| % Number %Number% value : integer value %NUMBER;Recall that there are two types of Grappa productions. The �rst type de�nes a class and its subclasses,whereas the second type de�nes a class (without any subclasses). The above Corretto production correspondsto a Grappa production of the �rst type. An example of a Corretto production corresponding to a Grappaproduction of the second type is given below.% Function declaration %FunctionDeclaration : % name : name of the function,parameters : parameters of the function,type : return type of the function,body : body of the function %FUNCTION Identifier LPAREN FieldList RPAREN Type EQ Expression; 16

where FUNCTION, LPAREN, RPAREN and EQ are tokens representing function, (,) and =, respectively. Theproductions for the nonterminals FieldList, Type and Expression and the speci�cation of the terminalIdentifier can be found in Section 5.1.Next, we have a more detailed look at the two types of productions. In general, a production of the �rsttype is of the form% comment for C %C : % comment for S1 %S1% v1;1 : comment for v1;1 ,...v1;n1 : comment for v1;n1 %X1;1 : : :X1;k1...| % comment for Sm %Sm% vm;1 : comment for vm;1 ,...vm;nm : comment for vm;nm %Xm;1 : : : Xm;km;where m � 2, ni � 0 and ki � 0 for i = 1; : : : ;m. In the above production, C is a nonterminal and each Xi;jis either a nonterminal or a terminal. It is required that, for i = 1; : : : ;m, ni equals the number of Xi;j 'sthat are either a nonterminal or a typed terminal. If all Xi;j 's are untyped terminals, that is, ni = 0, thenthe right hand side is of the form. . .| % comment for Si %SiXi;1 : : : Xi;ki| . . .For an empty production we have that ki = 0, and hence ni = 0. In that case the right hand side is of theform . . .| % comment for Si %Si| . . .Since the terminals are part of the Corretto production, the productions for Infinity and EmptyList arestructurally di�erent. Therefore, we do not have to introduce the keyword empty as we did in the Grappaspeci�cation.Let us have a look at the di�erent ingredients of the above Corretto production and the role theseingredients will play in the corresponding CUP and Grappa productions. Here, we just give a brief overview.More details will be provided in Section 4.3. The C of the Corretto production will be the nonterminal onthe left hand side of the CUP production and the class name on the left hand side of the Grappa production.The Si's are the names of the subclasses of the class named C. These do not play a role in the CUPproduction. The vi;j 's are the labels of the nonterminals and typed terminals of the right hand side of theCUP production and the names of the instance variables of the class Si generated by Grappa. The Xi;j 'sare the nonterminals and terminals of the right hand side of the CUP production. Only the Xi;j 's thatcorrespond to a nonterminal or a typed terminal play the role of type of some instance variable vi0;j0 inGrappa. For example, consider the following part of a Corretto production.17

% name : name of the variable,type : type of the variable,exp : expression representing the initial value of the variable %VAR Identifier Type ASSIGN ExpressionAssume that Type and Expression are nonterminals and that the terminal Identifier has type String.Then the instance variables named name, type and exp have types String, Type and Expression, respec-tively.A production of the second type is of the form% comment for C %C : % v1 : comment for instance variable v1 ,...vn : comment for instance variable vn %X1 : : : Xk;where n � 0 and k � 0. Again, C is a nonterminal and each Xj is either a nonterminal or a terminal. Alsofor this type of production it is required that n equals the number of Xj 's that are either a nonterminal ora typed terminal.Given a set of productions, let C be the collection of nonterminals/class names that occur as C in any ofthe productions, let S be the collection of class names that occur as Si in any of the productions, let X bethe collection of nonterminals and terminals/class names that occur as Xi;j or Xj in any of the productions,and let V be the collection of labels/instance variable names that occur in any of the productions. A set ofproductions should satisfy the following conditions.1. C does not contain any duplicates, S does not contain any duplicates, and C and S do not have anyname in common. This prevents us from assigning the same name to di�erent classes.2. Each nonterminal/class name in C consists of a sequence of Java letters and Java digits, the �rst ofwhich must be a Java letter, and the name is di�erent from a Java keyword, a CUP keyword, true,false, null and the Grappa keyword empty. This condition ensures that the names of the generatedclasses are valid according to the Java language speci�cation and that the nonterminals of the generatedCUP speci�cation are not CUP keywords.3. Each class name in S consists of a sequence of Java letters and Java digits, the �rst of which mustbe a Java letter, and the name is di�erent from a Java keyword, true, false, null and the Grappakeyword empty. This condition ensures that the names of the generated subclasses are valid accordingto the Java language speci�cation.4. Each class name in C or S is di�erent from the name of any class in the package java.lang or in anyof the imported packages. This avoids confusion between generated classes and imported classes.5. Each label/instance variable name in V consists of a sequence of Java letters and Java digits, the �rstof which must be a Java letter, and the name is di�erent from a Java keyword, a CUP keyword, true,false, null and the Grappa keyword empty. This condition ensures that the names of the instancevariables of the generated classes are valid according to the Java language speci�cation and that thelabels of the generated CUP speci�cation are not CUP keywords.6. The collections of labels/instance variables vi;1; : : : ; vi;ni and v1; : : : ; vn do not contain any duplicates.This ensures that the names of the CUP labels/instance variables of a generated class are all di�erent.7. For each X in X , either X occurs in C or X is declared as a terminal. That is, X is either a nonterminalor a terminal.The current implementation of Corretto does not check these conditions.18

