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1 Introduction

The dictionary is one of the most often-used abstract data types (ADT) in computer science. Much work has
been done to implement this ADT in the concurrent setting. Most of this work uses locks (see, e.g., [2], [8]).
Although locks are simple to use, this approach has a major disadvantage: it is hard to design scalable
locking strategies due to problems such as deadlock, priority inversion, and convoying [6]. For this reason, it
is desirable to build a non-blocking implementation. Furthermore, the non-blocking property ensures that,
while a single operation may be delayed, the system as a whole will always make progress.

Some other dictionary implementations use operations that are not commonly supported by multi-core
machines, such as load-link/store-conditional [1] and multi-word compare-and-swap (CAS) [7]. The dictio-
nary has also been implemented by means of software transactional memory (STM) (see, e.g., [9]). However,
such an implementation is currently not efficient [2].

Most multi-core machines support single-word CAS operations. Non-blocking dictionary implementations
based on linked lists and skip lists have been implemented by Sundell and Tsigas [10], Fomitchev and
Ruppert [5], Fraser [7], and Valois [11]. Valois also presented a sketch of a non-blocking binary search tree
(BST) [11]. The first complete non-blocking BST algorithm was presented by Ellen et al. [4]. This was also
the first practical non-blocking tree data structure.

In [3], we have generalized their BST to a k-ary search tree (k-ST). Each internal node contains k − 1
keys and has k children. Larger k values decrease the average depth of nodes, allowing faster searches.
However, this also increases the local work done at each internal node for routing searches and performing
updates to the tree. We have implemented both the BST of Ellen et al. and our k-ST in Java. We conducted
an experiment to compare both implementations against the concurrent Skip List (SL) from the Java class
library and the lock-based AVL tree of Bronson et al [2]. The AVL tree is the current leading concurrent
search tree. In [2], Bronson et al. presented experimental results comparing their tree with SL, a lock-based
red-black tree, and a red-black tree implemented using STM. Since SL and AVL drastically outperform the
other two implementations, we did not include the others in our comparison. In our experimental results,
BST and 4-ST (k-ST with k = 4) are the top performers in both high and low contention. When the tree
is small and the contention is high, the simplicity of BST gains advantages. On the other hand, when the
tree is large (low contention), the shallower tree depth of 4-ST makes it faster than other algorithms. In our
experimental setup, we did not observe any significant benefit of using values of k greater than four.

Our previous work focused on giving an empirical analysis of BST’s performance. In this paper, we present
a modification to the non-blocking BST implementation of Ellen et al. and an analysis of the modified
implementation’s amortized time complexity. Given a finite concurrent execution of a number of data
structure operations, the amortized cost is defined as the total amount of work done by the system divided
by the number of operations invoked. Amortized analysis ensures that, even in the worst-case execution,
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Figure 1: Initial tree.

the average cost of an operation is small, even though some operations might cost much more than others.
Our concurrent BST data structure is non-blocking, which means that even though there might be some
operations that do not make any progress, the system as a whole always makes progress. For this reason, an
amortized analysis is best suited for our algorithm.

In the next section, we start by giving a brief overview of the original BST implementation of Ellen et al.
Then we explain the motivation behind each modification to the original algorithms, followed by complete
pseudocode for the new algorithms. We explain our amortized analysis in Section 4. We bound the total
steps in an execution as follow. We assign each step to some operation (not necessarily the operation that
performed the step). We call this our blaming scheme. Then we bound the number of steps blamed on
each operation as function of c (the maximum point contention during the operation) and h (the height of
the tree at the beginning of the operation). The amortized cost of each operation is calculated as the total
number of steps assigned to that operation. Our blaming scheme proves that the amortized cost is O(h) per
Find operation, and O(h+ c2) per update operation. However, we could not find any concrete example that
shows this bound is tight. In fact, we believe that this bound can be further improved to O(h+ c). Section 5
describes an additional lemma that would be sufficient to prove a bound of O(h+ c) on the amortized cost
of update operations.

2 Overview of the Original BST Algorithm

In [4], Ellen et al. presented a non-blocking BST. Their BST is a leaf-oriented tree. The keys of the dictionary
are stored in the leaves, while the internal nodes serve the purpose of directing searches. To avoid handling
special cases when the tree has less than three nodes, they added two special keys to the initial tree, namely
∞1 and ∞2. These keys are larger than any other keys, and ∞1 <∞2 (see Figure 1). All the real keys that
are inserted into the tree will always be inserted as descendants of ∞1.

Each leaf node only stores a key. Each internal node stores a key (for directing searches) and an update
field. This update field contains the state of the node and a pointer to an Info object. The state field
captures the current condition of a node. If a node has a clean state, it means there is no operation going on
at that location. If a node has a flag state, it means some operation is trying to change one of that node’s
child pointers. If a node has a mark state, it means the node is going to be removed from the tree, or has
already been removed. The Info object stores information about the operation that is performing the change
at the node (if the node’s state is not clean). Initially, a node’s state is clean and its info is null (⊥). If an
operation is delayed because another operation is updating a node it needs to change, it can help finish that
other operation by using the information that is stored in the Info object.

Find works as in a sequential BST. It traverses down the tree until it finds a leaf. If the key stored in
that leaf matches the one it is looking for, then it returns true, and otherwise it returns false. Since Find
never needs to modify any node, it never needs to help finish other operations.

Insert and Delete are the operations that modify the tree. Since the tree is leaf-oriented, updates
always occur at a leaf of the tree. When inserting a new key, Insert starts by searching for that key. If
the key is already in the tree, the operation returns false. If the key is not present in the tree, then it will
proceed by trying to replace a leaf (at the correct position for inserting the new key) with a small subtree
containing one internal node, a leaf with the new key, and a leaf with the same key as the leaf that got
replaced. Before replacing the leaf, Insert flags the parent of that leaf. If the flag is successful, then it
replaces the leaf, and the operation finishes. However, if the flag is unsuccessful, it will help the operation
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currently operating on the parent node. After helping, Insert then retries its own operation from the
beginning.

When deleting a key, Delete starts by searching for the key that it wants to remove. If the key is not
present in the tree, the operation returns false. If the key is found, then it proceeds to delete the key by
removing the leaf that contains that key and the leaf’s parent, leaving the sibling of that leaf in the tree. To
delete a leaf, Delete first flags the grandparent node of the leaf, marks the parent, and then changes the
child pointer of the grandparent to point to the sibling of that leaf. If flagging of the grandparent (dflag
CAS) is unsuccessful, Delete would help the other operation that is operating on the grandparent node,
and then restart its own operation from the beginning. If the dflag CAS is successful, but marking the
parent (mark CAS) is unsuccessful, then Delete helps the operation that is currently operating on the
parent node, removes its own flag (backtrack CAS), and then retries its own operation from the beginning.

When an operation x helps another operation y, it is possible that y also needs to help another operation z.
In this situation, x will recursively help z (and any operation that z needs to help), and so on.

3 Modification to the Original Algorithm

In this section, we present our modifications to the non-blocking BST algorithm of Ellen et al. We shall
prove in the next sections that this modified algorithm has O(h + c2) amortized cost per operation, while
the original algorithm has Ω(c · h) amortized cost per operation.

First, we give an example of a run of the original algorithm that leads to Ω(c · h) amortized cost per
operation. Consider a system with c processes concurrently running and a BST of height h. Suppose one
process p performs a deletion of a leaf of depth h, and all other operations want to do insertions in that
same location. Suppose p succeeds in its deletion, so all other operations fail their attempt to flag and they
have to retry. (When one operation makes another operation fail and retry, we call it thwarting.) Before the
other operations start their next attempt, p quickly re-inserts the key it just deleted. Then during the next
attempt of all the insertions, p deletes the node again (and thwarts all other operations). This scenario can
be repeated over and over again. Process p always succeeds in performing its operation, but the other c− 1
processes never succeed. In this situation, all c processes traverse down the tree of height h, but only two
operations finish during each iteration. Thus the amortized cost per operation is Ω(c · h).

Our modifications consist of three main ideas. The first one is that we want to avoid having an update
operation repeat its Search after it fails an attempt. Rather than restarting the Search from the root, an
operation should be able to recover from its latest position and continue its Search from there. To do this,
we let an operation remember its search path. An operation can recover from its failed attempt by using its
knowledge of this path.

Suppose an update operation tries to search for key k, and its first attempt’s Search returns some leaf l.
If this operation makes another attempt, it will search for the same key k. Let x be some ancestor of l. If the
first Search traverses x, and x is still in the tree during the second Search, then x is still on the search path
for k. So instead of starting from the root, the second search can start from the lowest unmarked node that
was traversed during the first search. In this situation, the second attempt behaves just as if the operation
was delayed, and never performed the traversals that it undoes. We shall see in Section 4.2.1 (Lemma 4.6),
if a node v is pushed onto the stack, then there exists some tree configuration during the operation such that
v is on the search path for k. This lemma is analogous to Lemma 20 from [4], which is an important lemma
for defining the linearization points of operations.

