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Abstract

Zhang and Van Breugel recently developed a progress measure for probabilistic

model checking. It expresses the minimum probability of a linear temporal logic

(LTL) property being satisfied, given a partially-explored state space. They showed

how to calculate this measure for invariants.

In this thesis, we expand on the above research. Previously, how to calculate

progress for LTL formulas other than invariants was unknown. We show how to

calculate progress for a large subset of LTL formulas, which we call unipolar. We

also present an efficient algorithm to calculate progress for properties of the form

p U q, where p and q are atomic propositions. Furthermore, we prove several other

properties of the progress measure, such as the relationship between the progress

for a property and for the negation of that property. In addition, we use a graphics

processing unit to improve the speed of progress calculations for invariants.
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1 Introduction

Due to the infamous state space explosion problem [23, Section 1], model checking
a property of source code that contains randomization often fails. In many cases,
the probabilistic model checker simply runs out of memory without reporting any
useful information. In [30], Zhang and Van Breugel propose a progress measure for
probabilistic model checkers. This measure captures the amount of progress the
model checker has made with its verification effort. Even if the model checker runs
out of memory, the amount of progress may provide useful information.

Our aim is to develop a theory that is applicable to probabilistic model checkers
in general. Our initial development has been guided by a probabilistic extension of
the model checker Java PathFinder (JPF) created by Zhang [27]. This extension can
check properties, expressed in linear temporal logic (LTL), of Java code containing
randomized sequential algorithms.

We model the code under verification as a probabilistic transition system (PTS),
and the systematic search of the system by the model checker as the set of explored
transitions of the PTS. We focus on linear-time properties, in particular those
expressed in LTL. The progress measure is defined in terms of the set of explored
transitions and the linear-time property under verification. The progress measure
returns a real number in the interval [0, 1]. The larger this number, the more
progress the model checker has made with its verification effort.

Zhang and Van Breugel showed that their progress measure provides a lower
bound for the measure of the set of execution paths that satisfy the linear-time
property under verification. If, for example, the progress is 0.9999, then the proba-
bility of encountering a violation of the linear-time property when we run the code
is at most 0.0001. Hence, despite the fact the model checker may fail by running out
of memory, the verification effort may still be a success by providing an acceptable
upper bound on the probability of a violation of the property.

Zhang and Van Breugel showed how to calculate the progress measure when the
property under verification is an invariant. However, how to calculate progress for
other types of linear-time property remained an open question. In this thesis, we
present algorithms that can calculate progress for a wide range of properties.

In Chapter 4, we show how to calculate the progress measure for properties
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expressed by a large subset of LTL which we call unipolar. Unipolar LTL formulas
are those that can be written in positive normal form without both an atomic
proposition and the negation of that same proposition. For instance, a ∨ ¬b is
unipolar, and a ∨ ¬a is not.

A wide range of useful formulas can be written in unipolar LTL. Examples
include properties of the well-known mutual exclusion problem for concurrent pro-
cesses. That two threads cannot be in their critical sections at the same time can
be expressed as �(¬crit1 ∨¬crit2), and both threads being able to eventually enter
their critical sections can be written as (�♦crit1) ∧ (�♦crit2) [2, Chapter 5]. Both
of these LTL formulas are unipolar.

The time complexity of the algorithm for unipolar LTL is exponential in the
size of the formula, and polynomial in the size of the searched space. Since the size
of LTL formulas is normally small, we believe this algorithm will be useful.

In Chapter 6, we present an algorithm for calculating progress for LTL formulas
of the form pU q, where p and q are atomic propositions. Progress for these formulas
could be calculated using the unipolar LTL algorithm in Chapter 4. However, we
develop a more efficient algorithm that allows the progress toward verifying pU q to
be calculated by determining the reachability probability of a state in a modified
system.

In addition to algorithms to compute progress, we present other useful algo-
rithms and theorems. Chapter 5 contains a polynomial-time algorithm to calculate
a lower bound for the progress measure, which can be used for any LTL formula.
The lower bound is calculated in the same manner as progress for invariants in [30],
so in effect this algorithm has already been implemented and tested. The bound is
tight for invariants, and possibly other classes of properties. This lower bound is
useful in principle because, like the progress measure, it provides a minimal proba-
bility of a property being satisfied in the system. However, in some situations the
lower bound is very low while the actual progress is high, making it less informative.

In Chapter 3, we show some relationships between the progress of verifying
a property, the progress of verifying the negation of the property, and finding a
violation of the property. We also show that the progress of a property, and the
progress of its negation, form upper and lower bounds on the actual measure of
executions which satisfy that property. The proofs in Chapter 3 help to further
define the properties of the progress measure, and could be useful in future work.

Chapter 7 and 8 depart from the theoretical proofs of previous chapters. In
them, we empirically explore the possibility of using a graphics processing unit
(GPU) to accelerate the calculation of progress. Zhang and Van Breugel [30]
showed that progress for invariants can be determined by calculating the proba-
bility of reaching a particular state in a modified system. As shown in Chapter 6,
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the progress for properties of the form p U q can be calculated in a similar fashion.
Thus, the efficient computation of reachability probabilities is useful for progress
calculations. These reachability probabilities play a key role in several other areas,
including probabilistic model checking more generally (see, for example, [2, Chap-
ter 10]) and performance evaluation (see, for example, [16]). Hence, these results
also have more general applications.

The general reachability probability problem can be stated as follows: given
a PTS, an initial state of the PTS, and a set of goal states of the PTS, we are
interested in the probability of reaching any of the goal states from the initial
state. This probability is known as the reachability probability.

As we will sketch in Chapter 7, computing reachability probabilities can be
reduced to solving a linear equation of the form A · x = b for x, where A is
an n × n-matrix and b is an n-vector. Although the equation can be solved by
inverting the matrix A, such an approach becomes infeasible for large matrices due
to the computational complexity of matrix inversion. For instance, Gauss-Jordan
elimination has time complexity O(n3) (see, for example, [22, Section 2]). For large
matrices, iterative methods are used instead.

The iterative methods compute successive approximations to obtain a more ac-
curate solution to the linear system at each iteration. In this thesis, we consider
two linear methods, namely the Jacobi method and the biconjugate gradient sta-
bilized (BiCGStab) method. We have implemented a sequential version of each
method in C, and a parallel version using NVIDIA’s compute unified device archi-
tecture (CUDA). CUDA allows us to run C code on a GPU with hundreds of cores.
Currently, CUDA is only supported by NVIDIA GPUs.

To compare the performances of our four implementations, we constructed three
sets of tests. First of all, we randomly generated matrices with varying sizes and
densities. Our experiments show that the BiCGStab method is superior to the
Jacobi method for denser matrices. They also demonstrate a fairly consistent per-
formance benefit from using CUDA to implement the Jacobi method. However,
we observe that the CUDA version of the BiCGStab method is only beneficial for
larger, denser matrices. For the smaller and sparser matrices, the sequential version
of the BiCGStab method outperforms the CUDA version.

Secondly, we used the extension of the model checker JPF [27] to generate
transition probability matrices corresponding to the Java code of two randomized
sequential algorithms. The Jacobi method performed better than the BiCGStab
method for these matrices. This supports the conjecture by Bosnacki et al. [6, 7]
that the Jacobi method is superior to Krylov subspace methods, a class to which
the BiCGStab method belongs, for probabilistic model checking.

Finally, we randomly generated matrices with the same sizes and densities as
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the matrices produced by JPF. We obtained very similar results. This suggests that
size and density are the main determinants of which implementation performs best
on probabilistic model checking data, and whether CUDA will be beneficial, rather
than other properties unique to matrices found in probabilistic model checking.

We also examine the related problem of calculating whether or not each state in
a PTS can reach a set of goal states, which we refer to as binary reachability. This
calculation is performed to reduce the size of the matrix before using an iterative
solver such as the Jacobi or BiCGStab method. We test a sequential and a GPU
binary reachability algorithm, and observe that the GPU version gives improved
calculation speed. However, due to the construction of this particular algorithm, it
is most useful on dense matrices, and model checking problems for which the graph
of the state space has a high vertex degree.

The work of Chapter 4 to 7 is by Cormie, and Chapter 3 is joint work with Van
Breugel. Parts of Chapter 7 and 8 appeared in [9], and some material in Chapter
3 and 4 appeared in [10].
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2 Background

2.1 Measure Theory

The concept of the progress measure is rooted in measure theory. Thus, in this
section we review some of the basic concepts of measure theory which are used
to define the progress measure. We also present concepts that are used in later
chapters to prove properties of the progress measure. Our definitions are based on
[13] and [5].

First, we present the idea of a countable set. A set is countable if there is a
mapping from each element of the set to a unique natural number. The sets we
discuss in this thesis are all countable, a fact that we use in several definitions and
proofs.

Definition 2.1 A set X is countable if there exists a injective function f : X → N.

Example 2.2 Examples of countable sets include any finite set, and any infinite
subset of N, such as the set of all prime numbers. On the other hand, the set of
real numbers, R, is not countable.

Below, we present three well-known properties of countable sets.

Proposition 2.3 If a set X is countable, and Y ⊆ X, then Y is countable.

Proof See [13, Chapter 2]

Proposition 2.4 A countable union of countable sets is countable.

Proof See [17, Chapter 7].

Proposition 2.5 Let X be a countable set. Then X∗, the set of finite sequences
of elements of X, is countable.

Proof See [26, Theorem 7.2.4].
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Next, we introduce the concepts that define a measure, such as the progress
measure. Firstly, we define the σ-algebra, which forms the basis of a measurable
space.

Definition 2.6 Let X be a set. A σ-algebra over X is a set Σ of subsets of X that
satisfy the following conditions:

• X ∈ Σ;

• if A,B ∈ Σ, then A \B ∈ Σ;

• closed under countable unions: for every sequence 〈An〉n∈N in Σ,⋃
n∈NAn ∈ Σ.

Given a σ-algebra, we can create a measure as defined below.