4.2 Corretto grammarBelow, we present the grammar de�ning the syntax of Corretto speci�cations. In the grammar, we useIdenti�er for names of nonterminals, terminals, labels, classes, instance variables and packages. Such a nameconsists of a sequence of Java letters and Java digits, the �rst of which must be a Java letter, and thename is di�erent from a Java keyword (see [5, x 3.9]), a CUP keyword (see [6]), true, false, null andthe Grappa keyword empty. A ClassComment consists of a sequence of characters di�erent from % and anInstanceVariableComment consists of a sequence of characters di�erent from %, : and ,.A Corretto speci�cation has four parts: package and import declarations, terminals, precedence andassociativity declarations and productions. The �rst and the third part are optional.Speci�cation![PackageAndImportDeclarations] Terminals [PrecedenceAndAssociativityDeclarations] ProductionsThe �rst part may contain a package declaration and one or more import declarations.PackageAndImportDeclarations ! [PackageDeclaration] f ImportDeclaration gPackageDeclaration ! package Identi�er f . Identi�er g ;ImportDeclaration ! import Identi�er f . Identi�er g [.*] ;The second part consists of one of more declarations of terminals.Terminals ! TerminalDeclaration f TerminalDeclaration gTerminalDeclaration ! terminal [Identi�er] Identi�er f , Identi�er g ;The third part may contain one or more precedence and associativity declarations.PrecedenceAndAssociativityDeclarations ! f PrecedenceAndAssociativityDeclaration gPrecedenceAndAssociativityDeclaration ! precedence left Identi�er f , Identi�er g ;j precedence right Identi�er f , Identi�er g ;j precedence nonassoc Identi�er f , Identi�er g ;The fourth and �nal part consists of the productions. There are two types of productions. They only di�erin their right hand sides.Productions ! Production f Production gProduction ! % ClassComment % Identi�er : RightHandSides ;RightHandSides ! RightHandSides1j RightHandSide2The right hand side of the �rst type of production is of the formRightHandSides1 ! RightHandSide1 | RightHandSide1 f | RightHandSide1 gRightHandSide1 ! % ClassComment % Identi�er [[% Labels %] Identi�er f Identi�er g]The right hand side of the second type of production is of the formRightHandSide2 ! [[% Labels %] Identi�er f Identi�er g]For each label/instance variable, we specify its name and a description of the instance variable in the formof a comment.Labels ! Identi�er : InstanceVariableCommentj Identi�er : InstanceVariableComment , Labels4.3 Generated speci�cationsBelow we sketch how a CUP and a Grappa speci�cation are extracted from a Corretto speci�cation.19

4.3.1 CUP speci�cationAs we described in Section 2, a CUP speci�cation consists of four sections. The �rst section, consisting ofpackage and import declarations, is copied verbatim from the Corretto speci�cation. The second sectioncontains the declaration of the nonterminals and terminals. The terminal declarations of the Correttospeci�cation are copied verbatim to the CUP speci�cation. For each Corretto production with left hand sideC, we introduce the nonterminal declarationnonterminal C C;The third section consists of precedence and associativity declarations. These are copied verbatim from theCorretto speci�cation. The fourth and �nal section contains the productions. Each Corretto productiongives rise to a CUP production in the following way. A Corretto production of the form% comment for C %C : % comment for S1 %S1% v1;1 : comment for v1;1 ,...v1;n1 : comment for v1;n1 %X1;1 : : :X1;k1...| % comment for Sm %Sm% vm;1 : comment for vm;1 ,...vm;nm : comment for vm;nm %Xm;1 : : : Xm;km;gives rise to a CUP productionC ::= X1;1 : : :X1;k1...| Xm;1 : : : Xm;km;decorated with labels and action code. How to add the labels and action code is discussed below. A Correttoproduction of the form% comment for C %C : % v1 : comment for instance variable v1 ,...vn : comment for instance variable vn %X1 : : : Xk;is transformed into a CUP productionC ::= X1 : : :Xk;decorated with labels and action code. 20

