
ANALYSIS THROUGH REFLECTION:
WALKING THE EMF MODEL OF BPEL4WS

Kien Huynh
khuynh@cs.yorku.ca

A thesis submitted to the Faculty of Graduate Studies
in partial fulfilment of the requirements

for the degree of

Master of Science

Graduate Programme in Computer Science
York University
Toronto, Ontario
September 5, 2005

Abstract

In this thesis, we review different approaches to implement analyses for the Busi-

ness Process Execution Language for Web Services (BPEL4WS) — a language

initially proposed by BEA, IBM and Microsoft to describe business process be-

haviour based on web services. Analyses of a BPEL4WS program often boil down

to walking the abstract syntax tree of the program. We exploit the Eclipse Mod-

elling Framework (EMF) to generate a hierarchy of Java classes and interfaces

that represents the abstract syntax of BPEL4WS. We review, refine and extend

a technique, based on Java’s reflection mechanism and introduced by Palsberg

and Jay [44], to walk such trees. Such a walker provides us a powerful approach

to analyze BPEL4WS programs. Unfortunately, since the walker relies on Java’s

reflection mechanism, its performance is rather poor. A significant part of our

research has focused on improving its performance. Caching the results of Java’s

reflection as proposed by Bravenboer and Visser [9] and also by Forax and Rous-

sel [25], and generating new code, at run time, to replace calls to Java’s reflection

mechanism by Grothoff [28] have been shown to improve the performance of the

walker considerably. Inspired by the work of Grothoff [28], we propose preprocess-

ing the code that performs an analysis to generate new and more efficient code

for it. Our approach inherits most of the benefits of using the walker to imple-

ment analyses of BPEL4WS and gives rise to improved performance. However,

the fact that the code needs to be compiled again every time the EMF model of

BPEL4WS changes is its main drawback.

iv

Acknowledgements

The major credit for the work in this thesis must go to my supervisor Franck

van Breugel. I am gratefully appreciative for his many valuable suggestions,

tremendous contributions, always prompt feedback, guidance, encouragement,

and support during the research. My gratitude is beyond words.

Many thanks to Bill O’Farrell for his valuable suggestions, and Jane Fung for help-

ing me on the technical issues of WASDIE. I would like to thank Frank Budinsky

and Ed Merks for valuable discussions on EMF. Also, thanks Julie Waterhouse

for providing a very comfortable environment at CAS, and for broadening my

knowledge in AOP.

Many thanks to the committee members: Kelly Lyons who is willing to spend

her time-off reading my thesis, Jonathan Ostroff who has taught me a lot about

software engineering, and Sylvie Morin who has inspired me to pursue this. Last

but not least, I would like to thank the Computer Science department of York

University and IBM for supporting me throughout my program and research.

Finally, I would like to send my love to my parents, the rest of my family, and

James. Thank you for always being supportive.

All of your support and help in very different ways were crucial to the final

completion of this thesis and are always greatly appreciated.

Kien Huynh

September 5, 2005

v

Table of Contents

Abstract iv

Acknowledgements v

Table of Contents vi

1 Introduction 1

1.1 The BPEL4WS language . 1

1.2 The Eclipse Modelling Framework 2

1.3 Thesis contributions . 3

1.3.1 Approaches to implement analyses of a BPEL4WS program 3

1.3.2 Reflection based walker . 5

1.3.3 Improving the performance of the reflection based walker . 5

1.3.4 Implementing analysis tools for BPEL4WS 6

1.3.5 Performance evaluation . 8

1.4 Overview . 8

2 Business Process Execution Language for Web Services 10

2.1 Introduction to web services . 10

2.2 Introduction to BPEL4WS . 16

3 The Eclipse Modelling Framework 26

3.1 An overview . 26

vi

3.2 EMF Ecore model . 27

3.3 Methods to specify the model . 30

3.4 Representation of BPEL4WS in Java 35

3.5 Representation of the join conditions in Java 36

4 Techniques to implement semantic analyses in Java 42

4.1 An overview . 42

4.2 Dedicated methods . 44

4.3 Syntax separate from interpretations 49

4.4 Visitor design pattern . 52

4.5 The EMF-switch mechanism . 58

4.6 SableCC’s tree walkers . 63

5 Reflection based techniques to traverse ASTs 69

5.1 An overview . 69

5.2 Reflection based walker . 70

5.2.1 Method resolution . 75

5.2.2 Walking arrays . 76

5.2.3 Walking graphs . 79

5.2.4 Caching the results . 81

5.2.5 Benefits . 83

5.2.6 Drawbacks . 84

5.3 The Runabout . 85

5.4 The multi-methods . 88

6 Walker with preprocessing 93

6.1 Causes of poor performance . 95

vii

6.2 Preprocessing the Java source code of the walker 97

6.2.1 Identifying the classes which may have to be visited 98

6.2.2 Identifying the classes which may have to be walked 101

6.2.3 Generating Java code for the walker 109

6.2.4 Walking arrays . 115

6.2.5 Walking graphs . 129

7 A simple analysis of BPEL4WS 130

7.1 Introduction . 130

7.2 Dedicated methods . 132

7.3 EMF-switch mechanism . 134

7.4 The reflection based techniques 136

8 BPEL-calculus translator 139

8.1 Overview of BPEL-calculus . 139

8.2 Renaming links . 141

8.3 Dedicated methods . 142

8.4 EMF-switch mechanism . 145

8.5 The reflection based techniques 147

9 A graph representation for BPEL4WS 150

9.1 Introduction . 150

9.2 Dedicated methods . 151

9.3 EMF-switch mechanism . 154

9.4 The reflection based techniques 155

9.5 Use of the graph . 156

viii

10 Performance evaluation 166

10.1 Benchmarks . 167

10.2 The non-reflection based approaches 169

10.3 The reflection based approaches 172

10.4 The walker with preprocessing . 177

10.5 Summary . 180

11 Conclusion 182

11.1 Summary and discussion . 182

11.2 Future work . 187

11.2.1 Enhancing the performance of the walker with preprocessing187

11.2.2 Exploiting EMF-switch in the walker with preprocessing . 188

Bibliography 190

A XML Schema for the join conditions 199

B Performance data 202

B.1 Analysis (a) . 203

B.2 Analysis (b) . 204

B.3 Analysis (c) . 205

ix

1 Introduction

This thesis is part of an ongoing effort to develop analysis tools, in Java, for the

Business Process Execution Language for Web Services (BPEL4WS) [1]. The

development of tools to analyze BPEL4WS programs entails two fundamental

issues. They are, firstly how to build a representation of a BPEL4WS program

in Java, and secondly how to implement the analysis of this representation.

1.1 The BPEL4WS language

With BPEL4WS, one can create a business process which consists of basic activi-

ties that can, for example, invoke an operation of a web service, receive a request,

send a reply, and manipulate data. These activities, then, can be combined into

structured activities. The structured activities are built using constructs such

as sequential control flow constructs (like sequence, switch and while), and

concurrency and synchronization constructs (like flow, pick and switch).

Synchronization between activities is achieved by using links. If there is a

link from one activity to another, then the target activity can only start once

1

the source activity has completed. Each activity has a join condition. The join

condition is a Boolean expression which consists of links combined by Boolean

operators. Once all the source activities corresponding to the incoming links of

an activity have completed, the join condition of the activity is evaluated. If the

join condition evaluates to true, then the activity is started. Otherwise, since

the activity will never start, it can be garbage collected using a scheme known as

dead-path-elimination (DPE) [1, 40] in BPEL4WS.

Since our work mostly focuses on the analyses of activities and links of

BPEL4WS, we will only discuss those in this thesis. We refer the reader to [1]

for a complete description of BPEL4WS.

1.2 The Eclipse Modelling Framework

The Eclipse Modelling Framework (EMF) [12] is a Java framework which enables

users to generate code based on a data model. Models can be specified using

annotated Java, XSD schemas, or UML. The specifications then can be imported

into EMF to generate the corresponding Java classes and interfaces. EMF sup-

ports three code generation facilities. They are the model generation, the adapter

generation, and the editor generation facility. The model generator is responsible

for generating Java classes and interfaces that represents the data model.

2

The adapter generator is responsible for generating reusable classes for build-

ing editors for EMF models. Finally, the editor generator is responsible for gen-

erating a simple tree-based editor that allows one easily produce instances of an

EMF model. EMF also generates a so-called EMF-switch utility class, which can

be used for walking the EMF model.

For this thesis, we will only focus on EMF’s model generator. Based on

the XSD specification of BPEL4WS, one can exploit the model generator of the

framework to generate a hierarchy of Java classes and interfaces for BPEL4WS.

This hierarchy will be exploited to represent the syntax of BPEL4WS in Java.

1.3 Thesis contributions

Our contributions have been in several areas and are briefly outlined below.

1.3.1 Approaches to implement analyses of a BPEL4WS program

Analyses of a BPEL4WS program often involve validating some of the properties

of the program. For example, links in a BPEL4WS program must be properly

declared before being used. Generally, the analyses boil down to walking the

abstract syntax tree (AST) of the program in a suitable order. When visiting a

node, based on the type of the node, a corresponding code snippet is executed.

3

In this thesis, we review and compare a number of techniques which can be used

to implement such analyses, including

• adding dedicated methods to the Java classes representing the ASTs,

• applying the syntax separate from interpretations approach [2],

• attaching external methods to nodes of particular types by exploiting the

visitor design pattern [27],

• exploiting the EMF-switch mechanism [12],

• tailoring automatically generated tree walkers as supported by compiler kits

like SableCC [21],

• using the reflection based techniques, which are based on Java’s reflection

mechanism, originally proposed by Palsberg and Jay [44] (see also [45, 9,

25, 28]).

In this thesis, we will provide a detailed discussion of the advantages and

disadvantages of using each approach to analyze a program.

4

1.3.2 Reflection based walker

Palsberg and Jay [44] introduced a tree walker, which is based on Java’s reflection,

to analyze a program. Java’s reflection is one of the advanced features of the

Java environment that makes information about objects, classes, and interfaces

available at runtime. It also allows objects to be manipulated and operated on

at runtime.

The tree walker of Palsberg and Jay [44] has some limitations. It does not sup-

port walking arrays and walking graphs. Since EMF models often form a graph,

this tree walker does not support walking these models. Therefore, we refine and

extend this tree walker to build a more powerful reflection based walker which

supports walking arrays and graphs. Furthermore, in the reflection based walker

we will also consider walking both public fields and non-public ones. This feature

is also essential for walking EMF models. The Walker class, which provides the

implementation of the reflection based walker, has nearly 150 lines of code.

1.3.3 Improving the performance of the reflection based walker

The performance of the reflection based walker is rather poor. A significant part

of our thesis will focus on improving its performance. There are two factors that

contribute to the poor performance. One of them is the use of Java’s reflection

5

mechanism. To minimize the use of Java’s reflection mechanism, we propose a

technique which requires preprocessing the code (that performs the analysis) and

generation of new code. A similar code generation technique had already been

proposed by Grothoff [28]. However, since Grothoff [28] focused on generating

code at runtime, this approach introduce some overhead. Java’s reflection mech-

anism is not the only factor that contributes to the poor performance of the

walker. Some analyses of a BPEL4WS program only require certain parts of its

AST to be walked. The fact that the walkers traverse every part of the AST,

hence, may also cause the performance of the walkers to be poor. In this thesis,

we will also address this issue during the preprocessing step.

1.3.4 Implementing analysis tools for BPEL4WS

A graphical editor of BPEL4WS has been developed and successfully integrated

with the WebSphere Studio Application Developer Integration Editor (WSADIE).

On the one hand, our aim is to have the analysis tools for BPEL4WS to be plug-

gable into WSADIE so that the results of analyses can be reflected by the editor.

On the other hand, as BPEL4WS is still evolving, the EMF model of BPEL4WS

may also change. The analysis tools for BPEL4WS should be implemented in

such a way that changes to the EMF model of BPEL4WS will have little impact

6

on these tools.

Given the above constraints, we will show later in this thesis that the reflection

based techniques provide the most appropriate way to implement analyses of

BPEL4WS. The other approaches will be shown to be less suitable.

Exploiting the reflection based walker, we have developed a number of analysis

tools for BPEL4WS, including tools

• to detect control cycles in a BPEL4WS program,

• to check that each link of a BPEL4WS program has a unique source and a

unique target,

• to translate a BPEL4WS program into a BPE-process (for the latter prop-

erties can be verified using the Concurrency Workbench), and

• to check if dead-path-elimination (DPE) gives rise to side effects in a BPEL4WS

program.

At the time when the research started, no such tools were available for BPEL4WS.

In particular, the tool that detects side-effects of DPE is the only available tool

which enables to check whether DPE gives rise to side effects in a BPEL4WS

program.

7

1.3.5 Performance evaluation

Finally, in this thesis, we will also assess the performance of some approaches,

including the walkers with preprocessing, based on the following analyses.

(a) An analysis that finds the activity in a BPEL4WS program with a given

identifier (see Chapter 7).

(b) An analysis that translates a BPEL4WS program into a BPEL-calculus

process (see Chapter 8).

(c) An analysis that builds a directed graph for a BPEL4WS program (see

Chapter 9).

In particular, we want to compare the performance of those approaches that

do not rely on Java’s reflection mechanism to analyze BPEL4WS programs, to

the reflection based approaches. Among the reflection based techniques, the

walkers with preprocessing will be shown to obtain the best performance for

these analyses.

1.4 Overview

The rest of this thesis is organized as follows. Chapter 2 provides a brief intro-

duction to web services and then to BPEL4WS. Chapter 3 introduces EMF. In

8

this chapter, we concentrate on how EMF generates the hierarchy of Java classes

and interfaces for BPEL4WS from the XSD specification of BPEL4WS. Due to

the complexity of this language, we will focus on a small fragment of BPEL4WS,

that is, the join conditions, to illustrate how such a hierarchy is generated.

In Chapter 4 and 5, we review different ways to implement analyses for

BPEL4WS. In Chapter 5, the reflection based walker are described, whereas

Chapter 4 discusses some approaches that do not rely on Java’s reflection mech-

anism. In Chapter 6, we present our proposal to improve the performance of the

(reflection based) walker.

In Chapter 7, 8, and 9, we sketch the implementations of some analyses for

BPEL4WS using different approaches. These analyses include finding the activity

with a given ID within a BPEL4WS program, translating a BPEL4WS program

into BPEL-calculus process, and building a graph representation for a BPEL4WS

program. To give the reader an idea of how one approach performs, compared to

another, in Chapter 10, we evaluate the performance of the various approaches.

Chapter 11 summarizes, concludes and discusses future work.

9

2 Business Process Execution Language for

Web Services

2.1 Introduction to web services

Recently, web services have gained considerable popularity in both industry and

academia. Web services were developed based on many other technologies, one

of which is the eXtensive Markup Language (XML). XML standards [10] were

developed by the World Wide Web Consortium. XML plays an essential role in

encoding data and creating additional markup languages, both of which will be

exemplified below. XML has been adopted in many other current technologies,

mainly for cross-platform data communication between different web components.

XML is a markup language that is much like HTML. The main differences

between XML and HTML are that while HTML is used for displaying data XML

is used to describe data; and while HTML has its own set of predefined tags, the

XML tag library is defined by the users either using a Document Type Definition

(DTD) [10] or an XML Schema Definition (XSD) [48, 6]. For example, one can

10

use an XML document to encode personal information of a consumer as follows.

<?xml version="1.0" encoding="UTF-8"?>

<consumer id="12">

<name>Micheal Lee</name>

<age>25</age>

<shipping-address>20 Pond Street, Toronto, Ontario, M3J 3P3

</shipping-address>

</consumer>

Figure 2.1: An XML document.

An XML document begins with the header (the first line), followed by the content

of the document. The markup tags consumer, name, age, and shipping-address

and the attribute id used in the above document are specified using either a DTD

or an XSD. The following shows how to define those tags in a DTD.

<!ELEMENT element-name consumer (name,age,shipping-address)>

<!ATTLIST consumer id #CDATA #REQUIRED>

<!ELEMENT element-name name (#PCDATA)>

<!ELEMENT element-name age (#PCDATA)>

<!ELEMENT element-name shipping-address (#PCDATA)>

Figure 2.2: A DTD document.

In the above DTD fragment, the !ELEMENT tag is used to define new XML li-

brary tags such as consumer, name, age, and shipping-address. The !ATTLIST

tag specifies the list of attributes, for example, the attribute id in the tag

consumer. The construct #REQUIRED enforces the user to specify the value of

11

id in the XML document. The constructs #CDATA and #PCDATA are generally

referring to string typed data. The difference between the two constructs is well-

explained in [10].

Alternatively, one can use XSD instead of DTD to define new XML library

tags. One of the advantages of using XSD over DTD is that it supports data types.

Everything in DTD is defined as a string even for instance age. In contrast, XSD

allows the data type for age to be defined as an integer. Moreover, XSD provides

a more flexible way to define the document content, to validate the correctness

of data, to define data types and so on. The tags defined in the above XML

document can be specified in XSD as follows.

<schema xmlns="http://www.w3.org/2001/XMLSchema">

<element name="consumer">

<complexType>

<sequence>

<element name="name" type="string"/>

<element name="age" type="integer"/>

<element name="shipping-address" type="string"/>

</sequence>

</complexType>

<attribute name="id" type="integer" use="required"/>

</element>

</schema>

Figure 2.3: An XSD document.

12

The above specification in XSD is very similar to the one in DTD. XSD allows

users to specify additional information. For example, XSD makes it possible

to control the order of name, age, and shipping-address appearing inside the

consumer tag in the XML document by means of the sequence tag.

Back to web services, a primary goal of web services is to promote the univer-

sal interoperability between applications. It allows one application to remotely

invoke a method of another application; the former application is technically re-

ferred to as a client application and the latter as a server application. These

applications may be run on different platforms and even be implemented in dif-

ferent languages. The client application sends a request in the form of a message,

the server application responds to this request also using a message. The protocol

of the message exchanges is in Simple Object Access Protocol (SOAP).

SOAP is an XML-based communication protocol between applications pos-

sibly running on different platforms and using different programming languages

and communicating via the Internet (see [17]). The client application will send

a SOAP-formatted request to access services provided by the server application.

The server application processes the request and responds with another SOAP-

formatted message.

Web services can be exploited in many different ways. For example, they can

13

be used to make a purchase online. In such an example, a consumer sends a buy

request to a producer. The request has three parameters, the consumer identifi-

cation information consumerId, the item item, and the quantity quantity.

<?xml version="1.0"?>

<Envelope xmlns="http://www.w3.org/2001/12/soap-envelope"

encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<Body xmlns="http://www.producer.com/purchase">

<buy>

<consumerId>12</consumerId>

<item>A</Item>

<quantity>100</quantity>

</buy>

</Body>

</Envelope>

Figure 2.4: A SOAP-formatted message.

The producer will process such request, compute the corresponding subtotal and

total cost of the purchase based on the provided information, and finally respond

with a SOAP-formatted message which confirms the purchase and the result of

the payment computation.

<?xml version="1.0"?>

<Envelope xmlns="http://www.w3.org/2001/12/soap-envelope"

encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<Body xmlns="http://www.producer.org/purchase">

<buyResponse>

<subtotal>132900.00</subtotal>

<total>152800.35</total>

14

</buyResponse>

</Body>

</Envelope>

Figure 2.5: A SOAP-formatted message.

However, how does the consumer know where to locate the service, what type

of service is provided, and what kind of information it should send, and what kind

of information it will receive from the producer? All of these are made possible

through the Web Service Description Language (WSDL) [14], in which we can

describe the provided service. WSDL is an XML-based description language.

WSDL provides information to the client, for instance publicly available methods,

the type of data for all requests and responses, and so on. An example of a partial

WSDL document is given next.

<definitions name="Purchase"

targetNamespace="http://www.producer.org/purchase"

xmlns="http://schemas.xmlsoap.org/wsdl" >

...

<message name="buyInput">

<part name="consumerId" type="integer"/>

<part name="item" type="string"/>

<part name="quantity" type="integer"/>

</message>

<message name="buyOutput">

<part name="subtotal" type="float"/>

<part name="total" type="float"/>

</message>

15

<portType name="PurchaseService">

<operation name="buy">

<input message="buyInput"/>

<output message="buyOutput"/>

</operation>

</portType>

...

</definition>

Figure 2.6: A partial WSDL document.

In the above example, the message elements buyInput and buyOutput de-

scribe the format of the request and response messages. The portType element

describes the operation buy. The format and data type of the input and output

for this operation are specified through the input and output elements, respec-

tively.

2.2 Introduction to BPEL4WS

The Business Process Execution Languages for Web Services (BPEL4WS for

short) is an XML-based language that allows one to create complex processes

to coordinate interactions between Web services. The published draft of the

BPEL4WS specification is available at [1].

Below, we present a simple BPEL4WS snippet that will invoke an operation

16

provided by the producer service by means of invoke. This invoke is executed

by the client application. As a result, a method called buy is executed by the

server application. The three method parameters are stored in the input container

buyInput and the result (the costs) is put in the output container buyOutput.

<invoke

partner="producer"

operation="buy"

inputContainer="buyInput"

outputContainer="buyOutput">

</invoke>

Figure 2.7: A simple BPEL4WS snippet.

The invoke is referred to as a basic activity in BPEL4WS and is used to per-

form web service invocations. Other basic activities include receiving a message

using receive, replying to a message using reply, copying data using assign,

throwing a fault using throw, and terminating a process using terminate.

BPEL4WS also allows one to create complex processes by composing different

activities. Activities can be composed by means of structured activities such as

sequence, flow, switch, pick and while. Below we will briefly describe the

structured activities.

The sequence activity consists of one or more activities to be performed

sequentially in the lexical order – the order of their occurrences in the BPEL4WS

17

program. In the example,

<sequence>

send order

confirm order

pay order

</sequence>

the activities send order, confirm order and pay order (the details of these

activities are not specified to simplify the example) are performed in the specified

order: first send the order, then confirm the order and finally pay for the order.

The switch activity consists of an ordered collection of one or more condi-

tional branches defined by the case element, optionally followed by a default

branch defined by otherwise. As in Java’s switch mechanism, the case’s are

considered in the order in which they appear. For instance,

<switch>

<case condition="getVariableData(price) < 100">

buy from A

</case>

<case condition="getVariableData(price) > 200">

buy from B

</case>

<otherwise>

buy from C

</otherwise>

</switch>

specifies that we buy from A if the price is smaller than 100, we buy from B

18

if the price is greater than 200, and we buy from C otherwise. To extract the

value of the variable price, we use the predefined function getVariableData.

The while activity repeatedly executes its body until the specified condition

no longer holds true. For example, in

<while condition="getVariableData(quantity) > 0">

sell

</while>

the sell activity will be executed repeatedly until the variable quantity becomes

non-positive.

The flow activity plays an important role in BPEL4WS. It enables the con-

current execution of activities. For example, in

<flow>

buy

sell

</flow>

the activities buy and sell are concurrent. The flow activity terminates after

both buy and sell activities have completed.