Definition 2.7 Let X be a set, and let Σ be a σ-algebra over X. A measure on Σ
is a function µ : Σ→ [0,∞] such that:

• µ(∅) = 0;

• µ is countably additive: for every sequence of pairwise disjoint sets 〈An〉n∈N
in Σ, µ

(⋃
n∈NAn

)
=
∑

n∈N µ(An).

If, in addition to the above, µ(X) = 1, then µ is a probability measure.

Definition 2.8 A measure space is a triple 〈X,Σ, µ〉, where X is a set, Σ is a
σ-algebra over X, and µ is a measure on Σ. If µ is a probability measure, then
〈X,Σ, µ〉 can also be called a probability space.

Below, we state an important property of a measure.

Proposition 2.9 Let µ be a measure on a σ-algebra Σ. Then µ is monotone: for
all A,B ∈ Σ, if A ⊆ B then µ(A) ≤ µ(B).

2.2 Probabilistic Model Checking

In probabilistic model checking, a model of a program is created, then checked to see
if it satisfies desired properties. In this section, we present a mathematical definition
of a program model used in probabilistic model checking, called a probabilistic
transition system. We also present linear temporal logic, which is used to specify
properties of the model.
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2.2.1 Probabilistic Transition Systems

A program with probabilistic characteristics can be modeled as a probabilistic tran-
sition system (PTS). A PTS has states that correspond to program states, and tran-
sitions between states that correspond to possible execution steps. These transitions
are associated with probability distributions: each transition has a probability in
the interval (0, 1], and the sum of outgoing transition probabilities from each state
is 1. Each state is associated with a set of atomic propositions, or labels, which
capture whether the state satisfies some property.

Definition 2.10 A probabilistic transition system (PTS) is a tuple
〈S, T,AP, s0, source, target, prob, label〉 consisting of

• a countable set S of states,

• a countable set T of transitions,

• a set AP of atomic propositions,

• an initial state s0,

• a function source : T → S,

• a function target : T → S,

• a function prob : T → (0, 1], and

• a function label : S → 2AP

such that

• s0 ∈ S and

• for all s ∈ S,
∑

source(t)=s prob(t) = 1.

Example 2.11 The probabilistic transition system S depicted by

s1

1
2 //1

2

{{

s3

1

��

s0
1
2

;;

1
2

&&MMMMMM

s2

1

��

has four states and six transitions. In this example, we use the indices of the source
and target to name the transitions. For example, the transition from s0 to s2 is
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named t02. Given this naming convention, the functions sourceS and targetS are
defined in the obvious way. For example, sourceS(t02) = s0 and targetS(t02) = s2.
The function probS can be easily extracted from the above diagram. For example,
probS(t02) = 1

2
. All states are labelled with the atomic proposition p and the states

s1 and s2 are also labelled with the atomic proposition q. Hence, for example,
labelS(s2) = {p, q}.

Instead of 〈S, T,AP, s0, source, target, prob, label〉 we usually write S and we
denote, for example, its set of states by SS . We model the potential executions of
the system under verification as execution paths of the PTS.

Definition 2.12 An execution path of a PTS S is an infinite sequence of transi-
tions t1t2 . . . such that

• for all i ≥ 1, ti ∈ TS ,

• for all i ≥ 1, targetS(ti) = sourceS(ti+1).

The set of all execution paths such that s = sourceS(t1) is denoted by ExecsS .
The set of all execution paths that begin in the initial state, Execs0SS , is denoted by
ExecS .

Example 2.13 Consider the PTS of Example 2.11. For this system, t02t22
ω, t01t13t33

ω,
and t01t10t02t22

ω are examples of execution paths in ExecS .

We denote the set of finite prefixes of execution paths in ExecsS by pref(ExecsS).
We call the prefix of length zero ε, and define sourceS(ε) = targetS(ε) = s0S .

Given e ∈ ExecsS , and i ≥ 0, we use e[i] to denote the prefix of e that consists
of the first i transitions in e. For instance, consider the PTS of Example 2.11, and
the execution path e = t01t13t33

ω. Then e[0] = ε, e[1] = t01, and e[4] = t01t13t33t33.
For e ∈ pref(ExecsS), we use |e| to denote the length of e. For instance, if

e = t01t13t33, then |e| = 3. We use e[i] as we do for execution paths, with the
additional condition that i ≤ |e|.

Given e ∈ pref(ExecsS), we use targetS(e) to denote the target of the last
transition in e, and sourceS(e) to denote the source of the first transition in e.
For instance, consider the PTS S of Example 2.11, and e = t01t13t33. Then
sourceS(e) = s0, and targetS(e) = s3.

Given e ∈ pref(ExecsS) or e ∈ ExecsS , and a transition t, we use t ∈ e to indicate
that the transition t occurs in e. For example, if e = t01t13t33, then t01 ∈ e.

Below, we define the prefix relation, which expresses whether one sequence of
transitions is a prefix of another.

8



Definition 2.14 The relation v⊆ pref(ExecS)× pref(ExecS) is defined by

e1 v e2 if e1 is a prefix of e2.

Example 2.15 Consider the PTS of Example 2.11. Then t01 v t01t13, t02 v t02,
and t02 6v t01t13.

Proposition 2.16 〈pref(ExecS),v〉 is a partial order.

Proof See, for example, [12, Chapter 1.9]. �

We refer to two prefixes as incomparable if neither one is a prefix of the other.

Definition 2.17 Let e1, e2 ∈ pref(ExecS). Then e1 and e2 are incomparable if
e1 6v e2, and e2 6v e1.

Example 2.18 Consider e1 = t0t1, e2 = t0, and e3 = t1. Then e1 and e3 are
incomparable, as are e2 and e3. But e2 v e1, so e1 and e2 are not incomparable.

We also use e1 @ e2 to denote that e1 v e2 and e1 6= e2.

Below, we define minimal elements and subsets of pref(ExecS) with respect to
the prefix relation.

Definition 2.19 Let A ⊆ pref(ExecS). An element e ∈ A is minimal in A if, for
all e′ ∈ A, if e′ v e then e′ = e.

Definition 2.20 Let A ⊆ pref(ExecS). The set min(A) of minimal elements of A
is defined by

min(A) = {e ∈ A | e is minimal in A }.
Example 2.21 Consider the PTS in Example 2.11. Let A = {t01, t01t13, t02}. Then
min(A) = {t01, t02}.

Next, we present the concept of a basic cylinder set. Given a PTS S, and an
execution prefix e, the set of all executions of S that begin with e is a basic cylinder
set.

Definition 2.22 Let e ∈ pref(ExecS). Its basic cylinder set Be
S is defined by

Be
S = { e′ ∈ ExecS | e v e′ }.

Now we prove that two basic cylinder sets are disjoint when their prefixes are
incomparable.

Proposition 2.23 Let S be a PTS, and e1, e2 ∈ pref(ExecS). If e1 and e2 are
incomparable, then Be1

S and Be2
S are disjoint.

Proof Let e ∈ Be1
S , and let e′ ∈ Be2

S . Since e1 and e2 are incomparable and e1
is a prefix of e, e2 is not a prefix of e. Therefore, e 6∈ Be2

S . Similarly, e′ 6∈ Be1
S .

Therefore, Be1
S ∩B

e2
S = ∅. �
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2.2.2 Linear-Time Properties

In probabilistic model checking, we can express characteristics of the system that
we want to examine as linear-time properties.

Definition 2.24 Let AP be a set of atomic propositions. A linear-time property
is a subset of (2AP )ω.

Now, we define when a sequence of sets of atomic propositions satisfies a linear-
time property.

Definition 2.25 Let σ ∈ (2AP )ω, and let φ be a linear-time property. The satis-
faction relation, |=, is defined by

σ |= φ iff σ ∈ φ.

As per Definition 2.10, the function labelS assigns to each state the set of atomic
propositions that hold in the state. This function is extended to execution paths
and their prefixes as follows.

Definition 2.26 The function traceS : ExecS → (2APS )ω is defined by

traceS(t1t2 . . .) = labelS(sourceS(t1))labelS(sourceS(t2)) . . .

The function traceS : pref(ExecS)→ (2APS )∗ is defined by

traceS(t1 . . . tn) = labelS(sourceS(t1)) . . . labelS(sourceS(tn))labelS(targetS(tn))

Example 2.27 Consider the PTS S of Example 2.11.

traceS(t02t22
ω) = {p}{p, q}ω

traceS(t01t13t33
ω) = {p}{p, q}{p}ω

traceS(t01t10t02t22
ω) = {p}{p, q}{p}{p, q}ω

Based on this notion, we define when an execution path of a PTS satisfies a
linear-time property.

Definition 2.28 Given a PTS S, e ∈ ExecS , and a linear-time property φ, the
satisfaction relation |=S is defined by

e |=S φ iff traceS(e) |= φ.

10



Many linear-time properties can be expressed using linear temporal logic (LTL).
We first define the syntax of LTL, then define its semantics. Our definitions are
based on [2, Chapter 5].

Definition 2.29 Let AP be a set of atomic propositions. Linear temporal logic
(LTL) formulas over AP are formed by the following grammar (where p ∈ AP ):

φ := true | p | φ ∧ φ | ¬φ | ©φ | φ U φ

Brackets, though not included in the simplified grammar above, can also be
used in LTL formulas to specify precedence.

For the following definition, given σ ∈ (2AP )ω, we use σ[i...] to represent the
suffix of σ beginning with the ith set in σ. For instance, if σ = P0P1P2

ω, then
σ[0...] = σ, σ[1...] = P1P2

ω, and σ[2...] = P2
ω. As for executions, we use σ[i] to

represent the prefix of σ containing the first i sets, so in our example σ[1] = P0,
σ[2] = P0P1, etc.