Labels Of the symbols on the right hand side of the generated CUP production, the �rst and the lastsymbol, all the nonterminals and all the typed terminals are labelled. Let us �rst look at a special case.If the �rst (last) symbol is the untyped terminal X , then the �rst (last) symbol is labelled with Xfirst(Xlast). If the right hand side consists of a single untyped terminal X then the terminal is labelled Xlast.Given% vi;1 : comment for vi;1 ,...vi;ni : comment for vi;ni %Xi;1 : : :Xi;kithe nonterminals and typed terminals of Xi;1; : : : ; Xi;ki are labelled with vi;1; : : : ; vi;ni . For example,% name : name of the variable,type : type of the variable,exp : expression representing the initial value of the variable %VAR Identifier COLON Type ASSIGN Expressiongives rise to the labellingVAR:VARfirst Identifier:name COLON Type:type ASSIGN Expression:expAction code From% comment for Si %Si% vi;1 : comment for vi;1 ,...vi;ni : comment for vi;ni %Xi;1 : : :Xi;kiwe extract the action codef: RESULT = new Si(fleft, `right, vi;1, . . . , vi;ni); :gwhere f is the label of Xi;1 and ` is the label of Xi;ki . Note that fleft (`right) is the position of the left(right) most character of Xi;1 (Xi;ki) in the original input stream, and hence the left (right) most characterof Xi;1 : : :Xi;ki . For example,% Variable declaration %VariableDeclaration% name : name of the variable,type : type of the variable,exp : expression representing the initial value of the variable %VAR Identifier COLON Type ASSIGN Expressionamounts to{: RESULT = new VariableDeclaration(VARfirstleft, expright, name, type, exp); :}In the special case that ki = 0 we produce the action codef: RESULT = new Si(); :gA Corretto production 21

% comment for C %C : % v1 : comment for instance variable v1 ,...vn : comment for instance variable vn %X1 : : : Xk;gives rise to the action codef: RESULT = new C(fleft, `right, v1, . . . , vn); :gwhere f is the label of X1 and ` is the label of Xk.4.3.2 Grappa speci�cationA Grappa speci�cation consists of package and import declarations and productions. The package andimport declaration section is copied verbatim from the Corretto speci�cation. Each Corretto production, asdescribed in Section 4.1.4, is turned into a Grappa production in the following way. From each sequenceof nonterminals and terminals Xi;1 : : : Xi;ki the untyped terminals are removed and the typed terminals arereplaced with their type. For example, the sequenceVAR Identifier COLON Type ASSIGN Expressionis turned into the sequenceString Type Expression(recall that the type of Identifier is String). If all Xi;j 's are untyped terminals then an empty sequenceis the result. In the special case that the sequence of Xi;j 's is empty the keyword empty is used.4.4 Corretto implementationSimilar to Grappa, Corretto is implemented in Java and uses CUP to parse its speci�cation. The action codeattached to each CUP production follows the same pattern as well. It only contains calls to the methods oftwo external classes, named CUP and Grappa. For Corretto, the CUP production forPrecedenceAndAssociativityDeclaration ! precedence left Identi�er f , Identi�er g ;j precedence right Identi�er f , Identi�er g ;j precedence nonassoc Identi�er f , Identi�er g ;would look likePrecedenceAndAssociativityDeclaration ::=PRECEDENCE LEFT IdentifierList:list SEMI{: RESULT = pair(CUP.precedenceAndAssociativityDeclarationLeft(list[0]),Grappa.precedenceAndAssociativityDeclarationLeft(list[1])); :}| PRECEDENCE RIGHT IdentifierList:list SEMI{: RESULT = pair(CUP.precedenceAndAssociativityDeclarationRight(list[0]),Grappa.precedenceAndAssociativityDeclarationRight(list[1])); :}| PRECEDENCE NONASSOC IdentifierList:list SEMI{: RESULT = pair(CUP.precedenceAndAssociativityDeclarationNonassoc(list[0]),Grappa.precedenceAndAssociativityDeclarationNonassoc(list[1])); :}22