The pick activity imposes a choice of which nested activities to be executed.

The selection decision is made by some external events, for instance a message is

received through the onMessage activity. In a pick, an onMessage is equivalent

to a receive activity. Once an activity is selected, the others will be discarded.

19

The pick activity finishes when the selected activity completes. Consider the

following example.

<pick>

<onMessage partner="consumer">

sell

</onMessage>

<onMessage partner="producer">

buy

</onMessage>

</pick>

On the one hand, if a message from consumer is received, the activity sell

will be executed. In this case, the buy activity will not be performed. On the

other hand, the receipt of a message from producer triggers the execution of

the buy activity and discards the sell activity. In the case that both messages

are received almost simultaneously, the choice of which activity to be executed

depends on the implementation of BPEL4WS.

Links are a key ingredient of BPEL4WS. Synchronization between concurrent

activities is achieved by using links. They are declared only within a flow and

this forms the scope of the links. For instance, we declare links l1 and l2 as

follows.

<flow>

<links>

<link name="l1"/>

20

<link name="l2"/>

</links>

</flow>

Each link has a source activity and a target activity. The source and target

activities can be basic or structured activities. For instance, we specify the source

and target activities for l1 and l2 from the previous example as follows.

<flow>

...

<receive>

<source linkName="l1" ... />

</receive>

<receive>

<source linkName="l2" ... />

</receive>

...

<reply>

<target linkName="l1" ... />

<target linkName="l2" ... />

</reply>

</flow>

With each link a transition condition is associated. The transition condition is

a Boolean expression that is evaluated when the source activity terminates. Its

value is associated to the link. As long as the transition condition of a link has

not been evaluated, the value of the link is undefined. Again from the previous

example, we associate some transition conditions to l1 and l2 as shown below.

21

<flow>

...

<receive>

<source linkName="l1" transitionCondition="false" />

</receive>

...

<receive>

<source linkName="l2" transitionCondition="true" />

</receive>

</flow>

To simplify the presentation, we will use, for example

?>=<89:;as
true

`
// ?>=<89:;at

to depict that link ` has source as and target at, and its transition condition is

true.

Each activity has a join condition. The join condition consists of incoming

links of the activity combined by Boolean operators. In BPEL4WS, the join con-

ditions are specified as XPath expressions [15]. For instance, the reply activity

can have the following join condition.

<flow>

...

<reply joinCondition=

"!getLinkStatus(‘l1’) && !getLinksStatus(‘l2’)">

...

</reply>

</flow>

22

In the join condition, getLinkStatus is another BPEL4WS predefined function

that returns the status of the specified link. Only when all the values of the

incoming links are defined and the join condition evaluates to true, the reply

activity can start. As a consequence, if its join condition evaluates to false, the

activity will never start. We will use, for example,

GFED@ABCa1
s false

`1
ÂÂ?

??
??

??
??

GFED@ABCa2
strue

`2
¬`1∧¬`2

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä

?>=<89:;at

to depict that the join condition of activity at is ¬`1 ∧ ¬`2. Let us modify the

above example by adding to it the activities a3
s and a2

t as follows.

GFED@ABCa1
s false

`1
ÁÁ

>>
>>

>>
>>

>
GFED@ABCa2

strue

`2
¬`1∧¬`2

¡¡¡¡
¡¡

¡¡
¡¡

¡
+ GFED@ABCa3

s
true

`3
`3 ²²

GFED@ABCa1
t

GFED@ABCa2
t

We use + to denote the pick construct which will select either a2
s or a3

s to execute.

If a3
s is chosen to be performed, then activity a2

t will be executed after activity a3
s

has terminated. Consequently, a2
s can never start and could be garbage collected.

In BPEL4WS, such a “garbage collection” scheme is described as dead-path-

elimination (DPE) and it can be achieved as follows.

• If a pick or switch activity is executed, all the outgoing links of those

23

branches of the pick or switch activity which are not chosen, are set to

false.

• If the join condition of an activity evaluates to false, then the activity is

garbage collected after assigning false to its outgoing links.

Let us briefly return to the previous example. At first sight, one may be

tempted to conclude that activity a1
t will never be executed. However, DPE may

trigger the execution of activity a1
t as follows. Assume that activity a3

s is chosen.

By DPE, the value of the link `2 becomes false. Since the value of the link `1

becomes false as well, the join condition ¬`1 ∧ ¬`2 evaluates to true. Hence,

activity a1
t can be performed. The above can be paraphrased as DPE may have

side effects which may be introduced accidentally.

The side effect in the above example is caused by negative occurrences of links

in the join condition. The link `2 has a negative occurrence in the join condition

¬`1 ∧ ¬`2. As Van Breugel and Koshkina have shown in [11], by disallowing

negative occurrences of links in join conditions, side effects like the one in the

above example can be eliminated. However, not every negative occurrence of a

link in a join condition gives rise to side effects. For example, the link `1 occurs

negatively, but does not give rise to any side effects.

There are many other important aspects of the BPEL4WS language which

24

have not been discussed. Since our work focuses on the analyses of the activities

of BPEL4WS, we only discussed those. We refer the reader to the specification

of BPEL4WS [1] for complete details of the language.

25

3 The Eclipse Modelling Framework

3.1 An overview

The Eclipse Modelling Framework1 (EMF) [12] is a Java modelling framework for

Eclipse2 [16] to help programmers rapidly turn a model into easily customizable

Java code. The model is one of the key concepts on which EMF is based. A

model is defined as an abstract representation of the data used by an application.

In EMF, a model can be expressed in one of the following three technologies:

annotated Java interfaces, XML or UML. By allowing the following conversion,

XSD̀̀

ÃÃB
BB

BB
BB

BB
BB

UML>>

~~||
||

||
||

||
|

Ecore

Java
²²

OO

Figure 3.1: EMF unifies three technologies.

1EMF is an open source project available at [20].
2Eclipse is an open source project available at [19].

26

EMF indeed unifies these technologies 3. A model written in one form can be

converted into another. The basic idea of the framework is to provide a middle

ground between two different extremes: the programming extreme and the mod-

elling extreme. Beginning with a model either expressed in XSD or UML, the

programmers can utilize EMF to generate Java classes. Then they can continue

their work on these Java classes.

3.2 EMF Ecore model

All the models in EMF are represented in Ecore; a model that describes another

model, a meta-model. The complete hierarchy of the Ecore model (extracted

from [12]) is given below.

3We define the Ecore model in Section 3.2.

27

Figure 3.2: The complete hierarchy of the Ecore model.

We will only focus on the key elements in the hierarchy and refer the reader

to [12] for a full description. The Ecore model uses EClasses to model classes.

A modelled class can refer to a number of other classes as its supertypes. The

modelled class can also have a number of data members. The data members

are classified into two kinds, namely attributes and references. The EAttributes

model the attributes and the EReferences model the references. Attributes and

28

references have two components, its name and its type. The type of an attribute

is modelled by an EDataType which refers to either a primitive type (short,

byte, int, long, float, double, char or boolean) or to Object. The type of a

reference is modelled by an EDataType which refers to an EClass. The behaviors

of a modelled class are captured by EOperations. An operation can have zero or

more parameters, and a return type, all modelled by EParameters. An instance

of the EParameter holds information about the parameter name and its type.

Given an input model either in XSD, UML or annotated Java interfaces, EMF

will introspect it and create an instance of an Ecore model referred to as the core

model. Based on this model, the EMF code generation facility generates the

implementation code for it. What kind of code does EMF generate? The EMF

generator creates a corresponding interface and a class for each modelled class.

The separation of the interface and the class is a design choice imposed by EMF

to support multiple inheritance in Java.

Each generated interface extends the EObject interface. The EObject inter-

face provides behavior common to all the modelled classes.

Besides the Java interfaces and classes for the model, EMF also generates

two other packages: EMF.Edit and EMF.Editor. These packages contain generic

reusable classes for building editors for the EMF models, and a tree-based editor.

29

The editor is very basic but provides the user with a convenient tool to construct

instances of the model.

3.3 Methods to specify the model

As we already mentioned, the input models can be defined in terms of annotated

Java interfaces, XSD, or UML. The annotated Java interfaces are Java interfaces.

They are, however, annotated (using Javadoc) with additional information which

conforms with EMF’s annotation tags. To show some simple annotation tags, we

start with an example of a purchase order extracted from [12]. Let every order

contain three pieces of information, the “bill to” and “ship to” addresses, and a

collection of ordered items. One would simply create the following interface

public interface PurchaseOrder

{

String getShipTo();

void setShipTo(String value);

String getBillTo();

void setBillTo(String value);

List getItem();

void setItem(List value);

}

Figure 3.3: The PurchaseOrder interface.

30

to represent a purchase order. For EMF to recognize this interface, it needs to

be annotated with the @model tag. The tag indicates that the interface and

the method definitions are part of a modelled class. Below, we illustrate how

to annotate the purchase order interface. It is sufficient to include only the

accessor methods. At generation time, EMF will automatically insert code into

the annotated Java interface to define the mutator methods.

1 /**

2 @model

3 */

4 public interface PurchaseOrder

5 {

6 /**

7 @model

8 */

9 String getShipTo();

10 /**

11 @model

12 */

13 String getBillTo();

14 /**

15 @model type="Item" containment="true"

16 */

17 List getItems();

18 }

Figure 3.4: The annotated PurchaseOrder interface.

31

In addition to the @model tag, line 15 in the above example introduces

two other tags. They are type="Item" and containment="true". Since the

getItems returns a list of items whose type is Object, the user may want to re-

strict the type of each element in the list. This can be done through type="Item".

At generation time, EMF will create a list that holds only objects of type Item.

The flag containment is used to specify the has-a relation of the purchase order

and the list of items. A true value indicates a composition, whereas a false value

indicates an aggregation. If this flag is omitted, by default it will be understood

as containment="false". EMF also recognizes many other annotation tags.

Again, we refer the reader to [12] for a full list of available tags.

Returning to the example, EMF then generates the corresponding Java class

for the annotated PurchaseOrder interface. Below is a simplified version of the

generated class4.

1 public class PurchaseOrderImpl extends EObjectImpl implements

PurchaseOrder

2 {

3 protected String shipTo;

4 protected String billTo;

5 protected EList items;

6

7 protected PurchaseOrderImpl()

8 {

4By convention, the name of the generated Java classes ends with Impl.

32

9 super();

10 shipTo = null;

11 billTo = null;

12 items = null;

13 }

14

15 public String getShipTo()

16 {

17 return shipTo;

18 }

19

20 public void setShipTo(String newShipTo)

21 {

22 shipTo = newShipTo;

23 }

24 ...

25 public EList getItems()

26 {

27 if (items == null)

28 {

29 items = new EObjectContainmentEList(Item.class, ...);

30 }

31 return items;

32 }

33 ...

34 }

Figure 3.5: The generated PurchaseOrderImpl class.

Both shipTo and billTo are declared as java.lang.String. In the anno-

tated Java interface, the type of items is defined as java.util.List. EMF

replaces it with org.eclipse.emf.ecore.EList. Line 29 illustrates the cre-

33

ation of the list of items. EList is an interface that is implemented by the

EObjectContainmentEList class. The constructor of this class requires several

types of data, including the type of elements of the list, which is the Item class

in this case. In this way, we can create a list of elements in which only objects of

type Item can be stored. Any attempt to add incompatible objects will cause an

exception to be thrown. Moreover, each generated class extends the EObjectImpl

class. This class provides a default implementation of the behavior common to

all the modelled classes.

Similarly, one can open a UML editor and create a static class diagram to

describe the purchase order. For example, from this diagram

Figure 3.6: UML diagrams for the purchase order.

EMF will generate a similar collection of interfaces and classes. Lastly, just to

give a flavor of how one can capture the above example in the form of an XSD,

we present the following.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

34

<xsd:complexType name="PurchaseOrder">

<xsd:complexContent>

<xsd:sequence>

<xsd:element maxOccurs="1" minOccurs="1"

name="billTo" type="xsd:string"/>

<xsd:element maxOccurs="1" minOccurs="1"

name="shipTo" type="xsd:string"/>

<xsd:element maxOccurs="unbound"

name="items" type="Item"/>

</xsd:sequence>

<xsd:complexContent>

</xsd:complexType>

</xsd:schema>

Figure 3.7: An XSD specification of the purchase order.

Also from the above XSD, EMF will generate a collection of classes and interfaces

that are very similar to the ones we discussed earlier in this section.

3.4 Representation of BPEL4WS in Java

The BPEL4WS syntax is formally specified in terms of an XSD which can be

found in [1]. From this specification, EMF generates hierarchies of classes and in-

terfaces for BPEL4WS. These classes represent the abstract syntax of BPEL4WS.

The EMF model of BPEL4WS consists of more than 500 classes. Here, we will

only show a few (simplified versions) of those classes. In the EMF model of

BPEL4WS, activities are represented as objects of type Activity. Activity is

35

an interface that is extended by a number of interfaces that represent the basic

and structured activities. The partial hierarchy of interfaces is presented below.

Activity

Invoke

44iiiiiiiiiiiiiiii
Receive

99rrrrrrrrrr
Flow

OO

Pick

ddIIIIIIIII
. . .

Figure 3.8: The interface hierarchy of the activities.

Correspondingly, we have the following hierarchy of classes.

ActivityImpl

InvokeImpl

33ggggggggggggggggggggg
ReceiveImpl

66nnnnnnnnnnnn
FlowImpl

OO

PickImpl

ggNNNNNNNNNNN
. . .

Figure 3.9: The class hierarchy of the activities.

In later chapters, we will discuss these interfaces and classes in more detail.

In this chapter, we will only have a detailed look at an EMF model for join

conditions. In the next section, we will discuss how EMF generates the hierarchies

for the join conditions based on an XSD.

3.5 Representation of the join conditions in Java

To ease the presentation we simplify the join conditions and present them in

terms of a BNF production as follows.

c ::= true | false | ` | ¬c | c ∧ c | c ∨ c | (c)

36

where ` is the name of an incoming link. The abstract syntax tree (AST) repre-

senting the join condition `1 ∨ (¬`2 ∧ `3) can be depicted as follows.

Or

¾¾
77

77
77

7

££¦¦
¦¦

¦¦
¦

Link

²²

And

½½
66

66
66

6

¥¥©©
©©

©©
©

`1 Not

²²

Link

²²

Link

²²

`3

`2

Figure 3.10: The AST of the join condition `1 ∨ (¬`2 ∧ `3).

Alternatively, the syntax of the join conditions can also be specified using an

XSD. Ideally, each of the join condition constructs in the above production is

translated into an XML element. The BNF production

c ::= c ∧ c (3.1)

is captured by the following XSD.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

3 <xsd:complexType name="Condition" abstract="true"/>

4 <xsd:element name="and" type="And"/>

5 <xsd:complexType name="And">

37

6 <xsd:complexContent>

7 <xsd:extension base="Condition">

8 <xsd:sequence>

9 <xsd:element name="left" type="Condition"/>

10 <xsd:element name="right" type="Condition"/>

11 </xsd:sequence>

12 </xsd:extension>

13 </xsd:complexContent>

14 </xsd:complexType>

15 ...

16 </xsd:schema>

Figure 3.11: A partial XSD specification of the join conditions.

Line 3 of the XSD fragment defines a new Condition type. Line 4 defines a

new type And for the production (3.1). Line 5–14 specify other aspects of the

production, such as its supertype and the right hand side symbols. For example,

line 7 specifies the Condition as the supertype of And5; line 8–11 defines the left

and right subtrees of the And node, each of which is also of type Condition. The

left and right elements in the XSD fragment refer to the first and second c,

respectively, in the right hand side of the production (3.1).

The XSD was chosen to specify the join conditions’ syntax since we can exploit

EMF to quickly generate a hierarchy of Java classes and interfaces representing

the ASTs.

5From Appendix A, notice that Condition is also the supertype of Or, Not, True, False
and Link.

38

EMF creates an interface for each type defined in the XSD. For example,

it creates an interface And for the type And. Furthermore, it generates a Java

class for each type defined in the XSD. For example, it generates a class AndImpl

for the type And. The class AndImpl implements the interface And. From the

complete XSD for the join conditions, which can be found in Appendix A, EMF

produces a hierarchy of interfaces and a hierarchy of classes. The interface hier-

archy consists of True, False, Link, Not, And, and Or, all of which extend the

interface Condition.

Condition

True

55kkkkkkkkkkkkkkk
False

99sssssssss
Link

OO

Not

ddHHHHHHHHH

And

hhQQQQQQQQQQQQQ
Or

jjUUUUUUUUUUUUUUUUUUU

Figure 3.12: The interface hierarchy of the join conditions.

The corresponding classes that implement these interfaces are TrueImpl, FalseImpl,

LinkImpl, NotImpl, AndImpl, and OrImpl, all of which extend from the class

ConditionImpl.

ConditionImpl

TrueImpl

33gggggggggggggggggggg
FalseImpl

77nnnnnnnnnnnn
LinkImpl

OO

NotImpl

ggNNNNNNNNNNN
AndImpl

jjVVVVVVVVVVVVVVVVVV
OrImp

llXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Figure 3.13: The class hierarchy of the join conditions.

The ConditionImpl class, in turn, implements the Condition interface.

39

Let us consider the And interface and the AndImpl class in more detail. The

class AndImpl has two fields, left and right, that refer to the left and right

subtrees. For both fields, accessors and mutators are introduced. These methods

are defined in the And interface as follows.

public interface And extends Condition

{

Condition getLeft();

void setLeft(Condition value);

...

}

Figure 3.14: The generated And interface.

The AndImpl class implements the above interface. In this class, the mutator

method has been simplified a little.

public class AndImpl extends ConditionImpl implements And

{

protected Condition left;

protected Condition right;

protected AndImpl()

{

super();

left = null;

right = null;

}

public Condition getLeft()

{

40

return left;

}

public void setLeft(Condition newLeft)

{

left = newLeft;

}

...

}

Figure 3.15: The generated AndImpl class.

The implementation of OrImpl, NotImpl, TrueImpl, FalseImpl, and LinkImpl is

similar. Condition is an empty interface extending EObject and ConditionImpl

is an empty class extending EObjectImpl and implementing Condition.

41

4 Techniques to implement semantic analyses

in Java

4.1 An overview

The semantic analysis is the very last phase of the front-end of a compiler. During

this phase, semantic properties of a program are validated. Some typical exam-

ples of semantic validations regarding to a BPEL4WS program are: determining

whether links in a BPEL4WS program are declared in a flow before being used

in its nested activities; checking whether a link has a unique source and a unique

target; determining whether a link creates a control cycle; and so on (see [1]).

Generally, the semantic analysis of a program boils down to traversing the

AST of the program. When traversing the AST, nodes of the tree are visited.

Which nodes are visited and in which order these nodes are visited differ from one

analysis to another. When a node is visited, some code is executed to validate

its underlying properties. Different code snippets may be associated to different

types of nodes. There are a number of techniques to implement such semantic

42

analyses, including

• adding dedicated methods to the Java classes representing the ASTs,

• applying the syntax separate from interpretations approach,

• attaching external methods to nodes of particular types by exploiting the

visitor design pattern,

• exploiting the EMF-switch mechanism,

• tailoring automatically generated tree walkers as supported by compiler kits

like SableCC,

• using the reflection based techniques.

We will illustrate the first five techniques by implementing the following trivial

analysis for the join conditions. Given a join condition c, we want to return a

collection v of all the links occurring in c. To perform this analysis, one has to

traverse the AST representing c. All the Links encountered during the traversal

are added to v. For instance, if c = `1 ∨ (¬`2 ∧ `3) then the collection of Link

objects corresponding to the links with names `1, `2, and `3, is returned.

The other techniques will be considered in Chapter 5.

43

4.2 Dedicated methods

This is a classical approach which adds dedicated methods to the Java classes.

The dedicated methods provide access to and perform additional actions on the

subtrees of a particular node in the AST. In order to find the collection of

links v6, a dedicated method, namely extractLinks, is inserted into each of

the Java classes. The extractLinks method accepts v as its parameter. The

extractLinks must be declared in the corresponding interfaces. In this exam-

ple, it suffices to declare it in the root interface Condition and implement it

in appropriate Java classes: AndImpl, OrImpl, NotImpl, TrueImpl, FalseImpl,

LinkImpl and ConditionImpl. The implementation of extractLinks for the

AndImpl class is given below.

public class AndImpl extends ConditionImpl implements And

{

protected Condition left;

protected Condition right;

...

public void extractLinks(Collection v)

{

left.extractLinks(v);

right.extractLinks(v);

}

}

6We use java.util.Vector to implement this collection.

44

Figure 4.1: The extractLinks method for the AndImpl class.

If this method is invoked on an And node, it will simply ask the node’s left

and right subtrees to add all the links found in their trees to v. The imple-

mentation of extractLinks for the Or node is done in the same way. Since any

True or False node neither has a subtree nor represents an incoming link, their

extractLinks methods are simply empty. The Not node has only one subtree.

Therefore, it only needs to extract those links found in its subtree as shown below.

public class NotImpl extends ConditionImpl implements Not

{

protected Condition condition;

...

public void extractLinks(Collection v)

{

condition.extractLinks(v);

}

}

Figure 4.2: The extractLinks method for the NotImpl class.

The extractLinks method for a Link node simply adds this node to v.

public class LinkImpl extends ConditionImpl implements Link

{

...

public void extractLinks(Collection v)

{

v.add(this);

}

45

}

Figure 4.3: The extractLinks method for the LinkImpl class.

In order to implement another analysis, we need to add to the Java classes

a new dedicated method. Conversely, if we add a new type of node to the AST

hierarchy, the new class for this type of node must also implement all the exist-

ing dedicated methods. The Java hierarchy representing the ASTs for the join

conditions is considerably small. Imagine that there are more than one hundred

classes into which dedicate methods are to be incorporated. Inserting these meth-

ods is no longer a trivial task. Manually inserting a method into these classes

has two problems: it is tedious and error-prone. Furthermore, since the analysis

code is scattered across the Java classes, this makes it difficult to debug the code.

As the number of the dedicated methods increases, the classes will grow in size.

One should try to refrain from creating large size classes according to the object-

oriented programming principles presented in [42, Chapter 21]. Lastly, if the Java

classes are automatically generated from a formal specification like, for example,

an XSD, then modifying these classes with dedicated methods might not be ap-

propriate. If the specification is changed, the Java classes are generated again,

and the added dedicated methods cannot be retained during the code genera-

tion; all the dedicated methods must be added again. However, aspect-oriented

46

programming (AOP) can be made use of to address these issues.

AOP is a programming paradigm that addresses the issue of related code

that “cuts” across many classes. For instance, the above analysis code to extract

links “cuts” across the Java classes representing the join conditions. A detailed

discussion of AOP is beyond the scope of this thesis. For more details, we refer

the reader to, for example, [34]. However, we will briefly show how one can use

AspectJ7 [39, 33] — a Java extension to support AOP — to specify the additional

method extractLinks for the Java classes. To achieve such a task, an aspect

definition in AspectJ, named LinkExtractorAspect, is created.