In our implementation, we use two stacks to store the path that an update operation traverses. The
first one stores pointers to Node objects (nodeStack), and the other one stores corresponding pointers to
Update objects (updateStack). Storing Update object pointers on a stack is important to maintain the order
of reading pointers in the original algorithm (i.e., grandparent’s update pointer is read before parent node
pointer). This property ensures the correctness of the algorithm. Whenever an operation enters a node, it
pushes the node onto the stack (line 120 and 121). It pops a node when undoing the traversal to that node
(line 108 and 109). The stack used is local to each operation. Empty stacks are created in the beginning of
each Find (line 27 and 28), Insert (line 34 and 35), or Delete (line 66 and 67) operation, and the same
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Figure 2: Example of situation that causes recursive helping.

stacks are used throughout their attempts. (In fact, when implementing the data structure in program code,
these two stacks could be created local to each process, and used for every operation of that process. A
process would just need to empty the stacks at the beginning of each operation.) The Find operation never
has to retry, so it does not need to store the information about its search path, so the stacks can be omitted
in the real implementation of Find. In this paper, we use the same routine for traversal in all operations
for the sake of simplicity in both the pseudocode and the time complexity analysis.

There are two cases where an operation op needs to pop a node v off its stack. The first case is if v is
already marked when op retries its attempt (line 108). The second case (line 98) is when a Delete operation
fails its attempt. If the attempt fails to flag the grandparent node, then it would help the operation that is
currently operating on that node. On the next attempt, the grandparent node might already be deleted, or
have a new value on its update field. If the deletion attempt failed to mark its parent node, then its flag
would be backtracked before it retries another attempt. So the update field of the grandparent node will
have a new value. In order to pop the grandparent or read the new value of its update field, one must pop
the parent node first, even though the parent node is still in the tree (and thus still on the search path).

Line 112 and 113 of Recover-and-Traverse read the most recent update field of the topmost node
inside nodeStack after the first loop (which pops out marked nodes). This ensures that for each attempt,
the value of parent node’s update field is read during the attempt itself. We shall see later in Lemma 4.12
that popping one node after a failed deletion attempt and re-reading the top node’s update field on line 112
and 113 ensures that two failed attempts of the same operation are not thwarted by the same flag.

Our second modification is to remove the recursive helping mechanism. In the original algorithm, an
operation can recursively help many other operations with which it does not directly conflict. For example,
consider the tree in Figure 2. Since process Q has flagged node B, process R will fail its mark CAS, so we
say Q thwarts R. But process Q also failed its mark CAS because node A has been flagged by process P .
In this situation, P indirectly thwarts R. In the original algorithm, process R would help Q, and then
recursively help P . This chain of indirect thwarting can be of unbounded length (i.e., R’s flag on node C
could cause another attempt’s mark CAS to fail, and so on).

The following example shows that only applying the first modification to the original algorithm would
lead us to Ω(h + c2) amortized cost. (Our goal was to achieve O(h + c) amortized time. We conjecture
that the modified algorithm achieves this even though we were only able to prove that it achieves O(h+ c2)
amortized time so far.) Consider the tree in Figure 3, and c processes running on the system. Let p1, p2, ..., pc
be c Delete operations that are deleting keys 1, 2, ..., c, respectively. Suppose all operations traverse the
tree at the same time, and they succeed in flagging their grandparent nodes. Process p1 would succeed in
marking its parent node (internal node 1), but all other operations would be thwarted (i.e., pi would be
thwarted by pi−1). Then, all the operations which failed to mark would help all operations occurring lower
in the tree: p2 would help p1, p3 would help p2 and then recursively help p1, and so on. After p1 finishes,
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Figure 3: Example of execution of c operations that leads to Ω(h + c2) amortized cost even after applying
the first modification to the original algorithm.

and before all other operations retry, the process p1 quickly re-inserts key 1, and then it wants to delete 1
again. We get the exact same setting as when we started, except that the c− 1 operations that are retrying
do not need to do their traversals again. If we repeat this scenario, in each iteration we delete key 1 and
re-insert it, while all other operations keep failing. So in each iteration the system does Ω(h+ c2) steps but
only two operations finish. So, the amortized cost for each operation is Ω(h+ c2).

The purpose of the helping mechanism is to ensure that, when an operation makes another attempt,
it will not be thwarted again by the same cause. But operations that happen in non-overlapping locations
cannot directly thwart one another, so it is not necessary to help those operations. In the example of Figure 2
above, it is enough for R just to help backtrack Q’s failed attempt, because R would not need to flag or
mark the same location that P has written to.

The third modification is to Help as we go back up the tree on line 107 (when undoing traversal steps).
An operation op will undo the traversal to a node v if v is already marked when p recovers from its failed
attempt. However, v might be still in the tree (i.e., if the dchild CAS of the operation that marked it has
not yet been performed), so on p’s next attempt, v might be pushed back onto the stack. We modify the
algorithm so that p helps v’s operation as it pops v to ensure that every node is only pushed once onto the
stack during any operation. As we have removed the recursive helping mechanism, the helping procedure
takes a constant number of steps, so adding this helping when popping will only change the constant factor
of popping steps. However, we shall see later that this modification makes the time complexity analysis
easier.

Most of our modifications do not significantly affect the proofs in [4], except for some exceptions. Firstly,
the modification to Search so that a new attempt does not restart its traversal from the top of the tree,
affects the correctness proof. This modification significantly affects Lemma 20 of [4], which is the most
important lemma for the correctness proof. Lemma 4.6 is analogous to Lemma 20 of [4], but is modified
to reflect the changes we have made to the algorithm. Secondly, removing recursive helping, while it does
not affect the correctness proof, it does affect the progress proof. However, in this paper we give the time
complexity of the modified algorithm. The bound implies that the modified algorithm maintains its non-
blocking property.
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1 type Update { // stored in one CAS word
2 {clean, dflag, iflag, mark} state
3 Info *info
4 }
5 type Node {
6 Key ∪ {∞1,∞2} key
7 }
8 type Internal { // subtype of Node
9 Update update

10 Node *left , *right
11 }
12 type Leaf { // subtype of Node
13 }
14 type Info {
15 Internal *p
16 Leaf *l
17 }
18 type IInfo { // subtype of Info
19 Internal *newInternal
20 }
21 type DInfo { // subtype of Info
22 Internal *gp
23 Update pupdate
24 }
25 // Initialization:
26 shared Internal *Root = pointer to new Internal node

with key field ∞2, update field 〈clean,⊥〉, and pointers to new Leaf nodes
with keys ∞1 and ∞2, respectively, as left and right fields.

Find(Key k):boolean

27 Stack nodeStack = empty stack
28 Stack updateStack = empty stack
29 Node *l

30 Push(nodeStack ,Root)
31 Push(updateStack , Root.update)
32 l = Recover-and-Traverse(nodeStack , updateStack , k)
33 return l.key == k
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Insert(Key k):boolean

34 Stack nodeStack = empty stack
35 Stack updateStack = empty stack
36 Internal ∗newInternal
37 Leaf ∗newSibling
38 Leaf ∗new = pointer to new Leaf node whose key field is k
39 Update pupdate, result
40 IInfo ∗op
41 Node *l, *removed

42 Push(nodeStack ,Root)
43 Push(updateStack , Root.update)

44 while true
45 l = Recover-and-Traverse(nodeStack , updateStack , k)
46 if l.key == k // key is already present in the tree
47 return false
48 end if

49 pupdate = top element of updateStack
50 p = top element of nodeStack
51 if pupdate 6= Clean
52 Help(pupdate)
53 else
54 newSibling = pointer to a new Leaf whose key is l.key
55 newInternal = pointer to a new Internal node with key max(k, l.key) ,

update field 〈clean,⊥〉 , and with two child fields equal to new and newSibling
(the one with smaller key is left child)

56 op = pointer to a new IInfo record containing 〈p, l,newInternal〉
57 result = CAS(p.update, pupdate, 〈IFlag, op〉)
58 if result == pupdate
59 HelpInsert(op)
60 return true
61 else
62 Help(result)
63 end if
64 end if
65 end while
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Delete(Key k):boolean

66 Stack nodeStack = empty stack
67 Stack updateStack = empty stack
68 Update pupdate, gpupdate, result
69 DInfo ∗op
70 Node ∗l, ∗p, ∗gp

71 Push(nodeStack ,Root)
72 Push(updateStack , Root.update)

73 while true
74 l = Recover-and-Traverse(nodeStack , updateStack , k)
75 if l.key 6= k // key does not exist
76 return false
77 end if
78 gpupdate = second from top element of updateStack
79 pupdate = top element of updateStack
80 gp = second from top element of nodeStack
81 p = top element of nodeStack
82 if gpupdate 6= clean
83 Help(gpupdate)
84 else
85 if pupdate 6= clean
86 Help(pupdate)
87 else op = pointer to a new DInfo record containing 〈gp, p, l, pupdate〉
88 result = CAS(gp.update, gpupdate, 〈Dflag, op〉)
89 if result == gpupdate
90 if HelpDelete(op)
91 return true
92 end if
93 else Help(result)
94 end if
95 end if
96 end if

97 // pop p if the deletion attempt failed
98 Pop(nodeStack)
99 Pop(updateStack)

100 end while
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Recover-and-Traverse(Stack *nodeStack , Stack *updateStack , Key k):Node

101 Precondition: (1) nodeStack and updateStack are not empty,
they at least contains the root of the tree and the root’s Update record
(2) Let x1, ..., xn and y1, ..., yn be elements inside nodeStack and updateStack
respectively (in order they are pushed), then these statements hold:
(2a) xi points to an internal node
(2b) at some time, xi was child of xi−1 and xi is on the search path for k
(2c) at some earlier time, xi’s update field equals yi