Definition 2.30 Let σ ∈ (2AP )ω. The satisfaction relation |= is defined as follows:
σ |= true
σ |= p iff p ∈ σ[1]

(and) σ |= φ1 ∧ φ2 iff σ |= φ1 and σ |= φ2

(until) σ |= φ1 U φ2 iff ∃j ≥ 0 such that σ[j...] |= φ2

and ∀0 ≤ i < j : σ[i...] |= φ1

(not) σ |= ¬φ iff σ 6|= φ
(next) σ |=©φ iff σ[1...] |= φ

The syntax and semantics above can be used to define further operators. The
following are used in this thesis:

false = ¬ true
(eventually) ♦φ = true Uφ
(always) �φ = ¬♦¬φ
(or) φ1 ∨ φ2 = ¬(¬φ1 ∧ ¬φ2)
(release) φ1 R φ2 = ¬(¬φ1 U ¬φ2)
(weak until) φ1W φ2 = (φ1 U φ2) ∨�φ1

In [30] Zhang and Van Breugel show how to calculate progress for a category of
linear-time properties called invariants, defined below. Some of the results in this
thesis also involve invariants.

Definition 2.31 An invariant is a property that can be expressed as �p for some
atomic proposition p.

11



The definition above is a simplified version of [2, Definition 3.20], in which
the condition that must hold in each state is a propositional logic formula rather
than an atomic proposition. Since whether or not a propositional logic formula is
satisfied in each state can be converted to an atomic proposition, the definitions
are equivalent for our purposes.

2.3 A Progress Measure

In this section, we review some of Zhang and Van Breugel’s key notions and results
on the progress measure, from [30].

Given a PTS S, we generate a σ-algebra over ExecS from the basic cylinder sets
of S. We then define a measure on these cylinder sets to create a measure space,
which forms the basis of the progress measure.

Definition 2.32 Let S be a PTS. The σ-algebra over ExecS , ΣS , is defined as the
smallest σ-algebra containing BS = {Be

S | e ∈ pref(ExecS)}.

Definition 2.33 Given a PTS S, the measure µS is defined on a basic cylinder set
Bt1...tn
S by

µS(Bt1...tn
S ) =

∏
1≤i≤n

probS(ti).

The function µS is a probability measure on the set of basic cylinder sets of
S. As discussed in [30], this measure can be extended to a probability measure
on the σ-algebra ΣS . Thus the triple 〈ExecS ,ΣS , µS〉 is a probability space, as per
Definition 2.8.

The verification effort of the probabilistic model checker is represented by its
search of the PTS. The search is captured by the set of transitions that have been
explored during the search.

Definition 2.34 A search of a PTS S is a finite subset of TS .

Example 2.35 Consider the PTS of Example 2.11. The sets ∅, {t01}, {t02},
{t01, t02} and {t01, t02, t10, t13, t22, t33} are examples of searches.

A PTS is said to extend a search if the transitions of the search are part of the
PTS. We will use this notion in the definition of the progress measure.

Definition 2.36 The PTS S ′ extends the search T of the PTS S if for all t ∈ T ,
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• t ∈ TS′,

• sourceS′(t) = sourceS(t),

• targetS′(t) = targetS(t),

• probS′(t) = probS(t),

• labelS′(sourceS′(t)) = labelS(sourceS(t)),

• labelS′(targetS′(t)) = labelS(targetS(t)), and

• s0S = s0S′.

Example 2.37 Consider the PTS of Example 2.11 and the search {t01, t02}. The
following extend the search:

s1
1

&&MMMMMM

s0

1
2

88rrrrrr

1
2

&&MMMMMM s3

1

��

s2
1

88rrrrrr

s1

1

��

s0

1
2

88rrrrrr

1
2

&&MMMMMM

s2

1

��

s11

{{
s0

1
2

;;

1
2

&&MMMMMM

s2

1

OO
s1

1
2 //

1
2

��
;;

;;
;;

;;
; s3

1��
s0

1
2

88rrrrrr

1
2

&&MMMMMM s4

1��
s2

1

OO

s5
1oo

Note that for any search of a PTS S, S itself extends the search.

PTSs that extend a particular search give rise to the same set of execution paths
if we restrict ourselves to those execution paths that only consist of transitions
explored during the search.

Proposition 2.38 If the PTS S ′ extends the search T of the PTS S, then

(a) T ∗ ∩ pref(ExecS) = T ∗ ∩ pref(ExecS′) and

(b) T ω ∩ ExecS = T ω ∩ ExecS′.

Proof We only prove part (a). Part (b) can be proved similarly. Assume that
t1 . . . tn ∈ T ∗ ∩ pref(ExecS). Since S ′ extends T , s0 is the initial state of both S
and S ′. Since t1 . . . tn ∈ T ∗ and S ′ extends T , we have that for all 1 ≤ i ≤ n,
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(1) sourceS(ti) = sourceS′(ti) and

(2) targetS(ti) = targetS′(ti).

Since t1 . . . tn ∈ pref(ExecS), we have that

(3) sourceS(ti+1) = targetS(ti) for all 1 ≤ i < n and

(4) sourceS(t1) = s0.

For all 1 ≤ i < n,

sourceS′(ti+1) = sourceS(ti+1) [(1)]

= targetS(ti) [(3)]

= targetS′(ti) [(2)].

Furthermore,

sourceS′(t1) = sourceS(t1) [(1)]

= s0 [(4)].

Hence, t1 . . . tn ∈ T ∗ ∩ pref(ExecS′). �

PTSs that extend a particular search also assign the same measure to basic
cylinder sets of prefixes of execution paths only consisting of transitions explored
during the search.

Proposition 2.39 If the PTS S ′ extends the search T of the PTS S, then for all
e ∈ T ∗ ∩ pref(ExecS):

µS(Be
S) = µS′(B

e
S′)

Proof

Let e = t1, ..., tn ∈ T ∗ ∩ pref(ExecS).

µS(Be
S) =

∏
1≤i≤n

probS(ti)

=
∏

1≤i≤n

probS′(ti) [S ′ extends T of S]

= µS′(B
e
S′) [Proposition 2.38 ]

�

For PTSs that extend a particular search, those execution paths that only consist
of transitions explored by the search satisfy the same linear-time properties.
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Proposition 2.40 Let φ be a linear-time property. If the PTS S ′ extends the
search T of the PTS S, then for all e ∈ T ω ∩ ExecS , e |=S φ iff e |=S′ φ.

Proof Since S ′ extends T of S, traceS(e) = traceS′(e) for all e ∈ T ω ∩ ExecS . �

Next, we define a union of basic cylinder sets that satisfy a property, and whose
prefixes are part of a search. This union is used in the definition of the progress
measure.

Definition 2.41 Let the PTS S ′ extend the search T of PTS S and let φ be a
linear-time property. The set BφS′(T ) is defined by

BφS′(T ) =
⋃
{Be
S′ | e ∈ T ∗ ∧ ∀e′ ∈ Be

S′ : e′ |=S′ φ }.

As shown below, the union BφS′(T ) is a subset in ΣS′ . Therefore, it can be
measured by µS′ .

Proposition 2.42 Let φ be a linear time property, and let the PTS S ′ extend the
search T of the PTS S. Then BφS′(T ) ∈ ΣS′.

Proof For each e ∈ T ∗, we have that Be
S′ ∈ BS′ , and, hence, Be

S′ ∈ ΣS′ . The
set {Be

S′ ∈ BS′ | e ∈ T ∗ ∧ ∀e′ ∈ Be
S′ : e′ |=S′ φ} is countable since the set T ∗

is countable (Proposition 2.5). Since ΣS′ is a σ-algebra and, hence, closed under
countable unions, the desired result follows. �

The set BφS′(T ) is the union of those basic cylinder sets Be
S′ the execution paths of

which satisfy the linear-time property φ. Hence, Be
S′ does not contain any execution

paths violating φ. Since the set BφS′(T ) is measurable, the measure µS′ assigns
it a real number in the unit interval. This number represents the “size” of the
basic cylinder sets that do not contain any violations of φ. This number captures
the amount of progress of the search T verifying φ, provided that the PTS under
consideration is S ′. However, we have no knowledge of the transitions other than
the search. Therefore, we consider all extensions S ′ of T and consider the worst
case in terms of progress.

Using these concepts, we introduce the notion of a progress measure. Given a
search of a PTS and a linear-time property, it captures the amount of progress the
search of the probabilistic model checker has made towards verifying the linear-time
property.

15



Definition 2.43 The progress of the search T of the PTS S of the linear-time
property φ is defined by

progS(T, φ) = inf
{
µS′
(
BφS′(T )

)
| S ′ extends T of S

}
.

Example 2.44 Consider the PTS S of Example 2.11 and the linear temporal logic
formulas �p, ♦p, ♦q and ©q. In the table below, we present the progress of these
properties for a number of searches.

search �p ♦p ♦q ©q
∅ 0 1 0 0
{t01} 0 1 1

2
1
2

{t02} 0 1 1
2

1
2

{t01, t02} 0 1 1 1
{t01, t13, t33} 1

4
1 1

2
1
2

{t01, t10, t13, t33} 1
3

1 1
2

1
2

In [30, Theorem 1], Zhang and Van Breugel prove the following key property of
their progress measure. They show that it is a lower bound for the probability that
the linear-time property holds.

Theorem 2.45 Let T be a search of the PTS S and let φ be a linear-time property.
Then

progS(T, φ) ≤ µS({ e ∈ ExecS | e |=S φ }).

Proof According to [25, Corollary 2.4], {e ∈ ExecS | e |=S φ} is measurable. From
the definition of prog, Proposition 2.9, and the fact that S extends T of S, we can
conclude that it suffices to show that BφS(T ) is a subset of {e ∈ ExecS | e |=S φ}.
Let e ∈ T ∗ and assume that ∀e′ ∈ BSe : e′ |=S φ. It suffices to show that Be

S is a
subset of {e ∈ ExecS | e |=S φ}. Let e′ ∈ Be

S . Then e′ ∈ ExecS and e′ |=S φ. �

The setting in this thesis is slightly different from the one in [30]. In our defini-
tion of a PTS, we require that the sum of probabilities of outward transitions from
each state must equal 1. Thus, we assume that PTSs do not have final states. This
assumption can be made without loss of any generality: simply add a self loop with
probability one to each final state.

2.4 Transient States

Now that we have defined a σ-algebra over the execution paths of a PTS, we use
its measure to define when a state of a PTS is transient.
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Note that we use ExecsS to denote the set of execution paths of S which begin in
state s. Furthermore, note that the set pref(ExecsS) is countable, as per Proposition
2.5. Thus

⋃
{Be
S | e ∈ pref(ExecsS) \ {ε} ∧ targetS(e) = s} is a countable union of

measurable sets, so it is measurable.