1 public aspect LinkExtractorAspect

2 {

3 public abstract void ConditionImpl.extractLinks(Collection v);

4 public void AndImpl.extractLinks(Collection v)

5 {

6 getLeft().extractLinks(v);

7 getRight().extractLinks(v);

8 }

9 public void OrImpl.extractLinks(Collection v)

10 {

11 getLeft().extractLinks(v);

12 getRight().extractLinks(v);

13 }

14 public void NotImpl.extractLinks(Collection v)

15 {

16 getCondition().extractLinks(v);

7AspectJ is an open source project available at [3].

47

17 }

18 public void LinkImpl.extractLinks(Collection v)

19 {

20 v.add(this);

21 }

22 public void TrueImpl.extractLinks(Collection v)

23 {

24 // do nothing

25 }

26 public void FalseImpl.extractLinks(Collection v)

27 {

28 // do nothing

29 }

30 }

Figure 4.4: The LinkExtractorAspect class.

The AspectJ language basically extends the Java language. Line 1 of the above

example introduces a new keyword aspect which is used to indicate an aspect,

named LinkExtractorAspect. Line 3 illustrates the syntax of how to specify

the abstract method extractLinks for ConditionImpl. Likewise, we specify

and implement the extractLinks methods for the AndImpl, OrImpl, NotImpl,

TrueImpl, FalseImpl, and LinkImpl classes. The aspect LinkExtractorAspect

is then compiled by the AspectJ compiler. During the compilation, the bytecode

representing these methods is generated and gets woven into the specified Java

classes.

48

Using the AOP approach, we first resolve the problem of manual insertion

of the dedicated methods. All the dedicated methods are actually grouped into

one aspect. Therefore, the analysis code is no longer scattered. Finally, since the

analysis code is preserved separately from the Java classes, regenerating these

Java classes due to changes in the specification is also no longer an issue.

4.3 Syntax separate from interpretations

The syntax separate from interpretations approach described by Appel [2, Chap-

ter 4] addresses the issue of separating the ASTs from operations performed on

them. An interpretation in fact refers to an analysis to be performed on the tree.

An interpretation is implemented as an external method. Generally, these exter-

nal methods perform appropriate actions based on the type of the current node it

is examining. This technique often leads to extensive use of Java’s instanceof.

For the analysis, extractLinks is implemented as an external method and

placed in a class, named LinkExtractor. The extractLinks method is recursive.

It does a depth-first traversal on the tree and adds links encountered during the

traversal to a Collection named v. The extractLinks accepts one parameter:

the node of the AST that is currently visited.

public class LinkExtractor

49

{

private Collection v;

public LinkExtractor()

{

v = new Vector();

}

public void extractLinks(Condition c)

{

if (c instanceof Not)

{

Not not = (Not) c;

extractLinks(not.getCondition());

}

else if (c instanceof And)

{

And and = (And) c;

extractLinks(and.getLeft());

extractLinks(and.getRight());

}

else if (c instanceof Or)

{

Or or = (Or) c;

extractLinks(or.getLeft());

extractLinks(or.getRight());

}

else if (c instanceof Link)

{

v.add(c);

}

else

{

// we do nothing if c is a True or False node

}

}

50

}

Figure 4.5: The LinkExtractor class.

Each interpretation refers to an analysis; and there may be several different inter-

pretations for the same AST. Appel [2] argues this approach is orthogonal to the

dedicated method technique in terms of modularity. This orthogonality is illus-

trated in the table below from which one can construct classes either horizontally

or vertically.

Analysis1 Analysis2 · · ·

And • •

Or • •

Not • •

False • •

True • •

Link • •

Figure 4.6: A table illustrating the orthogonal modularity.

Since the operations are external to the nodes in the ASTs, this approach does

not require the Java classes to be modified. In contrast, the dedicated methods

technique requires a method to be added to each Java class for each analysis.

51

Hence, this is an advantage over the dedicated methods technique.

In the analysis, to perform an appropriate action based on the type of a node,

one needs to use type casting and Java’s instanceof. Type casting poses a

potential problem, since it may cause runtime errors. The use of type casting and

Java’s instanceof often indicates a poor design which can usually be effectively

replaced by using polymorphism [29, Chapter 8].

Furthermore, if a new type of node is added to the existing AST hierarchy,

one has to modify every interpretation (method) to also account for this new type

of node. These modifications violate the open-closed principle of object-oriented

programming [27, Chapter 3]. The next section shows a technique that takes

the idea of using external methods to attach additional actions, but resolves the

problem of type casting and violation of object-oriented programming principles.

4.4 Visitor design pattern

Similar to the syntax separate from interpretations approach, the fundamental

idea of using the visitor design pattern [27, Chapter 5] is to separate the analysis

code from the AST classes by defining external methods for different types of

nodes. It also allows us to attach new operations to the nodes in the ASTs with

a minimal alteration of the Java classes. The external methods are typically

52

overloaded methods and are normally named visit. The class that hosts these

methods is called Visitor. Each visit method has a parameter whose type is

the type of the node to which it attaches. For example,

public class Visitor

{

public visit(Node node)

{

// actions

}

}

Figure 4.7: A visitor class.

where Node is a type of a node in the ASTs, specifies that the actions should

be performed when visiting a Node. The attachment is achieved by inserting into

each Java AST class a method often referred to as the accept method. The

accept method has only one parameter. It is uniformly implemented across all

the classes:

public void accept (Visitor visitor)

{

visitor.visit(this);

}

The accept method acts as a type indicator for the nodes in the ASTs such that

the appropriate visit method will be invoked once it executes. The Visitor and

53

the accept method interact back and forth in such a way that the Visitor asks

the node its type by invoking the accept on this node, and the node answers

by invoking the appropriate visit method of the Visitor. By using such a

mechanism, the type casting and Java instanceof are actually eliminated.

To implement the analysis, we need to add the accept method to the following

Java classes: AndImpl, OrImpl, NotImpl, LinkImpl, TrueImpl, FalseImpl, and

ConditionImpl. It suffices to declare it in the root interface Condition and make

it abstract in the ConditionImpl class. Then we create a LinkExtractor class

which acts as a Visitor. The LinkExtractor consists of a number of overloaded

visit methods each of which is for a particular type of node.

public class LinkExtractor

{

private Collection v;

public LinkExtractor()

{

v = new Vector();

}

public void visit(False node)

{

// do nothing

}

public void visit(True node)

{

// do nothing

}

public void visit(Not node)

54

{

node.getCondition().accept(this);

}

public void visit(And node)

{

node.getLeft().accept(this);

node.getRight().accept(this);

}

public void visit(Or node)

{

node.getLeft().accept(this);

node.getRight().accept(this);

}

public void visit(Link node)

{

v.add(node);

}

}

Figure 4.8: The LinkExtractor class.

In this approach, the modification to the generated Java classes is minimized

although not completely eliminated. The accept method is the same for every

class, and thus insertion of this method to the appropriate classes is less complex.

Moreover, the accept method can be shared among different analyses. Therefore,

the method insertion is only done once. A better design of this technique involves

defining a Visitor interface consisting of an overloaded visit method for each

type of node in the ASTs. In the example below,

55

public interface Visitor

{

public void visit(True node);

public void visit(False node);

public void visit(And node);

public void visit(Or node);

public void visit(Not node);

public void visit(Link node);

public void visit(Condition node);

}

Figure 4.9: The Visitor interface for the join conditions.

the Visitor interface defines a generic interface for the analyses. Consequently,

different classes serving for different semantic analyses can implement the inter-

face. In the example,

public class Analysis1 implements Visitor

{

// implementation of the interface

}

public class Analysis2 implements Visitor

{

// implementation of the interface

}

Figure 4.10: Analysis classes.

there are two different analyses, namely Analysis1 and Analysis2, each of which

provides a different implementation for the Visitor interface. Due to this design,

56

switching between different analyses becomes simpler and more convenient. The

other advantage of using the visitor design pattern is that we can add a new analy-

sis without changing the AST interfaces and classes, even without re-compiling

them.

Watt and Brown [49] suggest modifying the visit and accept methods to in-

clude a return value and an argument. The additional information can be passed

down or up the tree. The main advantage of this version over the previous one is

that, one can propagate local information from parent/child to child/parent nodes

using this argument parameter or the return object. For instance, in validating a

BPEL4WS program whether used links are declared and whether declared links

are used, the parameter and return value can be used as follows. On the one

hand, the parameter passes a collection of declared links from a flow parent to

the children nodes. Any link used in the children nodes but not be found in this

collection is thereby identified. On the other hand, the return value returns all

the links used in the children nodes to the parent flow node where the links are

declared. Any link unnecessarily declared in the parent node that is not used

in the children nodes is also identified. However, different analyses may require

different kinds of information needed to be passed around the tree. Therefore,

the return value and the argument must be declared as Object types to make

57

the visit method as generic as possible. Due to this, they must be cast into ap-

propriate types before any operation can be performed on these objects. Again,

the type casting carries a potential problem of runtime errors.

4.5 The EMF-switch mechanism

For every generated EMF model, EMF generates a switch class [12, Chapter 9].

For example, for the EMF model whose package is named JoinCondition, EMF

generates a class JoinConditionSwitch. This class implements a mechanism

which can be used to associate certain code snippets to certain types of nodes.

Within this class, a set of methods caseNODE TYPE, one for each type of node, is

defined. For example, the JoinConditionSwitch defines the following method

Object caseAnd(And and)

{

return null;

}

for the And node, and similar methods for Or, Not, True, False, Link and

Condition. The class JoinConditionSwitch also contains the following method.

Object defaultCase(EObject object)

{

return null;

}

58

To associate a code snippet with a certain type of node, the caseNODE TYPE

method for that node needs to be overridden, as we will show later.

Assume A is a subclass of B and B is a subclass of C. For an object of type A,

the following code snippet will be generated.

Object result = caseA((A) object);

if (result == null) result = caseB((B) object);

if (result == null) result = caseC((C) object);

if (result == null) result = defaultCase(object);

Note that the result of the caseNODE TYPE method is used to determine if other

caseNODE TYPE methods are called as well. When one overrides a caseNODE TYPE

method, one generally returns a non-null result.

EMF also generates the following interface.

interface JoinConditionPackage

{

int AND = 1;

int OR = 2;

int LINK = 3;

int NOT = 4;

int TRUE = 5;

int FALSE = 6;

int CONDITION = 7;

...

}

Figure 4.11: The JoinConditionPackage interface.

59

This interface contains a constant for each type of node. These constants are

used to select the appropriate code snippet as shown below.

public class JoinConditionSwitch

{

public Object doSwitch(EObject object)

{

switch (object.eClass().getClassifierID())

{

case JoinConditionPackage.AND:

{

Object result = caseAnd((And) object);

if (result == null)

result = caseCondition((Condition) object);

if (result == null)

result = defaultCase(object);

return result;

}

case JoinConditionPackage.OR: { ... }

case JoinConditionPackage.LINK: { ... }

case JoinConditionPackage.NOT: { ... }

case JoinConditionPackage.TRUE: { ... }

case JoinConditionPackage.FALSE: { ... }

case JoinConditionPackage.CONDITION: { ... }

default: return defaultCase(object);

}

}

...

}

Figure 4.12: The generated EMF-switch utility class for the join conditions.

60

The method doSwitch takes an EObject object as an argument. If this object

is an instance of one of the classes belonging to the package JoinCondition, then

it acquires the unique identifier (ID) representing the type of object. Based on

this ID, it switches to the appropriate code snippet of caseNODE TYPE calls. It

executes these caseNODE TYPE methods until one of them returns a non-null

result.

To use the EMF-switch mechanism, one must declare an instance of the

JoinConditionSwitch and override some of the caseNODE TYPE methods. For

example, in

public class LinkExtractor

{

private Collection v;

private JoinConditionSwitch s =

new JoinConditionSwitch()

{

Object caseAnd(And and)

{

doSwitch(and.getLeft());

doSwitch(and.getRight());

return and;

}

Object caseOr(Or or)

{

doSwitch(or.getLeft());

doSwitch(or.getRight());

return or;

}

61

Object caseNot(Not not)

{

doSwitch(not.getCondition());

return not;

}

Object caseLink(Link link)

{

v.add(link);

return link;

}

}

public void extractLinks(Condition c)

{

s.doSwitch(c);

}

}

Figure 4.13: The LinkExtractor class.

an instance variable s is created and a number of caseNODE TYPE methods are

overridden to specify the tree traversal. Notice that within the caseAnd, we use

doSwitch to ensure that corresponding code snippets for the left and right

nodes are called. We return the node itself (a non-null value) to stop the

doSwitch method calling caseCondition for this node.

The EMF-switch mechanism is very similar to the syntax separate from in-

terpretations approach. The main difference is that the EMF-switch mechanism

uses IDs and a switch statement, whereas the syntax separate from interpreta-

62

tions approach uses Java’s instanceof and conditionals. Both approaches use

casting to invoke the corresponding code snippet for a node type. As a conse-

quence, the EMF-switch mechanism bears the same potential consequences of

using type casting as the syntax separate from interpretations approach.

4.6 SableCC’s tree walkers

Writing compilers used to be a time-consuming and difficult task. It also re-

quired a lot of knowledge of compiler technology. Fortunately, the development

of many compiler tools has simplified this task significantly and made it easier

to build compilers with a limited knowledge of compilers. These compiler tools

are referred to as compiler generators. They normally take a formal specification

of a programming language as input and generate a partial front-end compiler

(the lexer and/or parser) for it. Over the years, we have seen the development

of various compiler generators for Java. To name a few, there are Java Cup [30],

JFlex [35], JLex [5], SmartTools [4], ANTLR [46] and SableCC [21]. Some com-

piler generators are more powerful than the others. For instance, SmartTools,

ANTLR and SableCC not only generate a lexer and a parser, but also partial or

even complete tree walkers to accommodate the semantic analysis phase. In this

section, we will briefly look at the SableCC framework.

63

SableCC is a Java compiler generator that does the following.

• It generates a lexer.

• It generates a parser.

• It generates depth-first and reversed depth-first tree walker classes which

the programmer extends to perform specific analyses on the tree.

In order to exploit SableCC, the join conditions need to be specified in terms

of the SableCC framework. Below, we provide a brief discussion of the design

pattern imposed on the generated tree walkers, which is the visitor design pattern

with some major modifications.

SableCC provides the Switch and Switchable interfaces.

interface Switch {}

interface Switchable

{

void apply(Switch sw);

}

Figure 4.14: The Switch and Switchable interfaces.

The Switch interface is an ancestor of all switch interfaces in the framework. The

Switchable interface defines a method, named apply, that plays a role similar

to the accept method in the visitor design pattern. All the AST classes must im-

64

plement this interface and provide an implementation of the apply method. For

example, the generated interface And8 not only extends the Condition interface

but also the Switchable interface

interface And extends Condition, Switchable

{

...

}

Figure 4.15: The generated And interface.

and the generated AndImpl class will provide the following implementation of the

apply method.

class AndImpl extends ConditionImpl implements And

{

...

void apply(Switch sw)

{

((Analysis) sw).caseAnd(this);

}

}

Figure 4.16: The generated AndImpl class.

The method caseAnd is defined in the Analysis interface. The Analysis inter-

face is also generated by SableCC. It extends the Switch interface and consists

8SableCC has different naming conventions. However, to make it easier for the reader to
follow, we have modified the names of the generated (AST) classes.

65

of the following methods

interface Analysis extends Switch

{

void caseAnd(And node);

void caseOr(Or node);

void caseLink(Link node);

void caseNot(Not node);

void caseTrue(True node);

void caseFalse(False node);

void defaultCase(Condition node);

}

Figure 4.17: The generated Analysis interface.

for different types of nodes in the ASTs representing the join conditions. Since all

the generated interfaces extend the Condition interface, we use the defaultCase

method to capture the default implementation for all the node types in the ASTs.

Additionally, a class implementing Analysis called AnalysisAdapter is also cre-

ated. It provides a default implementation for each of the caseNODE TYPE meth-

ods. For example,

void caseAnd(And node)

{

defaultCase(node);

}

where defaultCase is an empty method. Finally, SableCC creates two classes

66

DepthFirstAdapter9 and ReversedDepthFirstAdapter10 which, in turn, extend

the class AnalysisAdapter. These tree walkers redefine the caseNODE TYPE meth-

ods to specify the tree walking order. Back to the analysis, the LinkExtractor

class can extend either one of them. Let us choose the DepthFirstAdapter and

override the caseLink method for the Link node as follows.

public class LinkExtractor extends DepthFirstAdapter

{

private Collection v;

public LinkExtractor()

{

super();

v = new Vector();

}

public void caseLink(Link node)

{

v.add(node);

}

}

Figure 4.18: The LinkExtractor class.

The main advantage of using SableCC is that it already provides two pre-

defined tree walkers, thus the implementation of the semantic analysis often be-

comes much simpler. However, the SableCC tree walkers are limited to walking

9The order of traversal is top-down and left to right.
10The order of traversal is top-down and right to left.

67

only the ASTs defined in terms of its framework. The BPEL4WS language al-

ready has its own set of AST classes generated by EMF. Furthermore, BPEL4WS

is an XML-based language. SableCC does not support the specification of an at-

tributed XML element. Therefore, the framework may not be very appropriate

to implement the semantic analysis for some programming languages, such as

BPEL4WS.

68

5 Reflection based techniques to traverse ASTs

5.1 An overview

In this chapter, we focus on the three other techniques to walk ASTs. These

techniques are based on Java’s reflection mechanism (see, for example, [26]),

implemented in the package java.lang.reflect. The basic idea of the reflection

based techniques was initially put forward by Palsberg and Jay [44] (see also [45])

and refined and improved by Bravenboer and Visser [9] (see also [25]). These

techniques exploit Java’s reflection mechanism to access (some of) the fields of the

objects representing an AST in order to walk the tree. They also use this reflection

mechanism to execute the appropriate code snippets when visiting nodes of the

tree. As we will see, the reflection based techniques have several advantages

over the techniques presented in the previous chapter. Unfortunately, the major

concern against using these techniques has been their poor performance.

69

5.2 Reflection based walker

Originally, the reflection based tree walker was introduced as the Walkabout by

Palsberg and Jay [44]. This tree walker has some limitations. The improved

version suggested by Bravenboer and Visser [9], and Forax and Roussel [25] ad-

dresses some issues which were not dealt with in this tree walker. In this section,

we will implement a walker based on the idea of the Walkabout. We introduce

the abstract class Walker which forms the basis for the walker. It provides the

implementation for how to traverse the tree. To implement an analysis, one has

to extend this class. The subclass contains the code snippets that need to be ex-

ecuted when visiting nodes of the tree. We can associate different code snippets

to different types of nodes. For example, to associate a code snippet to nodes of

type Link, we introduce a method

void visit (Link link) { ... }

The algorithm for the Walker is as follows.

abstract class Walker

{

void walk(Object o)

{

if (o != null)

{

if (this class has a visit method that takes o as an

argument)

70

{

visit(o);

}

else

{

walkFields(o);

}

}

}

void walkFields(Object o)

{

if (o != null)

{

for (each field f of o)

{

if (f is not static and f is not of primitive type)

{

walk(o.f);

}

}

}

}

}

Figure 5.1: The algorithm for the Walker class.

Clearly, the walk method is similar to a depth first traversal. Once the visit

method is found, it will be invoked and the subtree of such a node will not be

traversed. Otherwise, it continues to traverse the subtrees via the walkFields

method.

71

Let us briefly discuss the differences between the above code and the code

presented by Palsberg and Jay [44] and by Bravenboer and Visser [9]. When

walking the tree, we do not consider static fields. These fields contain very generic

information about a class and not specifically about an object. Therefore, these

fields are not considered as part of the tree. Bravenboer and Visser [9] also do not

consider static fields, but Palsberg and Jay [44] do. Palsberg and Jay [44] and

also Bravenboer and Visser [9] only consider the public fields, including inherited

public fields. In contrast, we consider all non-static fields, including inherited

ones. If only public fields were walked, it would force us to make the fields in the

classes representing the ASTs public, hence violating the object-oriented principle

of encapsulation. However, by walking non-public fields, one should in general

refrain from changing the object that is provided as an argument to the visit

methods. For example, in the body of the method

void visit(Link link) { ... }

the object link should not be modified in general. Otherwise, we may be violating

the object-oriented principle of encapsulation, since the object link may be the

value of a private field.

Palsberg and Jay [44] do not walk objects of type Number, Boolean and

Character, whereas we follow Bravenboer and Visser [9] and do not consider fields

72

of primitive type. If one were to remove the condition f is not of primitive

type, then the walk method would not terminate for objects of type Number,

Boolean and Character. For example, consider an object o of type Boolean. The

class Boolean has a private and non-static field named value of type boolean.

Java’s reflection mechanism automatically wraps values of primitive type in an ob-

ject. Hence, walk(o) would gives rise to walk(new Boolean(o.value)), where

the Boolean objects o and new Boolean(o.value) represent the same Boolean

value, and hence walk(o) would give rise to infinite recursion.

Palsberg and Jay [44] only consider visit methods that are part of the class

that walks the tree. On the other hand, Bravenboer and Visser [9] consider visit

methods in the class that walks the tree, but also in any of its superclasses. We

also take the latter approach. This approach allows us to exploit inheritance as

we will show in one of the examples below. The type of the parameter of the

visit methods we restrict to classes. That is, we disallow the use of an interface

as the type of the parameter of a visit method. Bravenboer and Visser [9] allow

interfaces. Although interfaces allow more generic code in some cases, the use of

interfaces in this setting may lead to ambiguity. For example, consider that class

C implements the interfaces I and J and assume that the walker has the following

visit methods

73

void visit(I i) { ...}

void visit(J j) { ... }

In this case it is not evident which of the above two visit methods should be

chosen when visiting a node of type C. Next, we implement the LinkExtractor

by means of a reflection based walker.

class LinkExtractor extends Walker

{

private Collection v;

LinkExtractor()

{

super();

v = new Vector();

}

void visit(Link link)

{

v.add(link);

}

}

Figure 5.2: The LinkExtractor class.

To start the walk, one must invoke the walk method on the tree:

linkExtractor.walk(c)

where linkExtractor is an instance of the LinkExtractor class and c represents

the root node of the AST for a join condition. Invoking the walk method will

initiate the walking process. On the one hand, if a non-Link node is encountered,

74

the Walker will walk the children of this node. On the other hand, if a Link node

is encountered, the visit method of the LinkExtractor will be executed.

5.2.1 Method resolution

In the walk algorithm, in order to verify whether “this class has a visit

method that takes o as an argument” and return this method for invocation,

we employ a simple strategy for finding it. Below is a recursive algorithm, called

getVisitMethod which, given a type t, returns a visit method. This method

has a parameter type, which is either the same as t or a superclass of t.