A pair of strings is associated with the label list. The �rst element of this pair, list[0], is the string rep-resentation of the list of identi�ers for the CUP speci�cation to be generated. Similarly, the second element,list[1], is used to generate the Grappa speci�cation. The classes CUP and Grappa contain methods, likeprecedenceAndAssociativityDeclarationLeft, to generate the resulting CUP and Grappa speci�cations.While parsing the Corretto speci�cation, the untyped terminals, the typed terminals and the nonterminalsare stored in suitable data structures. These are needed in the process of generating the CUP speci�cation.4.5 Related toolsMany parser generators that produce parsers written in Java have been developed. We already discussedCUP in Section 2. As far as we know, the only other parser generators that produce a parser which alsobuilds a concrete syntax tree are ANTLR [9], JavaCC [10] in combination with either JJTree [11] or JTB[12], and SableCC [3].Speci�cations for our simple arithmetic expressions for these other tools are very similar to our Correttospeci�cation. For example, the SableCC speci�cation roughly looks as follows.expression = {addition} addition| {subtraction} subtraction| {multiplication} multiplication| {division} division| {parentheses} parentheses| {number} number;addition = [first]:expression add [second]:expression;subtraction = [first]:expression subtract [second]:expression;multiplication = [first]:expression multiply [second]:expression;division = [first]:expression divide [second]:expression;parentheses = lparen expression rparen;Note that our Corretto speci�cation is more verbose than the above SableCC speci�cation. Also the ANTLRspeci�cation is less verbose than ours. However, the additional annotations allow us to generate code withJavadoc comments.One of the advantages of ANTLR and SableCC over Corretto is that they automatically generate treewalkers. These tree walkers provide ways to systematically traverse syntax trees. In order the traverse asyntax tree using such a tree walker, the internal data of the nodes of the tree is exposed. Hence, dataencapsulation is violated. The tree walkers of SableCC often manipulate global instance variables and henceagain violate the object oriented encapsulation law. Furthermore, the tree walkers use downcasting andhence have a risk of runtime failure. JavaCC in combination with JJTree or JTB provide tree nodes thatimplement the visitor design pattern (see, for example, [4, pages 331{350] for a detailed discussion of thisdesign pattern). These visitors can be used to traverse syntax trees. This design pattern also exposes theinternal data of the nodes of the syntax tree. Furthermore, downcasting is used. The classes generated byGrappa to represent syntax trees do not expose the internal data and traversal code can be added to theseclasses that does not use downcasting. For more details we refer the reader to [1].The Corretto syntax is closer to the CUP syntax than the SableCC syntax is. Hence, a CUP speci�cationcan be adapted to a Corretto speci�cation more easily than a SableCC speci�cation can. Since for manylanguages a CUP speci�cation has been developed, we believe that this is can be an advantage of usingCorretto over SableCC. ANTLR speci�cations have been designed for a number of languages including Javaand HTML (but not, for example, XML, as far as we know). A large variety of languages, including Java,HTML and XML, have been speci�ed in JavaCC.5 ExampleIn Section 4.1, we already presented an example of a Corretto speci�cation for arithmetic expressions overintegers. The corresponding CUP and Grappa speci�cations were given in Section 2 and Section 3.2, respec-23

tively. In this section, we present a more elaborate Corretto speci�cation and the corresponding CUP andGrappa speci�cations for a language very similar to the one studied in [2]. For a detailed discussion of thelanguage we refer the reader to [2, Appendix A].5.1 Corretto speci�cationpackage tiger;terminal LPAREN, RPAREN, LBRACK, RBRACK, LBRACE, RBRACE;terminal ADD, SUBTRACT, MULTIPLY, DIVIDE;terminal EQ, NEQ, LT, LE, GT, GE;terminal AND, OR;terminal ASSIGN, IF, THEN, ELSE, WHILE, DO, FOR, TO, LET, IN, END, BREAK, NIL;terminal FUNCTION, TYPE, VAR;terminal ARRAY, OF;terminal COMMA, COLON, SEMICOLON, DOT;terminal String Identifier;terminal String StringExp;terminal Integer IntegerExp;precedence nonassoc ASSIGN;precedence left OR;precedence left AND;precedence nonassoc EQ, NEQ, LT, LE, GT, GE;precedence left ADD, SUBTRACT;precedence left MULTIPLY, DIVIDE;% Expression %Expression : % L-value expression %LValueExpression% lValue : l-value %TYPE LValue TYPE| % Nil expression %NilNIL| % Integer expression %IntegerExpression% value : integer value %IntegerExp| % String expression %StringExpression% value : string value %StringExp| % Function call expression %FunctionCall% name : name of the function,arguments : arguments of the function %Identifier LPAREN ExpressionList RPAREN24

| % Conjunction %Conjunction% first : first expression of the conjunction,second : second expression of the conjunction %Expression AND Expression| % Disjunction %Disjunction% first : first expression of the disjunction,second : second expression of the disjunction %Expression OR Expression| % Addition %Addition% first : first expression of the addition,second : second expression of the addition %Expression ADD Expression| % Subtraction %Subtraction% first : first expression of the subtraction,second : second expression of the subtraction %Expression SUBTRACT Expression| % Multiplication %Multiplication% first : first expression of the multiplication,second : second expression of the multiplication %Expression MULTIPLY Expression| % Division %Division% first : first expression of the division,second : second expression of the division %Expression DIVIDE Expression| % Equality %Equality% first : first expression of the equality expression,second : second expression of the equality expression %Expression EQ Expression| % Inequality %Inequality% first : first expression of the inequality expression,second : second expression of the inequality expression %Expression NEQ Expression| % Less than %LessThan% first : first expression of the comparison,second : second expression of the comparison %25

Expression LT Expression| % Less than or equal %LessThanOrEqual% first : first expression of the comparison,second : second expression of the comparison %Expression LE Expression| % Greater than %GreaterThan% first : first expression of the comparison,second : second expression of the comparison %Expression GT Expression| % Greater or equal %GreaterThanOrEqual% first : first expression of the comparison,second : second expression of the comparison %Expression GE Expression| % Record creation %RecordCreation% type : type of the record,fields : list of field names and expressions %Identifier LBRACE FieldExpressionList RBRACE| % Assignment expression %Assignment% lValue : l-value of the assignment,exp : expression of the assignment %LValue ASSIGN Expression| % If then else expression %IfThenElse% condition : condition of the if then else expression,thenClause : then clause of the if then else expression,elseClause : else clause of the if then else expression %IF Expression THEN Expression ELSE Expression| % If then expression %IfThen% condition : condition of the if then else expression,thenClause : then clause of the if then else expression %IF Expression THEN Expression| % While loop expression %WhileLoop% condition : condition of the while loop expression,body : body of the while loop expression %WHILE Expression DO Expression| % For loop expression %ForLoop 26