Definition 2.46 Let S be a PTS and let s ∈ SS . Then s is transient if

µS

(⋃
{Be
S | e ∈ pref(ExecsS) \ {ε} ∧ targetS(e) = s }

)
< 1.

Example 2.47 Consider the probabilistic transition system S depicted below:

s0
1
2

//

1
2

��
s1

1

��

The state s0 is transient, and s1 is not transient.

Intuitively, a state is transient when, if an execution visits that state, it is not
guaranteed to visit it again. Below, we define two particular circumstances in which
we can prove that a state is transient.

Proposition 2.48 Let S be a PTS, and let s ∈ SS . If there exists e ∈ pref(ExecsS)
such that for all t ∈ e′ ∈ Be

S : targetS(t) 6= s, then s is transient.

Proof Let Z =
⋃
{Be
S | e ∈ pref(ExecsS)\{ε}∧targetS(e) = s }. Let e ∈ pref(ExecsS)

such that for all t ∈ e′ ∈ Be
S , targetS(t) 6= s.

Since no execution in Be
S contains any transition with target s, Be

S ∩ Z = ∅. Since
all transitions of S have probability greater than 0, µS(Be

S) > 0. Therefore:

µS(Z)

= 1− µS(ExecsS \ Z)

≤ 1− µS(Be
S)

< 1

�

Proposition 2.49 Let S be a PTS. Let r ∈ SS have a probability-one self-loop,
and let s ∈ SS \ {r}. If r is reachable from s, then s is transient.
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Proof Suppose r is reachable from s. Let e = t1, ..., tn ∈ pref(ExecsS) be a shortest
execution path with targetS(e) = r. Then for all 1 ≤ i ≤ n, targetS(ti) 6= s.

Since targetS(e) = r and r has a probability-one self-loop, for all t ∈ e′ ∈ Be
S ,

targetS(t) 6= s. So by Proposition 2.48, s is transient. �

Sets of execution paths that remain in a finite set of transient states forever
have measure zero, a fact that we use in later proofs.

Proposition 2.50 Let S be a PTS, let Strans ⊆ SS be a finite set of transient
states, and Ttrans = {t ∈ TS | sourceS(t) ∈ Strans ∧ targetS(t) ∈ Strans}. For all
s ∈ SS ,

µS(ExecsS ∩ Ttransω) = 0.

Proof See, for instance, [1, Chapter 7.3]. �
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3 Negation and Violations

In this section, we consider the relationship between making progress towards ver-
ifying a linear-time property and finding a violation of its negation. First, we
formalize that a search has not found a violation of a linear-time property.

Definition 3.1 The search T of the PTS S has not found a violation of the linear-
time property φ if there exists a PTS S ′ which extends T of S such that e |=S′ φ
for all e ∈ ExecS′.

Hence, a search has found a violation if no matter how we extend the search,
there always exists an execution path that does not satisfy the linear-time property.

This definition is slightly stronger than the one given in [30, Definition 7]. All
results of [30] remain valid for this stronger version. Next, we prove that if a search
has made some progress towards verifying a linear-time property ¬φ, then that
search has also found a violation of φ.

Proposition 3.2 Let T be a search of the PTS S and let φ be a linear-time prop-
erty. If progS(T,¬φ)> 0 then T has found a violation of φ.

Proof By the definition of prog, µS′(B¬φS′ (T )) > 0 for each PTS S ′ which extends

T of S. Hence, B¬φS′ (T ) 6= ∅. Therefore, there exists e ∈ T ∗ such that Be
S′ 6= ∅ and

∀e′ ∈ Be
S′ : e′ |=S′ ¬φ. Hence, e′ 6|= φ and e′ ∈ ExecS′ . Therefore, T has found a

violation of φ. �

The reverse implication does not hold in general, as shown in the following
example.

Example 3.3 Consider the PTS

s0
1
2

//

1
2

��
s1

1

��

Assume that the state s0 satisfies the atomic proposition p and the state s1 does not.
Consider the linear-time property �p and the search {t00}. Note that t00

ω 6|= ¬�p
and, hence, {t00} has found a violation of ¬�p. Also note that progS({t00},�p) = 0.
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We conjecture that the reverse implication does hold for safety properties (see,
for example, [2, Definition 3.22] for a formal definition of safety property). However,
so far we have only been able to prove it for invariants.

Proposition 3.4 If the search T of the PTS S has found a violation of the invari-
ant φ, then progS(T,¬φ)> 0.

Proof For every PTS S ′ that extends T , e 6|=S′ �p for some e ∈ ExecS′ . Since
it is possible to extend the search using only states that satisfy p, some execution
prefix in T ∗ must reach a state that does not satisfy p. Since all extensions of the
search share T , this prefix must exist in every extension. So, assume e contains this
execution prefix. Hence, e = ef te` for some ef ∈ T ∗ ∩ pref(ExecS′) and t such that
p 6∈ labelS′(sourceS′(t)). Therefore, for all e′ ∈ Bef

S′ we have that e′ |=S′ ¬�p and
B
ef
S′ 6= ∅. Hence, µS′(B

ef
S′ )> 0 and, therefore, progS(T,¬�p)> 0. �

By finding the progress for a property and its negation, we can put upper and
lower bounds on the measure of executions that satisfy that property.

Proposition 3.5 Let T be a search of the PTS S, and let φ be a linear-time prop-
erty. Then

progS(T, φ) ≤ µS({e ∈ ExecS | e |=S φ}) ≤ 1− progS(T,¬φ)

Proof

progS(T,¬φ) ≤ µS({e ∈ ExecS | e |=S ¬φ}) [Theorem 2.45]

1− µS({e ∈ ExecS | e |=S ¬φ}) ≤ 1− progS(T,¬φ)

µS(ExecS \ {e ∈ ExecS | e |=S ¬φ}) ≤ 1− progS(T,¬φ)

µS({e ∈ ExecS | e |=S φ}) ≤ 1− progS(T,¬φ)

progS(T, φ) ≤ µS({e ∈ ExecS | e |=S φ}) ≤ 1− progS(T,¬φ) [Theorem 2.45]

�
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4 Progress for a Unipolar Fragment of LTL

In this chapter, we introduce a unipolar fragment of linear temporal logic (LTL),
and show how to measure progress for it.

Section 4.1 defines the unipolar fragment of LTL. This fragment is composed
of formulas that can be written in positive normal form without both an atomic
proposition and the negation of the same proposition. It includes a wide range of
properties.

In Section 4.2 we show how to compute the progress for any formula in this
fragment. For a unipolar LTL formula φ, we prove that the progress measure is
equal to the measure of executions that satisfy φ in a modified system. Others have
developed algorithms to compute this measure, which are exponential in the size
of φ and polynomial in the size of the searched space.

4.1 Defining Unipolar LTL

In this section, we define the subset of LTL formulas that makes up unipolar LTL.
Our definition of unipolar LTL begins with the definition of positive normal form
(PNF) for LTL, which we outline below.

Definition 4.1 The logic PNF is defined by

φ ::= true | false | p | ¬p | φ ∧ φ | φ ∨ φ | ©φ | φ U φ | φR φ

where p ∈ AP.

For each LTL formula, there exists an equivalent PNF formula (see, for example,
[2, Section 5.1.5]). Next, we restrict our attention to a particular class of PNF
formulas. To define this class, we define the positive and negative occurrences of
atomic propositions in a PNF formula as follows.
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Definition 4.2 The function pos : PNF→ 2AP is defined by

pos(true) = ∅
pos(false) = ∅

pos(p) = {p}
pos(¬p) = ∅

pos(φ1 ∧ φ2) = pos(φ1) ∪ pos(φ2)
pos(φ1 ∨ φ2) = pos(φ1) ∪ pos(φ2)

pos(©φ) = pos(φ)
pos(φ1 U φ2) = pos(φ1) ∪ pos(φ2)
pos(φ1 R φ2) = pos(φ1) ∪ pos(φ2)

The function neg : PNF→ 2AP is defined by

neg(true) = ∅
neg(false) = ∅

neg(p) = ∅
neg(¬p) = {p}

neg(φ1 ∧ φ2) = neg(φ1) ∪ neg(φ2)
neg(φ1 ∨ φ2) = neg(φ1) ∪ neg(φ2)

neg(©φ) = neg(φ)
neg(φ1 U φ2) = neg(φ1) ∪ neg(φ2)
neg(φ1 R φ2) = neg(φ1) ∪ neg(φ2)

Example 4.3 Let φ = (p ∨ ¬q) U r. Then pos(φ) = {p, r}, and neg(φ) = {q}.

We restrict ourselves to PNF formulas in which an atomic proposition cannot
occur both positively and negatively. We call these PNF formulas unipolar.

Definition 4.4 A PNF formula φ is unipolar if pos(φ) ∩ neg(φ) = ∅.

Example 4.5 Let φ1 = p U (q ∧ ¬r). Then pos(φ1) ∩ neg(φ1) = {p, q} ∩ {r} = ∅.
So φ1 is unipolar.

Let φ2 = pU (q ∧¬p). In this case, pos(φ2)∩ neg(φ2) = {p, q} ∩ {p} = {p} 6= ∅.
Thus, φ2 is not unipolar.

If a PNF formula φ is unipolar, then neg(φ) ⊆ AP \ pos(φ).
A property of unipolar PNF formulas that is key for our development is pre-

sented next. Suppose you have a property φ, a sequence of label sets σ, and a set of
labels L such that neg(φ) ⊆ L ⊆ AP \pos(φ). We prove that if σ is extended using
only labels in L, and this extension satisfies φ, then any extension of σ satisfies φ.
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Proposition 4.6 For all unipolar PNF formulas φ, σ ∈ (2AP)∗, and L such that
neg(φ) ⊆ L ⊆ AP \ pos(φ), σLω |= φ iff ∀ρ ∈ (2AP)ω : σρ |= φ.