Method getVisitMethod(Class t)

{

if (t == null)

{

return null;

}

else if (exists a visit method whose parameter has type t)

{

return this method;

}

else

{

return getVisitMethod (superclass of t)

}

}

Figure 5.3: The algorithm for the getVisitMethod method.

75

The algorithm first tries to find a visit method whose parameter has type t.

For this, it exploits Java’s reflection mechanism. If no such method is found, it

will recursively try to find a visit method for the superclass of t. The interfaces

of t are not considered due to the ambiguity mentioned earlier. The presented

algorithm is inefficient as it depends on Java’s reflection mechanism.

5.2.2 Walking arrays

Neither Palsberg and Jay [44] nor Bravenboer and Visser [9] walk arrays. To

handle array objects we modify the walk method and add the walkArray method

to the class Walker.

void walk(Object o)

{

if (o != null)

{

if (this class has a visit method that takes o as an argument

)

{

visit(o);

}

else

{

if (o is an array)

{

walkArray(o);

}

else

76

{

walkFields(o);

}

}

}

}

void walkArray(Object o)

{

if (o != null and component type of o is not primitive)

{

for (int i = 0; i < o.length; i++)

{

walk(o[i]);

}

}

}

Figure 5.4: The algorithms for the methods walk and walkArray.

Now let us walk some arrays. For example, the sum of the values of an (n-

dimensional) array of Integer objects can be computed as follows.

class Adder extends Walker

{

private int sum;

Adder()

{

super();

sum = 0;

}

void visit(Integer i)

{

77

sum += i.intValue();

}

}

Figure 5.5: The Adder class.

Consider a two-dimensional array a of Integer objects with m rows and n

columns. We can compute

∏

1≤r≤m

∑

1≤c≤n

a[c][r]

as follows.

class Multiplier extends Adder

{

private int product;

Multiplier()

{

super();

product = 1;

}

void visit(Integer[] a)

{

sum = 0;

walkArray(a);

product *= sum;

}

}

Figure 5.6: The Multiplier class.

78

Note that since the class Multiplier extends the class Adder, the method call

walkArray(a) results in summing the values of the array a.

5.2.3 Walking graphs

If we apply the method walk to a collection of objects that forms a graph, rather

than a tree, then the traversal unfortunately may not terminate. In the EMF

model of the join conditions, every child node also contains a reference to its

parent node. For instance, in a tree representing a join condition, an And node

will have references to its left and right children nodes. Each of these children

nodes, in turn, also contains a reference to its parent node. This two-way reference

makes it convenient and efficient to perform top-down as well as bottom-up tree

traversals. However, this will form cycles and turn the tree into a graph. Because

of the presence of cycles, we have to refine the above introduced walker to also

handle graphs. Palsberg and Jay [44] do not walk graphs. A simple solution

is either to remember or mark those objects that have already been walked.

The first solution does not require any change to the graph. Therefore, we will

implement it by keeping all objects that have been walked so far in a container

called walked. The algorithm is modified as follows.

private Collection walked = empty collection;

79

void walk(Object o)

{

if (o != null and walked does not contain o)

{

walked.add(o);

if (this class has a visit method that takes o as an argument

)

{

visit(o);

}

else

{

if (o is an array)

{

walkArray(o);

}

else

{

walkFields(o);

}

}

}

}

Figure 5.7: The modified algorithm for the walk method.

A walk is similar to a depth first traversal of a directed graph. The vertices

of the graph are objects. There is a directed edge from one object to another

if the former object has a field referring to the latter object. Whenever the

traversal reaches an object for which a visit method has been introduced, then

80

the corresponding code snippet is executed.

5.2.4 Caching the results

The processes of resolving methods and retrieving fields by means of Java’s reflec-

tion mechanism are expensive. Ideally, we want to cache the results: the visit

methods and the fields. To enable caching, we use a table that maps a type to

its corresponding visit method. During a walk, as soon as a visit method is

found for the currently walked node, it is mapped into the table. If the same

type of node is encountered again, the visit method can be obtained directly

from the table. As a result of that, method resolution of a particular type is only

done once.

Let visits be an empty hash map consisting of key-value entries. The key

represents the type of node and the value represents the visit method for this

type. The algorithm getVisitMethod is adjusted as follows to support caching:

Method getVisitMethodWithCaching(Class t)

{

if (exists a key t in visits)

{

m = visits.get(t);

}

else

{

m = getVisitMethod(t);

81

add (t, m) to visits;

}

return m;

}

Figure 5.8: The algorithm for the getVisitMethodWithCaching method.

We also want to cache the (non-static and non-primitive) fields of a particular

type. Again, let fields be an empty hash map consisting of key-value entries.

The key represents the type of a node and the value represents the collection of

the fields for this type.

Collection getFields(Class t)

{

if (there exists a key t in fields)

{

c = fields.get(t);

}

else

{

c = empty collection;

for (each field f of t)

{

if (f is not static and f is not of primitive type)

{

c.add(f);

}

}

add (t, c) to fields;

}

return c;

82

}

Figure 5.9: The algorithm for the getFields method.

5.2.5 Benefits

The main advantage of the reflection based approach over all other approaches

is that changes to the class hierarchy representing the abstract syntax have very

little effect on the code that performs the analyses. Furthermore, very often

a class hierarchy can have multiple versions of it. This makes it difficult for

programmers to make analyses implemented for one version of the class hierarchy

also work for the other version. However, with the reflection based approach

analyses written for one version of the class hierarchy can be easily adjusted so

that they will also work for the other.

The reflection based approach has other advantages as well. The abstract

walker contains all the necessary code to mechanically navigate the tree (in arbi-

trary order) in the walk method. Hence, the user needs not to write such code.

This also allows the users to focus their attentions on particular types of nodes,

therefore, making it easier to write the analysis. The Walker class often eases

the development of the semantic analysis phase of a programming language.

In addition, the Walker class is highly re-usable and flexible. It can be re-used

83

in many different analyses. It not only can walk trees but also graphs; not only

one kind of tree/graph but any kind of trees/graphs. Finally, the Walker class

also helps eliminate the problem of modification to the Java AST classes.

5.2.6 Drawbacks

Unfortunately, the Walker class is extremely inefficient. Firstly, it is caused by

the poor performance of Java’s reflection mechanism. Secondly, it is caused by the

process of walking the fields of a node. Remember that the walker will literally

scan through each non-static and non-primitive field (including the inherited

ones) and check whether there exists a corresponding visit method for it. If

the visit method is not found, this process of walking the fields continues until

it reaches a point where the class contains no such field. This process is very

expensive. Even with the caching technique in place, the Walker’s performance

still does not improve significantly. Finally, in the walker the children nodes are

walked in no particular order. Therefore, the reflection based walker may not be

appropriate for some analyses where the order of visiting the children nodes is

important.

84

5.3 The Runabout

The Runabout is proposed by Grothoff [28]. Fundamentally, it is also based

on the original idea of the Walkabout. Like in the Walkabout, Java’s reflection

mechanism is used to find the visit method in the Runabout. However, unlike

the Walkabout, it does not use Java’s reflection mechanism to invoke the method.

Instead, it uses dynamic code generation to create bytecode that in turn uses

type casting to correctly invoke the corresponding visit method. Writing the

link extractor using the Runabout is very similar to writing it using the Walker

class described in the previous section.

1 class LinkExtractor extends Runabout

2 {

3 private Collection v ;

4 LinkExtractor()

5 {

6 super();

7 v = new Vector();

8 }

9 void visit(And and)

10 {

11 visitAppropriate(and.getLeft());

12 visitAppropriate(and.getRight()) ;

13 }

14 void visit(Or or)

15 {

16 visitAppropriate(or.getLeft());

17 visitAppropriate(or.getRight()) ;

85

18 }

19 void visit(Link link)

20 {

21 v.add(link);

22 }

23 void visit(Not not)

24 {

25 visitAppropriate(not.getCondition());

26 }

27 }

Figure 5.10: The LinkExtractor class.

Let us briefly describe how the Runabout works. First, all the analysis code

must extends the Runabout class to use the provided facilities. The Runabout

class provides method resolution and invocation via visitAppropriate. If we

perform a visitAppropriate on a node of type And, this method will look up

the proper visit method in the LinkExtractor for And using Java’s reflection

mechanism. However, once the method is found, instead of reflectively invoking

this method, it first generates an instance of Code, say GenCodeAnd. The Code

class is central to the implementation of the Runabout, and defined abstractly as

follows:

public static abstract class Code

{

public abstract void visit(Runabout r, Object o);

}

86

Figure 5.11: The Code class.

The class GenCodeAnd is generated on-the-fly and dynamically loaded in the

virtual machine using Java’s class-loading mechanism. It basically provides the

concrete implementation for the visit method defined in the Code class.

class GenCodeAnd extends Code

{

void visit(Runabout r, Object o)

{

((LinkExtractor) r).visit((And) o);

}

}

Figure 5.12: The generated GenCodeAnd class.

Once the GenCodeAnd is loaded, the following line of code

GenCodeAnd.visit(this, object)

is executed. The parameter this refers to an instance of LinkExtractor and

object refers to the And node. Consequently, the correct visit method in the

LinkExtractor is invoked due to the type casting as illustrated in the above

example. The GenCodeAnd is then cached for later use.

The Runabout does improve the performance of the reflection based walker

(see Chapter 10). However, a disadvantage is that, since the code is generated

dynamically, it requires some overhead time. The total number of the generated

87

instances of Code will be as many as the total number of the visit methods.

One should be aware of these generated classes to prevent a situation in which

multiple classes have the same name.

Note that the Runabout does not provide a mechanism to walk the tree. Its

main focus is to improve the method invocation mechanism. Therefore, for an

analysis, one must instruct it how to traverse the tree, for example as in line 11

and 12 of the LinkExtractor class.

5.4 The multi-methods

In object-oriented languages, multi-methods refer to selecting an appropriate

method at run-time based on the dynamic types of the target object and the

arguments. Although multi-methods is a powerful feature [13], it is not widely

supported in the currently popular object-oriented languages. For example, Java

does not support multi-methods. The reason is that “the suitability of multi-

methods in practice is in question because, supporting multi-methods, most im-

portantly solving the multi-method dispatching problem, is believed to be space-

and time-intensive” [22].

Below, we show how multi-methods can be made use of to simplify the imple-

mentation of the analyses of programming languages. In particular, we will use

88

the Java multi-methods framework11 proposed in [23] (see also [25]) to implement

the LinkExtractor class.

The Java multi-methods framework is a framework that extends the Java

language to support multi-methods. This framework also depends on Java’s

reflection mechanism to resolve and invoke a correct method. To use it, we first

define the following class

1 class JavaMultiMethod

2 {

3 MultiMethod mm;

4 JavaMultiMethod()

5 {

6 mm = MultiMethod.create(this.getClass(), "visit", 1);

7 }

8 void call(Object object)

9 {

10 try

11 {

12 mm.invoke(this, new Object[]{object});

13 }

14 catch(Exception e)

15 {

16 e.printStackTrace();

17 }

18 }

19 }

Figure 5.13: The JavaMultiMethod class.

11Available for download at igm.univ-mlv.fr/~forax/works/jmmf.

89

in which an object mm of type MultiMethod is declared. This object holds a

set of overloaded visit methods. Generally, these visit methods are defined

in the analysis code, for example, in LinkExtractor. The object mm is created

by the static method create. The create method has three parameters. The

first parameter is used for specifying the host class of the visit methods. The

second one is for specifying the method name, which is visit. The last one is

for specifying the number of method arguments. The call method (line 8) takes

an Object named object as its argument. It then tries to find its corresponding

method — a visit method whose parameter has a type the same as object or

a supertype of object. If such a method is found, it is invoked. An exception

is thrown otherwise. The process of method selection and invocation takes place

within the invoke method in the MultiMethod class.

For the link extractor, we define all the visit methods in the LinkExtractor

class as follows.

1 class LinkExtractor extends JavaMultiMethod

2 {

3 private Collection v;

4 LinkExtractor()

5 {

6 super();

7 v = new Vector();

8 }

9 void visit(Link link)

90

10 {

11 v.add(link);

12 }

13 void visit(And and)

14 {

15 call(and.getLeft());

16 call(and.getRight()) ;

17 }

18 void visit(Or or)

19 {

20 call(or.getLeft());

21 call(or.getRight()) ;

22 }

23 void visit(Not not)

24 {

25 call(not.getCondition());

26 }

27 void visit(Condition condition)

28 {

29 // empty

30 }

31 }

Figure 5.14: The LinkExtractor class.

To initiate the walking process on a tree for a join condition, we execute the

following line of code

linkExtractor.call(c)

where linkExtractor is an instance of the above class and c represents the join

condition. In this example, the mm object will hold five overloaded visit meth-

91

ods. Depending on the type of c, the appropriate visit method is invoked.

Again, the Java multi-method framework does not provide the tree walking facil-

ity. Therefore, in the LinkExtractor class we must instruct it how to walk the

tree as, for example, in line 15 and 16.

In the multi-methods approach, the type of the parameter of a visit is not

limited to a class as in the walker, but can also be an interface. This allows more

generic code to be written. Moreover, a visit method can have an unlimited

number of parameters. This becomes useful when one needs to pass some local

information up or down the tree using the additional parameters. For instance,

to verifying whether a link is declared before used and to check whether a link is

used if declared, one can re-write the visit method to

visit(Flow flow, Link[] declaredLinks, Link[] usedLinks)

This allows a parent flow node to check whether a declared link is being used by

its children nodes and whether any used link is properly declared.

However, this framework has a large performance penalty, caused by the

create method. Within this method, a pre-computation step for method resolu-

tion is carried out. During this process, an underlying data structure representing

relations between types is pre-computed [23].

92

6 Walker with preprocessing

Our aim is to implement analyses for BPEL4WS. In our implementation we

would like to exploit EMF, in particular the hierarchy of classes and interfaces

generated by EMF from the XSD of BPEL4WS. Since the BPEL4WS graphical

editor has been integrated with the WebSphere Studio Application Developer

Integration Editor (WSADIE), we would like our implementation of analyses to

be pluggable into WSADIE, so that the results of the analyses can be reflected

in the graphical editor. Because (the XSD of) BPEL4WS still changes regularly,

we would like our implementation of analyses to be fairly robust with respect

to those changes. Given these criteria, let us briefly review the implementation

techniques described in Chapter 4 and 5.

Since we want to exploit the classes and interfaces generated by EMF to repre-

sent the ASTs, modifying these classes and interfaces may be impractical. Firstly,

the modifications will be lost if these classes and interfaces are generated again

(because, for example, the XSD of BPEL4WS has changed). Secondly, changes

to the Java classes and interfaces may cause changes to the EMF model repre-

senting BPEL4WS. Altering the model may have an impact on other tools that

93

manipulate the model and, hence, should be avoided. Because both the dedicated

methods approach and the visitor design pattern approach make changes to the

classes representing the ASTs, these approaches are not applicable in our setting.

The syntax separate from interpretations approach and EMF’s switch mechanism

are not very suitable either. If the XSD of BPEL4WS changes and, hence, in-

troduces changes to the hierarchy of classes and interfaces, then the code for all

those classes that have been affected by the changes may have to be modified.

Hence, these approaches may not be most appropriate either. To exploit SableCC,

the XSD of BPEL4WS must be translated into a SableCC specification. How-

ever, as the XSD of BPEL4WS continues to evolve, it can be time-consuming to

maintain the corresponding SableCC specification for BPEL4WS. Furthermore,

SableCC does not support the specification of an XML-based language, whereas

BPEL4WS is XML-based. The aspect-oriented approach and the multi-methods

approach also do not suit our purpose very well. WSADIE currently does not

directly support AspectJ. Neither does it support multi-methods. Therefore, the

implementation of the analyses cannot be plugged into WSADIE.

The reflection based approaches seem to be the most appropriate choice to

implement analyses in our setting. Firstly, it does not require changes to the

classes and interfaces generated by EMF. Secondly, any changes to the class hi-

94

erarchy representing the ASTs have very little effect on the code that performs

the analyses. Finally, the implementation can be plugged into WSADIE. Unfor-

tunately the performance of the reflection based approaches is rather poor. In

this section, we revisit these approaches. Our goal is to develop a reflection based

approach with better performance that still fits our setting.

6.1 Causes of poor performance

Let us discuss the two main causes of the poor performance of the reflection

based approaches and give an outline how we attempt to address these causes.

First of all, the poor performance of reflection based walkers is caused by the

poor performance of Java’s reflection mechanism. To address this cause of poor

performance, we exploit a technique similar to the one proposed by the Runabout.

Recall that the Runabout does not use Java’s reflection mechanism to invoke the

visit methods. Instead, it uses dynamic code generation to create bytecode that

invokes the visit method. Since the bytecode is generated at runtime, it causes

some overhead. Therefore, we do some preprocessing during which the Java code

that invokes the visit method will be generated. Secondly, in the reflection

based walkers a lot of time may be spent on unnecessary walking of subtrees.

95

Consider, for example, the following AST

_^]\XYZ[A

ÂÂ
>>

>>
>

ÄÄ¡¡
¡¡

¡

_^]\XYZ[B

ÂÂ
>>

>>
>

ÄÄ¡¡
¡¡

¡

_^]\XYZ[C

_^]\XYZ[D

ÂÂ
>>

>>
>

ÄÄ¡¡
¡¡

¡

_^]\XYZ[E

_^]\XYZ[F _^]\XYZ[G

Figure 6.1: An abstract syntax tree.

and the following code in which a visit method is introduced for nodes of type

C.

class Analysis extends Walker

{

public void visit (C c)

{

// actions

}

}

Figure 6.2: An analysis.

The walker will exhaustively walk all the nodes from A to G. But, walking some

of the subtrees, such as the one rooted at B, is unnecessary. The above analysis

is only interested in nodes of type C. Obviously, the subtree rooted at B need not

be walked as it contains no node of type C. This second cause can be addressed

96

by not walking all subtrees of each node. As we will see, we can single out

some subtrees that need not be walked during preprocessing. The details will be

provided in the next section.

6.2 Preprocessing the Java source code of the walker

First of all, to simplify the presentation we restrict ourselves to the following

situations.

• Firstly, the class that performs the analysis, say Analysis, must directly

extend the Walker class.

• Secondly, no other classes should be manipulating the Analysis object.

• Finally, the methods walk and visit should not be used anywhere in the

code written by the user. The user may freely use the method walkFields.

During the preprocessing step, we first examine the hierarchy of Java classes

and interfaces representing the ASTs and the Analysis class representing the

analysis. The main purpose is to identify those classes which may have to be

visited and those classes and fields that may have to be walked. Once these have

been found, we generate the appropriate Java code based on this information. The

generated Java code will contain code to invoke the appropriate visit method

97

for a given type of node, and code to walk only certain subtrees of a given type

of node.

Below we present simplified algorithms for finding these classes and fields, and

for generating the Java code. We will walk the reader through these algorithms

and explain how the code will be generated.

6.2.1 Identifying the classes which may have to be visited

Before determining which classes in the AST hierarchy may have to be walked, we

first determine the set of classes that may have to be visited. Obviously, all the

parameter types of the visit methods in the Analysis are visitable. Consider,

for example, the following Java classes representing the ASTs

public class C1 { ... }

public class C2 extends C1 { ... }

and the following analysis

class Analysis extends Walker

{

int counter;

Analysis()

{

counter = 0;

}

public void visit(C1 c1)

{

98

counter++;

}

public int getCounter()

{

return counter;

}

}

Figure 6.3: The Analysis class.

The Analysis class keeps track of the number of nodes of type C1 in an AST.

Clearly, the class C1 is considered to be visitable with respect to this analysis.

To ease the presentation, instead of expressing the examples in Java code we

use a graphical notation to illustrate the classes and their relationships. The

vertices of the graph represent the classes and interfaces. To indicate that a class

that has a visit method, we mark the corresponding vertex with an asterisk (∗).

For example,

_^]\XYZ[C1*

indicates that the class C1 has a visit method. To denote the is-a relationship,

we use an ///o/o/o/o edge. For example,

_^]\XYZ[C2 ///o/o/o/o _^]\XYZ[C1*

denotes that class C2 extends class C1.

99

In the above example, the class C2 is a subclass of C1 and Analysis does not

have a visit method defined for it. As a result, an object of type C2 gives rise to

the invocation of the method visit(C1). Hence, the class C2 is also considered

to be visitable and the parameter type of the corresponding visit method is C1.

More generally, every subclass of a visitable class is visitable.

In summary, a class C is visitable if

• the Analysis class contains a visit method whose parameter type is C or

• the superclass of C is visitable.

For each visitable class C, visit(C) is the parameter type of the corresponding

visit method. If the Analysis class contains a visit method whose parameter

type is C, then visit(C) = C. Otherwise, visit(C) = visit(S), where S is C’s superclass.

Those classes for which the Analysis class contains a corresponding visit

method can be easily extracted from the Analysis class using Java’s reflection.

Assume that these classes are collected in the set visitSet. The map visit can

be computed as follows.

visitMap = empty map

for each class C in visitSet

buildMap(C, C, visitMap)

void buildMap(A, C, visitMap)

100

add (A, C) to visitMap

for each subclass S of C

if S not in domain of visitMap and S not in visitSet

buildMap(A, S, visitMap)

Figure 6.4: The algorithms for computing the map visit.

We exploit the package org.eclipse.jdt.core to find the subclasses of a

given class. This package is part of the Eclipse project Java development tools12

(JDT) [18]. The interface ITypeHierarchy contains the method getSubclasses

which returns the subclasses of a given class within the Eclipse workspace.

6.2.2 Identifying the classes which may have to be walked

Next, we want to approximate the set of classes and fields which may have to be

walked. To denote the has-a relationship, we use an f // edge, where f is

the name of the non-static field. For example,

_^]\XYZ[C2
f1 // _^]\XYZ[C1*

denotes that the class C2 has a non-static field, named f1, of declared type

C1. This field can either be declared in C2 or inherited by C2 from one of its

superclasses.

12JDT is an open source project [31].

101

When an object of type C2 is encountered during a walk its only subtree (to

which the field f1 is referring) will be walked, because C2 itself is not visitable.

Since the root of the subtree is of type C1, the method visit(C1) will be invoked.

The class C2 is thus considered to be a walkable class because it has a field

referring an object for which a visit method is defined. Also, the field f1 is

considered to be a walkable field. More generally, a class is walkable if it has a

walkable field and a field is walkable if it is non-static and its declared type is

visitable.

Assume now that class C3 has a field named f2 of type C2.

_^]\XYZ[C3
f2 // _^]\XYZ[C2

f1 // _^]\XYZ[C1*

Figure 6.5: Case 1.

The field f2 is walkable because walking the object (to which f2 refers) will

eventually give rise to the invocation of the method visit(C1). More generally,

a field is walkable if it is non-static and its declared type is walkable.

Let us look at some more subtle cases. Consider the following classes and

102

fields.