% variable : loop variable,initial : initial value of variable,final : final value ,body : body of the for loop expression %FOR Identifier ASSIGN Expression TO Expression DO Expression| % Break expression %BreakBREAK| % Let statement expression %Let% decs : list of declarations,exps : sequence of expressions %LET DeclarationList IN ExpressionSequence END| % Array creation %ArrayCreation% type : type of the array,size : size of the array,value: initial value for the array %Identifier LBRACK Expression RBRACK OF Expression| % Sequencing of expressions %Sequencing% exps : sequence of expressions %LPAREN ExpressionSequence RPAREN;% Location whose value can be read or assigned %LValue : % Variable or parameter %Variable% name : name of the variable %Identifier| % Record field %RecordField% record : record value,field : field name %LValue DOT Identifier| % Array Subscript %ArraySubscript% name : name of array,exp : expression representing the index of the array %LValue LBRACK Expression RBRACK;% Nonempty list of expressions, separated by colons %ExpressionList : % List consisting of one expression %SingleExpressionList% exp : single expression of the list %Expression 27

| % List consisting of more than one expression %MultipleExpressionList% head : first expression of the list,tail : rest if the list %Expression COMMA ExpressionList;% Nonempty list of field names and expressions %FieldExpressionList : % List consisting of one field name and expression %SingleFieldExpressionList% name : single field name of the list,exp : single expression of the list %Identifier EQ Expression| % List consisting of more than one field name and expression %MultipleFieldExpressionList% name : name of the first field,exp : expression of the first field,tail : rest of the list of field names and expressions %Identifier EQ Expression COMMA FieldExpressionList;% List of type, variable, and function declarations %DeclarationList : % Empty list of declarations %EmptyDeclarationList| % Nonempty list of declarations %NonemptyDeclarationList% head : first declaration of the list,tail : rest of the list %Declaration DeclarationList;% Declaration of a type, a variable, or a function %Declaration : % Type declaration %TypeDeclaration% name : name of the declared type,type : actual type of the declared type %TYPE Identifier EQ Type| % Variable declaration %VariableDeclaration% name : name of the variable,type : type of the variable,exp : expression representing the initial value of the variable %VAR Identifier COLON Type ASSIGN Expression| % Function declaration %FunctionDeclaration% name : name of the function,parameters : parameters of the function,type : return type of the function,28

body : body of the function %FUNCTION Identifier LPAREN FieldList RPAREN COLON Type EQ Expression;% Type %Type : % Predefined type %PredefinedType% name : name of the predefined type %Identifier| % Record type %RecordType% fields : list of fields of the record type %LBRACE FieldList RBRACE| % Array type %ArrayType% type : type of the array %ARRAY OF Identifier;% List of fields of a record type %FieldList : % Empty list of fields %EmptyFieldList| % Nonempty list of fields %NonemptyFieldList% name : name of the field,type : type of the field,tail : rest of the list %Identifier COLON Identifier FieldList;% Sequence of expressions, separated by semicolons %ExpressionSequence : % Sequence consisting of a single expression %SingleExpressionSequence% exp : single expression of the sequence %Expression| % Sequence consisting of more than one expression %MultipleExpressionSequence% head : first expression of the sequence,tail : rest of the sequence %Expression SEMICOLON ExpressionSequence;5.2 CUP speci�cationpackage tiger;terminal LPAREN, RPAREN, LBRACK, RBRACK, LBRACE, RBRACE;terminal ADD, SUBTRACT, MULTIPLY, DIVIDE;terminal EQ, NEQ, LT, LE, GT, GE; 29