102 Postcondition: (1) l points to a leaf
(2) Let x1, ..., xn and y1, ..., yn be elements inside nodeStack and updateStack
respectively (in order they are pushed), then these statements hold:
(2a) xi points to an internal node
(2b) at some time, xi was child of xi−1 and xi is on the search path for k
(2c) at some earlier time, xi’s update field equals yi

103 Node *removed
104 // recover from last attempt
105 removed = nil
106 while nodeStack . top.state == Mark // remove marked node from the stack
107 HelpMarked(nodeStack . top.update)
108 Pop(nodeStack)
109 Pop(updateStack)
110 end while

111 p = nodeStack. top
112 Pop(updateStack)
113 Push(updateStack , p.update)
114 if k < p.key
115 l = p. left
116 else l = p.right
117 end if

118 // traverse down
119 while l points to an internal node
120 Push(nodeStack , l)
121 Push(updateStack , l.update)
122 if k < l.key
123 l = l. left
124 else l = l.right
125 end if
126 end while
127 return l

CAS-Child(Internal parent Node *old , Node *new)

128 if new.key < parent.key
129 CAS(parent. left , old ,new)
130 else CAS(parent.right , old ,new)
131 end if

HelpInsert(IInfo op)

132 CAS-Child(op.p, op. l , op.newInternal) // ichild CAS
133 CAS(op.update, 〈IFlag, op〉, 〈Clean, op〉) // iunflag CAS
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HelpDelete(Dinfo *op)

134 Update result , result2

135 result = CAS(op.p.update, op.pupdate, 〈Mark, op〉)
136 if result == op.pupdate OR result = 〈Mark, op〉
137 HelpMarked(op)
138 return true
139 // helps only the direct thwarting attempt
140 else if result.state == IFlag
141 HelpInsert(result. info)
142 else if result.state == Mark
143 HelpMarked(result. info)
144 else if result.state == DFlag
145 result2 = CAS(result. info.p.update, op2.pupdate, 〈Mark, result. info〉)
146 if result2 == result. info.pupdate OR result == 〈Mark, result. info〉
147 HelpMarked(result. info)
148 else CAS(result. info.gp.update, 〈DFlag, result. info〉, 〈Clean, result. info〉)
149 end if
150 end if

151 // backtracks op because the mark attempt was failed
152 CAS(op.gp.update, 〈DFlag, op〉, 〈Clean, op〉)
153 return false
154 end if

HelpMarked(DInfo *op)

155 Node *other

156 if op.p.right == op. l // set other to point to the sibling of op. l
157 other = op.p. left
158 else other = op.p.right
159 end if
160 CAS-Child(op.gp, op.p, other)
161 CAS(op.gp.update, 〈DFlag, op〉, 〈Clean, op〉)

Help(Update u)

162 if u.state == IFlag
163 HelpInsert(u. info)
164 else if u.state == DFlag
165 HelpDelete(u. info)
166 else if u.state == Mark
167 HelpMarked(u. info)
168 end if

4 Analysis of Amortized Time Complexity

4.1 The cost of Find, Insert, and Delete are proportional to the number of
traversals and attempts

In this subsection, we show that the cost of Find, Insert, and Delete are proportional to the number of
pushes to nodeStack done in that method and the number of executions of line 44 (for Insert) or 73 (for
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Delete). This will be useful to simplify the proof of the amortized time complexity bound, since we can
focus only on these three steps. We call a single push onto nodeStack a traversal step. Note that counting
line 44 and 73 is basically counting the number of iterations of Insert and Delete’s main loop, which is
the number of attempts made in that operation. Let TRAV ERSALm and ATTEMPTm be the number
of traversals and attempts by an operation m, respectively (including the traversals that are done in any
Recover-and-Traverse invoked by m).

We first bound the time required by subroutines used by the main operations. The following lemma
shows that all helping subroutines take constant time.

Lemma 4.1 The cost of CAS-Child, HelpInsert, HelpMarked, HelpDelete, and Help are O(1)

Proof CAS-Child does not call any other method, and a constant number of steps are performed in this
method. So the cost of CAS-Child is O(1).

HelpInsert consists of a call to CAS-Child, whose cost is O(1), and a CAS on line 133. So the cost
of HelpInsert is O(1).

HelpMarked consists of a call to CAS-Child, whose cost is O(1). All other steps run in constant time,
so the cost of HelpMarked is O(1).

Depending on the if-then-else conditions, HelpDelete can make one call either to HelpMarked or
HelpInsert. We have showed that these methods take constant time. All other steps in HelpDelete also
take constant time, so the cost of HelpDelete is O(1).

Depending on the state of u, Help calls one of HelpInsert, HelpDelete, HelpMarked, or no other
routine. We have showed that all of these methods take O(1) steps. Other than those methods, there is one
if-then-else, which also takes a constant number of steps, so the cost of Help is O(1).

Next, we consider the Recover-and-Traverse method. This is the main method for traversing the tree,
as well as undoing the traversals of marked nodes when an attempt fails. The idea is to assign the undoing
step to the matching traversal step. Let RTcallm be the number of calls to Recover-and-Traverse by
operation m. First we bound the total cost of all calls to Recover-and-Traverse during operation m.

Lemma 4.2 The total cost of all calls to Recover-and-Traverse by an operation m is O(TRAV ERSALm+
RTcallm).

Proof There are two main loops in Recover-and-Traverse. The first while-loop (line 106-110) pops one
element out of nodeStack in each iteration. Let x be the node that is popped during an iteration of the
first while-loop. We have showed that HelpMarked costs O(1). We assign the checking of the while-loop
condition, the call to HelpMarked, and the two Pops on line 108 and 109 to the Push step of m that
previously pushed x onto nodeStack . (This push exists since the stack is empty at the beginning of m.)
Now, we are left with the last check for the while-loop condition, which causes the loop to finish. Since the
loop finishes, there are no more iterations to be done, and there is no Push to assign this step to. We assign
this last step to the call to Recover-and-Traverse.

The second while-loop (line 119-126) is the main routine for traversing down the tree. Each iteration
pushes one node to nodeStack , as well as pushing that node’s update record to updateStack . Let x be the
node that is pushed onto nodeStack during an iteration of the second while-loop. The if-then-else on line 122
to 125 takes constant time. We assign the work of this if-then-else, pushing x’s update record to updateStack ,
and checking the while-loop condition to the Push step that pushes x onto nodeStack (the traversal step
for node x). As we did for the first loop, we assign the last check of the while-loop condition to the call to
Recover-and-Traverse.

All steps other than the two main loops take constant time. We also assign these steps to the call to
Recover-and-Traverse. So each call to Recover-and-Traverse in m is assigned O(1) steps, giving
O(RTcallm) total work for all calls. So, the total cost for all calls to Recover-and-Traverse in m is
O(TRAV ERSALm +RTcallm).

Lemma 4.3 The cost of a Find operation m is O(TRAV ERSALm).
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Proof Find consists of one call to Recover-and-Traverse on line 32. By Lemma 4.2, the total cost for
Recover-and-Traverse of operation m is O(TRAV ERSALm + 1). Recall that the tree always has at
least one special internal node at the top of the tree (with an infinite key), so Recover-and-Traverse must
traverse at least once. So, the cost of the call to Recover-and-Traverse on line 32 is O(TRAV ERSALm).

Other than the call to Recover-and-Traverse, there is one traversal step on line 30 and several
constant-time steps which can be assigned to this traversal. So the total cost of a Find operation m is
O(TRAV ERSALm).

Lemma 4.4 The cost of an Insert operation m is O(TRAV ERSALm +ATTEMPTm).

Proof Insert consists of one main loop and several constant-time steps outside the loop. The step on
line 42 is a traversal step. We assign the Push on line 43 to this traversal step.

Now observe the main loop of Insert. Each iteration is an attempt of the Insert operation, which
consists of a call to Recover-and-Traverse, followed by several constant-time steps. By Lemma 4.2, the
cost of all calls to Recover-and-Traverse during operation m is O(TRAV ERSALm + RTcallm). We
assign all the steps inside the loop block to the step on line 44 (which is an attempt step). Since we call
Recover-and-Traverse once every attempt, RTcallm is equal to ATTEMPTm (or ATTEMPTm − 1
if it exits the loop or dies before executing line 45). Thus, the total time for an Insert operation m is
O(TRAV ERSALm +ATTEMPTm).

Lemma 4.5 The cost of a Delete operation m is O(TRAV ERSALm +ATTEMPTm).

Proof The structure of Delete is similar to Insert: it consists of one main loop and several constant-time
steps outside the loop. The step on line 71 is a traversal step. We assign the Push step on line 72 to this
traversal step.

The main loop of Delete is also similar to Insert. Each iteration is an attempt to delete key k from the
tree. By Lemma 4.2, the cost of all calls to Recover-and-Traverse is O(TRAV ERSALm+RTcallm). We
assign all steps inside the loop to the execution of line 73 (which is an attempt step). We call Recover-and-
Traverse once every iteration, so RTcallm is equal to ATTEMPTm (or ATTEMPTm − 1 if it exits the
loop or dies before executing line 74). So the total time for a Delete operation m is O(TRAV ERSALm +
ATTEMPTm).