_^]\XYZ[C5

f3

~~}}
}}

}}
}}

}}
}}

}}

f2

!!B
BB

BB
BB

BB
BB

BB
B

_^]\XYZ[C4 _^]\XYZ[C3

_^]\XYZ[C2

OO
O²
O²
O²
O²

f1 // _^]\XYZ[C1*

OO
O²
O²
O²
O²

Figure 6.6: Case 2.

In this case, it is not evident whether the fields f2 and f3 are walkable. Although

the declared types of both fields are not walkable classes, at runtime they can

possibly be assigned to objects of visitable/walkable types, namely, C1 and C2.

Due to this possibility, these fields are deemed to be walkable. More generally, a

field is walkable if it is non-static and its declared type is a superclass of a class

that is visitable or walkable.

To denote that a class implements an interface we use an +3 edge. For

example,

_^]\XYZ[C1 +3 _^]\XYZ[I1

denotes that the class C1 implements the interface I1.

Next, we focus on fields whose declared type is an interface. Consider, for

103

example, the following classes, interfaces and fields.

_^]\XYZ[C3

f3

$$HH
HH

HH
HH

HH
H

f2

{{wwwwwwwwww

_^]\XYZ[I2 _^]\XYZ[I1

_^]\XYZ[C2
f1 //

KS

_^]\XYZ[C1*

KS

Figure 6.7: Case 3.

Obviously, since at runtime the fields f2 and f3 can refer to objects of vis-

itable/walkable type, they are also considered to be walkable. More generally, a

field is walkable if it is non-static and its declared type is an interface implemented

by a class that is visitable or walkable.

Let us slightly modify the above example.

_^]\XYZ[C5

f3

$$HH
HH

HH
HH

HH
H

f2

{{wwwwwwwwww

_^]\XYZ[I2 _^]\XYZ[I1

_^]\XYZ[C4

KS

_^]\XYZ[C3

KS

_^]\XYZ[C2
f1 //

OO
O²
O²

_^]\XYZ[C1*

OO
O²
O²

104

Figure 6.8: Case 4.

The fields f2 and f3 are still considered to be walkable because they can possibly

refer, at runtime, to objects of visitable/walkable types. More generally, a field

is walkable if it is non-static and its declared type is an interface implemented by

a superclass of a class that is visitable or walkable.

Similarly, in

_^]\XYZ[C3

f3

$$HH
HH

HH
HH

HH
H

f2

{{wwwwwwwwww

_^]\XYZ[I4 _^]\XYZ[I3

_^]\XYZ[I2

OO
O²
O²

_^]\XYZ[I1

OO
O²
O²

_^]\XYZ[C2
f1 //

KS

_^]\XYZ[C1*

KS

Figure 6.9: Case 5.

the fields f2 and f3 are still considered to be walkable because they can possibly

refer to objects of visitable/walkable types. More generally, a field is walkable if it

is non-static and its declared type is a superinterface of an interface implemented

by a class that is visitable or walkable.

105

Finally, in

_^]\XYZ[C5

f3

$$HH
HH

HH
HH

HH
H

f2

{{wwwwwwwwww

_^]\XYZ[I4 _^]\XYZ[I3

_^]\XYZ[I2

OO
O²
O²

_^]\XYZ[I1

OO
O²
O²

_^]\XYZ[C4

KS

_^]\XYZ[C3

KS

_^]\XYZ[C2
f1 //

OO
O²
O²

_^]\XYZ[C1*

OO
O²
O²

Figure 6.10: Case 6.

the fields f2 and f3 are also considered to be walkable for the similar reason.

More generally, a field is walkable if it is non-static and its declared type is

a superinterface of an interface implemented by a superclass of a class that is

visitable or walkable.

In summary, a class is walkable if it has a walkable field (the field is either

declared in the class or inherited by the class). A field is walkable if it is non-static

and its declared type is waitable. A class is waitable if

(i) it is visitable,

106

(ii) it is walkable, or

(iii) it is a superclass of a waitable class.

An interface is waitable if

(iv) any of its implementations is waitable, or

(v) it is a superinterface of a waitable interface,

The set of waitable classes and walkable fields can be computed as follows.

1 temp = domain of visitMap

2 waitable = empty set

3 walkable = empty set

4 while temp is nonempty

5 for each class C in temp

6 remove C from temp and add C to waitable

7 for each superclass S of C

8 if S not in temp and S not in waitable

9 add S to temp

10 for each interface I that is implemented by C

11 if I not in temp and I not in waitable

12 add I to temp

13 for each non-static field f of class D whose declared type is

C

14 add D.f to walkable

15 if D not in temp and D not in waitable

16 add D to temp

17 for each interface I in temp

18 remove I from temp and add I to waitable

19 for each superinterface S of I

107

20 if S not in temp and S not in waitable

21 add S to temp

22 for each non-static field f of class D whose declared type is

I

23 add D.f to walkable

24 if D not in temp and D not in waitable

25 add D to temp

Figure 6.11: The algorithm for computing the set of waitable classes.

Note that in line 13 and 22 we consider both the fields declared in class D and

the fields inherited by it.

Each waitable class or interface is added to the set temp and subsequently

moved from temp to waitable (see line 6 and 18). The clauses (i), (ii) and (iii)

of the definition of a waitable class are reflected by the lines 1, 15–16 & 24–25, and

7–9, respectively. The clauses (iv) and (v) of the definition of waitable interface

are reflected by the lines 10–12, and 19–21, respectively. Lines 14 and 23 add the

walkable fields to the set walkable.

We again exploit the package org.eclipse.jdt.core of JDT to implement

line 13 and 22. The interface ITypeHierarchy contains the method getAllClasses

which allow us to collect all classes within the Eclipse workspace. Using Java’s

reflection we can subsequently inspect the fields of these classes.

108

6.2.3 Generating Java code for the walker

Once the visitable classes and the walkable fields have been found, the process

of generating Java code can begin. Below we describe algorithms of the code

generator. Initially, the code generator copies the import statements, the fields

and the non-visit methods from the original class to the new one. For example,

from the Analysis class the following class is initially generated.

class GenAnalysis

{

int counter;

public int getCounter()

{

return counter;

}

}

Figure 6.12: A partially generated class GenAnalysis for the Analysis class.

The constructors are also copied. However, they have to be renamed to match

the new class name. For the example, this amounts to

GenAnalysis()

{

counter = 0;

}

For each visit method

109

public void visit(C c) { ... }

of the original class, we add

public void visitC(C c) { ... }

to the generated class. For example, to the class GenAnalysis we add

public void visitC1(C1 c1)

{

counter++;

}

Note that, as a result, the visit methods are not overloaded any more.

We have left to generate

• the walk method,

• the walkFields method, and

• a walkFieldsC method for each walkable class C.

The generated walk method, replacing the original one, takes an argument of

type Object. Based on the dynamic type of this object, it then executes either

a corresponding visitC method or an appropriate walkFieldsC method. We

have to generate code that mimicks the behaviour of the following snippet of

pseudocode.

110

void walk(Object object)

C = dynamic type of object;

if C is visitable

D = visitMap(C);

visitD(object);

else if C is walkable

walkFieldsC(object);

How this is accomplished will be discussed below.

Also the generated walkFields method takes an argument of type Object

and mimicks the behaviour of the following snippet of pseudocode.

void walkFields(Object object)

C = dynamic type of object;

if C is walkable

walkFieldsC(object);

The implementation details will be provided below.

For each walkable class C, we generate a method walkFieldsC. This method

takes an argument of type Object and mimicks the behaviour of the following

snippet of pseudocode.

void walkFieldsC(Object object)

for each walkable field f of C

walk(object.f);

Note that the method walkFieldsC is only called in walk and walkFields for

objects whose dynamic type is C.

111

Using the Analysis example, we will discuss the remaining implementation

details. Assume that we also have the following classes and interfaces.

_^]\XYZ[C3

f2

!!C
CC

CC
CC

CC
CC

C

f1

~~}}
}}

}}
}}

}}
}}

_^]\XYZ[I2 _^]\XYZ[I1

_^]\XYZ[C2 ///o/o/o/o/o/o/o/o/o/o/o/o/o

KS

_^]\XYZ[C1*

KS

Figure 6.13: A running example.

In walk and walkFields we need to determine the dynamic type of an Object

named object. This can be done as follows: object.getClass(). To associate

to each dynamic type the appropriate call of visitC and walkFieldsC, we in-

troduce a map that assigns to each class a unique natural number. This number

acts as a class identifier as we will show below. To the class GenAnalysis we add

the declaration

Map classMap;

and we add to the constructor

classMap = new HashMap();

classMap.put(C1.class, new Integer(0));

classMap.put(C2.class, new Integer(1));

112

classMap.put(C3.class, new Integer(2));

For this example, the generated walk method looks like

walk(Object object)

{

Integer classID = (Integer) classMap.get(object.getClass());

if (classID != null)

{

switch (classID.intValue())

{

case 0:

visitC1((C1) object);

break;

case 1:

visitC1((C1) object);

break;

case 2:

walkFieldsC3((C3) object);

break;

default:

break;

}

}

}

Figure 6.14: The generated walk method.

Similarly, the following walkFields method will be generated.

walkFields(Object object)

{

Integer classID = (Integer) classMap.get(object.getClass());

if (classID != null)

113

{

switch (classID.intValue())

{

case 2:

walkFieldsC3((C3) object);

break;

default:

break;

}

}

}

Figure 6.15: The generated walkFields method.

Finally, we show the method walkFieldsC3. Since the class C3 has walkable

fields f1 and f2, the method walkFieldsC3 walks these fields.

walkFieldsC3(C3 c3)

{

Field field1 = C3.class.getField("f1");

walk(field1.get(c3));

Field field2 = C3.class.getField("f2");

walk(field2.get(c3));

}

Figure 6.16: The generated walkFieldsC3 method for the class C3.

114

6.2.4 Walking arrays

Before giving details on how an array of objects will be handled, we first revisit

the definition of visitable class and walkable field. To ease the presentation, we

introduce the notation C[]n for an array of dimension n with base type C.

Recall that a class is a subclass of the class C[]n if and only if it is of the

form D[]n and D is a subclass of C. Consider the method visit(C1[]n c1) and

assume that the class C2 extends the class C1. Since C2 is a subclass of C1, a

walk on an array object of type C2[]n should lead to the invocation of this visit

method. Hence, the definition of visitable class stays the same. Therefore, the

algorithm to compute the map visit can be adjusted as follows. In the algorithm,

we write C0 instead of C.

visitMap = empty map

for each class Cn in visitSet

buildMap(Cn, Cn, visitMap)

void buildMap(An, Cn, visitMap)

add (An, Cn) to visitMap

for each subclass S of C

if Sn not in domain of visitMap and Sn not in visitSet

buildMap(An, Sn, visitMap)

Figure 6.17: The modified algorithms for computing the map visit.

Next, we tackle the problem of identifying those walkable fields that are de-

115

clared as an array type. Again, we will first look at some examples. Consider the

following Java class

public class C1 { ... }

and assume that a visit method has been introduced for C1. Then walking the

following field

private C1[] f1;

will result in each object (of type C1) in the array being walked. Furthermore,

walking this field

private C1[]n f1;

will also result in each object (of type C1) in the n-dimensional array to be

walked. More generally, a field declared as C[]n is walkable if it is non-static and

C is visitable.

If the class C1 extends a class C2,

public class C1 extends C2 { ... }

the following field

private C2[]n f1;

is still walkable since at runtime the field f1 can be assigned to an object of type

C1[]n. Therefore, walking each object (of type C1) in the array will give rise to

116

the invocation of the method visit(C1 c1). More generally, a field declared as

C[]n is walkable if it is non-static and C is a superclass of a visitable class.

Given a visit method for C1 and the following classes.

public class C1 { ... }

public class C2

{

private C1 f1;

}

Clearly, C2 is a walkable class because it contains the walkable field f1. Walking

the following field

private C2[]n f2;

will lead to the field f1 of each object (of type C2) in the array to be walked.

Subsequently, it gives rise to the invocation of the method visit(C1 c1). There-

fore, the field f2 is a walkable field. More generally, a field declared as C[]n is

walkable if it is non-static and the class C is walkable.

If the class C2 extends a new class C3,

public class C2 extends C3

{

private C1 f1;

}

the following field

private C3[]n f2;

117

may have to be walked because at runtime the field f2 can be assigned to an

object of type C2[]n. More generally, a field declared C[]n is walkable if it is

non-static and the class C is a superclass of a walkable class.

Note that the same reasoning can be applied when considering the fields

declared as interfaces. For example, assuming the following class and interfaces,

public interface I1 { ... }

public interface I2 extends I1 { ... }

public class C1 implements I2 { ... }

and suppose that a visit method has been introduced for the class C1. The

following fields

private I1[]n f1;

private I2[]n f2;

may have to be walked because at runtime, both of them can possibly refer

to objects of type C1[]n. More generally, a field declared as I[]n, where I is

an interface, is walkable if I is an interface or a superinterface of an interface

implemented by a visitable class.

In class C2,

public interface I3 { ... }

public interface I4 extends I3 { ... }

public class C2 implements I4

{

private C1 f1;

118

}

the field f1 is obviously walkable because C1 is visitable. Then the following fields

private I3[]n f1;

private I4[]n f2;

may also have to be walked because at runtime they can be assigned to objects of

walkable type C2[]n. More generally, a field declared as I[]n is walkable if I is

an interface or a superinterface of an interface implemented by a walkable class.

Consider a single visit method whose parameter is of an array type, for

example visit(C1[] c). Clearly, the following field

private C1 f1;

is not walkable. However, the following fields

private C1[] f1;

private C1[][] f2;

...

private C[]n fn;

do constitute walkable fields. This can be generalized as follows. Given a method

visit(C1[]m c1) and the following fields.

private C1[] f1;

private C1[][] f2;

...

private C1[]m fm;

...

119

private C1[]n fn;

Only the fields from fm to fn are walkable, the other fields are not. More generally,

a field declared as C[]n is walkable if C[]m is visitable for some m ≤ n.

Consider the method visit(C1[]m c1), the class C1 extending the class C2

as illustrated,

public class C1 extends C2 { ... }

and the following fields.

private C2[] f1;

private C2[][] f2;

...

private C2[]m fm;

...

private C2[]n fn;

Since C2 is a superclass of the class C1, at runtime the fields fm, . . . , fn can

possibly be assigned to objects of types C1[]m, . . . , C1[]n, respectively. Hence,

the fields fm, . . . , fn may have to be walked. More generally, a field declared as

C[]n is walkable if S[]m is visitable for some subclass S of C and some m ≤ n.

Assume that the method visit(C1[]m c1) has been introduced, and the

following interfaces and class.

public interface I1 { ... }

public interface I2 extends I1 { ... }

public class C1 implements I2 { ... }

120

The following sets of fields

private I2[]m fm;

...

private I2[]n fn;

and

private I1[]m fm;

...

private I1[]n fn;

may have to be walked because at runtime these fields can possibly be assigned

to objects of types C1[]m, . . . , C1[]n, respectively. More generally, a field de-

clared as I[]n is walkable if I is an interface or a superinterface of an interface

implemented by some class S and S[]m is visitable for some m ≤ n.

Recall that a class is walkable if it has a walkable field (the field is either

declared in the class or inherited by the class). A field is walkable if it is non-

static and its declared type is waitable. Again, we use the convention that C[]0

represents C and I[]0 represents I.

A class C[]n is waitable if

(i) it is visitable,

(ii) C is walkable,

(iii) C[]m is waitable for some m ≤ n, or

121

(vi) it is a superclass of a waitable class.

An interface I[]n is waitable if

(v) C[]n is waitable for some implementation C of I, or

(vi) S[]n is waitable for some subinterface S of I.

The main problem with adjusting the algorithm for computing the waitable

classes and interfaces and the walkable fields is clause (iii). C[]n being waitable

implies that C[]m is waitable for each m ≥ n. Hence, the set of waitable classes

may be infinite. However, the set of walkable fields is still finite, provided that

we restrict our attention to the classes in the Eclipse workspace. To keep the set

waitable finite, we use C[]n to represent all C[]m with m ≥ n. That is, if C[]n

is in (temp or) waitable then we know that C[]m is waitable for each m ≥ n.

Moreover, we use I[]n to represent all I[]m with m ≥ n.

Below, we provide a revised version of the algorithm for computing the wait-

able classes and interfaces, and the walkable fields.

1 temp = domain of visitMap

2 waitable = empty set

3 walkable = empty set

4 while temp is nonempty

5 for each class C[]n in temp

6 remove C[]n from temp and add C[]n to waitable

7 for each superclass S of C

122

8 if for all m ≤ n, S[]m not in temp and S[]m not in

waitable

9 add S[]n to temp

10 for each interface I that is implemented by C

11 if for all m ≤ n, I[]m not in temp and I[]m not in

waitable

12 add I[]n to temp

13 for each non-static field f of class D declared as C[]m for

some m ≥ n

14 add D.f to walkable

15 if D not in temp and D not in waitable

16 add D to temp

17 for each interface I[]n in temp

18 remove I[]n from temp and add I[]n to waitable

19 for each superinterface S of I

20 if for all m ≤ n, S[]m not in temp and S[]m not in

waitable

21 add S[]n to temp

22 for each non-static field f of class D declared as I[]m for

some m ≥ n

23 add D.f to walkable

24 if D not in temp and D not in waitable

25 add D to temp

Figure 6.18: The modified algorithm for computing the set of waitable classes.

In the above algorithm, clauses (i), (ii), (iv), (v) and (vi) are reflected by

lines 1, 15–16 & 24–25, 7–9, 10–12, and 19–21, respectively.

Since a waitable class C[]n is used to represent all waitable classes C[]m (for

each m ≥ n), fields that are declared as C[]m are also walkable. Consequently,

123

they need to be added to the set temp as done in lines 13–16. Similarly, fields

that are declared as I[]m, where I[]n is waitable for some n ≤ m, are waitable

as well (see lines 22–25).

Now, we give some details on how to generate code, which handles an array

of objects, via the following simple example.

public class C1 { ... }

public class C2 extends C1 { ... }

public class C3 extends C1 { ... }

public class C4

{

private C1[] f1;

}

If a method visit(C2[] c2) has been defined, the classes C2[], C1, and C4 are

visitable, waitable and walkable, respectively.

Recall that when generating code for the new walker, the code generator

initially copies the visit methods from the original walker to the new one. For

each visit method

public void visit(C[]n c) { ... }

of the original walker, we add

public void visitArray_n_C(C[]n c) { ... }

to the generated class. For example, we add visitArray 1 C2(C2[] c2) for the

124

method visit(C2[] c2). Notice that we have used a slightly different naming

convention for visit methods for arrays.

Consider the following lines of code to initialize the array f1 of an object of

type C4.

f1 = new C1[size];

for (int i = 0; i < size; i++)

{

if (i % 2 == 0)

f1[i] = new C2();

else

f1[i] = new C3();

}

In the example, the type of the array f1 is the waitable class C1[]. Objects in

the array are either of type C2 or C3. Therefore, if this array is walked, not every

object in the array needs to be walked. However, for simplicity we will walk all

the objects using the method walkArray.

walkArray(Object object)

{

for (int i = 0; i < Array.getLength(object); i++)

{

walk(Array.get(i, object));

}

}

Figure 6.19: The walkArray method.

125

The code generator also needs to generate this method for each new walker. Note

that the implementation of walkArray is the same as the one found in the original

walker.

We modify the algorithm for generating the method walk to handle array

objects. The generated method mimicks the behaviour of the following snippet

of pseudocode.

void walk(Object object)

C = dynamic type of object;

if C is visitable

D = visitMap(C);

visitD(object);

else

if C is an array

if C is waitable

walkArray(object);

else

if C is walkable

walkFieldsC(object);

Figure 6.20: The algorithm for the walk method.

In the above code snippet, if the type of an array object is waitable, then we

will walk each object in the array. However, since it is not clear if the condition

“if C is waitable” can be validated efficiently, we simplify matters by consid-

ering all array objects (not just the waitable ones). The quest for an efficient

126

implementation of “if C is waitable” is left for future research.

Since the classes C2[] and C4 are visitable and walkable, respectively, they

are assigned a unique identifier as follows.

classMap.add(C2[].class, new Integer(0));

classMap.add(C4.class, new Integer(1));

The generated walk method for the example looks like

void walk(Object object)

{

Integer classID = (Integer) classMap.get(object.getClass())

if (classID != null)

{

case 0:

visitArray_1_C2((C2[]) object);

break;

case 1:

walkFieldsC4((C4) object);

break;

default:

break;

}

else if (object.getClass().isArray())

{

walkArray(object);

}

}

Figure 6.21: The generated walk method.

The generated method walkFields looks like

127

void walkFields(Object object)

{

Integer classID = (Integer) classMap.get(object.getClass())

if (classID != null)

{

case 1:

walkFieldsC4((C4) object);

break;

default:

break;

}

}

Figure 6.22: The generated walkFields method.

Finally, the generated method to walk the fields of the walkable class C4 looks

like

void walkFieldsC4(C4 c4)

{

Field field1 = C4.class.getField("f1");

walk(field1.get(c4));

}

Figure 6.23: The generated walkFieldsC4 method for the class C4.

128

6.2.5 Walking graphs

To walk a graph, we employ the same strategy as we used for the original walker.

That is, we keep track of those objects that have already been walked. This will

ensure the same object not being walked again.

129

7 A simple analysis of BPEL4WS

7.1 Introduction

The recent release of WSADIE (version 5.1) provides a very powerful editing tool

for creating and manipulating a BPEL4WS program. This graphical editor for

BPEL4WS allows one to easily construct a complex BPEL4WS program. The

editor then serializes it as an XML-based document. A snapshot of the editor is

presented below.

130

Figure 7.1: A snapshot of the BPEL4WS editor.

In the editor, each created activity is assigned a unique identifier. Often, given

an identifier, one needs to find the corresponding activity. Such a task can be

implemented using the approaches described in the previous chapters. We will

show various implementations using these approaches. However, we will limit

ourselves to the following:

131

• the dedicated methods approach,

• the EMF-switch, and

• the reflection based techniques.

Details of the implementations are outlined in the next sections.

7.2 Dedicated methods

To find the corresponding activity for a given identifier, we start from the root

of the tree representing the BPEL4WS program and search the AST for this

activity. Once the activity has been found, it is returned.

To accomplish such a task using the dedicated methods approach, one must

add a method, named, for example, findActivity, to all the Java classes of

the AST hierarchy. This method will return the activity which has the match-

ing identifier. The hierarchy of Java classes representing BPEL4WS is complex.

Furthermore, the implementation of the findActivity method differs from one

class to another. We will only show the findActivity method for classes repre-

senting BPEL4WS activities because the findActivity method for other classes

can be implemented in a similar way. Within the activities, the implementation

of the findActivity method is also different for basic activities and structured

132

activities. The following method

public Activity findActivity(Id id)

{

Id i = BPELUtility.getId(this);

return i.equals(id) ? this : null;

}

has been added to the class ActivityImpl. Technically, this method will be in-

herited by classes extending the Activity class. The method findActivity will

return the current activity if its identifier matches the given identifier. Note that

we have introduced a utility class BPELUtility and a static method getId. The

method getId extracts and returns the identifier of “this” activity. In the editor,

the identifier of an activity is implemented by the class com.ibm.etools.ctc.wsdl.Id.