Proof We prove two implications. Let φ be a unipolar PNF formula, σ ∈ (2AP)∗

and neg(φ) ⊆ L ⊆ AP \ pos(φ). Assume that ∀ρ ∈ (2AP)ω : σρ |= φ. Since
Lω ∈ (2AP)ω, we can immediately conclude that σLω |= φ.

The other implication is proved by structural induction on φ. Let σ ∈ (2AP)∗ and
neg(φ) ⊆ L ⊆ AP \ pos(φ). We distinguish the following cases.

• In case φ = true, clearly ∀ρ ∈ (2AP)ω : σρ |= φ and, hence, the property is
satisfied.

• In case φ = false, obviously σLω |= φ is not satisfied and, therefore, the
implication holds.

• Let φ = p. Assume that σLω |= φ. Since L ⊆ AP\pos(φ), we have that p 6∈ L.
Therefore, |σ|> 0 and p ∈ σ[0] and, hence, ∀ρ ∈ (2AP)ω : σρ |= φ.

• Let φ = ¬p. Assume that σLω |= φ. Since neg(φ) ⊆ L, we have that p ∈ L.
Therefore, |σ|> 0 and p 6∈ σ[0] and, hence, ∀ρ ∈ (2AP)ω : σρ |= φ.

• Let φ = φ1 ∧ φ2. Assume that σLω |= φ. Then σLω |= φ1 and σLω |= φ2.
Since neg(φ) ⊆ L ⊆ AP \ pos(φ), we have that neg(φ1) ⊆ L ⊆ AP \ pos(φ1)
and neg(φ2) ⊆ L ⊆ AP \ pos(φ2). By induction, ∀ρ ∈ (2AP)ω : σρ |= φ1 and
∀ρ ∈ (2AP)ω : σρ |= φ2. Hence, ∀ρ ∈ (2AP)ω : σρ |= φ.

• The case φ = φ1 ∨ φ2 is similar to the previous case.

• For ©φ we distinguish the following two cases. Assume |σ| = 0. Suppose
σLω |= ©φ. Then Lω[1 . . .] = Lω |= φ. By induction, ∀ρ ∈ (2AP)ω : ρ |= φ.
Hence, ∀ρ ∈ (2AP)ω : ρ |=©φ.

Assume |σ| ≥ 1. Suppose σLω |= ©φ. Then (σLω)[1 . . .] = σ[1 . . .]Lω |= φ.
By induction, ∀ρ ∈ (2AP)ω : σ[1 . . .]ρ |= φ. Since σ[1 . . .]ρ = (σρ)[1 . . .], we
have that ∀ρ ∈ (2AP)ω : σρ |=©φ.

• Let φ = φ1 U φ2. Since neg(φ) ⊆ L ⊆ AP \ pos(φ), we have that neg(φ1) ⊆
L ⊆ AP \ pos(φ1) and neg(φ2) ⊆ L ⊆ AP \ pos(φ2). Hence, we can apply the
induction hypothesis to φ1 and φ2

Assume that σLω |= φ. Then there exists some j ≥ 0 such that

(a) (σLω)[i . . .] |= φ1 for all 0 ≤ i < j and

(b) (σLω)[j . . .] |= φ2 .

We distinguish two cases. Suppose j < |σ|. From (a) we can conclude that for
all 0 ≤ i < j, (σLω)[i . . .] = σ[i . . .]Lω |= φ1. By induction, ∀ρ ∈ (2AP)ω :
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σ[i . . .]ρ |= φ1. Since σ[i . . .]ρ = (σρ)[i . . .], we have that ∀ρ ∈ (2AP)ω :
(σρ)[i . . .] |= φ1. From (b) we can deduce that (σLω)[j . . .] = σ[j . . .]Lω |= φ2.
By induction, ∀ρ ∈ (2AP)ω : σ[j . . .]ρ |= φ2. Since σ[j . . .]ρ = (σρ)[j . . .],
we have that ∀ρ ∈ (2AP)ω : (σρ)[j . . .] |= φ2. Combining the above, we get
∀ρ ∈ (2AP)ω : σρ |= φ1 U φ2.

Suppose j ≥ |σ|. For 0 ≤ i < |σ|, the argument for (a) is the same as above.
For |σ| ≤ i < j, (a) simply says that Lω |= φ1, which, by induction, implies
that ∀ρ ∈ (2AP)ω : ρ |= φ1. Hence, ∀ρ ∈ (2AP)ω : (σρ)[i . . .] |= φ1 for all
0 ≤ i < j. In this case, (b) means Lω |= φ2, which, by induction, implies that
∀ρ ∈ (2AP)ω : ρ |= φ2. Hence, ∀ρ ∈ (2AP)ω : (σρ)[j . . .] |= φ2. Combining the
above, we obtain that ∀ρ ∈ (2AP)ω : σρ |= φ1 U φ2.

• Finally, we consider φ1Rφ2. According to [2, page 256], φ1Rφ2 ≡ ¬(¬φ1U¬φ2)
and ¬(φ1U φ2) ≡ (¬φ2)W (¬φ1∧¬φ2). According to [2, page 252], φ1W φ2 ≡
(φ1 U φ2) ∨�φ1. Hence, we can derive that φ1R φ2 ≡ (φ2 U (φ1 ∧ φ2)) ∨�φ2.
Therefore, proving that the property is satisfied by �φ, combined with the
proofs for ∧, ∨ and U above, suffices as proof for φ1 R φ2.

Thus, we consider �φ. Assume that neg(�φ) = neg(φ) ⊆ L ⊆ AP\pos(�φ) =
AP \ pos(φ). Suppose that σLω |= �φ. Then (σLω)[j . . .] |= φ for all j ≥ 0.
We distinguish two cases. For all 0 ≤ j < |σ|, we have that (σLω)[j . . .] =
σ[j . . .]Lω |= φ. By induction, ∀ρ ∈ (2AP)ω : σ[j . . .]ρ |= φ and, hence, ∀ρ ∈
(2AP)ω : (σρ)[j . . .] |= φ.

For all j ≥ |σ|, we have that (σLω)[j . . .] = Lω |= φ. By induction, ∀ρ ∈
(2AP)ω : ρ |= φ and, therefore, ∀ρ ∈ (2AP)ω : (σρ)[j . . .] |= φ. Combining the
above, we get ∀ρ ∈ (2AP)ω : σρ |= �φ. �

Corollary 4.7 For all unipolar PNF formulas φ and σ ∈ (2AP)∗, σ(neg(φ))ω |= φ
iff ∀ρ ∈ (2AP)ω : σρ |= φ.

The above result does not hold for all LTL formulas, as shown in the following
example.

Example 4.8 Consider the LTL formula φ = (♦�q) ∨ (♦�¬q). Note that this
formula is not unipolar. Let σ = ε. Obviously, {q}ω |= φ, but ({q}∅)ω 6|= φ and,
hence, it is not the case that ∀ρ ∈ (2AP)ω : ρ |= φ.

4.2 An Algorithm to Compute Progress

To obtain an algorithm to compute the progress for the unipolar fragment of LTL,
we present an alternative characterization of the progress measure. This alternative
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characterization is cast in terms of a PTS built from the search as follows. We start
from the transitions of the search and their source and target states. We add a
sink state, which has a transition to itself with probability one. This sink state has
label set L such that neg(φ) ⊆ L ⊆ APS \ pos(φ), where φ is the unipolar LTL
formula being checked, and APS is the set of atomic propositions of the original
system being searched. For simplicity, L = neg(φ) will be used. For each state
which has not been fully explored yet, that is, the sum of the probabilities of its
outgoing transitions is less than one, we add a transition to the sink state with the
remaining probability. This PTS can be viewed as the minimal extension of the
search (we will formalize this in Proposition 4.18). The PTS is defined as follows.

Definition 4.9 Let T be a search of the PTS S. The set STS is defined by

STS = { sourceS(t) | t ∈ T } ∪ { targetS(t) | t ∈ T } ∪ {s0}.

For each s ∈ STS ,

outS(s) =
∑

t∈T | sourceS(t)=s

probS(t).

Let φ be a unipolar PNF formula. The PTS ST,φ is defined by

• SST,φ = STS ∪ {s⊥}

• TST,φ = T ∪ { ts | s ∈ STS ∧ outS(s)< 1 } ∪ {t⊥}

• APST,φ = APS

• sourceST,φ(t) =


sourceS(t) if t ∈ T
s if t = ts
s⊥ if t = t⊥

• targetST,φ(t) =

{
targetS(t) if t ∈ T
s⊥ if t = t⊥ or t = ts

• probST,φ(t) =


probS(t) if t ∈ T
1− outS(s) if t = ts
1 if t = t⊥

• labelST,φ(s) =

{
neg(φ) if s = s⊥
labelS(s) otherwise
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The above definition is very similar to [30, Definition 10]. The main difference
is that we do not have final states and that we label the sink state differently.

Proposition 4.10 Let T be a search of the PTS S. Then the PTS ST,φ extends
T .

Proof Follows immediately from the definition of ST,φ. �

Next, we will show that the PTS ST,φ is the minimal extension of the search T
of the PTS S. More precisely, we will prove that for any other extension S ′ of T we
have that µST,φ(BφST,φ) ≤ µS′(BφS′). To prove this result, we introduce a new notion
and some of its properties.

Definition 4.11 Let T be a search of the PTS S and let φ be a linear-time property.
The set Eφ

S (T ) is defined by

Eφ
S (T ) = { e ∈ T ∗ ∩ pref(ExecS) | ∀e′ ∈ Be

S : e′ |=S φ }.

The set Eφ
ST,φ(T ) is minimal among the Eφ

S′(T ) where S ′ extends T .

Proposition 4.12 Let the PTS S ′ extend the search T of the PTS S. For any
unipolar LTL formula φ, Eφ

ST,φ(T ) ⊆ Eφ
S′(T ).

Proof Let e ∈ Eφ
ST,φ(T ). Then e ∈ T ∗ ∩ pref(ExecST,φ). Since S ′ and ST,φ both

extend T , we can conclude from Proposition 2.38(a) that e ∈ T ∗ ∩ pref(ExecS′).