4.2 Blaming Scheme

We have shown in the previous section that the cost of each of the main methods is proportional to the
number of attempts and traversals. In this subsection, we describe to which operation we assign each
attempt or traversal step (we call this our blaming scheme). Then, we give a bound on the number of steps
that are assigned to each operation, thus proving the bound on amortized time complexity.

There are two main ideas for our blaming scheme. The first one is for blaming traversals. The second is
for blaming attempts. Section 4.2.1 and 4.2.2 describe these two parts.

4.2.1 Blaming Scheme for Traversals

Consider operations that run without any concurrency. Focusing only on the number of attempts and
traversals done in each operation, we can see the three main operations as follows.

• Find consists of traversals.

• Insert consists of traversals and one insertion attempt.

• Delete consists of traversals and one deletion attempt.
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Figure 4: An example of tree and execution that makes an operation traverses all the edges of the tree.

This is because, without concurrency all CASes would succeed and no operation would need to retry its
attempt. However, when concurrent operations can occur, some operation might find that the location it
needs to flag or mark is not clean and thus cannot continue its work. Even when the node is clean, the
CAS might fail to write a value because there is some other operation that successfully does a CAS to the
same location. In the case where an operation performs more than one attempt, an attempt that is not the
last attempt of that operation is called a failed attempt. Thus, each attempt of an operation is either a failed
attempt or the last attempt of that operation.

Since we have concurrency, it is possible that the tree is constantly changing during an operation. Thus,
the number of traversals done by an operation can be unbounded. But we know that, unless there exists
another operation modifying the tree, the number of traversals must be bounded by the height of the tree.
We blame a traversal of a node that is newly inserted on the operation that inserted it. Here,“newly inserted”
means that the node was not present in the tree at the time the operation that traversed it started.

In the sequential setting, the number of traversals is bounded by the height of the tree since an operation
always traverses down the tree. However, in our concurrent algorithm, an operation can undo its traversal,
and thus go back up the tree. Consider the tree in Figure 4. Suppose an operation op wishes to insert
key 11. On the first attempt it will traverse down the tree and reach the leaf with key 12. But suppose there
is another operation that concurrently deletes 12, so op’s attempt fails. Before op begins its next attempt,
key 13 also gets deleted, so op’s next attempt will undo the traversal to 13 and 14, and continue the search
until it reaches 15. If this scenario is repeated in the next attempt (15 and 16 get deleted), then op’s next
attempt will traverse down to 18. So in our setting, it is possible that an operation traverses all the internal
nodes in the tree. But again, we know that an operation undoes its traversal if and only if that node was
present in the tree during one of its attempts, and was deleted before its next attempt. So, we blame the
traversal that got undone to the operation that deletes the node. Later, we shall prove that each node is
only traversed once by each operation, so the number of traversals that are blamed on the operation itself is
bounded by the height of the tree when the operation started. Also, since we only blame a traversal step on a
concurrent update, the number of traversals blamed on each update operation is bounded by the contention
when the update’s child CAS ocurred.

We now give the blaming scheme more precisely. A traversal done by operation op to enter node v is
blamed as follows.

1. If v is eventually popped off the stack on line 98, then the traversal is blamed on the attempt that
popped it (there is at most one of this kind of traversal per deletion attempt, so this assignment does
not affect the constant cost of deletion attempts).

2. Otherwise, if v was not present in the tree when op started, then the traversal is blamed on the
operation that inserted v.

3. Otherwise, if v was in the tree when op started, and v is still inside nodeStack of op during op’s last
attempt, then the traversal is blamed on op itself.

13



4. Otherwise, v was in the tree when op started, but v is no longer inside nodeStack of op during op’s last
attempt. Then, the traversal is blamed on the operation that deleted v.

The first rule of our blaming scheme handles the situation when a node is popped on line 98. We blame
the work to the deletion attempt (not the operation) that pops the parent node, adding a constant number
of steps to the cost of that attempt.

Excluding the previous case, a node is only popped from the stack if it is marked (on line 108). Before a
node is popped, the operation helps it on line 107, ensuring it is physically removed from the tree. (Lemma 11
from [4] shows that if a node is successfully marked, then no backtrack CAS belongs to the operation that
marks the node, and the first dchild that belongs to that operation succeeds.) So, in the next traversal
attempt, this node is no longer reachable, and thus never pushed back onto the stack. So, except for the
special case (which is handled by the first rule), an operation can only push each node once onto its nodeStack .

The following lemmas show that for the second and fourth cases above, the operation that is blamed
exists and is concurrent with op. Thus, we can bound the number of traversals that are blamed on an Insert
and Delete operation by the contention at the time its child CAS occurred. First, we prove a lemma that
guarantees correctness of searches. The lemma is analogous to Lemma 20 of [4], but is modified to reflect
the changes we have made to the algorithm.

Lemma 4.6 Let v be a node that is inside nodeStack at some time during an execution of operation op
whose key is k. Let RaT be the Recover-and-Traverse that pushes v onto the stack if v is not the root
node. Otherwise, RaT is the Find, Insert, or Delete method that pushed the root node onto nodeStack.
There is a configuration C such that

1. v is on the search path for k in configuration C,

2. C is before v is pushed onto the stack, and

3. C is after RaT is invoked.

Proof Let v1, ..., vj = v be the nodes on the stack in the order they are pushed. Let RaTj be the Recover-
and-Traverse that pushed vj . We prove the claim by induction on j.

Base Case (j=1): Since Root never changes, v1 is always the root node. Once the root node is pushed
on line 30, 42, or 71, it is never popped off of the stack, because the root node is never marked. The root
is never popped on line 98 either, because the root never has a parent, so if a Delete operation found the
root to be its p node, then gp is null (the dictionary is empty) and the operation would return false. Let
C1 be the configuration immediately before v1 is pushed onto nodeStack . Claim 1 is true because the root
node is always on the search path for any key. Claim 2 and 3 follow from the definition of C1.

Induction Step: Let j > 1. Assume the lemma holds for vj−1 and that op pushed vj onto the stack.
We prove that the lemma holds for vj . Let enterj be the step when RaTj reads the pointer to vj in a child
field of vj−1 (line 115, 116, 123, or 124).

There is some child CAS ccas that writes a pointer to vj in a child field of vj−1 before enterj . (In fact,
there is exactly one such child CAS, by Lemma 14(7) of [4].) Let C be the configuration just after ccas.

First we define Cj based on two cases.
Case 1: RaTj−1 = RaTj . In this case, we define Cj to be either Cj−1 or C, whichever is later.
Case 2: RaTj−1 6= RaTj . In this case, RaTj must have seen that vj−1 is unmarked on line 106. Let

Cunmarked be the configuration at the time when RaTj saw that vj−1 is unmarked. We define Cj to be either
Cunmarked or C, whichever is later.

Now we prove the three claims in turn. For the first case, the proof is very similar to the proof of
Lemma 20 of [4].

By the induction hypothesis, Cj−1 is after RaTj−1 is invoked. Thus, for the first case, Cj must also be
after RaTj is invoked. For the second case, Cunmarked is after RaTj is invoked (by definition), so Cj must
also be after RaTj is invoked.

By the induction hypothesis, Cj−1 precedes enterj−1, which precedes enterj . Configuration C and
Cunmarked precede enterj (by definition). So Cj precedes enterj , which precedes the push step of vj .
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It remains to prove that vj is on the search path for k in Cj . We consider three cases. The second and
third cases are identical to the proof of Lemma 20 of [4].

Case A: Cj = Cunmarked. In this case ccas wrote a pointer to vj in the child field of vj−1 before
Cunmarked, and the pointer was still there when enterj read that field after Cunmarked. By the induction
hypothesis, vj−1 is on the search path for k in Cj−1. Since vj−1 is unmarked in Cunmarked, by Lemma 19
of [4], it is still on the search path for k in Cunmarked. Step enterj reads the appropriate child of vj−1
(i.e., the left child if k < vj−1.key and the right child otherwise), so vj is the appropriate child of vj−1 in
configuration Cunmarked. Thus, vj is on the search path for k in Cunmarked = Cj .

Case B: Cj = Cj−1. This means that ccas wrote a pointer to vj in the child field of vj−1 before Cj−1,
and the pointer was still there when enterj read that field after Cj−1. By Lemma 14(7) of [4], the child
pointer must have contained the pointer to vj at Cj−1. Thus, at Cj−1, vj−1 was on the search path for k
(according to the induction hypothesis) and the child pointer of vj−1 that would be read by a search for k
contained a pointer to vj . Thus, vj is on the search path for k at Cj−1 = Cj .

Case C: Cj = C. The successful child CAS, ccas changes a child pointer of vj−1 immediately before
C. By Lemma 12 and Lemma 14(2) of [4], vj−1 is flagged (and hence not marked) when ccas occurs. By
Lemma 17 of [4], vj−1 is in the tree at configuration C. In some configuration Cj−1 before C, vj−1 was on
the search path for k, by the induction hypothesis. By Lemma 19 of [4], vj−1 is still on the search path for
k in configuration C. Step enterj reads the appropriate child of vj−1 (i.e., the left child if k < vj−1.key and
the right child otherwise), so vj is the appropriate child of vj−1 in configuration C. Thus, vj is on the search
path for k in C = Cj .

Lemma 4.7 If an operation op traverses to node v, but v was not in the tree when op started, then the
successful ichild CAS of the operation that inserts v is concurrent with op.