A structured activity possibly contains nested activities. Hence, the method

findActivity for the structured activities must also consider these nested activ-

ities as well. Consequently, the classes for structured activities must override the

above method. Note that we only show the findActivity method for the flow

activity.

public Activity findActivity(Id id)

{

Activity activity = super.findActivity(id);

for (int i = 0; activity == null &&

i < this.getActivities().size(); i++)

{

133

activity = this.getActivities().get(i).findActivity(id);

}

return activity;

}

In the above example, we first call super.findActivity to check whether “this”

activity is the one. If it is not, we start searching in the nested activities (the

method getActivities returns all nested activities in the flow). As soon as it is

found, it is returned.

7.3 EMF-switch mechanism

Let us first create a class, namely ActivityFinder, which implements the task.

In this class, we define the two global variables i and a to store the given identifier

and the found activity, respectively. We also declare a new instance variable s

of type BPELSwitch. Recall that the class BPELSwitch implementing the EMF-

switch is generated by EMF.

To find the activity which has an identifier that matches with i, we must

override the appropriate case methods in the BPELSwitch. Note that we only

show two case methods, namely for basic activities and the flow activity.

public class ActivityFinder

{

Id i;

134

Activity a;

BPELSwitch s =

new BPELSwitch()

{

Object caseActivity(Activity activity)

{

if (a == null && BPELUtility.getId(activity).equals(i))

{

a = activity;

}

return activity;

}

Object caseFlow(Flow flow)

{

if (a == null && BPELUtility.getId(flow).equals(i))

{

a = flow;

}

for (int j = 0; a == null && j < flow.getActivities().

size(); j++)

{

doSwitch((EObject) flow.getActivities().get(j));

}

return flow;

}

...

}

public Activity findActivity(Id id, EObject bpel)

{

i = id;

s.doSwitch(bpel);

return a;

}

135

}

Figure 7.2: The ActivityFinder class.

In the above example, we have added a method findActivity. This method

takes an identifier id and an object bpel representing a BPEL4WS program

as parameters. It then performs a doSwitch on the object bpel, causing the

appropriate case methods to be invoked. Finally, the activity to which a is

referring, is returned (if there is any).

7.4 The reflection based techniques

Recall that the implementation of the ActivityFinder is almost the same for all

reflection based techniques. To use a specific walker, the ActivityFinder extends

the appropriate walker class. For example, it can extend the class Walker which

provides the implementation for the reflection based walker.

public class ActivityFinder extends Walker

{

Id i;

ActivityImpl a;

ActivityFinder()

{

i = null;

a = null;

}

136

public void visit(ActivityImpl activity)

{

if (a == null)

{

Id id = BPELUtility.getId(activity);

if (id.equals(i))

a = activity;

else

walkFields(activity);

}

}

public Activity findActivity(Id id, Object bpel)

{

i = id;

walk(bpel);

return a;

}

}

Figure 7.3: The ActivityFinder class.

In the ActivityFinder class, the instance variables i and a are introduced to

store the given identifier and the found activity. Since we are only interested in

nodes of type Activity, we only introduce a visit for this class. In the visit

method, if the identifier of activity does not match the given one, we will invoke

the method walkFields to walk the fields of activity.

For this particular task, the amount of code written using the reflection based

techniques is astonishingly less than that using the dedicated methods approach

137

and the EMF-switch. However, as we will see later, the implementations using re-

flection based techniques are rather inefficient. Before comparing the performance

of these implementations, we will show more examples of analyses of BPEL4WS

in the next chapters.

138

8 BPEL-calculus translator

8.1 Overview of BPEL-calculus

The BPEL-calculus is a small language introduced by Koshkina and Van Breugel

(see [37, 38]) to capture the control flow in BPEL4WS. A tool has been devel-

oped to verify properties like, for example, dead-lock freedom, of BPE-calculus

processes (see also [37, 38]). This tool can also be exploited to verify properties

of BPEL4WS programs, provided that BPEL4WS programs can be translated to

BPE-calculus processes. Such a translator has already been implemented by Ra-

may [47] using the syntax separate from interpretations approach. This chapter

will consider other alternatives to implementing the translator, such as the dedi-

cated methods approach, the EMF-switch, and the reflection based techniques.

Details of the syntax of the BPEL-calculus, fully discussed in [37, 38], is

beyond the scope of this thesis. We refer the reader to these sources for further

details. Below we present the Activity grammar relevant and central to the

translation.

Activity = "nil" (Empty)

139

| "end" (Terminate)

| Name (Basic)

| Activity "||" Activity (Flow)

| Activity ";" Activity (Sequence)

| Activity "++" Activity (Switch)

| Activity "+" Activity (Pick)

| Activity "*" (While)

| "out" Link TC Activity (Outgoing link)

| JC "=>" Activity (Join condition)

Figure 8.1: The Activity grammar.

In the BPEL-calculus, basic and structured activities are represented differently.

For instance, an empty activity is represented as the string “nil”, and a terminate

activity represented as “end”, whereas the activity names are used to represent

other basic activities. The name of an activity is captured by the nonterminal

Name.

For the structured activities, the BPEL-calculus uses “||”, “;”, “++”, “+”,

and “*” to represent a flow, sequence, switch, pick and while activity, respectively.

The nonterminal TC refers to the transition condition associated with Link.

It is either true, false, or undefined. This is captured by the grammar below.

140

TC = true | false | undefined

The nonterminal JC refers to the join condition of Activity. Chapter 3 has

provided a detailed discussion of the JC grammar. Therefore, we refer the reader

to this chapter for more details.

The nonterminal Link refers to the name of an outgoing link. Since the

BPEL-calculus does not support scopes, link names in a BPEL-calculus process

must be unique. Hence, for links to have an unique name, it may be necessary

to rename some links.

In the next sections, we first briefly describe the implementation of such a

link renamer before describing the implementation of the translator.

8.2 Renaming links

A simple solution to rename the links can be implemented by means of the re-

flection based techniques. Since one is only interested in modifying the names of

the links, a visit method responsible for such a task is introduced.

public void visit(Link link)

{

link.setName("l" + counter++);

}

141

The variable counter is an integer defined in the link renamer class. It keeps

track of the number of links which have been encountered so far. In this example,

because the objective of the walker is to change the model, the visit method

must modify the Link objects.

8.3 Dedicated methods

Without loss of generality, we may assume that link names in a given BPEL4WS

program are unique. We only focus on how to translate activities. To translate

activities, we start from the root of the tree representing a BPEL4WS program

and search the AST for activity nodes. Whenever an activity node is encountered,

it is translated according to the Activity grammar.

To perform such a task using the dedicated methods approach, a method,

named, for example, translate, is added to the Java classes of the AST hierarchy.

This method returns a String representing the result of the translation. For

convenience, let us create a utility class TranslatorUtil which consists of two

static methods.

public static String getOutgoingLinks(Activity activity);

public static String getJoinCondition(Activity activity);

These methods return the BPEL-calculus representations of the outgoing links

142

and the join condition, respectively, for an activity. For example, given an activity

with two outgoing links l1 and l2, if the values of the transition conditions

associated with these links are true and false, respectively, then the method

getOutgoingLinks will return the string “out l1 true out l2 false” for this

activity. Moreover, if the activity has a join condition “!getLinkStatus(‘l3’)

&& getLinksStatus(‘l4’)”, then the method getJoinCondition will return

the string “(not l3) and l4” for this activity.

Now to translate a basic activity we add

public String translate()

{

return TranslatorUtil.getOutgoingLinks(this) +

TranslatorUtil.getJoinCondition(this) +

" => " + this.getName();

}

to the class ActivityImpl. This method captures the translation for all basic

activities different from the empty and terminate activity. For the special cases of

the empty and terminate activity, we override this method in the corresponding

classes. We add

public String translate()

{

return TranslatorUtil.getOutgoingLinks(this) +

TranslatorUtil.getJoinCondition(this) +

" => nil ";

143

}

to the class EmptyImpl. Similarly, we add

public String translate()

{

return TranslatorUtil.getOutgoingLinks(this) +

TranslatorUtil.getJoinCondition(this) +

" => end ";

}

to the class TerminateImpl.

A structured activity may contain nested activities. These nested activities

also need to be translated. The structured activity must then combine the re-

sults of the translation returned by its nested activities. Therefore, those classes

representing the structured activities must also override the translate method.

For instance, to translate a flow activity, we add

public String translate()

{

String delimiter = "";

String str = "";

for (int i = 0; i < getActivities().size(); i++, delimiter = "

||")

{

str += delimiter +

((Activity) getActivities().get(i)).translate();

}

return TranslatorUtil.getOutgoingLinks(this) +

TranslatorUtil.getJoinCondition(this) +

144

"(" + str + ")";

}

to the class FlowImpl. In this method, we first invoke the method translate for

each of the nested activities. The results of the translation are then combined.

The method translate for other structured activities is similar to the above one.

8.4 EMF-switch mechanism

Similar to the analysis presented in Section 7.3, we need to override the appro-

priate case methods in the class BPELSwitch. Furthermore, in this analysis, we

also make use of the return value of the case methods to return the result of the

translation. For instance, the case method for a basic activity looks as follows.

public Object caseActivity(Activity activity)

{

return TranslatorUtil.getOutgoingLinks(activity) +

TranslatorUtil.getJoinCondition(activity) +

" => " + activity.getName();

}

Again, to handle the special cases of the empty and terminate activity, we override

the corresponding case methods for these classes.

public Object caseEmpty(Empty empty)

{

return TranslatorUtil.getOutgoingLinks(empty) +

145

TranslatorUtil.getJoinCondition(empty) +

" => nil ";

}

public Object caseTerminate(Terminate terminate)

{

return TranslatorUtil.getOutgoingLinks(terminate) +

TranslatorUtil.getJoinCondition(terminate) +

" => end ";

}

Finally, we also need to override the case methods for structured activities. Below

is an example of the case method for the flow activity.

public Object caseFlow(Flow flow)

{

String str = "" ;

String delimiter = "";

for(int i = 0; i < flow.getActivities().size(); i++, delimiter

= "||")

{

Object obj = doSwitch((EObject) flow.getActivities().get(i));

str += delimiter + (String) obj;

}

return TranslatorUtil.getOutgoingLinks(flow) +

TranslatorUtil.getJoinCondition(flow) +

"(" + str + ")");

}

The case methods for other structured activities are similar to that for the flow

activity.

146

8.5 The reflection based techniques

To implement the translator using the reflection based techniques, appropriate

visit methods performing the appropriate translation are defined. However,

because a visit method does not support returning a value, the translation

cannot be returned as done in the previous implementations. To address this

problem, a stack, implemented by the Java class java.util.Stack, is used. The

translation, instead of being returned, is pushed onto the stack and popped off

the stack as needed. For example, in the following visit methods for basic

activities,

public void visit(EmptyImpl empty)

{

stack.push(TranslatorUtil.getOutgoingLinks(empty) +

TranslatorUtil.getJoinCondition(empty) +

" => nil ");

}

public void visit(TerminateImpl terminate)

{

stack.push(TranslatorUtil.getOutgoingLinks(terminate) +

TranslatorUtil.getJoinCondition(terminate) +

" => end ");

}

public void visit(ActivityImpl activity)

{

stack.push(TranslatorUtil.getOutgoingLinks(activity) +

TranslatorUtil.getJoinCondition(activity) +

" => " + activity.getName());

147

}

the results of the translation are pushed onto the stack.

Since a structured activity may contain nested activities, these nested activi-

ties must be translated. The results of the translation for these nested activities

are pushed onto the stack. As a result, the structured activity may need to pop

the stack. For example, in the visit method for a flow activity,

public void visit(FlowImpl flow)

{

String str = "";

String delimiter = "";

final int SIZE = stack.size();

walkFields(flow);

while (stack.size() != SIZE)

{

str += delimiter + stack.pop().toString();

delimiter = "||";

}

stack.push(TranslatorUtil.getOutgoingLinks(flow) +

TranslatorUtil.getJoinCondition(flow) +

"(" + str + ")");

}

invoking the method walkFields gives rise to the nested activities of the flow

activity being translated. The translations for the nested activities are then

popped off the stack and combined. Finally, the result of the translation for the

flow activity is pushed onto the stack. The constant variable SIZE is used to

148

ensure that the stack is only popped as many times as needed.

Again, the amount of code written for this analysis using the reflection based

techniques is a lot less than that using the other approaches including the one

implemented by Ramay. For example, Ramay’s implementation requires approx-

imately 2000 lines of code, whereas the implementation by means of the reflection

based techniques only requires approximately 200 lines of code.

149

9 A graph representation for BPEL4WS

9.1 Introduction

A BPEL4WS program can also be viewed as a directed graph. The vertices of

the graph are the activities and the edges of the graph are links. For instance,

the following BPEL4WS snippet

<empty name="a1">

<source link="l1" transitioncondition="true">

</empty>

<empty name="a2">

<source link="l2" transitioncondition="true">

</empty>

<empty name="a3" >

<target link="l1">

<target link="l2">

</empty>

Figure 9.1: A simple example of BPEL4WS snippet.

can be represented as

GFED@ABCa1
true

`1
!!B

BB
BB

BB
BB

GFED@ABCa2
true

`2
~~||

||
||

||
|

GFED@ABCa3

150

Such a graph has been proven to be useful in some analyses of BPEL4WS (see

Sections 9.5). In the mean time, we focus on the implementation that builds the

graph. Below we present some approaches to implementing such a graph builder.

9.2 Dedicated methods

The class Graph implementing the directed graph provides the following meth-

ods.

public void addSource(Activity source, Link link);

public void addTarget(Activity target, Link link);

public Activity getSource(Link link);

public Activity getTarget(Link link);

The method addSource adds the vertex source and the edge link to the graph

provided that the graph does not already contain them. Furthermore, it sets the

vertex source to be the source of the edge link. The method addTarget has a

similar effect. It adds the vertex target and the edge link to the graph, and sets

the vertex target to be the target of the edge link. The methods getSource

and getTarget return the source and target activity of the edge link.

Given an AST representing a BPEL4WS program, we build the graph as

follows. We traverse and search the AST for the activity nodes. Whenever a

source activity is encountered, the activity and its corresponding outgoing link

151

are added to the graph using the method addSource. Whenever a target activity

is encountered, the activity and its corresponding incoming link are added to the

graph using the method addTarget.

To implement this by means of the dedicated methods approach, we add a

dedicated method, named, for example build, to all Java classes of the AST

hierarchy. This method takes a Graph object as a parameter. Initially, the Graph

object has no vertices and no edges.

The class Source, which represents the declaration of the source of a link, we

add

build(Graph graph)

{

graph.addSource(this.getActivity(), this.getLink());

}

The method getLink returns the link that is being declared and the method

getActivity returns activity of which the declaration is part. Similarly, we add

build(Graph graph)

{

graph.addTarget(this.getActivity(), this.getLink());

}

to the class Target which represents the declaration of the target of a link.

Finally, we add

152

build(Graph graph)

{

EList sources = this.getSources();

for (int i = 0; i < sources.size(); i++)

{

((Source) sources.get(i)).build(graph);

}

EList targets = this.getTargets();

for (int i = 0; i < targets.size(); i++)

{

((Target) targets.get(i)).build(graph);

}

}

to the class ActivityImpl. The methods getSources and getTargets respec-

tively return a list of links of which “this” activity is declared to be the source

and target.

Again, since structured activities may contain nested activities, one must

override the build method in the corresponding classes. Below we show an

example of the method build for a flow activity. This method must be added to

the class FlowImpl.

build(Graph graph)

{

super.build(graph);

for (int i = 0; i < this.getActivities().size(); i++)

{

((Activity) this.getActivities().get(i)).build(graph);

}

153

}

Again, we did not show the method build for other classes.

9.3 EMF-switch mechanism

Again, the class BPELSwitch is exploited in this analysis. Appropriate case

methods in the BPELSwitch must be overridden. For example, we override the

case methods for the Source, Target, Activity, and Flow classes as follows.

public Object caseSource(Source source)

{

graph.addSource(source.getActivity(), source.getLink());

return source;

}

public Object caseTarget(Target target)

{

graph.addTarget(target.getActivity(), target.getLink());

return target;

}

public Object caseActivity(Activity activity)

{

EList sources = activity.getSources();

for (int i = 0; i < sources.size(); i++)

{

((Source) sources.get(i)).builds(graph);

}

EList targets = activity.getTargets();

for (int i = 0; i < targets.size(); i++)

{

((Target) targets.get(i)).builds(graph);

154

}

return activity;

}

public Object caseFlow(Flow flow)

{

for (int i=0; i < flow.getActivities().size(); i++)

{

doSwitch((EObject) flow.getActivities().get(i)));

}

return null;

}

Recall from Section 4.5, a return value of null (in the method caseFlow) will

cause the method caseActivity to be invoked for flow.

The variable graph, an instance of the class Graph, is defined in the graph

builder class. It initially contains no vertices and no edges. As the case methods

for the classes Source and Target are invoked, new vertices and edges are added

to graph.

9.4 The reflection based techniques

By means of the reflection based techniques, we only need to define two visit

methods for the classes Source and Target as shown below.

public void visit(Source source)

{

graph.addSource(source.getActivity(), source.getLink());

155

}

public void visit(Target target)

{

graph.addTarget(target.getActivity(), target.getLink());

}

The code written using the reflection based techniques is remarkably less and

considerably simpler than the code written using any of the other approaches.

9.5 Use of the graph

Representing BPEL4WS programs as directed graphs can be useful. According

to the BPEL4WS definition, each activity should have a unique source activity

and a unique target activity and a BPEL4WS program should not contain any

(control) cycles. For example, in the BPEL4WS program represented by the

graph

GFED@ABCa1
true

`1
!!B

BB
BB

BB
BB

GFED@ABCa2
true

`1
~~||

||
||

||
|

GFED@ABCa3

the link `1 has two source activities and, hence, this program is disallowed. The

BPEL4WS program represented by the graph

GFED@ABCa1
true

`1
!!B

BB
BB

BB
BB

GFED@ABCa2
true`3oo

GFED@ABCa3
true

`2

>>|||||||||

156

is also disallowed, since the links `1, `2 and `3 form a cycle. Using the graph, we

can easily check whether these two situations occur.

The graph has also been exploited in an analysis tool implemented for BPEL4WS

to detect side effect caused by dead-path-elimination. Dead-path-elimination

(DPE) [1, Section 2.2] (see also [40]) provides a mechanism to discard parts of

a BPEL4WS program that will never be activated. As has been shown in [11],

DPE may have side effects which are caused by negative occurrences of links in

join conditions. If a negative occurrence of a link in a join condition gives rise to

a side effect, then

• the value of the link is set to false due to DPE and

• the join condition evaluates to true.

Next, we introduce two (mutually recursive) functions to capture these two

conditions. But before presenting these functions, we first consider the following

BPEL4WS snippet.

<flow>

<assign>

<copy>

<from expression="0">

<to variable="v">

</copy>

</assign>

157

<assign>

<copy>

<from expression="1">

<to variable="v">

</copy>

</assign>

</flow>

The above snippet concurrently assigns 0 and 1 to the variable v. Hence, since

the value of the variable v could be either 0 or 1, a transition condition defined as

bpws:getVariableData(‘v’)=‘0’ can be either true or false. A link ` to which

this transition condition is associated, as a result, either gets the value true or

false. It then follows that the join condition ` either evaluates to true or false.

Consequently, if we want to predict the value of a transition condition, a link, or

a join condition, then we can make three different predictions: its value is always

true (which we represent by 1), its value is always false (which we represent by

−1) or its value is some times true and other times false (represented by 0).

Given a link `, the Boolean dpe(`) tells us whether ` may be set to false

due to DPE. Given a join condition c, value(c) captures the possible values of c.

Given a transition condition b, value(b) approximates the possible values of b.

The function dpe is defined by

dpe(`) = (s is part of a pick or a switch) ∨ (value(c) 6= 1)

158

where s is the source activity of link ` and c is the join condition of activity s.

The function value on join conditions is defined by

value(true) = 1

value(false) = −1

value(`) =

value(b) min 0 if dpe(`)

value(b) otherwise

value(¬c) = −value(c)

value(c1 ∧ c2) = value(c1) min value(c2)

value(c1 ∨ c2) = value(c1) max value(c2)

where b is the transition condition of the link `. Note that if the link ` can be set

to false due to DPE and the value of b is either always true or some times true

and other times false, then the value of ` is some times true and other times false.

The value of a transition condition b is defined as 1 if b = true, −1 if b = false,

and 0 otherwise. Clearly, there is room for improving the precision here. We

leave that for future research.

At the implementation level, we introduce a utility class DPEUtil which con-

sists of the following static methods.

public static boolean dpe(Link link, Graph graph);

public static int value(Activity activity, Graph graph);

These methods correspond to the functions dpe and value. We implement the

159

dpe function as follows.

public static boolean dpe(Link link, Graph graph)

{

Activity source = graph.getSource(link);

return (source is part of a pick or a switch or

value(source, graph) != 1);

}

Note that we have exploited the Graph object to efficiently determine the source

activity of link. Also, the condition “source is part of a pick or a switch”

can be evaluated by checking whether the parent node of source is a pick or a

switch.

Computing the function value(c), for c a join condition of an activity, in-

volves evaluating the join condition itself. Such an evaluator can be implemented

by means of the reflection based techniques and a stack (the use of a stack in

implementing an analysis has already been discussed in Section 8.5) as follows.

public class Evaluator extends Walker

{

Graph graph;

Stack stack;

public Evaluator(Graph g)

{

super();

stack = new Stack();

graph = g;

}

private void push(int i)

160

{

stack.push(new Integer(i));

}

private int pop()

{

return ((Integer) s.pop()).intValue();

}

public void visit(TrueImpl t)

{

push(1);

}

public void visit(FalseImpl f)

{

push(-1);

}

public void visit(NotImpl not)

{

walkFields(not);

push(-pop());

}

public void visit(OrImpl or)

{

walkFields(or);

push(Math.max(pop(), pop());

}

public void visit(AndImpl and)

{

walkFields(and);

push(Math.min(pop(), pop());

}

public void visit(LinkImpl link)

{

int v = value of transition condition of link

if (dpe(link, graph))

161

v = Math.min(v, 0);

push(v);

}

public int getValue(Condition c)

{

walk(c);

return pop();

}

}

Figure 9.2: The Evaluator class.

Now, the implementation of the function value becomes straightforward.

public static boolean value(Activity activity, Graph graph)

{

return ((new Evaluator(graph))

.getValue(activity.getJoinCondition());

}

Computing the value of a join condition may cause that the values of other join

conditions need to be computed as well. To refrain from multiple computations

of the same join condition, one can store the computed value of the join condition

in the Graph object (details are not shown).

Finally, we implement a mechanism that detects side effects caused by DPE.