It remains to prove that e′ |=S′ φ for all e′ ∈ Be
S′ . Let e′ ∈ Be

S′ . We distinguish two
cases. If e′ ∈ T ω then e′ ∈ Be

ST,φ by Proposition 2.38(b). Since also e ∈ Eφ
ST,φ(T ),

we have that e′ |=ST,φ φ. By Proposition 2.40, e′ |=S′ φ.

Assume that e′ 6∈ T ω. Then e′ = ef te` such that ef ∈ T ∗ and t 6∈ T . Since
e ∈ T ∗ and e′ ∈ Be

S′ , we have that e is a prefix of ef . From the construction
of ST,φ we can derive that ef tst

ω
⊥ ∈ ExecST,φ , where s is the final state of ef .

Since e is a prefix of ef , we have that ef tst
ω
⊥ ∈ Be

ST,φ . Because e ∈ Eφ
ST,φ(T ), we

can conclude that ef tst
ω
⊥ |=ST,φ φ. Since labelST,φ(s⊥) = neg(φ), we know that

traceST,φ(ef tst
ω
⊥) = σneg(φ)ω for some σ ∈ (2AP)∗. Hence, traceST,φ(ef ) = σ.

Because σneg(φ)ω |= φ, we have ∀ρ ∈ (2AP)ω : σρ |= φ by Proposition 4.6. Since
ef ∈ T ∗, we have that traceST,φ(ef ) = traceS′(ef ) = σ and, hence, we can conclude
that traceS′(e

′) = σρ for some ρ ∈ (2AP)ω. Hence, e′ |=S′ φ. �

Next, we restrict our attention to those elements of Eφ
S (T ) which are minimal

with respect to the prefix order, as described in Definition 2.20.
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Proposition 4.13 For each A ⊆ pref(ExecS),⋃
{Be
S | e ∈ A } =

⋃
{Be
S | e ∈ min(A) }.

Proof Since min(A) ⊆ A, we can conclude that
⋃
{Be
S | e ∈ A } ⊇

⋃
{Be
S | e ∈

min(A) }.
By the definition of min(A), for each e ∈ A, there exists em ∈ min(A) such that
em v e. Thus for each Be

S such that e ∈ A, there exists Bem
S such that em ∈ min(A)

and Be
S ⊆ Bem

S . Therefore,
⋃
{Be
S | e ∈ A } ⊆

⋃
{Be
S | e ∈ min(A) }. �

Proposition 4.14 For each A ⊆ pref(ExecS),

µS

(⋃
{Be
S | e ∈ min(A) }

)
=

∑
e∈min(A)

µS(Be
S).

Proof Observe that if e1, e2 ∈ min(A) and e1 6= e2, then e1 and e2 are incompa-
rable, and hence Be1

S ∩ B
e2
S = ∅. Since the set pref(ExecS) is countable, the set A

is countable as well (Proposition 2.3). Because a probability measure is countably
additive (see Definition 2.7), µS(

⋃
{Be
S | e ∈ min(A) }) =

∑
e∈min(A) µS(Be

S). �

The following two corollaries show that Proposition 4.13 and Proposition 4.14
hold for unions of basic cylinder sets in an extension of a search, even when the
prefixes of those basic cylinder sets are taken from a different extension.

Corollary 4.15 Let the PTSs S1 and S2 extend the search T of the PTS S and let
φ be a linear-time property. Then⋃

e∈min(EφS2 (T ))

Be
S1 =

⋃
e∈EφS2 (T )

Be
S1 .

Proof This is a direct result of Proposition 2.38 and Proposition 4.13. �

Corollary 4.16 Let the PTSs S1 and S2 extend the search T of the PTS S, and
let φ be a linear-time property. If Eφ

S1(T ) ⊆ Eφ
S2(T ) then

µS2

(⋃
{Be
S2 | e ∈ min(Eφ

S1(T )) }
)

=
∑

e∈min(EφS1
(T ))

µS2(B
e
S2). (4.1)

Proof This is a direct result of Proposition 2.38 and Proposition 4.14. �
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Next, we show that measures of unions of basic cylinder sets prefixed by tran-
sitions within a search are the same for any extension of that search.

Proposition 4.17 Let the PTSs S1 and S2 extend the search T of the PTS S. For
all A ⊆ pref(ExecS) ∩ T ∗,

µS1

(⋃
e∈A

Be
S1

)
= µS2

(⋃
e∈A

Be
S2

)
.

Proof

µS1

(⋃
e∈A

Be
S1

)
= µS1

 ⋃
e∈min(A)

Be
S1

 [Proposition 4.13]

=
∑

e∈min(A)

µS1(B
e
S1) [Proposition 4.14]

=
∑

e∈min(A)

µS2(B
e
S2) [Proposition 2.39]

= µS2

(⋃
e∈A

Be
S2

)
[symmetric argument]

�

Now, we are ready to prove that the PTS ST,φ is the minimal extension of the
search T of the PTS S.

Proposition 4.18 Let the PTS S ′ extend the search T of the PTS S and let φ be
a unipolar PNF formula. Then

µST,φ(BφST,φ(T )) ≤ µS′(BφS′(T )).
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Proof

µST,φ(BφST,φ(T ))

= µST,φ

(⋃
{Be
ST,φ | e ∈ Eφ

ST,φ(T ) }
)

= µST,φ

(⋃
{Be
ST,φ | e ∈ min(Eφ

ST,φ(T )) }
)

[Proposition 4.13]

=
∑

e∈min(EφST,φ
(T ))

µST,φ(Be
ST,φ) [Proposition 4.14]

=
∑

e∈min(EφST,φ
(T ))

µS′(B
e
S′) [Proposition 2.39]

= µS′
(⋃
{Be
S′ | e ∈ min(Eφ

ST,φ(T )) }
)

[Proposition 4.12 and Corollary 4.16]

= µS′
(⋃
{Be
S′ | e ∈ Eφ

ST,φ(T ) }
)

[Corollary 4.15]

≤ µS′
(⋃
{Be
S′ | e ∈ Eφ

S′(T ) }
)

[Proposition 4.12]

= µS′(BφS′(T ))

�

The above proposition gives us an alternative characterization of the progress
measure.

Theorem 4.19 Let T be a search of the PTS S and let φ be a unipolar PNF
formula. Then

progS(T, φ) = µST,φ(BφST,φ(T )).

Proof This is a direct consequence of the definition of the progress measure and
Proposition 4.18. �

Hence, in order to compute progS(T, φ), it suffices to compute the measure of
BφST,φ(T ). Next, we will show that the latter is equal to the measure of the set of
execution paths of ST,φ that satisfy φ. The proof consists of two parts. First, we
prove the following inclusion.

Proposition 4.20 Let T be a search of the PTS S and let φ be a unipolar PNF
formula. Then

BφST,φ(T ) ⊆ { e ∈ ExecST,φ | e |=ST,φ φ }.
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Proof Let e ∈ BφST,φ(T ). Then e ∈ Be′
ST,φ for some e′ ∈ T ∗ such that ∀e′′ ∈ Be′

ST,φ :

e′′ |=ST,φ φ. Hence, e |=ST,φ φ. �

The opposite inclusion does not hold in general, as shown in the following ex-
ample.

Example 4.21 Consider the PTS S

s0
1
2

//

1
2

��
s1

1

��

where s0 satisfies the atomic proposition p. Consider the search {t00}. Let φ = �p.
Then the PTS ST,φ can be depicted by

s0
1
2

//

1
2

��
s⊥

1

��

Hence, t00
ω |=ST,φ φ. By construction, the state s⊥ does not satisfy p. So there is

no prefix of t00
ω for which all possible extensions satisfy φ. Therefore, t00

ω 6∈ BφST,φ.

However, we will show that the set { e ∈ ExecST,φ | e |=ST,φ φ } \ B
φ
ST,φ(T ) has

measure zero. In the proof, we will use the following proposition.

Proposition 4.22 Let T be a search of the PTS S and let φ be a unipolar PNF
formula. Assume that T has not found a violation of φ. Then for all e ∈ T ω ∩
ExecST,φ, e |=ST,φ φ.

Proof Let e ∈ T ω ∩ExecST,φ . Since T has not found a violation of φ, by definition
there exists a PTS S ′ that extends T of S such that e′ |=S′ φ for all e′ ∈ ExecS′ .
Then e ∈ ExecS′ ∩ T ω by Proposition 2.38(b), because S ′ and ST,φ both extend T .
Hence, e |=S′ φ. Therefore, from Proposition 2.40 we can conclude that e |=ST,φ φ.

�

Proposition 4.23 Let T be a search of the PTS S and let φ be a unipolar PNF
formula. If T has not found a violation of φ then

µST,φ({ e ∈ ExecST,φ | e |=ST,φ φ } \ B
φ
ST,φ(T )) = 0.
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Proof To avoid clutter, we denote the set { e ∈ ExecST,φ | e |=ST,φ φ } \ B
φ
ST,φ(T )

by Z.

First, we show that Z ⊆ T ω. Assume that e ∈ Z. Towards a contradiction, suppose
that e 6∈ T ω. From the construction of ST,φ we can deduce that e = e′tst⊥

ω for some
e′ ∈ T ∗, where s is the last state of e′. Let traceST,φ(e′) = σ, and L = neg(φ). Then
traceST,φ(e) = σLω. Since e ∈ Z, we have that e |=ST,φ φ and, hence, σLω |= φ.

By Proposition 4.6, ∀ρ ∈ (2AP)ω : σρ |= φ. Hence, ∀e′′ ∈ Be′
ST,φ : e′′ |=ST,φ φ. Since

e ∈ Be′
ST,φ , we have that e ∈ BφST,φ(T ), which contradicts our assumption that e ∈ Z.

Next, we show that each state in { targetST,φ(e) | e ∈ pref(Z) } is transient (see
Definition 2.46). By Proposition 2.49, it suffices to show that each state in
{ targetST,φ(e) | e ∈ pref(Z) } can reach the state s⊥.

Since T has not found a violation of φ, we can conclude from Proposition 4.22 that
e |=ST,φ φ for all e ∈ T ω. Hence, from the construction of ST,φ we can deduce that
if e 6|=ST,φ φ then e 6∈ T ω and, hence, e reaches s⊥.