Proof By Lemma 4.6, there exists a configuration C during the call to Recover-and-Traverse that
traverses to node v (which is during the execution of op), and v is on op’s search path in configuration C.
But v was not in the tree when op started, so it must be inserted between the time op started and the time
of configuration C. So op is concurrent with the ichild CAS that inserts v.

Lemma 4.8 If an operation op traverses to node v, and that traversal was later popped by line 108, then
there exists a Delete operation whose dchild CAS physically removes v from the tree, and that dchild
CAS is concurrent with op.

Proof Since op traverses to v, by Lemma 4.6, there is some configuration C during op in which v is reachable.
An operation would only pop v on line 108 if that node is marked, and it always helps the marked node on
line 107 before popping it. So v’s update field is marked at some time during op’s execution, and either v is
already physically removed from the tree when op popped it, or op helps to remove v. (By Lemma 23 of [4],
the first dchild that belongs to the Info object in v succeeds.) So, the dchild that physically removes v
from the tree must be concurrent with op.

The following lemma shows that the number of traversals that are blamed on the operation that performed
them is bounded by the height of the tree when the operation started.

Lemma 4.9 Let hstart be the height of the tree when an operation op started. The number of traversals that
are blamed on op does not exceed hstart.

Proof Let tstart be the time when op started, and Treestart be the tree at time tstart. The cost of traversals
to nodes that are not in Treestart are not assigned to op. The only traversal steps that are blamed on op
are those which stay inside nodeStack during op’s last attempt. At the beginning of a Find, Insert, or
Delete operation, the root of the tree is pushed onto nodeStack . Other than the root, a node is pushed to
nodeStack only by line 120. If a node is pushed onto nodeStack , it must be the child of the top element of
nodeStack at the preceding execution of line 115, 116, 123, or 124. Let v1, v2, ..., vn be the nodes that stay
in nodeStack during op’s last attempt and are members of Treestart. Since a node never gets a new ancestor
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(see Lemma 18 from [4]) and vi+1 is a child of vi when op traverses to vi+1, then vi is an ancestor of vi+1 at
Treestart. So for all 1 ≤ i < n, vi is an ancestor of vi+1 in Treestart. So v1, v2, ..., vn all belong to the path
from the root to vn in Tstart. Thus, n ≤ hstart.

4.2.2 Blaming Scheme for Attempts

The second main part of our blaming scheme is for blaming attempts. An operation only retries its attempt
if the previous attempt was thwarted by an attempt of some other operation. We have seen, in a brief
example in Section 3, that an attempt can thwart another attempt directly or indirectly. It is possible
that the indirect thwarting attempt is not concurrent with the thwarted attempt. For example, suppose an
operation op1 wants to flag a node, but it was not clean because another operation op2 has performed a
dflag CAS on it. But op2’s mark CAS failed because another operation op3 flagged the same node and
finishes its operation. In this situation, op1 is indirectly thwarted by op3’s attempt. While op1’s attempt
must be concurrent with op2’s, it is not necessarily concurrent with op3’s. In this situation, the operation
that owns op1 might not be concurrent with the operation that owns op3. We do not want to assign work
to a non-concurrent operation, because we want to bound the amount of work assigned to each operation
based on the contention at some point of its execution time.

Before we describe our blaming scheme, first we give a formal description of a direct thwarting attempt
and an indirect thwarting attempt.

Definition An attempt a of an operation op is a failed attempt if a is not the last attempt of op.

Definition An attempt fails its flag or mark CAS if it or its helper perform the CAS but none of them
successfully write the attempt’s Info object to the desired update field.

Definition If a is a failed attempt, and it does not perform its flag CAS because it sees an un-clean value,
then the direct thwarting attempt is the attempt that created the Info object pupdate on line 52, gpupdate
on line 83, or pupdate on line 86.

If a is a failed attempt, and it fails its flag CAS, then the direct thwarting attempt is the attempt that
created the Info object result on line 62 or result on line 93.

If a is a failed attempt, and it fails its mark CAS, then the direct thwarting attempt is the attempt that
created the Info object result that is read by the first process that performs line 135 among all executions
of HelpDelete(op), where op is a’s Info object.

Definition If a failed attempt a fails its flag or mark CAS on an update field u, and its direct thwarting
attempt b wrote an iflag, dflag, or mark CAS on u, then we say that a is thwarted by b’s iflag, dflag, or
mark CAS respectively.

Let u be the update field of a node x, then we say that a failed at node x.

Definition An attempt a indirectly thwarts another attempt a′ if there exists a sequence of n ≥ 1 attempts
b1, b2, ..., bn such that for all 1 ≤ i < n, bi directly thwarts bi+1, a directly thwarts b1, and bn directly thwarts
a′.

Definition Let a be a failed attempt. Let a, b1, b2, ..., bn be the sequence of attempts such that each
attempt is directly thwarted by the next in the sequence. Then, a’s ultimate thwarting attempt is bn. (Since
the ultimate thwarting attempt is not thwarted by any other attempt, it must be the last attempt of its
operation.)

Lemma 4.10 For each failed attempt a, there exists an ultimate thwarting attempt.

Proof Since a failed attempt is not the last attempt of its operation, it must finish (otherwise the next
attempt could not start). So a must have seen an un-clean value or executed line 62, line 93, or line 135.
Thus, there exists another attempt that directly thwarts a.
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Figure 5: Example where more than one failed attempt that belong to the same operation can be ultimately
thwarted by the same attempt

Let a, b1, b2, ... be the sequence of attempts such that each attempt is directly thwarted by the next in
the sequence. Assume this sequence is infinite to derive a contradiction. Observe that attempts b1, b2, ...
must be deletion attempts, because each has a successful dflag CAS (so it can thwart the previous attempt)
and a failed mark CAS (so it can be thwarted by the next attempt). Let gp1, gp2, ... be the nodes that are
flagged by b1, b2, ... respectively. So for all i, bi flags node gpi, and fails to mark node gpi+1. This implies
that at the time bi traverses to gpi+1 , gpi was the parent of gpi+1. Let Gα be the graph whose vertices are
all internal nodes created during execution α and there is an edge from node x to node y if y is a child of x
at some time during α. By Lemma 36 from [4], graph Gα contains no cycle. So gp1, gp2, ... are all different
nodes. Hence, b1, b1, ... are all different attempts. This contradicts the fact that the execution is finite. So,
there exists an attempt bn which is the last attempt in the sequence and it is the ultimate thwarting attempt
of a.

Now we give the general idea of our scheme for blaming attempts. The goal is to design the blaming
scheme such that for any two concurrent operations x and y, only a constant number of attempts of x are
blamed on y. Additionally, we define a constant number of specific points during y’s execution, and all
operations containing the attempts blamed on y must be concurrent with at least one of these points of
time. So the number of attempts that are blamed on y is bounded by the contention at these points of time.

Initially we tried blaming the last attempt of an operation op on the operation itself, and each failed
attempt a on the operation that owns its ultimate thwarting attempt b. However, b might not run concur-
rently with op, so we do not want to blame the work of attempt a to b’s operation. So, we modified our
scheme as follows. If b is not concurrent with op, we blame a on op itself. More specifically, we blame the
work of a to b’s operation if op is running at the time attempt b started.

Since there is only one last attempt of each operation, there is only one such attempt blamed on the
operation itself. We shall prove later that the number of op’s failed attempts that are blamed on op itself is
bounded by the number of concurrent operations when op started and ended. The blaming scheme ensures
that only operations that are concurrent with op at the time op’s last attempt started can blame their failed
attempt on op. If each operation can only blame a constant number of attempts on op then the total number
of attempts blamed on op can be bounded by the point contention at the time op’s last attempt started.
However, the following example shows that it is possible that other operations can have more than one failed
attempts that are ultimately thwarted by op’s last attempt if certain changes in the tree structure occur.

Consider the tree in Figure 5. Suppose op wants to Insert(1) and there are operations A, B, and C that
already flagged 3, 5, and 7 respectively. A wants to Delete(4), B wants to Delete(6), and C wants to
Insert(9). First op traverses down the tree and arrives at leaf 2. But it sees a dflag of A, so it tries to help
A. Since B has already flagged node 5, op fails to finish A’s operation, and thus it backtracks A’s dflag and
retries its own attempt. Before op makes its second attempt, some other operation deletes 2 (thus removing
leaf 2 and internal node 3 from the tree). So, op’s second attempt will arrive at leaf 4. But if sees B’s dflag
on node 5, it tries to help B. But again, C already flagged node 7, so op cannot finish B’s operation. In this
case, both the first and second attempt of op are ultimately thwarted by C. This example can be generalized
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so that many attempts of an operation have the same ultimate thwarting attempt.
This leads to a problem, because our goal is to keep the number of attempts that an operation can blame

on each other operation constant. In the previous example, there is a change to the tree in between op’s first
and second attempt, which leads op to a different leaf. Thus, instead of blaming both of op’s attempts on
the ultimate thwarting attempt C, we can blame one on the update operation that changed the tree. Based
on this observation, now we describe the complete blaming scheme for blaming attempts. An attempt a of
operation op is blamed as follows.