Basically, for each negative occurrence of a link in a join condition, we check

whether the link may be set to false due to DPE and whether the join condition

may evaluate to true. If so, in the graphical editor for BPEL4WS we will mark the

162

corresponding target activity of the link (once again the Graph object becomes

helpful) and the dead-path of which this link is part. This can also be easily

implemented by means of the reflection based techniques. In the class below,

while extracting negative links, we also detect any possible side effect.

public class NegativeLinkExtractor extends Walker

{

boolean odd;

Graph graph;

public NegativeLinkExtractor(Graph g)

{

odd = false;

graph = g;

}

public void visit(NotImpl not)

{

odd = !odd;

walkFields(not);

odd = !odd;

}

public void visit(LinkImpl link)

{

if (odd)

{

Activity target = graph.getTarget(link);

if (DPEUtil.dpe(link, graph) &&

DPEUtil.value(target, graph) == 1)

{

mark target and link on the editor;

}

163

}

}

}

Figure 9.3: The NegativeLinkExtractor class.

The variable odd is used to determine whether the path from the Link object to

the root of the AST has an odd number of Not objects. If so, the link represented

by the Link object has occurred negatively in the join condition.

If our tool finds no such occurrences then we know that the BPEL4WS pro-

gram is free of the side effects. If, however, our tool finds some negative oc-

currences of links that may give rise to side effects, we should check whether

such side effects can really occur and, if so, whether these side effects are inten-

tional. The tool can easily be plugged into WSADIE. In the screenshot below,

the links marked with a cross form the dead paths. The activities marked with

an exclamation mark may be executed as a side effect of DPE.

164

Figure 9.4: The tool that detects side-effects of DPE.

165

10 Performance evaluation

In this chapter, we will investigate, however only to some extent, the performance

aspects of some approaches for some analyses of BPEL4WS. To be specific, we

will consider

(i) the dedicated methods approach,

(ii) the EMF-switch mechanism,

(iii) the reflection based walker,

(iv) the walker with caching of fields and methods proposed by Bravenboer and

Visser [9],

(v) the walker of Grothoff [28], and

(vi) the walker with preprocessing.

Recall that we have discussed the implementations, by means of these approaches,

of the following analyses.

(a) An analysis that finds a corresponding activity for a given identifier (see

Chapter 7).

166

(b) An analysis that translates a BPEL4WS program to a BPEL-calculus process

(see Chapter 8).

(c) An analysis that builds a directed graph for a BPEL4WS program (see

Chapter 9).

Based on these analyses we will evaluate the performance of each approach.

10.1 Benchmarks

The ASTs of BPEL4WS programs are generated randomly. The size of the ASTs

ranges from 1000 nodes to 2000 nodes. We use these random ASTs as BPEL4WS

benchmarks to measure the running times of different implementations for analy-

ses (a), (b) and (c). There are in total 6 implementations for each analysis.

Since these implementations have been developed within the Eclipse environ-

ment, we will also use the Java compiler, which is distributed as part of Eclipse,

to compile them. No particular optimization has been specified while compiling

these implementations. The compiled code is then run on Sun’s Java virtual ma-

chine version 1.4. We evaluate the performance of these implementations on an

IBM machine, Intel R© Pentium 4, CPU 2.40GHz, 1GB of RAM. Obviously, the

running time of an implementation of an analysis would depend on, for example

167

the speed of the machine or optimizations of the compiler. However, since we

are only interested in the relative performance of one implementation to another,

these factors may not play important roles in our evaluation.

Given these settings, the running time of an implementation for an analysis

is then measured as follows. For each generated benchmark, we compute the

duration of the execution, d, of the implementation as follows:

d = te − ts,

where ts is the system time recorded when the implementation starts and te is

the system time recorded when the implementation terminates. Ten data points

are collected for each implementation and benchmark. We compute their mean,

µ, as shown,

µ =
1

10

∑

1≤i≤10

di

The value of the mean is used to represent the (mean) running time of an im-

plementation. In addition, we also compute the standard deviation, σ, which

measures the spread of data from the mean, as follows.

σ =
1

10

√ ∑

1≤i≤n

(di − µ)2

The value of the standard deviation plays an important role to determine whether

the computed mean is reliable. The lower the standard deviation, the more reli-

168

able the mean. Finally, all the computed means are then analyzed and plotted.

To compare the performance of two implementations for an analysis, we com-

pute the ratio of their (mean) running times. The ratio measures how fast one

implementation is compared to the other.

We expect that the approaches (i) and (ii), which do no rely on Java’s reflec-

tion mechanism, will give rise to faster implementations for these analyses. In

contrast, the approaches (iii), (iv) and (v), the reflection based walkers, will give

rise to much slower implementations. The approaches (iv) and (v) are expected

to improve the performance of the reflection based walker. We expect preprocess-

ing the walker will further improve the performance of the reflection based walker

to a greater extent.

We refer the reader to the Appendix B for complete performance data sets.

Below, we summarize and analyze the results of the performance of these ap-

proaches.

10.2 The non-reflection based approaches

Let us first look at the performance of those implementations by means of the

approaches (i) and (ii), both of which do not depend on Java’s reflection mech-

anism. Below we plotted the (mean) running times of the implementations by

169

means of these two approaches for the analyses (a), (b) and (c).

170

From the plots, the approach (i), the dedicated methods approach, seems to

yield slightly faster implementations for these analyses. The poorer performance

of the approach (ii) may have been caused by the method doSwitch in the EMF-

switch class. Recall from Chapter 3 that this method is responsible for selecting

and invoking the appropriate case methods for a given object. To select the

appropriate case methods, the type of the object must be determined. EMF

has its own mechanism to determine the type of the object. This mechanism

may impose a small performance penalty on any implementation that exploits

the EMF-switch class.

171

10.3 The reflection based approaches

Now, let us compare the performance of the previous implementations to the

corresponding implementations by means of the reflection based walker.

172

The approaches (i) and (ii), as clearly shown in the plots, give rise to implemen-

tations that are much faster. To be precise, we compute the ratio of their running

173

times for all three analyses. The results are summarized in the table below.

(a) (b) (c)

(iii)/(i) 152 13 55

(iii)/(ii) 119 11 36

For example, the implementation of the ActivityFinder by means of the dedi-

cated methods is, on average, roughly 152 times faster than the implementation

by means of the reflection based walker.

Forax and Roussel [25] (also Bravenboer and Visser [9]) have shown that the

performance of the walker can be improved considerably by caching fields and

methods. Also, Grothoff [28] achieves this by using runtime code generation

techniques. In the plots below, we observe considerable improvement in the

performance.

174

175

However, as to how much it will improve the performance, may also depend on

the types of the analyses. The ratios of their running times, captured in the table

below,

(a) (b) (c)

(iii)/(iv) 1.5 1.5 2

(iii)/(v) 1.2 1.3 2

show that the implementations by means of the approach (iv) and (v) are twice

as fast as the implementation by means of approach (iii) for the analysis (c).

There is only a small improvement in the performance for the analyses (a) and

(b).

176

We also notice that those implementations by means of the approach (v) are

slightly slower than those by means of the approach (iv) for all three analyses. The

overhead, which is introduced due to code generation at runtime (see Chapter 5),

may have been the main contributor to the poor performance of the walker of

Grothoff [28].

10.4 The walker with preprocessing

The walkers with preprocessing for the analyses (a), (b) and (c) no longer depends

on Java’s reflection mechanism to select and invoke a visit method. Also, in

the walkers with preprocessing, not all the subtrees will be walked. Therefore,

we expect that they will outperform other walkers. The plots below, without a

question, have confirmed our expectation.

177

178

Let us compute the ratio of the running time of the approaches (iii), (iv), and

(v) and the running time of our approach for the analyses (a), (b), and (c).

(a) (b) (c)

(iii)/(vi) 5 4 8

(iv)/(vi) 4 2 4

(v)/(vi) 4 3 5

The implementations by means of our approach are at least 4 times faster than

the implementation by means of the reflection based walker. For analysis (c), the

implementation by our approach is even 8 times faster. Furthermore, the walker

179

with preprocessing is also faster than both the walker with caching of fields and

methods, and Grothoff’s walker [28].

Now let us compute the ratio of the running time of our approach to the

running time of the approaches (i) and (ii), those which do not rely on Java’s

reflection mechanism, for the analyses (a), (b), and (c).

(a) (b) (c)

(vi)/(i) 29 3 7

(vi)/(ii) 23 3 4

On average, the implementation of the BPEL-calculus translator by means of our

approach is only 3 times slower than the implementations of the translator by

means of the dedicated methods approach, and the EMF-switch class.

Also, recall from Section 10.3 that by means of the reflection based walker,

the implementation of the ActivityFinder is 152 times slower than the imple-

mentation of the ActivityFinder by means of the dedicated methods approach.

The walker with preprocessing for the ActivityFinder is only 29 times slower.

10.5 Summary

In general, the dedicated methods approach provides an efficient way to imple-

ment these analyses of BPEL4WS. Exploiting the EMF-switch class to implement

180

these analyses also gives rise to roughly the same performance.

The reflection based walker, although allowing the resulting code to be pro-

duced much quicker, unfortunately gives rise to implementations which are con-

siderably slower. We sometimes observe even more than 100 times slower (for

example, the analysis (a)). For a better performance, one can exploit the walker

with caching of fields and methods or alternatively the walker of Grothoff [28]

to implement these analyses. These walkers are shown to provide slightly faster

implementations for these analyses.

Among the walkers, our approach has achieved the best performance. Our

approach, sometimes, gives rise to implementations which are comparable to the

implementations by means of the dedicated methods approach. For example, the

implementation of the BPEL-calculus translator by means of the walker with pre-

processing is only 3 times slower than its implementation by means of dedicated

methods. In general, our approach allows the resulting code for the analyses to be

quickly produced with a reasonable performance. However, the main drawback

of our approach is that the Java code needs to be generated and compiled again

if the EMF model of BPEL4WS changes.

181

11 Conclusion

11.1 Summary and discussion

As a part of the effort to develop analysis tools for BPEL4WS, we have presented

different approaches to implementing analyses of BPEL4WS. Typically, an analy-

sis mainly consists of code that focuses on how to walk the ASTs of BPEL4WS.

The approaches presented in this thesis outline different techniques to walk the

ASTs. One first needs to build a representation of the ASTs of BPEL4WS. Since

EMF already provides a hierarchy of Java classes and interfaces for BPEL4WS,

we exploited this hierarchy to represent the ASTs.

Some of the approaches to implement analyses are found to be not very suit-

able for BPEL4WS. For example, the dedicated methods approach is not very

suitable because this approach requires extensive modifications to the classes

and interfaces of the hierarchy. Several problems can arise when modifying them.

Firstly, there may already be other analyses implemented for BPEL4WS that

also exploit the hierarchy. If one modifies the classes and interfaces one must be

certain that the modifications will not have an unexpected impact on the other

182

analyses. Secondly, if the BPEL4WS language changes, thereby causing the hi-

erarchy of classes and interfaces to be generated again by EMF, these inserted

methods may be lost. Finally, since these methods are scattered across different

classes, it can be difficult to debug the code and assure the correctness of the

implementation for an analysis.

Alternatively, we presented the visitor design pattern to walk the trees. This

design pattern provides us a way to attach new methods to an existing hierarchy

of classes and interfaces with a minimal modification to the hierarchy. However,

since one should be refrained from altering the EMF model of BPEL4WS as it

may be used by other analyses as well, this approach is still not ideal to implement

analyses of BPEL4WS.

Other approaches, that we have discussed, were the syntax separate from

interpretations approach and the EMF-switch approach. Both approaches do

not modify the hierarchy in any way, but share a different disadvantage. If the

XSD specification of BPEL4WS changes and, hence, introduces changes to the

hierarchy of classes and interfaces, then the code for all those classes that have

been affected by the changes may have to be modified.

One can also exploit compiler toolkits to generate walkers that walk the trees

in some order. In this thesis, we discussed how one can make use of SableCC to

183

generate such walkers. However, for us to exploit SableCC, the XSD specification

of BPEL4WS must be translated into the specification formalism used by the

toolkit. As the language evolves, maintaining two separate specifications may be

unnecessarily time-consuming.

Most of these problems can be resolved with the reflection based walker. This

walker uses Java’s reflection mechanism to walk the trees. As we have shown,

the implementations by means of reflection based walkers do not require any

modification to the EMF model of BPEL4WS. It also allows one to focus on

the analysis itself, rather than on walking the trees. Bravenboer and Visser [9]

refined and improved the walkers. In particular, they do not walk fields that

are static or primitive. Furthermore, they allow visit methods in superclasses

of the walker and they also allow interfaces as the type of the parameter of a

visit method. They not only walk trees but also walk graphs. In this thesis,

we extended the reflection based walkers by also walking array objects. When

walking trees and graphs, we not only consider public fields but also non-public

ones. This is essential when walking EMF models, since most fields in the Java

classes generated by EMF are not public.

The main drawback of the reflection based walker is its rather poor perfor-

mance. In this thesis, we addressed the two main causes of the poor performance

184

of the walker. On the one hand, it is caused by the poor performance of Java’s

reflection mechanism. On the other hand, the fact that a reflection based walker

may traverse parts of the tree that do not need to be walked can also con-

tribute to its poor performance. We reviewed two techniques which addressed

the first cause. These techniques involve caching fields and methods (proposed by

Bravenboer and Visser [9] also by Forax and Roussel [25]), and generating code

at runtime (proposed by Grothoff [28]). In particular, Bravenboer and Visser [9]

cache Method objects, which represent visit methods, and Field objects, which

represent fields. Grothoff [28], instead of using Java’s reflection mechanism to

invoke the visit methods, generates code to invoke these methods. Generating

code at runtime induces some overhead. Inspired by Grothoff’s work, we propose

preprocessing the code that implements an analysis of BPEL4WS and generating

new Java code for it. During the preprocessing step, we compute the set of the

so-called visitable classes. For each visitable class, we find and generate code to

invoke the corresponding visit method. The code generated to invoke the visit

methods is now free of any use of Java’s reflection mechanism. Consequently, the

performance of the walker with preprocessing improved significantly.

During the preprocessing step, we also single out some subtrees that need not

be walked by approximating those fields that may have to be walked. Once these

185

fields have been found, we can address the second cause of the poor performance

by generating traversal code that tries to minimize the unnecessary walking. We

generate Java code that guides the traversal which does not iterate over all fields.

In the reflection based walker, all the fields are walked, whereas in the walker

with preprocessing only the so-called walkable fields are walked. Consequently,

the performance of the this walker improved further.

Exploiting reflection based walkers of the EMF model of BPEL4WS, we have

implemented a number of analyses. In this thesis, we discussed and evaluated

the performance of three analyses of BPEL4WS by means of various approaches,

namely, the activity finder, a BPEL-calculus translator, and a BPEL4WS graph

builder. We have shown that the non-reflection based approaches, such as the

dedicated methods approach and the EMF-switch mechanism give rise to very

fast implementations for these analyses. Unfortunately, the performance of im-

plementations by means of the reflection based walker are incomparable to the

implementations by means of the non-reflection based approaches. However, the

walker with caching of fields and methods and the walker of Grothoff [28] have

been shown to give rise to implementations which are approximately twice as fast

as the original walker. More importantly, the walker with preprocessing has been

shown to further improve the performance. The implementations by means of

186

this walker are at least 4 times faster than the implementations by means of the

reflection based walker.

Also, exploiting walkers, tools have been developed

• to detect control cycles in a BPEL4WS program,

• to check that each link of a BPEL4WS program has a unique source and a

unique target,

• to translate a BPEL4WS program into a BPE-process (for the latter prop-

erties can be verified using the Concurrency Workbench), and

• to check if dead-path-elimination gives rise to side effects in a BPEL4WS

program.

11.2 Future work

11.2.1 Enhancing the performance of the walker with preprocessing

Currently, the walker with preprocessing will walk all the array objects. The

fact that the generated method walk may walk array objects that need not be

walked, leaves room for further improvement in the performance. By limiting

ourselves to walk only those array objects whose base type is waitable, we can

187

further eliminate unnecessary walking.

The walker with preprocessing is not completely free of Java’s reflection mech-

anism. The generated traversal code still depends on Java’s reflection mechanism

to obtain the so-call walkable fields of an object. If the fields can be obtained

without using Java’s reflection mechanism, the performance will be expected to

be improved even more.

11.2.2 Exploiting EMF-switch in the walker with preprocessing

Chapter 10 has shown that exploiting the EMF-switch results in much faster

implementations. We believe that once the visitable classes and walkable fields

have been found, one can also generate from a walker an implementation that

exploits the EMF-switch. The EMF-switch class can be exploited in different

ways.

Firstly, we can exploit the case methods for traversal code and secondly for

invoking the visit methods. For these two separate tasks, we can create two

instances of the EMF-switch class.

The first instance defines a set of case methods consisting of traversal code.

Once the walkable fields have been found, we can generate the appropriate case

methods which contain the appropriate traversal code. Exploiting the doSwitch

188

method will give rise to appropriate case methods which guide the traversal to

be invoked.

The second instance defines a set of case methods for those objects that have

a visit method introduced in the walker. Once the set of visitable classes has

been found, for each visit method body found in the reflection based walker, we

generate a corresponding case method. Again, exploiting the doSwitch method

will give rise to appropriate case methods which correspond to the appropriate

visit methods in the reflection based walker, to be invoked.

The fact that the code must be generated and compiled again every time

the EMF hierarchy changes is also a disadvantage of this approach. Another

disadvantage of this approach is that a walker, which relies on the EMF-switch

mechanism, will only walk the objects of the EMF model. The walker with or

without preprocessing is not limited to walking the EMF model, but can also

walk other objects.

189

Bibliography

[1] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Jo-

hannes Klein, Frank Leymann, Kevin Liu, Dieter Roller, Doug Smith,

Satish Thatte, Ivana Trickovic, and Sanjiva Weerawarana. Business

process execution language for web services, version 1.1. Available at

www.ibm.com/developerworks/library/ws-bpel, May 2003.

[2] Andrew W. Appel. Modern Compiler Implementation in Java. Cambridge

University Press, 1998.

[3] The AspectJ Project. Available at www.eclipse.org/aspectj.

[4] Isabelle Attali, Carine Courbis, Pascal Degenne, Alexandre Fau, Didier

Parigot, and Claude Pasquier. SmartTools: a generator of interactive envi-

ronment tools. In Reinhard Wilhelm, editor, Proceedings of the 10th Interna-

tional Conference on Compiler Construction, volume 2027 of Lecture Notes

in Computer Science, pages 355–360, Genova, Italy, April 2001. Springer–

Verlag.

190

[5] Elliot Berk. JLex: A lexical analyzer generator for Java. Available

at www.cs.princeton.edu/˜appel/modern/java/JLex, October 1997. JLex’s

manual.

[6] Paul V. Biron and Ashok Malhotra. XML schema part 2: Datatypes. Avail-

able at www.w3.org/TR/xmlschema-2, October 2004.

[7] Jeremy Blosser. Java tip 98: reflect on the visitor design pattern. Available

at www.javaworld.com, July 2000.

[8] John Boyland and Giuseppe Castagna. Parasitic methods: an implemen-

tation of multi-methods for Java. In Proceedings of the 12th ACM SIG-

PLAN Conference on Object-Oriented Programming, Systems, Languages,

and Applications, pages 66–76, Atlanta, Georgia, United States, October

1997. ACM.

[9] Martin Bravenboer and Eelco Visser. Guiding visitors: separating navigation

from computation. Technical Report YU–CS–2001–42, Utrecht University,

November 2001.

[10] Tim Bray, Jean Paoli, C.M. Sperberg-McQueen, Eve Maler, and Fran-

cois Yergeau. Extensible markup language (XML). Available at

www.w3.org/TR/REC-xml, February 2004.

191

[11] Franck van Breugel and Mariya Koshkina. Dead-path-elimination in

BPEL4WS. In Proceedings of the 5th International Conference on Appli-

cation of Concurrency to Systems Design, pages 192–201, St Malo, June

2005. IEEE.

[12] Frank Budinsky, David Steinberg, Ed Merks, Raymond Ellersick, and Tim-

othy J. Grose. Eclipse Modeling Framework. The Eclipse Series. Addison-

Wesley, 2003.

[13] Craig Chambers. Object-oriented multi-methods in Cecil. In Ole Lehrmann

Madsen, editor, Proceedings of the 6th European Conference on Object-

Oriented Programming, volume 615 of Lecture Notes in Computer Science,

pages 33–56, Utrecht, July 1992. Springer-Verlag.

[14] Erik Christensen, Francisco Curbera, Grey Meredith, and Sanjiva Weer-

awarana. Web services description language (WSDL) 1.1. Available at

www.w3.org/TR/wsdl, March 2001.

[15] James Clark and Steve DeRose. XML path language (XPath), version 1.0.

Available at www.w3.org/TR/xpath, November 1999.

[16] Eric Clayberg and Dan Rubel. Eclipse: Building Commercial-Quality Plug-

Ins. The Eclipse Series. Addison-Wesley, 2004.

192

[17] Francisco Curbera, Matthew Duftler, Rania Khalaf, William Nagy, Nirmal

Mukhi, and Sanjiva Weerawarana. Unraveling the web services web: An in-

troduction to SOAP, WSDL, and UDDI. IEEE Internet Computing, 6(2):86–

93, March 2002.

[18] Jim D’Anjou, Scott Fairbrother, Dan Kehn, John Kellerman, and Pat Mc-

Carthey. The Java Developer’s Guide to Eclipse. Addison-Wesley, 2004.

[19] The Eclipse Project. Available at www.eclipse.org.

[20] The Eclipse Modelling Framework Project. Available at

www.eclipse.org/emf.

[21] Étienne Gagnon. SableCC, an object-oriented compiler framework. Master’s

thesis, McGill University, School of Computer Science, Montreal, March

1998. Available at www.sablecc.org.

[22] Paolo Ferragina, S. Muthukrishnan, and Mark de Berg. Multi-method dis-

patching: a geometric approach with applications to string matching prob-

lems. In Proceedings of the 31st Annual ACM Symposium on Theory of Com-

puting, pages 483–491, Atlanta, Georgia, United States, May 1999. ACM.

193

[23] Rémi Forax, Etienne Duris, and Gilles Roussel. Java multi–method frame-

work. In Proceedings of International Conference on Technology of Object–

Oriented Languages and Systems, pages 45–56, Sydney, Australia, November

2000. IEEE.

[24] Rémi Forax, Etienne Duris, and Gilles Roussel. Reflection-based implemen-

tation of Java extensions: the double-dispatch use-case. In Proceedings of

the 2005 ACM Symposium on Applied Computing, pages 1409–1413, Santa

Fe, New Mexico, March 2005. ACM.

[25] Rémi Forax and Gilles Roussel. Recursive types and pattern–matching in

Java. In Krzysztof Czarnecki and Ulrich W. Eisenecker, editors, Proceedings

of the 1st International Symposium on Generative and Component-Based

Software Engineering, volume 1799 of Lecture Notes in Computer Science,

pages 147–164, Erfurt, Germany, 2000. Springer-Verlag.