terminal AND, OR;terminal ASSIGN, IF, THEN, ELSE, WHILE, DO, FOR, TO, LET, IN, END, BREAK, NIL;terminal FUNCTION, TYPE, VAR;terminal ARRAY, OF;terminal COMMA, COLON, SEMICOLON, DOT;terminal String Identifier;terminal String StringExp;terminal Integer IntegerExp;nonterminal Expression Expression;nonterminal LValue LValue;nonterminal ExpressionList ExpressionList;nonterminal NonemptyExpressionList NonemptyExpressionList;nonterminal FieldExpressionList FieldExpressionList;nonterminal NonemptyFieldExpressionList NonemptyFieldExpressionList;nonterminal DeclarationList DeclarationList;nonterminal Declaration Declaration;nonterminal Type Type;nonterminal FieldList FieldList;nonterminal ExpressionSequence ExpressionSequence;nonterminal NonemptyExpressionSequence NonemptyExpressionSequence;precedence nonassign ASSIGN;precedence left OR;precedence left AND;precedence nonassign EQ, NEQ, LT, LE, GT, GE;precedence left ADD, SUBTRACT;precedence left MULTIPLY, DIVIDE;Expression ::=TYPE:TYPEfirst LValue:lValue TYPE:TYPElast{: RESULT = new LValueExpression(TYPEfirstleft, TYPElastright, lValue); :}| NIL:NILlast{: RESULT = new Nil(NILlastleft, NILlastright); :}| IntegerExp:value{: RESULT = new IntegerExpression(valueleft, valueright, value); :}| StringExp:value{: RESULT = new StringExpression(valueleft, valueright, value); :}| Identifier:name LPAREN ExpressionList:arguments RPAREN:RPARENlast{: RESULT = new FunctionCall(nameleft, RPARENlastright, name, arguments); :}| Expression:first AND Expression:second{: RESULT = new Conjunction(firstleft, secondright, first, second); :}| Expression:first OR Expression:second{: RESULT = new Disjunction(firstleft, secondright, first, second); :}| Expression:first ADD Expression:second{: RESULT = new Addition(firstleft, secondright, first, second); :}30

| Expression:first SUBTRACT Expression:second{: RESULT = new Subtraction(firstleft, secondright, first, second); :}| Expression:first MULTIPLY Expression:second{: RESULT = new Multiplication(firstleft, secondright, first, second); :}| Expression:first DIVIDE Expression:second{: RESULT = new Division(firstleft, secondright, first, second); :}| Expression:first EQ Expression:second{: RESULT = new Equality(firstleft, secondright, first, second); :}| Expression:first NEQ Expression:second{: RESULT = new Inequality(firstleft, secondright, first, second); :}| Expression:first LT Expression:second{: RESULT = new LessThan(firstleft, secondright, first, second); :}| Expression:first LE Expression:second{: RESULT = new LessThanOrEqual(firstleft, secondright, first, second); :}| Expression:first GT Expression:second{: RESULT = new GreaterThan(firstleft, secondright, first, second); :}| Expression:first GE Expression:second{: RESULT = new GreaterThanOrEqual(firstleft, secondright, first, second); :}| Identifier:type LBRACE FieldExpressionList:fields RBRACE:RBRACElast{: RESULT = new RecordCreation(typeleft, RBRACElastright, type, fields); :}| LValue:lValue ASSIGN Expression:exp{: RESULT = new Assignment(lValueleft, expright, lValue, exp); :}| IF:IFfirst Expression:condition THEN Expression:thenClause ELSE Expression:elseClause{: RESULT = new IfThenElse(IFfirstleft, elseClauseright, condition, thenClause, elseClause); :}| IF:IFfirst Expression:condition THEN Expression:thenClause{: RESULT = new IfThen(IFfirstleft, thenClauseright, condition, thenClause); :}| WHILE:WHILEfirst Expression:condition DO Expression:body{: RESULT = new WhileLoop(WHILEfirstleft, bodyright, condition, body); :}| FOR:FORfirst Identifier:variable ASSIGN Expression:initial TO Expression:final DO Expression:body{: RESULT = new ForLoop(FORfirstleft, bodyright, variable, initial, final, body); :}| BREAK:BREAKlast{: RESULT = new Break(BREAKlastleft, BREAKlastright); :}| LET:LETfirst DeclarationList:decs IN ExpressionSequence:exps END:ENDlast{: RESULT = new Let(LETfirstleft, ENDlastright, decs, exps); :}| Identifier:type LBRACK Expression:size RBRACK OF Expression:value31

{: RESULT = new ArrayCreation(typeleft, valueright, type, size, value); :}| LPAREN:LPARENfirst ExpressionSequence:exps RPAREN:RPARENlast{: RESULT = new Sequencing(LPARENfirstleft, RPARENlastright, exps); :};LValue ::=Identifier:name{: RESULT = new Variable(nameleft, nameright, name); :}| LValue:record DOT Identifier:field{: RESULT = new RecordField(recordleft, fieldright, record, field); :}| LValue:name LBRACK Expression:exp RBRACK:RBRACKlast{: RESULT = new ArraySubscript(nameleft, RBRACKlastright, name, exp); :};ExpressionList ::=Expression:exp{: RESULT = new SingleExpressionList(expleft, expright, exp); :}| Expression:head COMMA ExpressionList:tail{: RESULT = new MultipleExpressionList(headleft, tailright, head, tail); :};FieldExpressionList ::=Identifier:name EQ Expression:exp{: RESULT = new SingleFieldExpressionList(nameleft, expright, name, exp); :}| Identifier:name EQ Expression:exp COMMA FieldExpressionList:tail{: RESULT = new MultipleFieldExpressionList(nameleft, tailright, name, exp, tail); :};DeclarationList ::={: RESULT = new EmptyDeclarationList(); :}| Declaration:head DeclarationList:tail{: RESULT = new NonemptyDeclarationList(headleft, tailright, head, tail); :};Declaration ::=TYPE:TYPEfirst Identifier:name EQ Type:type{: RESULT = new TypeDeclaration(TYPEfirstleft, typeright, name, type); :}| VAR:VARfirst Identifier:name COLON Type:type ASSIGN Expression:exp{: RESULT = new VariableDeclaration(VARfirstleft, expright, name, type, exp); :}| FUNCTION:FUNCTIONfirst Identifier:name LPAREN FieldList:parameters RPAREN COLONType:type EQ Expression:body{: RESULT = new FunctionDeclaration(FUNCTIONfirstleft, bodyright, name, parameters, type, body); :}; 32