1. If a is the last attempt of op, then a is blamed on op itself.

2. If a is a failed attempt, let b be the ultimate thwarting attempt of a.

(a) If op has an earlier failed attempt a′ whose ultimate thwarting attempt is also b, and there exists
an update operation whose child CAS is after attempt a′ started and before attempt a finishes,
then a is blamed on the operation whose child CAS was the last to modify the tree during that
time.

(b) Otherwise, if op is running at the time attempt b started, then a is blamed on the operation that
performs b.

(c) Otherwise, a is blamed on op itself.

The following lemmas show that for each ultimate thwarting attempt b of op’s failed attempt, only a
constant number of op’s attempts are blamed on the operation that performed b by rule 2(b).

Lemma 4.11 If a is a deletion attempt that has a successful dflag CAS, and gpa and pa are the two nodes
that a stores in its Info object as gp and p respectively, then pa is the child of gpa from the time a’s operation
reads pa’s update field during its traversal, until the first dchild that uses a’s Info object occurs or a’s flag
on gpa is backtracked.

Proof Since a performs its dflag CAS, a reads a clean value in both gpa and pa’s update field during its
traversal. Since a’s dflag CAS was successful, gpa’s clean value remains the same from when a read it until
the time a flagged it, so there was no other operation that changes gpa’s child pointers during this period of
time (see Lemma 12 from [4]). After a flagged gpa and before this flag is removed, there is no other operation
that can change the child field of gpa (see Lemma 10 from [4]). So a’s (or a’s helper’s) dchild is the only
CAS that can change gpa’s child field. If a is a failed attempt, then pa remains a child of gpa until a’s flag
is backtracked.

Lemma 4.12 Two distinct failed attempts that belong to the same operation cannot have the same direct
thwarting attempt.

Proof Let a1 and a2 be two failed attempts that belong to the same operation and assume a1 is performed
earlier than a2. Let b be the attempt that directly thwarts a1. Since an operation cannot retry another
attempt before finishing the previous attempt, a1 must execute line 52, 62, 83, 86, 93, or 135-150 before
starting a2. The following arguments show that b’s flag is removed before a1 finishes.

Case 1: a1 reads an un-clean value or failed its flag CAS. In this case, b either finishes its operation,
or is backtracked (by itself or by the help of a1 on line 52, 62, 83, 86, or 93) before a1 finishes.

Case 2: a1 failed its mark CAS. If a1 executes line 135 earlier than any of its helpers, or a1’s helper
reads the same Info object as a1 on line 135, then the same argument as in the first case applies. Otherwise,
some helper of a1 executes line 135 earlier than a1, and it reads a different Info object than the one a1 reads
on that line later on. Then, b’s flag is removed before a1 executes line 135. Thus, b’s flag is removed before
a1 finished.

Since b’s flag is removed before a1 finished, b cannot write another flag or mark on any active node (see
Lemma 9 from [4]). If b marked a node x, then x has been removed from the tree (see Lemma 11 and 14(2)
from [4]) by the end of a1. If x is not in nodeStack when a2 started, by Lemma 4.6, a2 will not traverse to x,
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because it is no longer reachable. Now we show that if x is in nodeStack after a1 finishes its Recover-and-
Traverse, then a1’s next attempt will pop x. We consider two cases: If a1 is an insertion attempt, then x
is a1’s parent node. The first loop of Recover-and-Traverse in a1’s next attempt will pop x because it
has been marked. If a1 is a deletion attempt, then x can be a1’s parent or grandparent node. Line 98 pops
the parent node of a failed deletion attempt, and the first loop iteration of the Recover-and-Traverse
of the attempt after a1 will pop a1’s grandparent node if it has been marked. So x is not in nodeStack after
the attempt after a1 finishes its Recover-and-Traverse (which is an earlier attempt or the same attempt
as a2).

It remains to show that a2 is not thwarted by b’s flag. This can only happen is b’s flag is read and
stored in updateStack by an attempt before a2. Line 112-113 ensures that a2’s pupdate is read during a2’s
execution, so if b’s flag was located on a1’s parent node, a2 would not read it as its pupdate value. Thus, if
a2 is an insertion attempt, it cannot be thwarted by b’s flag. If a2 is a deletion attempt, and b’s flag was
located on a1’s grandparent node, a1 will pop its parent node on line 98 and a2 will re-read gpupdate on
line 112-113. So in this case, a2 also cannot be thwarted by b’s flag.

We are left with the case where b’s flag was located on some node v, which was a parent of a1’s grandparent
node (i.e., a1 is thwarted by b’s mark on its grandparent node). If v is not inside nodeStack after a1 finishes its
Recover-and-Traverse, a2 cannot be thwarted by b’s flag. Consider the case where v is inside nodeStack
after a1 finishes its Recover-and-Traverse. Let gp and p be the grandparent and parent node found by
a1. Since gp was a child of v when b’s operation traverses to gp, v must be pushed onto nodeStack before gp.
Let v, u1, ..., un, gp, p be the top nodes inside nodeStack after a1 finishes its Recover-and-Traverse in the
order they are pushed. Since b’s operation sees gp as a child of v, u1, ..., un must be already removed from the
tree by the time b’s operation traverses to gp. So they must be already marked when b’s operation traverses
to gp, which is earlier than b’s successful mark CAS that thwarts a1. Attempt a1 pops p on line 98, and
the next Recover-and-Traverse will pop gp because it has been marked by b. It will also pop u1, ..., un
because they have been marked. If v is not marked (thus not popped), Recover-and-Traverse will
re-read its update field on line 112-113. So a2 cannot be thwarted by b’s flag.

Lemma 4.13 An attempt that fails its mark CAS cannot be directly thwarted by another mark CAS.

Proof Let a be a failed attempt that failed its mark CAS. Let b be the attempt that directly thwarts a.
To derive a contradiction, assume b has a successful mark CAS on the same node as a’s parent node. Let
pa and gpa be the two nodes that a wrote in its Info object as p and gp respectively. Let pb and gpb be the
two nodes that b wrote in its Info object as p and gp respectively.

Since a has a successful dflag, a’s operation must have seen a clean value on gpa and pa’s update field.
Let t1 and t2 be the time when a’s operation reads clean values in gpa and pa’s state, respectively. Let t3
be the time when a successfully performed its dflag CAS, and t4 be the time when the first mark CAS that
uses a’s Info object is performed (it fails because b has marked the same location). Let tb be the time when
b performed its mark CAS on pb (which equals pa), it must be between t2 and t4.

By Lemma 4.11, pa is a child of gpa from t1 until t4. So at time tb, gpb equals gpa. By Lemma 9 of [4],
b’s mark CAS must be preceded by a successful dflag CAS on gpb. Since gpb is clean from t1 until t3,
tb cannot be within this duration of time. But tb cannot be between t3 and t4 either, because during this
period of time, gpa is flagged by a, thus cannot be flagged by b simultaneously. This contradicts the fact
that tb is between t2 and t3.

Lemma 4.14 If each of two deletion attempts (not necessarily from same operation) fails its mark CAS,
then the two attempts cannot have the same direct thwarting attempt.

Proof Let a and b be two deletion attempts that each have a failed mark CAS. To derive a contradiction,
assume some attempt x directly thwarts both of them. By Lemma 4.13, a and b cannot be thwarted by x’s
mark CAS, so a and b are thwarted by x’s flag CAS. Let pa and gpa be the two nodes that a wrote in its
Info object as p and gp respectively. Let pb and gpb be the two nodes that b wrote in its Info object as p
and gp respectively. So pa is a child of gpa when a’s operation traversed pa, and pb is a child of gpb when
b’s operation traversed pb. Let ta be the time when a’s operation reads gpa is clean, or when a started,
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whichever is later. Let tb be the time when b’s operation reads gpb is clean, or when b started, whichever is
later. Since a and b have a successful dflag, gpa and gpb are still clean at time ta and tb. Without loss of
generality, assume ta ≤ tb.

Since a and b are both directly thwarted by x’s flag, pa equals pb. By the definition of direct thwarting,
the first call to HelpDelete that uses a’s Info object that executes line 135 sees x’s Info object in the update
field of pa. The same argument applies to the first HelpDelete that uses b’s Info object that executes
line 135. So x’s flag CAS happens after both ta and tb, but before the first mark CAS that uses a’s Info
object and before the first mark CAS that uses b’s Info object. By Lemma 4.11, pa is a child of gpa from
time ta until the first mark CAS that belongs to a fails, and pb is a child of gpb from time tb until the first
mark CAS that belongs to b fails. So at the time x performed its flag CAS, gpa equals gpb. Both a and
b flagged this node (otherwise they will not try to perform their mark CAS). Thus, tb must be after a’s
flag is removed since b’s flag succeeds. Thus, tb is after the first mark CAS that belongs to a fails. This
contradicts the fact that x’s flag CAS occurs after tb but before a’s failed mark CAS.

The following lemmas show that when an operation has many failed attempts with the same ultimate
thwarting attempt, only a constant number of them can be blamed on the ultimate thwarting attempt by
rule 2(b) (since the rule 2(a) will blame most of them to concurrent successful update operations instead).

Lemma 4.15 Let p be the parent node for some attempt a that searches for key k. There is a configuration C
during a’s execution, such that p is reachable and is on the search path for k.

Proof If p is pushed to nodeStack by a’s Recover-and-Traverse, then by Lemma 4.6, C exists. If p is
pushed by some earlier attempt, it means a sees p is not marked on line 106. So C is the configuration when
a executes this line. By Lemma 19 of [4], since p is unmarked and was previously on the search path for k,
it is still on the search path for k in C.