Let e ∈ pref(Z). Hence, there exists e′ ∈ Be
ST,φ such that e′ 6|=ST,φ φ. Therefore, e′

reaches s⊥ and, hence, targetST,φ(e) can reach s⊥.

Since Z ⊆ T ω, the set { targetST,φ(e) | e ∈ pref(Z) } is finite. As stated in Proposi-
tion 2.50, the probability of remaining in a finite set of transient states is zero. As
a consequence, the probability of remaining in the set { targetS′(e) | e ∈ pref(Z) }
is zero. Hence, we can conclude that µST,φ(Z) = 0. �

From the above, we can derive the following result.

Theorem 4.24 Let T be a search of the PTS S and let φ be a unipolar PNF
formula. If T has not found a violation of φ then

µST,φ(BφST,φ(T )) = µST,φ({ e ∈ ExecST,φ | e |=ST,φ φ }).

Proof

µST,φ(BφST,φ(T ))

≤ µST,φ({ e ∈ ExecST,φ | e |=ST,φ φ })[Proposition 4.20 and µST,φ is monotone ]

= µST,φ(BφST,φ(T )) + µST,φ({ e ∈ ExecST,φ | e |=ST,φ φ } \ B
φ
ST,φ(T ))

[Proposition 4.20 and µST,φ is additive]

= µST,φ(BφST,φ(T ))[Proposition 4.23]

�
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Combining Theorem 4.19 and 4.24, we obtain the following characterization of
the progress measure.

Corollary 4.25 Let T be a search of the PTS S and let φ be a unipolar PNF
formula. If T has not found a violation of φ then

progS(T, φ) = µST,φ({ e ∈ ExecST,φ | e |=ST,φ φ }).

Proof Immediate consequence of Theorem 4.19 and 4.24. �

How to compute µST,φ({ e ∈ ExecST,φ | e |=ST,φ φ }) can be found, for example,
in [11, Section 3.1]. Computing this measure is exponential in the size of φ and
polynomial in the size of T . However, in general the size of the LTL formula is
small, whereas the size of the search is huge. Hence, we expect our algorithm to be
useful.
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5 A Lower Bound on Progress

The algorithm developed in Chapter 4 to compute progS(T, φ) for unipolar LTL
formulas is exponential in the size of φ. In this section, we trade precision for
efficiency. We present an algorithm that does not compute progS(T, φ), but only
provides a lower bound in polynomial time. This lower bound is tight for invariants.
However, we also show an example in which the lower bound does not provide us
any information.

Definition 5.1 Let T be a search of the PTS S. The PTS ST is defined by

• SST = STS ∪ {s⊥},

• TST = T ∪ { ts | s ∈ STS ∧ outS(s)< 1 } ∪ {t⊥},

• APST = APS

• sourceST (t) =


sourceS(t) if t ∈ T
s if t = ts
s⊥ if t = t⊥

• targetST (t) =

{
targetS(t) if t ∈ T
s⊥ if t = t⊥ or t = ts

• probST (t) =


probS(t) if t ∈ T
1− outS(s) if t = ts
1 if t = t⊥

• labelST (s) =

{
∅ if s = s⊥
labelS(s) otherwise

The above is similar to Definition 4.9. However, in this case the sink state has no
labels, and hence ST is the same regardless of the LTL formula being verified.

Next, we prove various properties of the system defined above, to show how
it can be used to compute a lower bound for the progress measure. We use the
concept of a transient state as defined in Definition 2.46.
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First we show that if an execution prefix e formed by transitions of a search
ends in a transient state, then the basic cylinder set formed by e in ST is a superset
of that formed by e in any extension of the search.

Proposition 5.2 Let T be a search of the PTS S. Let the PTS S ′ extend T . For
all e ∈ pref(ExecST ) ∩ T ∗, if targetST (e) is non-transient, then Be

S′ ⊆ Be
ST .

Proof Let e ∈ pref(ExecST ) ∩ T ∗. Assume that targetST (e) is non-transient. Let
e′ ∈ Be

S′ . Toward a contradiction, assume that e′ 6∈ Be
ST . Let e′[i] be the longest

prefix of e′ in pref(ExecST ). Note that e is a prefix of e′[i]. Let s = targetS(e′[i]).
Then outS(s) < 1. Hence, e′[i]tst

ω
⊥ ∈ ExecST . Therefore, targetST (e) can reach

s⊥. By Proposition 2.49, we can conclude that targetST (e) is transient, which
contradicts our assumption. �

Next we prove that if an execution prefix in ST , e, only contains transitions
in a search T and ends in a transient state, then all execution paths in the basic
cylinder set formed by e in any extension of the search contain only transitions in
T .

Proposition 5.3 Let T be a search of the PTS S. For all PTSs S ′ that extend
T , and for all e ∈ pref(ExecST ) ∩ T ∗, if targetST (e) is non-transient, then Be

S′ ⊆
ExecS′ ∩ T ω.

Proof Since TST = T ∪{ ts | s ∈ STS and outS(s)<1 }∪{t⊥} and targetST (ts) = s⊥
and targetST (t⊥) = s⊥, we can conclude that for all e′ ∈ ExecST , if e′ does not reach
s⊥, then e′ ∈ T ω.

Let e ∈ pref(ExecST ) ∩ T ∗. If targetST (e) is non-transient, then by Proposition
2.49 it cannot reach s⊥. Hence, for all e′ ∈ Be

ST , e′ cannot reach s⊥ and, therefore,
e′ ∈ ExecST ∩ T ω.

Let e′ ∈ Be
S′ . By Proposition 5.2, e′ ∈ Be

ST . Hence, e′ ∈ ExecST ∩ T ω. By
Proposition 2.38, e′ ∈ ExecS′ ∩ T ω. �

Now, we show that the set of execution paths in ST that consist only of transi-
tions in a search T has a measure equal to that of the union of basic cylinder sets
formed by prefixes in T ∗ which end in non-transient states.

Proposition 5.4 Let T be a search of the PTS S. Then µST (ExecST ∩ T ω)
= µST

(⋃
{Be
ST | e ∈ pref(ExecST ) ∩ T ∗ ∧ targetST (e) is non-transient}

)
.
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Proof Let Y =
⋃
{Be
ST | e ∈ pref(ExecST ) ∩ T ∗ ∧ targetST (e) is non-transient}.

Let Z = (ExecST ∩ T ω) \ Y .

From Proposition 5.3, we can conclude that Y ⊆ ExecST ∩ T ω. Since µST is mono-
tone (Proposition 2.9), µST (Y ) ≤ µST (ExecST ∩ T ω). So it suffices to prove that
µST (Z) = 0.

Let e ∈ pref(Z). Toward a contradiction, assume that targetST (e) is non-transient.
Then Be

ST ⊆ Y , which contradicts e ∈ pref(Z). Hence, for all e ∈ pref(Z),
targetST (e) is transient. Since the set T is finite, {targetST (e) | e ∈ pref(Z)} is
a finite set of transient states. As described in Proposition 2.50, the probability of
remaining in a finite set of transient states forever is 0. Therefore, µST (Z) = 0. �

Below, we show that certain basic cylinder sets have the same measure in ST
and in extensions of T .

Proposition 5.5 Let S ′ extend the search T of the PTS S. For all e ∈ pref(ExecST )∩
T ∗, if targetST (e) is non-transient, then Be

ST = Be
S′.

Proof From Proposition 5.3, we can conclude that Be
ST ⊆ T ω and Be

S′ ⊆ T ω.
From Proposition 2.38, we can deduce that ExecST ∩ T ω = ExecS′ ∩ T ω. Hence,
Be
ST = Be

S′ . �

Now we prove that if an execution prefix e in ST contains only transitions in
a search T and ends in a transient state, and T has not found a violation of the
linear-time property φ, then all execution paths in the basic cylinder set formed by
e in any extension of the search satisfy φ.

Proposition 5.6 Let S ′ extend the search T of the PTS S. Assume the search has
not found a violation of the linear-time property φ. For all e ∈ pref(ExecST ) ∩ T ∗,
if targetST (e) is non-transient, then e′ |=S′ φ for all e′ ∈ Be

S′.

Proof Let e ∈ pref(ExecST ) ∩ T ∗. Assume that targetST (e) is non-transient.
Toward a contradiction, assume that e 6|=S′ φ for some e′ ∈ Be

S′ . Let S ′′ be an
arbitrary PTS that extends T . By Proposition 5.5, e′ ∈ Be

S′ = Be
ST = Be

S′′ . By
Proposition 5.3, e′ ∈ T ω ∩ ExecS′′ . By Proposition 2.40, e′ 6|=S′′ φ. Since S ′′ was
chosen arbitrarily, this contradicts our assumption that T has not found a violation
of φ. �

Next, we use the properties defined above to show that the measure of execution
paths in ST that contain only transitions explored during a search is a lower bound
on the progress of that search.
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Theorem 5.7 Assume the search T of the PTS S has not found a violation of the
linear-time property φ. Then µST (ExecST ∩ T ω) ≤ progS(T, φ).

Proof Let S ′ be an arbitrary PTS that extends the search T of the PTS S. Then

µST (ExecST ∩ T ω)

= µST

(⋃
{Be
ST | e ∈ pref(ExecST ) ∩ T ∗ ∧ targetST (e) is non-transient }

)
[Proposition 5.4]

= µS′
(⋃
{Be
S′ | e ∈ pref(ExecST ) ∩ T ∗ ∧ targetST (e) is non-transient }

)
[Proposition 4.17 and 5.3]

≤ µS′
(⋃
{Be
S′ | e ∈ pref(ExecST ) ∩ T ∗ ∧ ∀e′ ∈ Be

S′ : e′ |=S′ φ }
)

[Proposition 5.6 and 2.9]

= µS′
(⋃
{Be
S′ | e ∈ pref(ExecS′) ∩ T ∗ ∧ ∀e′ ∈ Be

S′ : e′ |=S′ φ }
)

[Proposition 2.38]

= µS′(BφS′(T ))

Since S ′ is arbitrary,

µST (ExecST ∩ T ω) ≤ inf{µS′(BφS′(T )) | S ′ extends T of S } = progS(T, φ).