[26] Ira R. Forman and Nate Forman. Java Reflection in Action. Manning

Publications Co., 2004.

[27] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design

Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,

1994.

194

[28] Christian Grothoff. Walkabout revisited: the Runabout. In Luca Cardelli,

editor, Proceedings of the 15th European Conference on Object-Oriented Pro-

gramming, volume 2743 of Lecture Notes in Computer Science, pages 103–

125, Darmstadt, July 2003. Springer-Verlag.

[29] Cay S. Horstmann. Practical Object-Oriented Development in C++ and

Java. John Wiley & Sons, May 1997.

[30] Scott Hudson. CUP Parser Generator for Java. Available at

www.cs.princeton.edu/˜appel/modern/java/CUP, March 1998. Java Cup’s

manual.

[31] The Java Development Tools Project. Available at www.eclipse.org/jdt.

[32] Brian W. Kernighan and Rob Pike. The Practice of Programming. Profes-

sional computing series. Addison–Wesley, 1999.

[33] Gregor Kiczales, Eric Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,

and William G. Griswold. An overview of AspectJ. In Jørgen Lindskov

Knudsen, editor, Proceedings of the 15th European Conference on Object-

Oriented Programming, volume 2071 of Lecture Notes in Computer Science,

pages 327–353, Budapest, June 2001. Springer-Verlag.

195

[34] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina

Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming.

In Mehmet Akşit and Satoshi Matsuoka, editors, Proceedings of the 11th Eu-

ropean Conference on Object-Oriented Programming, volume 1241 of Lecture

Notes in Computer Science, pages 220–242, Jyväskylä, June 1997. Springer-

Verlag.

[35] Gerwin Klein. JFlex – The Fast Scanner Generator for Java. Available at

www.jflex.de, April 2004. JFlex’s manual.

[36] Donald E. Knuth. Semantics of context-free languages. Mathematical Sys-

tems Theory, 2(2):127–145, June 1968. Correction in: Mathematical Systems

Theory 5(1):95–96, 1971.

[37] Mariya Koshkina. Verification of business processes for web services.

Master’s thesis, York University, Toronto, October 2003. Available at

www.cs.yorku.ca/˜franck/students.

[38] Mariya Koshkina and Franck van Breugel. Modelling and verifying web ser-

vice orchestration by means of the concurrency workbench. ACM SIGSOFT

Software Engineering Notes, 29(5), September 2004.

[39] Ramnivas Laddad. AspectJ in Action. Manning Publications Co., 2003.

196

[40] Frank Leymann and Wolfgang Altenhuber. Managing business processes

as an information resource. IBM Systems Journal, 33(2):326–348, January

1994.

[41] John R. Mashey. War of the benchmark means: time for a truce. SIGARCH

Computer Architecture News, 32(4):1–14, September 2004.

[42] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, sec-

ond edition, 1997.

[43] Paul Muschamp. An introduction to Web Services. BT Technology Journal,

22(1):9–18, March 2004.

[44] Jens Palsberg and C. Barry Jay. The essence of the visitor pattern. In

Proceedings of the 22nd International Computer Software and Applications

Conference, pages 9–15, Vienna, August 1998. IEEE.

[45] Jens Palsberg, C. Barry Jay, and James Noble. Experiments with generic

visitors. In Roland Backhouse and Tim Sheard, editors, Proceedings of the

Workshop on Generic Programming, pages 81–84, Marstrand, Sweden, June

1998.

197

[46] Terence Parr. ANTLR reference manual, May 2004. Available at

www.antlr.org/doc/index.html.

[47] Fatima Ramay. Translating BPEL4WS into the BPE-calculus, August 2003.

Unpublished project report.

[48] Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendelsohn.

XML schema part 1: Structures. Available at www.w3.org/TR/xmlschema-

1, October 2004.

[49] David A. Watt and Deryck F. Brown. Programming Language Processors in

Java: compilers and interpreters. Prentice Hall, 2000.

[50] David S. Wile. Abstract syntax from concrete syntax. In Proceedings of

the 19th International Conference on Software Engineering, pages 472–480,

Boston, Massachusetts, United States, May 1997. ACM.

198

A XML Schema for the join conditions

Below we present the XSD specification of the join conditions of BPEL4WS. This

specification has been used in Section 3.5 to generate a hierarchy of Java classes

and interfaces that represents the syntax of the join conditions.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:complexType name="Condition"/>

<xsd:element name="and" type="And"/>

<xsd:complexType name="And">

<xsd:complexContent>

<xsd:extension base="Condition">

<xsd:sequence>

<xsd:element name="left" type="Condition"/>

<xsd:element name="right" type="Condition"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:element name="not" type="Not"/>

<xsd:complexType name="Not">

<xsd:complexContent>

<xsd:extension base="Condition">

<xsd:sequence>

<xsd:element name="condition" type="Condition"/>

</xsd:sequence>

</xsd:extension>

199

</xsd:complexContent>

</xsd:complexType>

<xsd:element name="or" type="Or"/>

<xsd:complexType name="Or">

<xsd:complexContent>

<xsd:extension base="Condition">

<xsd:sequence>

<xsd:element name="left" type="Condition"/>

<xsd:element name="right" type="Condition"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:element name="link" type="Link"/>

<xsd:complexType name="Link">

<xsd:complexContent>

<xsd:extension base="Condition">

<xsd:sequence>

<xsd:element name="name" type="xsd:string"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:element name="true" type="True"/>

<xsd:complexType name="True">

<xsd:complexContent>

<xsd:extension base="Condition"/>

</xsd:complexContent>

</xsd:complexType>

<xsd:element name="false" type="False"/>

200

<xsd:complexType name="False">

<xsd:complexContent>

<xsd:extension base="Condition"/>

</xsd:complexContent>

</xsd:complexType>

</xsd:schema>

201

B Performance data

The following tables describe sets of data collected from executing different imple-

mentations for analyses (a), (b) and (c) as explained in Chapter 10. Column 1 of

the tables lists the size of the program inputs. The size of a program is measured

by the number of nodes of the tree representing the BPEL4WS program. Col-

umn 2 lists the approaches. Column 3-12 list the 10 data points representing the

running times, measured in milliseconds, for each implementation. Column 13

calculates the mean of the running times. These means were used for the plots

in Section 10. Finally, column 14 calculates the spread of the data points.

202

B.1 Analysis (a)

N A d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 µ σ

(i) 16 0 15 15 0 0 16 0 15 15 9 7
(ii) 16 15 0 16 16 16 0 15 0 16 11 7
(iii) 1297 1219 1297 1297 1281 1297 1281 1281 1281 1281 1281 22

1000 (iv) 718 703 703 719 719 719 719 703 719 719 714 7
(v) 875 874 875 875 875 890 891 875 875 875 878 6
(vi) 204 203 203 203 187 218 187 203 203 203 201 8
(i) 0 15 0 16 15 0 16 0 16 15 9 7
(ii) 15 16 16 15 0 16 15 16 16 0 12 6
(iii) 1485 1406 1406 1406 1406 1406 1390 1406 1390 1406 1410 25

1100 (iv) 859 859 859 859 859 874 859 859 874 859 862 6
(v) 1062 1063 1062 1062 1078 1094 1063 1093 1156 1157 1089 35
(vi) 235 250 250 234 250 235 250 250 235 235 242 7
(i) 16 15 16 15 0 16 15 16 0 0 10 7
(ii) 15 16 15 0 16 15 16 15 15 16 13 4
(iii) 1609 1609 1610 1609 1609 1609 1594 1609 1593 1609 1606 6

1200 (iv) 1015 1141 1000 1000 1016 1016 1000 1000 1000 1000 1018 41
(v) 1235 1281 1234 1219 1250 1234 1234 1234 1234 1235 1239 15
(vi) 282 281 281 281 265 281 281 281 282 282 279 4
(i) 16 15 16 15 16 15 16 15 16 16 15 0
(ii) 16 16 16 16 16 16 16 16 31 16 17 4
(iii) 1813 1796 1813 1812 1812 1797 1797 1812 1813 1797 1806 7

1300 (iv) 1188 1187 1188 1171 1172 1172 1171 1172 1281 1187 1188 31
(v) 1437 1453 1437 1437 1437 1453 1453 1485 1437 1452 1448 14
(vi) 328 328 328 329 328 328 329 328 312 328 326 4
(i) 15 16 16 15 16 0 15 16 15 16 14 4
(ii) 32 31 15 16 15 31 16 15 16 15 20 7
(iii) 2031 2047 2031 2031 2046 2046 2031 2031 2031 2047 2037 7

1400 (iv) 1344 1343 1359 1344 1343 1343 1359 1344 1343 1344 1346 6
(v) 1656 1656 1656 1671 1656 1625 1656 1656 1656 1656 1654 10
(vi) 390 375 375 390 375 375 375 375 375 375 378 6
(i) 16 16 16 15 16 16 15 16 16 15 15 0
(ii) 31 16 16 32 15 16 16 15 15 32 20 7
(iii) 2265 2265 2265 2265 2265 2327 2265 2265 2266 2594 2304 98

1500 (iv) 1531 1531 1531 1546 1547 1547 1531 1531 1531 1547 1537 7
(v) 1875 1875 1891 1875 1875 1875 1875 1922 1875 1890 1882 14
(vi) 437 438 437 438 422 437 437 438 438 437 435 4
(i) 16 16 16 16 16 15 15 16 16 15 15 0
(ii) 16 16 31 15 15 32 16 15 31 16 20 7
(iii) 2515 2515 2516 2515 2500 2515 2515 2500 2500 2515 2510 6

1600 (iv) 1766 1750 1749 1749 1749 1734 1734 1734 1734 1734 1743 10
(v) 2203 2218 2188 2172 2157 2234 2203 2171 2141 2188 2187 26
(vi) 500 485 500 500 500 500 500 500 500 500 498 4
(i) 16 16 16 16 31 16 16 16 16 15 17 4
(ii) 15 16 16 16 16 31 31 31 31 16 21 7
(iii) 2953 2781 2766 2765 2781 2781 2765 2765 2766 2781 2790 54

1700 (iv) 1953 1953 2000 1953 1937 1937 1968 2125 2047 1968 1984 56
(v) 2406 2391 2390 2390 2390 2390 2391 2437 2390 2374 2394 15
(vi) 563 546 609 562 578 562 563 563 656 563 576 30
(i) 16 16 16 15 15 31 31 15 15 31 20 7
(ii) 15 31 31 31 32 16 31 32 32 16 26 7
(iii) 3046 3031 3046 3109 3046 3046 3046 3031 3031 3109 3054 28

1800 (iv) 2218 2375 2188 2218 2203 2203 2297 2187 2171 2187 2224 59
(v) 2672 2687 2672 2671 2672 2672 2656 2672 2703 2672 2674 11
(vi) 703 641 624 640 641 640 640 625 625 625 640 22
(i) 15 16 31 15 16 31 31 15 16 31 21 7
(ii) 31 31 31 15 31 31 15 16 31 31 26 7
(iii) 3343 3343 3328 3687 3327 3328 3328 3656 3328 3312 3398 137

1900 (iv) 2421 2406 2406 2421 2406 2406 2406 2406 2421 2406 2410 6
(v) 2953 2953 2984 2984 2969 2968 2937 2953 2968 2968 2963 14
(vi) 688 703 703 703 703 703 688 703 688 687 696 7
(i) 32 16 31 31 31 16 15 31 16 31 25 7
(ii) 31 31 31 31 31 32 31 32 32 16 29 4
(iii) 3625 3624 3625 3625 3609 3624 3625 3609 3609 3624 3619 7

2000 (iv) 2734 2719 2734 2719 2734 2718 2719 2719 2718 2719 2723 7
(v) 3265 3265 3249 3265 3280 3265 3265 3281 3265 3281 3268 9
(vi) 781 765 765 781 765 781 765 765 782 765 771 7

203

B.2 Analysis (b)

N A d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 µ σ

(i) 63 47 47 47 47 47 62 62 63 47 53 7
(ii) 47 63 62 46 47 47 47 47 47 47 50 6
(iii) 828 875 891 890 890 891 891 891 875 890 881 18

1000 (iv) 469 484 484 469 485 516 485 562 485 563 500 33
(v) 515 547 563 578 562 578 609 922 609 640 612 108
(vi) 188 188 172 172 188 203 187 171 172 172 181 10
(i) 63 62 46 62 63 63 62 62 47 47 57 7
(ii) 62 63 79 47 62 62 63 63 62 62 62 7
(iii) 968 1016 1031 1031 1015 1016 1031 1047 1031 1015 1020 19

1100 (iv) 625 578 593 610 562 578 562 578 578 579 584 18
(v) 750 688 688 718 828 672 688 672 766 687 715 48
(vi) 219 219 219 219 219 219 219 218 218 219 218 0
(i) 78 63 62 79 78 79 62 62 63 63 68 7
(ii) 62 78 78 78 78 62 79 78 78 78 74 6
(iii) 1109 1156 1172 1156 1156 1172 1156 1156 1156 1172 1156 17

1200 (iv) 687 672 672 672 672 672 672 672 672 672 673 4
(v) 766 812 796 797 812 797 797 812 797 797 798 12
(vi) 360 265 250 312 250 250 250 265 266 250 271 34
(i) 94 79 93 93 94 94 78 78 78 78 85 7
(ii) 125 93 78 79 78 78 94 94 78 79 87 14
(iii) 1250 1281 1296 1281 1296 1312 1281 1328 1297 1297 1291 19

1300 (iv) 828 782 781 797 781 781 797 797 781 797 792 14
(v) 875 921 938 922 922 937 1000 937 937 937 932 28
(vi) 297 344 344 343 344 344 328 343 344 359 339 15
(i) 110 109 93 109 94 94 78 78 94 93 95 10
(ii) 125 125 125 125 125 125 140 141 141 141 131 7
(iii) 1375 1453 1500 1453 1453 1453 1469 1453 1469 1469 1454 30

1400 (iv) 938 938 953 938 937 938 937 938 937 938 939 4
(v) 1015 1078 1063 1078 1079 1078 1063 1078 1063 1078 1067 18
(vi) 390 390 390 391 375 391 391 391 391 391 389 4
(i) 156 109 109 109 109 109 109 94 109 109 112 15
(ii) 156 187 188 188 188 188 188 187 172 172 181 10
(iii) 1547 1672 1641 1625 1625 1640 1672 1625 1625 1656 1632 33

1500 (iv) 1078 1062 1063 1063 1062 1062 1063 1062 1078 1063 1065 6
(v) 1187 1375 1203 1203 1219 1203 1203 1203 1203 1203 1220 52
(vi) 438 437 438 437 438 438 438 438 438 438 437 0
(i) 156 156 157 172 172 157 172 156 156 172 162 7
(ii) 203 203 203 203 188 203 187 204 203 188 198 7
(iii) 1719 1828 1844 1844 1844 1828 1859 1828 1843 1828 1826 37

1600 (iv) 1250 1218 1219 1218 1235 1234 1218 1203 1235 1218 1224 12
(v) 1422 1422 1437 1407 1437 1422 1422 1578 1437 1407 1439 47
(vi) 500 547 546 532 531 547 532 531 531 531 532 12
(i) 203 203 218 203 203 203 219 203 204 218 207 7
(ii) 235 234 235 219 218 235 203 219 218 219 223 10
(iii) 1922 2015 2016 2015 2000 2015 2031 2015 2000 2015 2004 28

1700 (iv) 1391 1359 1391 1390 1390 1422 1375 1374 1375 1375 1384 16
(v) 1515 1578 1609 1703 1609 1593 1594 1578 1593 1594 1596 43
(vi) 641 656 641 640 656 640 641 641 640 656 645 7
(i) 234 234 234 234 234 219 234 234 218 234 230 6
(ii) 281 266 281 266 281 281 266 266 282 266 273 7
(iii) 2109 2234 2249 2250 2328 2265 2250 2234 2234 2250 2240 51

1800 (iv) 1531 1516 1515 1531 1547 1515 1531 1531 1531 1515 1526 10
(v) 1735 1812 1812 1813 1796 1813 1812 1844 1813 1812 1806 26
(vi) 719 719 719 703 703 703 719 703 719 703 711 8
(i) 281 281 281 281 281 282 281 297 297 281 284 6
(ii) 359 328 328 328 328 328 328 344 328 344 334 10
(iii) 2344 2484 2484 2500 2500 2500 2484 2484 2484 2499 2476 44

1900 (iv) 1734 1922 1734 2000 1734 2000 1734 1750 1734 1734 1807 110
(v) 1890 2000 2000 1984 2016 2031 2000 1984 2000 1984 1988 35
(vi) 844 813 828 828 828 812 828 828 812 828 824 9
(i) 344 344 344 343 344 359 344 344 343 344 345 4
(ii) 390 359 359 360 375 344 343 359 360 359 360 12
(iii) 2562 2734 2734 2734 2735 2765 2766 2734 2734 2781 2727 57

2000 (iv) 1984 1922 1968 1969 1953 1968 1984 1953 1969 1999 1966 20
(v) 2157 2234 2235 2203 2202 2188 2203 2219 2218 2203 2206 21
(vi) 937 938 953 953 937 953 953 938 937 953 945 7

204

B.3 Analysis (c)

N A d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 µ σ

(i) 94 78 94 78 94 93 94 94 93 94 90 6
(ii) 94 109 94 109 94 110 109 110 110 109 104 7
(iii) 3906 4047 4062 4062 4062 4046 3843 3827 3828 3843 3952 105

1000 (iv) 1719 1828 1812 1891 1844 1844 1828 1828 1859 1828 1828 41
(v) 1953 2078 2094 2093 2078 2078 2093 2094 2078 2062 2070 40
(vi) 422 422 421 422 422 453 422 422 422 421 424 9
(i) 93 94 93 109 94 94 94 110 109 109 99 7
(ii) 125 125 125 125 125 125 125 125 125 125 125 0
(iii) 4312 4500 4499 4468 4516 4484 4515 4578 4500 4547 4491 66

1100 (iv) 2172 2172 2187 2172 2188 2203 2172 2172 2171 2203 2181 12
(v) 2125 2250 2234 2234 2235 2250 2250 2234 2281 2250 2234 38
(vi) 516 500 500 515 500 500 500 515 500 500 504 7
(i) 109 125 110 125 125 110 109 109 125 125 117 7
(ii) 156 140 156 141 141 140 156 156 141 141 146 7
(iii) 4968 5140 5172 5156 5172 5156 5140 5172 5156 5140 5137 57

1200 (iv) 2499 2593 2578 2594 2594 2578 2593 2593 2593 2577 2579 27
(v) 2796 2969 2969 2984 2952 2969 2984 2969 2968 2984 2954 53
(vi) 609 594 610 610 609 609 593 594 610 609 604 7
(i) 125 125 125 140 125 109 125 125 125 125 124 6
(ii) 171 156 172 157 157 172 172 156 156 156 162 7
(iii) 6703 5891 5890 5906 5891 5890 5890 5890 5890 5891 5973 243

1300 (iv) 2890 3000 3015 3016 3015 3016 3031 3031 3015 3016 3004 39
(v) 3374 3687 3578 3641 3640 3578 3594 3578 3625 3593 3588 79
(vi) 703 766 734 703 688 687 687 688 703 688 704 24
(i) 125 125 140 141 125 125 125 124 125 125 128 6
(ii) 203 203 188 187 187 187 188 204 219 188 195 10
(iii) 6422 6672 6703 6656 6656 6656 6640 6718 6671 6687 6648 78

1400 (iv) 3250 3484 3484 3484 3484 3484 3468 3485 3500 3484 3460 70
(v) 3735 4031 3969 3985 3984 3968 3984 3984 3985 3984 3960 77
(vi) 812 829 812 796 812 812 797 812 812 812 810 8
(i) 125 140 141 141 140 140 141 140 157 140 140 7
(ii) 219 219 203 218 219 203 219 219 203 203 212 7
(iii) 7874 8202 8234 8234 8265 8202 8218 8203 8687 8233 8235 184

1500 (iv) 3688 3984 3969 3984 3968 3969 3969 3968 3985 3968 3945 86
(v) 4312 4593 4625 4594 4562 4578 4563 4578 4577 4562 4554 82
(vi) 953 938 938 953 938 953 937 937 937 922 940 9
(i) 156 156 140 141 156 141 141 156 141 141 146 7
(ii) 234 235 250 250 234 234 250 234 234 250 240 7
(iii) 9171 9186 9187 9203 9234 9187 9186 9202 9202 9202 9196 16

1600 (iv) 4187 4563 4499 4484 4500 4500 4484 4499 4500 4500 4471 97
(v) 4890 5187 5203 5203 5265 5187 5249 5187 5422 5171 5196 123
(vi) 984 969 953 969 969 953 984 968 969 969 968 9
(i) 172 156 156 156 156 157 172 156 172 172 162 7
(ii) 266 250 250 266 265 249 250 266 266 265 259 7
(iii) 8968 9875 9874 9312 9296 9312 9296 9312 9311 9281 9383 264

1700 (iv) 4656 5031 4984 4984 4984 4984 4984 4999 5000 5000 4960 102
(v) 5562 5875 6500 5921 5641 5906 5859 5859 5844 5906 5887 233
(vi) 1234 1234 1219 1235 1219 1234 1218 1234 1219 1218 1226 7
(i) 187 171 156 172 172 171 172 172 172 172 171 6
(ii) 297 297 297 297 297 297 297 297 297 297 297 0
(iii) 9858 10249 10249 10281 10265 10264 10265 10250 10296 10265 10224 122

1800 (iv) 5249 5703 5671 5687 5672 5749 5688 5655 5641 5655 5637 132
(v) 6109 6516 6547 6531 6531 6547 6531 6531 6531 6547 6492 128
(vi) 1391 1375 1391 1391 1390 1390 1391 1391 1390 1390 1389 4
(i) 187 172 172 171 172 203 172 187 188 203 182 12
(ii) 328 328 328 344 344 328 328 328 359 328 334 10
(iii) 10890 11296 11280 11297 11311 11296 11296 11281 11702 11827 11347 242

1900 (iv) 5859 6343 6281 6312 6281 6624 6281 6265 6265 8203 6471 602
(v) 6796 7874 7312 7280 7093 7312 7265 7265 7250 7265 7271 249
(vi) 1562 1578 1531 1562 1546 1546 1562 1547 1563 1562 1555 12
(i) 203 187 204 203 188 203 203 203 219 219 203 9
(ii) 391 375 359 359 374 375 375 391 406 359 376 14
(iii) 12952 13577 13546 13514 13546 13484 12561 12562 12530 12546 13081 466

2000 (iv) 10249 6937 6937 6906 6922 6922 6921 7030 6953 6921 7269 993
(v) 7562 8249 8015 8030 8046 8062 8062 8015 8093 8031 8016 164
(vi) 1765 2031 1734 1734 1750 1750 1734 1765 1735 1735 1773 86

205