Lemma 4.16 Let a1, a2, ..., an be a sequence of failed attempts of an operation op (in order they occur) such
that there is no successful child CAS between the start of a1 and the end of an. Let bm be the last attempt
of some operation (not necessarily the same as op). There are at most three attempts of a1, a2, ..., an that
are ultimately thwarted by bm.

Proof Let T be the tree when a1 started. Since no successful child CAS occurs until an ends, the tree is
T throughout this period of time. Let li be the leaf node found by the Recover-and-Traverse in ai. Let
gpi and pi be the top two nodes on nodeStack after ai’s Recover-and-Traverse finishes. Let b1, ..., bm
be the maximal sequence of deletion attempts such that each attempt is directly thwarted on its mark CAS
by the next in sequence. By Lemma 4.14, if bi is directly thwarts bi−1 on its mark CAS, it cannot directly
thwart any other deletion attempts on its mark CAS, so this sequence is unique. So the only attempts that
can be indirectly thwarted by bm are those which are directly thwarted by b1, ..., bm−1. We have seen in the
proof of Lemma 4.10 that each of b1, ..., bm flagged a different node. The following argument shows that a
total of at most three attempts of a1, a2, ..., an are thwarted by a flag or mark that belongs to any of the
attempts b1, ..., bm.

Case 1: a1, a2, ..., an belong to an insertion attempt. By Lemma 4.15, there exists a configuration during
a1 such that p1 is reachable. So p1 is reachable in tree T . If p1 is marked at some time after a1 started
and before an executes line 52 or 62, then p1 will be removed from the tree by the first ai that sees that
mark when helping or when popping p1 out of nodeStack . Since no successful child CAS occurs, p1 must
be unmarked during this time. So p1 is the parent node for all ai. Since b1, ..., bm flagged different nodes, at
most one of them flags p1. Let x be the bi that flags p1. By Lemma 4.12, each of a1, a2, ..., an has a different
direct thwarting attempt, so only one of them is directly thwarted by x.

Case 2: a1, a2, ..., an belongs to a deletion operation. By Lemma 4.15, there exists a configuration during
a1 such that p1 is reachable. So, p1 is reachable in tree T . A failed deletion attempt will pop its parent node
on line 98, but since p1 is reachable in T , the next attempt will re-push p1 to the stack.

Case 2(a): If gp1 is not in T , it must be traversed by an earlier attempt, and already marked before a1
started. In this case, a1 would be thwarted by the attempt that marks gp1, and a2 would pop gp1 out of
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nodeStack . Let v be the top node of nodeStack when a2 exited the first loop of Recover-and-Traverse
(line 106-110). Node v is unmarked when a2 executes line 106, so it is reachable in T . If some later ai sees v
is marked on line 106, it will help remove v from the tree and pop it out of nodeStack . But there is no child
CAS that occurs between the time a1 starts and the time an finishes, so all ai must have seen v is unmarked.
We have argued that a2 will re-push p1 onto nodeStack . Node v was pushed onto nodeStack earlier than
p1, so it is an ancestor of p1. Since a node cannot have a new ancestor (see Lemma 18 of [4]), there is no
new node on the path from v to p1. Since no successful child CAS occurs after a1 starts until an finishes,
there are no new nodes inserted as a descendant of p1. So gp2 equals v, and p2 equals p1. Furthermore,
v stays on nodeStack until an finishes its Recover-and-Traverse, and p1 is always popped by ai and
re-pushed by ai+1, so for all i > 1, gpi equals v and pi equals p1. We know that a1 is directly thwarted by
the attempt that marks gp1, so the only attempt among b1, ..., bm that can directly thwart a1 is bm, because
each of b1, ..., bm−1 failed its mark CAS. By Lemma 4.12, each of a2, ..., an has a different direct thwarting
attempt, so at most two of them are directly thwarted by the attempts bi and bj that flag v and p1. So at
most three attempts of a1, a2, ..., an are ultimately thwarted by bm.

Case 2(b): If gp1 is in T , then with the same argument as for a2, ..., an in Case 2(a), gp1 and p1 will be
the grandparent and parent node for all ai. So at most two attempts of a1, a2, ..., an are directly thwarted
by the attempts bi and bj that flag gp1 and p1.

By rule 2(a), if two failed attempts of an operation op1 are ultimately thwarted by the same attempt b,
and a successful child CAS ccas occurs between the two failed attempts, we blame the later attempt to
the operation that owns ccas. So we are left with attempts that are ultimately thwarted by b such that
no successful child CAS occurred between them (by rule 2(b)). Lemma 4.16 shows that op1 cannot blame
more than three failed attempts on the operation that owns b using rule 2(b). Furthermore, if this happens,
op must be concurrent with the beginning of b. Thus, the total number of steps blamed on each operation
by rule 2(b) is O(c). Lastly, we shall bound the number of failed attempts that are blamed on an operation
that successfully modified the tree (by rule 2(a)) and to the operation that owns the failed attempt itself (by
rule 2(c)).

Lemma 4.17 For any failed attempt a of operation op, there is a point in time after op started and before
a finishes, such that op runs concurrently with a’s direct thwarting attempt b.

Proof If a does not perform its CAS because it sees an un-clean value on a node x (which can be a’s parent
or grandparent), then by the time op traverses to x, b has already written its Info object in x, but has not
yet performed an unflag or backtrack CAS on it. So op and b are concurrently running at the time op
traverses to x.

If a performed its CAS on some node x (which can be a’s parent or grandparent), but failed to write
its Info object because b has written to it, then b’s CAS must happen after op traverses to x and before a’s
failed CAS. So at the time when b successfully wrote its Info object on x, op is concurrently running with b.

Lemma 4.18 For any failed deletion attempt a that fails its mark CAS, there is a point in time where a
runs concurrently with its direct thwarting attempt b.

Proof Since a performed its mark CAS, its pupdate and gpupdate are clean. Attempt a re-reads the top
node’s update field on line 112-113, so pupdate is either read by these line, or pushed during the second loop
of Recover-and-Traverse. So pupdate was clean at some time during a’s execution, but it is un-clean
when the first mark that uses a’s Info object occurs (line 135). So, when the direct thwarting attempt b
writes its Info object on a’s parent node, a is running.

Lemma 4.19 Let b0, ..., bn be a sequence of deletion attempts, such that each attempt has a successful dflag
and is directly thwarted by the next (bn is not necessarily the ultimate thwarting attempt). Let tstart be the
earliest of the starting times of b0 and bn. Let tend be the latest of the finishing times of b0 and bn. At any
time between tstart and tend, at least one attempt of b0, ..., bn is running.
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Proof Let start(x) be the starting time of attempt x, and end(x) be the finishing time of attempt x. Let si
be the earliest of start(b0), ..., start(bi), and let ei be the latest of end(b0), ..., end(bi). We prove by induction
on i that at any time between si and ei, at least one of b0, ..., bi is active. The lemma then follows from the
facts that sn ≤tstart and en ≥tend.

Base Case: i = 0. In this case, s0 = start(b0), and e0 = end(b0). b0 is running throughout this duration
of time, so the claim holds for the base case.

Induction Step: Assume that the claim holds for i, we prove that the claim also holds for i + 1. If
start(bi+1) is earlier than si, then si+1 = start(bi+1). Otherwise, si+1 = si. If end(bi+1) is later than ei,
then ei+1 = end(bi+1). Otherwise, ei+1 = ei.

By the induction hypothesis, at least one of b0, ..., bi is active between si and ei, so at least one of
b0, ..., bi+1 is running between si and ei. If si+1 is earlier than si, then bi+1 must be running from time si+1

until si (by Lemma 4.18, bi’s execution time overlaps with bi+1’s). Similarly, if ei+1 is later than ei, then
bi+1 must be running from time ei until ei+1 (by Lemma 4.18). So at least one of b0, ..., bi+1 is running from
time si+1 until ei+1.

Lemma 4.20 Let cstart and cend be the number of concurrent operations at the time an operation op started
and ended respectively. The number of op’s failed attempts that are blamed on op itself by rule 2(c) is
O(cstart + cend).

Proof Lemma 4.16 shows that each ultimate thwarting attempt can be blamed for at most three failed
attempts of each other operation. If a failed attempt a, which has ultimate thwarting attempt bn, is blamed
on op itself, it means that op is not active at the starting time of bn. Let a, b1, ..., bn be the sequence of
attempts such that each attempt is directly thwarted by the next one. There are two possible cases: the
first one is if the time bn started is earlier than the time op started. By Lemma 4.17, b1 is concurrent with
op. So the time op starts is between the time bn starts and the time b1 finishes. By Lemma 4.19, at any
time between the starting time of bn and the ending time of b1, there exists an attempt of b1, ..., bn that
is active at the time op started. Let x be such an attempt. By Lemma 4.14, since x directly thwarts the
preceding attempt in the sequence, it cannot directly thwart any other deletion attempts on its mark CAS,
so x is unique. Thus, for each attempt x running at the time op started, at most three attempts of op are
blamed on op itself. So, the number of failed attempts of op that are blamed on op itself is bounded by
cstart. With a similar argument, if bn’s starting point is later than op’s finishing time, then there exists a
unique deletion attempt that is active at the time op finishes, so the number of op’s failed attempts that are
blamed on op itself is bounded by cend. So the total number of op’s failed attempts that are blamed on op
itself is O(cstart + cend).