Type ::=Identifier:name{: RESULT = new PredefinedType(nameleft, nameright, name); :}| LBRACE:LBRACEfirst FieldList:fields RBRACE:RBRACElast{: RESULT = new RecordType(LBRACEfirstleft, RBRACElastright, fields); :}| ARRAY:ARRAYfirst OF Identifier:type{: RESULT = new ArrayType(ARRAYfirstleft, typeright, type); :};FieldList ::={: RESULT = new EmptyFieldList(); :}| Identifier:name COLON Identifier:type FieldList:tail{: RESULT = new NonemptyFieldList(nameleft, tailright, name, type, tail); :};ExpressionSequence ::=Expression:exp{: RESULT = new SingleExpressionSequence(expleft, expright, exp); :}| Expression:head SEMICOLON ExpressionSequence:tail{: RESULT = new MultipleExpressionSequence(headleft, tailright, head, tail); :};5.3 Grappa speci�cationpackage tiger;% Expression %Expression :% L-value expression %LValueExpression% lValue : l-value %LValue| % Nil expression %Nil| % Integer expression %IntegerExpression% value : integer value %Integer| % String expression %StringExpression% value : string value %String| % Function call expression %FunctionCall 33

% name : name of the function,arguments : arguments of the function %String ExpressionList| % Conjunction %Conjunction% first : first expression of the conjunction,second : second expression of the conjunction %Expression Expression| % Disjunction %Disjunction% first : first expression of the disjunction,second : second expression of the disjunction %Expression Expression| % Addition %Addition% first : first expression of the addition,second : second expression of the addition %Expression Expression| % Subtraction %Subtraction% first : first expression of the subtraction,second : second expression of the subtraction %Expression Expression| % Multiplication %Multiplication% first : first expression of the multiplication,second : second expression of the multiplication %Expression Expression| % Division %Division% first : first expression of the division,second : second expression of the division %Expression Expression| % Equality %Equality% first : first expression of the equality expression,second : second expression of the equality expression %Expression Expression| % Inequality %Inequality% first : first expression of the inequality expression,second : second expression of the inequality expression %Expression Expression| % Less than % 34

LessThan% first : first expression of the comparison,second : second expression of the comparison %Expression Expression| % Less than or equal %LessThanOrEqual% first : first expression of the comparison,second : second expression of the comparison %Expression Expression| % Greater than %GreaterThan% first : first expression of the comparison,second : second expression of the comparison %Expression Expression| % Greater or equal %GreaterThanOrEqual% first : first expression of the comparison,second : second expression of the comparison %Expression Expression| % Record creation %RecordCreation% type : type of the record,fields : list of field names and expressions %String FieldExpressionList| % Assignment expression %Assignment% lValue : l-value of the assignment,exp : expression of the assignment %LValue Expression| % If then else expression %IfThenElse% condition : condition of the if then else expression,thenClause : then clause of the if then else expression,elseClause : else clause of the if then else expression %Expression Expression Expression| % If then expression %IfThen% condition : condition of the if then else expression,thenClause : then clause of the if then else expression %Expression Expression| % While loop expression %WhileLoop% condition : condition of the while loop expression,body : body of the while loop expression %Expression Expression 35

| % For loop expression %ForLoop% variable : loop variable,initial : initial value of variable,final : final value,body : body of the for loop expression %String Expression Expression Expression| % Break expression %Break| % Let statement expression %Let% decs : list of declarations,exps : sequence of expressions %DeclarationList ExpressionSequence| % Array creation %ArrayCreation% type : type of the array,size : size of the array,value : initial value for the array %String Expression Expression| % Sequencing of expressions %Sequencing% exps : sequence of expressions %ExpressionSequence;% Location whose value can be read or assigned %LValue :% Variable or parameter %Variable% name : name of the variable %String| % Record field %RecordField% record : record value,field : field name %LValue String| % Array Subscript %ArraySubscript% name : name of array,exp : expression representing the index of the array %LValue Expression;% Nonempty list of expressions, separated by colons %ExpressionList : 36

% List consisting of one expression %SingleExpressionList% exp : single expression of the list %Expression| % List consisting of more than one expression %MultipleExpressionList% head : first expression of the list,tail : rest if the list %Expression ExpressionList;% Nonempty list of field names and expressions %FieldExpressionList :% List consisting of one field name and expression %SingleFieldExpressionList% name : single field name of the list,exp : single expression of the list %String Expression| % List consisting of more than one field name and expression %MultipleFieldExpressionList% name : name of the first field,exp : expression of the first field,tail : rest of the list of field names and expressions %String Expression FieldExpressionList;% List of type, variable, and function declarations %DeclarationList :% Empty list of declarations %EmptyDeclarationListempty| % Nonempty list of declarations %NonemptyDeclarationList% head : first declaration of the list,tail : rest of the list %Declaration DeclarationList;% Declaration of a type, a variable, or a function %Declaration :% Type declaration %TypeDeclaration% name : name of the declared type,type : actual type of the declared type %String Type| % Variable declaration %VariableDeclaration% name : name of the variable,type : type of the variable, 37

exp : expression representing the initial value of the variable %String Type Expression| % Function declaration %FunctionDeclaration% name : name of the function,parameters : parameters of the function,type : return type of the function,body : body of the function %String FieldList Type Expression;% Type %Type :% Predefined type %PredefinedType% name : name of the predefined type %String| % Record type %RecordType% fields : list of fields of the record type %FieldList| % Array type %ArrayType% type : type of the array %String;% List of fields of a record type %FieldList :% Empty list of fields %EmptyFieldListempty| % Nonempty list of fields %NonemptyFieldList% name : name of the field,type : type of the field,tail : rest of the list %String String FieldList;% Sequence of expressions, separated by semicolons %ExpressionSequence :% Sequence consisting of a single expression %SingleExpressionSequence% exp : single expression of the sequence %Expression| % Sequence consisting of more than one expression %MultipleExpressionSequence 38

% head : first expression of the sequence,tail : rest of the sequence %Expression ExpressionSequence;6 ConclusionGrappa is a tool to generate Java classes for representing syntax trees. This tool was originally developed byAntia. In Section 3, we revisited the design and implementation of Grappa. We came up with a new syntaxfor Grappa speci�cations. We believe that this new syntax is more readable than the old one. Furthermore,we realized that a keyword, like empty, is needed to distinguish classes that represent no token from classesthat represent a token. We made a detailed analysis of conditions, like the ones presented on page 8, thatneed to be satis�ed for a Grappa speci�cation to be valid. Also, we implemented Grappa in Java.Motivated by the fact that CUP and Grappa speci�cations have a lot in common, we introduced Corretto.We developed the tool Corretto from scratch. In Section 4, we discussed its design, its syntax and itsimplementation in Java.Although we made precise which conditions a Grappa/Corretto speci�cation should satisfy to be valid,the current version of Grappa/Corretto does not check these conditions. This is left as future work. The nextversion of Grappa/Corretto should also provide meaningful error messages if a Grappa/Corretto speci�cationdoes not correspond to the Grappa/Corretto grammar.Providing editor support to make it easier to write Grappa and Corretto speci�cations is another projectthat may be considered in the future. For example, an emacs mode for editing Grappa and Correttospeci�cations might be useful.Allowing to combine and reuse Grappa and Corretto speci�cations may be desirable. This could beachieved by adding some sort of import command to Grappa and Corretto speci�cations.Although we have tested our tools Grappa and Corretto rigorously, all our test cases consisted of relativelysmall speci�cations (see, for example, the speci�cation in Section 5). Developing a Corretto speci�cation forthe Java language may be a very good exercise. Such a Corretto speci�cation will be considerably largerthan any speci�cation we have considered so far.The current implementation of Corretto is available athttp://www.cs.yorku.ca/~franck/research/corretto/and the current implementation of Grappa can be found outhttp://www.cs.yorku.ca/~franck/research/grappa/References[1] D. Antia. Semantic Analysis of Pict in Java. Master's thesis, York University, Toronto, in preparation.[2] A. Appel. Modern Compiler Implementation in Java. Cambridge University Press, 1998.[3] E. Gagnon. SableCC, An Object-Oriented Compiler Framework. Master's thesis, McGill University,Montreal, 1998.[4] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.[5] J. Gosling, B. Joy, G.L. Steele and G. Bracha. The Java Language Speci�cation. Addison Wesley, 2000.[6] S. Hudson. CUP, LALR Parser Generator for Java. www.cs.princeton.edu/~appel/modern/java/CUP.[7] S.C. Johnson. YACC: Yet Another Compiler Compiler. CS Technical Report 32, Bell Laboratories,Murray Hill, 1975. 39

[8] G. Klein. JFlex, The Fast Scanner Generator for Java. www.jflex.de.[9] MageLang Institute. ANTLR. www.antlr.org.[10] Metamata and Sun Microsystems. JavaCC. www.webgain.com/products/java cc.[11] Metamata and Sun Microsystems. JJTree. www.webgain.com/products/java cc/jjtree.html.[12] W. Wang, K. Tao and J. Palsberg. JTB: Java Tree Builder. www.cs.purdue.edu/jtb.[13] D.A. Watt and D.F. Brown. Programming Language Processors in Java. Prentice-Hall, 1999.

40