Lemma 4.21 For each successful child CAS ccas, let c be the contention at the time ccas occurs. The total
number of failed attempts that are blamed on the operation that owns ccas by rule 2(a) is bounded by O(c2).

Proof If an operation op blames a failed attempt on ccas, by definition, ccas must happen during op’s
attempts, so op is running at the time ccas occurs. Thus, the number of operations that can blame attempts
on the operation that owns ccas using rule 2(a) is bounded by c. Now we shall bound the number of attempts
that each concurrent operation can blame on the operation that owns ccas.

Let a1, ...an be op’s attempts that are blamed by rule 2(a) on the operation that owns ccas (in order
they occurred). By the definition of rule 2(a), for each ai, there exists an earlier attempt a′i of op that has
the same ultimate thwarting attempt as ai, and ccas occurs after a′i starts and before ai finishes. Since ccas
occurs before a1 finishes, it must be before any of a2, ..., an start. Since rule 2(a) blames a1, ..., an on the
operation that owns ccas, by the definition of rule 2(a), ccas is the last successful child CAS that occurs
before each of a1, ..., an finishes. Thus, there is no other successful child CAS after a2 starts and before an
finishes (ccas can occur during a1 or before a1). Attempt a1 is a special attempt, there is one such attempt
(i.e., the earliest attempt of op that is blamed on the operation that owns ccas). Now we bound the number
of attempts a2, ..., an.

Since no successful child CAS occurs after a2 starts and before an finishes, at most three attempts
of a2, ..., an have the same ultimate thwarting attempt, by Lemma 4.16. We use a similar argument as
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for Lemma 4.20 to show that for each ultimate thwarting attempt of an attempt ai, there exists a unique
attempt that runs at the time ccas occurs. Since at most three attempts can share the same ultimate
thwarting attempt, n is at most 3c.

Let xi be the ultimate thwarting attempt of ai and a′i. Let bi and b′i be the direct thwarting attempts of ai
and a′i, respectively. By Lemma 4.12, a′i and ai cannot be directly thwarted by the same attempt, so bi 6= b′i.
Let c1, ..., cm be the maximal sequence of deletion attempts such that each attempt has a successful dflag
and is thwarted on its mark CAS by the next attempt in the sequence, and attempt cm is directly thwarted
by xi. By Lemma 4.14, ci−1 is the only deletion attempt that fails its mark CAS and is thwarted by ci.
Attempts b′i and bi are attempts that thwart a′i and ai, so they must belong to the sequence c1, ..., cm, xi,
because ai and a′i are ultimately thwarted by xi. So either b′i is thwarted by bi (possibly indirectly), or vice
versa. We consider the case where b′i is thwarted by bi, and a symmetric argument applies for when bi is
thwarted by b′i.

By Lemma 4.17, there exists a point in time before a′i finishes such that b′i is running, and there exists a
point in time before ai finishes such that bi is running. Let tccas be the time when ccas occurs. We consider
three cases based on the time b′i and bi occur relative to tccas.

Case 1: both b′i and bi finish before tccas. For i ≥ 2, ai starts later than tccas. Since bi is finished before
tccas (which is before ai started), bi’s flag has been removed when ai started, and if bi has marked a node, it
is no longer reachable. By Lemma 4.15, the parent node of ai is reachable, and Recover-and-Traverse
re-reads the top node’s update field on line 112-113, so ai cannot be thwarted by bi on its parent node. So
ai can only be thwarted by bi if ai is a deletion attempt whose gpupdate is read by an earlier attempt.

Let p be the parent node for ai. When ai fails, it pops its parent node on line 98, so the next attempt
can pop the grandparent node (if it is already marked) or re-read its update field. Since no child CAS
occurs between the start of a2 and the end of an, p must be still reachable, and is re-pushed by the next
attempt after ai. So ai is the only attempt that does not read its gpupdate during its attempt itself. (Each
subsequent attempt will reach the same grandparent and parent node, and will read the update field of the
grandparent node during the call to Recover-And-Travere.) Thus, at most one attempt falls into case 1.

Case 2: both b′i and bi start after tccas. By Lemma 4.17, there exists a point in time before a′i finishes
such that b′i is running, so the only case where both b′i and bi start after tccas is when a′i running at time
tccas. There is only one attempt of op that runs at tccas, so at most one attempt a′i of op that falls into this
category. As argued above, there are at most three attempts aj with the same ultimate thwarting attempt
as this a′i.

Case 3: otherwise. Then, either (1) one of b′i and bi is running at tccas or (2) one of b′i and bi ends before
tccas and the other begins after tccas. Either way, one of b′i and bi starts before tccas and the other ends after
tccas.

We have showed that b′i and bi belong to the sequence c1, ..., cm, xi. By Lemma 4.19, at least one of
b′i, ..., bi is active at time tccas. By Lemma 4.16, at most three attempts of a2, ..., an are ultimately thwarted
by xi. Thus, the number of failed attempts that op blames on the operation that owns ccas that falls into
this category is bounded by 3c.

We have argued that op has one special attempt (a1), at most one attempt of the first case, at most one
attempt of the second case, and at most 3c attempts of the third case. So n is bounded by 3 + 3c. There
are at most c operations running at time tccas, so the total number of attempts blamed on the operation
that owns ccas by rule 2(a) is O(c2). We have argued that op has one special attempt (a1), at most one
attempt of the first case, at most one attempt of the second case, and at most 3c attempts of the third case.
So n is bounded by O(4 + 3c). There are at most c operations running at time tccas, so the total number of
attempts blamed on the operation that owns ccas by rule 2(a) is O(c2).

4.3 Time Complexity

Lemma 4.22 Let hstart be the height of the tree when a Find operation op started. The amortized cost of
op is O(hstart).
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Proof A Find operation only consists of traversals, so by Lemma 4.9, the number of traversals that are
assigned to this operation is bounded by O(hstart).

Lemma 4.23 Let cstart, cend, clastattempt, and cichild be the contention at the time an Insert operation op
starts, ends, begins its last attempt, and when op’s successful ichild CAS (if any) occurs, respectively. Let
c be max(cstart, cend, clastattempt, cichild). Let hstart be the height of the tree when op started. The amortized
cost of op is O(hstart + c2).

Proof By Lemma 4.9, the number of traversals that are blamed on the operation itself is O(hstart). By
Lemma 4.7, the number of traversals that are blamed on op by the second rule of the traversal blaming
scheme is bounded by cichild.

The last attempt of op is blamed on op itself. By Lemma 4.21, the number of failed attempts that are
blamed on op by rule 2(a) is bounded by O(cichild

2). By Lemma 4.16, each operation that runs at the time
op’s last attempt started can blame at most three attempts on op, so the total number of attempts blamed
on op by rule 2(b) is bounded by O(clastattempt). By Lemma 4.20, the number of failed attempts that are
assigned to the operation itself by rule 2(c) is bounded by O(cstart + cend). So in total, the amortized cost
of op is O(hstart + c2).

Lemma 4.24 Let cstart, cend, clastattempt, and cdchild be the contention at the time a Delete operation op
starts, ends, begins its last attempt, and when op’s successful dchild CAS (if any) occurs, respectively. Let
c be max(cstart, cend, clastattempt, cdchild). Let hstart be the height of the tree when op started. The amortized
cost of op is O(hstart + c2).

Proof By Lemma 4.9, the number of traversals that are blamed on the operation itself is O(hstart). By
Lemma 4.8, the number of traversals that are blamed on op by the fourth rule of the traversal blaming
scheme is bounded by cdchild.

The last attempt of op is blamed on op itself. By Lemma 4.21, the number of failed attempts that is
blamed on op by rule 2(a) is bounded by O(cdchild

2). By Lemma 4.16, each operation that runs at the time
op’s last attempt started can blame at most three attempts on op, so the total number of attempts blamed
on op by rule 2(b) is bounded by O(clastattempt). By Lemma 4.20, the number of failed attempts that are
blamed on the operation itself by rule 2(c) is bounded by O(cstart + cend). So in total, the amortized cost of
op is O(hstart + c2).

5 Obstacle to obtaining an O(h+ c) bound

We have showed that the amortized cost of the Find operation is O(hstart), and the amortized cost of
Insert and Delete operations are O(hstart + c2). Our original goal was to prove that the amortized cost
of the modified algorithm is O(h+ c). However the tightest bound we got so far for the number of attempts
blamed on an update by the second rule (i.e., Lemma 4.21) is O(c2). Although the bound we get is O(c2),
we could not find any concrete example of an execution that would show this amortized cost is tight. We
believe that for each successful child CAS ccas, each concurrent operation with ccas can only blames O(1)
failed attempts to the operation that owns ccas. So the total number of failed attempts blamed on an update
operation by the second rule is O(c).

Conjecture Let a1, ..., an be a sequence of failed attempts that belong to the same operation op (in
order), such that there is no successful child CAS that occurs after a1 starts and before an−1 finishes, and
there are O(1) successful child CAS that occurs after an−1 starts and before an finishes. Let a′1, ..., a

′
n be the

ultimate thwarting attempts of a1, ..., an respectively. At most O(1) attempts of op after an are ultimately
thwarted by any of a′1, ..., a

′
n.
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