�

From the construction of ST we can conclude that µST (T ω∩ExecST ) is the same
as µST ({ e ∈ ExecST | e does not reach s⊥ }), which is the same as
1− µST ({ e ∈ ExecST | e reaches s⊥ }). The latter can be computed in polynomial
time using, for example, Gaussian elimination (see, for example, [2, Section 10.1.1]).

This algorithm has been implemented and incorporated into an extension of the
model checker JPF [29]. While JPF is model checking sequential Java code which
contains probabilistic choices, our extension also keeps track of the underlying PTS.
The amount of memory needed to store this PTS is in general only a small fraction
of the total amount of memory needed. Once our extension of JPF runs almost
out of memory, it can usually free enough memory so that the lower bound can be
computed from the stored PTS.

As was shown in [30, Theorem 4], the above bound is tight for invariants.

Proposition 5.8 If the search T of the PTS S has not found a violation of the
invariant φ, then

µST (T ω ∩ ExecST ) = progS(T, φ).
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In the example below, we present a search of a PTS for an LTL formula of which
the progress is one whereas the lower bound is zero. In this case, the bound does
not provide any information.

Example 5.9 Consider the PTS

s0
1

// s1

1

��

Assume that the state s1 satisfies the atomic proposition p. Consider the linear-time
property ©p and the search {t01}. In this case, we have that progS({t01},©p) = 1
but µS{t01}({t01}ω ∩ ExecS{t01}) = µS{t01}(∅) = 0.
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6 Progress for LTL Until Formulas

Here, we present an algorithm to calculate the progress for properties of the form
p U q, where p and q are atomic propositions. The method works whenever the
search has not found a violation of p U q. This method also applies to formulas of
the form ♦p, which are defined as true U p.

This algorithm reduces the progress calculation to a simple reachability problem
which, as discussed earlier, can be solved in polynomial time. The algorithm pre-
sented here is therefore more efficient than the method for unipolar LTL presented
in Chapter 4, which can also be used to calculate the progress of p U q.

To calculate the progress of a search T of a PTS S toward verifying p U q, we
first create a new system. We take the set of all states in SS visited by T . We
copy the outgoing transitions of states that do not satisfy q from S, and add a
probability-one self-loop to each state that satisfies q. Then, we take each state
whose outgoing transition probabilities now sum to less than 1, and add to it a
new transition that directs its missing transition probability to a sink state with
no labels. This creates the system Sq, as defined below.

Definition 6.1 Let T be a search of the PTS S, and let q ∈ APS . The PTS Sq is
defined as follows:

• SSq = STS ∪ {s⊥}

• TSq = T¬q ∪ Ts⊥ ∪ Tq ∪ {t⊥} where

– T¬q = { t ∈ T | q /∈ labelS(sourceS(t)) }
– Tq = { ts | s ∈ STS and q ∈ labelS(s) }
– Ts⊥ = { ts | s ∈ STS , q /∈ labelS(s) and outS(s)< 1 }

• APSq = APS

• sourceSq(t) =


sourceS(t) if t ∈ T¬q
s if t = ts

s⊥ if t = t⊥
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• targetSq(t) =


targetS(t) if t ∈ T¬q
s if t = ts ∈ Tq
s⊥ if t ∈ Ts⊥ or t = t⊥

• probSq(t) =


probS(t) if t ∈ T¬q
1 if t ∈ Tq or t = t⊥

1− outS(s) if t = ts ∈ Ts⊥

• labelSq(s) =

{
∅ if s = s⊥

labelS(s) otherwise

Example 6.2 Consider the PTS S depicted by

s1

1 ((s0

1
2

88rrrrrr

1
2

&&MMMMMM s3

1hh

s2

1

OO

Consider the search {t01, t13}. Assume that only the state s1 satisfies the atomic
proposition q. Then the PTS Sq can be depicted by

s1

1

��

s0

1
2

88qqqqqq
1
2

&&MMMMMM s3
1

xxqqqqqq

s⊥

1

jj

Note that Sq does not extend the search T of S, as specified in Definition 2.36.
Hence, results on extensions from previous chapters cannot be applied directly to
Sq.
Sq contains a different set of transitions than the PTS S, so below we confirm

that Sq is also a PTS.

Proposition 6.3 If S is a PTS, then Sq is a PTS.

Proof For all s ∈ SSq such that q ∈ labelSq(s), by definition there is only one
transition t such that sourceSq(t) = s, and its probability is 1.
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For all s ∈ SSq such that q 6∈ labelSq(s) and outS(s) < 1, the original transitions
that make up outS(s) are kept, and a new transition ts is added from s to s⊥
with probSq(ts) = 1 − outS(s). So the total probability of outgoing transitions is:
probSq(ts) + outS(s) = (1− outS(s)) + outS(s) = 1.

For all s ∈ Sq such that q /∈ labelSq(s) and outS(s) = 1, the outgoing transitions
are the same as in S, so their sum is 1.

Thus, for all s ∈ SSq ,
∑

sourceSq (t)=s
probSq(t) = 1. Therefore, Sq is a PTS. �

Below, we show the relationships between execution prefixes whose extensions
satisfy pU q in Sq, and in extensions of a search. These relationships are key to our
ultimate goal of showing that Sq can be used to measure progress for p U q.

Proposition 6.4 Let the PTS S ′ extend the search T of the PTS S. Then

E pUq
Sq (T¬q) ⊆ E pUq

S′ (T¬q) ⊆ E pUq
S′ (T ).

Proof Because T¬q ⊆ T , it follows that E pUq
S′ (T¬q) ⊆ E pUq

S′ (T ).

To prove the other inclusion, we distinguish two cases. In the first case, the
initial state satisfies q. Then for the first transition t of any execution, q ∈
labelSq(sourceSq(t)), so t /∈ T¬q. Thus T¬q

∗ ∩ pref(ExecSq) = ∅, and therefore

E pUq
Sq (T¬q) = ∅ ⊆ E pUq

S′ (T¬q).

In the second case, the initial state does not satisfy q. Let e ∈ E pUq
Sq (T¬q), and

e′ ∈ Be
Sq . By definition, e′ |=Sq p U q.

Because of the construction of Sq, e′ reaches only one state that satisfies q, say
sq, which has a self-loop of probability 1. Let t1...ti be the transitions of e′ up
to and including the first transition with target sq. Because e′ |=Sq p U q, for all
1 ≤ j ≤ i : p ∈ labelSq(sourceSq(tj)). Also, because ti is the first transition with a
target that satisfies q, for all 1 ≤ j ≤ i : q /∈ labelSq(sourceSq(tj)). So t1...ti ∈ T¬q∗.
By the construction of Sq, the transitions in T¬q, the states they reach, and the
atomic propositions they satisfy are identical in Sq and S ′. So in S ′, t1...ti also
reaches states satisfying p followed by one state that satisfies q. Hence, all extensions
of t1...ti in S ′ also satisfy p U q. Because each extension of e is prefixed by such
a t1...ti, it must satisfy p U q. Therefore for all e′′ ∈ Be

S′ : e′′ |=S′ p U q. Thus,
e ∈ E pUq

S′ (T¬q).

�
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Another property of Sq is that its basic cylinder sets have the same measures
as those in extensions of the search.

Proposition 6.5 Let the PTS S ′ extend the search T of the PTS S. For all e ∈
E pUq
Sq (T¬q),

µSq(B
e
Sq) = µS′(B

e
S′).

Proof Let e = t1...tn.

µSq(B
e
Sq) =

∏
1≤i≤n

probSq(ti)

=
∏

1≤i≤n

probS′(ti) [Proposition 6.4, and ∀i : ti ∈ T¬q]

= µS′(B
e
S′)

�

Proposition 6.6 to 6.13 below are presented for the purpose of proving Propo-
sition 6.14, which states that for a search T of a PTS S, the measure of BpUqSq (T¬q)

is less than or equal to the measure of BpUqS′ (T ), for any extension S ′ of the search.

Alone, Proposition 6.14 shows that the measure of BpUqSq (T¬q) is less than or equal
to the progress of the search T of the PTS S. We later show that it is equal.

Proposition 6.6 Let the PTS S ′ extend the search T of the PTS S. For all
e ∈ min(EpUq

Sq (T¬q)), there exists exactly one i such that 0 ≤ i ≤ |e| and e[i] ∈
min(EpUq

S′ (T¬q)).

Proof Let e ∈ min(EpUq
Sq (T¬q)).

As shown in Proposition 6.4, e ∈ E pUq
S′ (T¬q). Thus by definition, there exists some

prefix e[i] ∈ min(E pUq
S′ (T¬q)).

There is only one such e[i] ∈ min(EpUq
S′ (T¬q)). As proof, suppose there were two

such prefixes, e[i] and e[j], such that i 6= j. Then either e[i] @ e[j], or e[j] @ e[i],
which contradicts the definition of a set of minimal elements. �

As a result of Proposition 6.6 above, the following function can be defined.

Definition 6.7 Let the PTS S ′ extend the search T of the PTS S. The function
f : min(EpUq

Sq (T¬q))→ min(EpUq
S′ (T¬q)) is defined by

∀e ∈ min(EpUq
Sq (T¬q)) : f(e) v e.
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For each e ∈ min(EpUq
Sq (T¬q)), f(e) is the single element of min(EpUq

S′ (T¬q)) that
is a prefix of e. f(e) is unique due to Proposition 6.6. The set of these elements is
the image of f , defined below.

Definition 6.8 Let T be a search of the PTS S. The set Im(f), the image of f ,
is defined by

Im(f) = {f(e) | e ∈ min(EpUq
Sq (T¬q))}.

Below, we examine the basic cylinder sets whose prefixes are in f−1(e).

Proposition 6.9 Let the PTS S ′ extend the search T of the PTS S. Then for all
e′ ∈ min(EpUq

S′ (T¬q)),

∑
e∈f−1(e′)

µS′(B
e
S′) = µS′

 ⋃
e∈f−1(e′)

Be
S′

 .

Proof Since f−1(e′) ⊆ min(EpUq
Sq (T¬q)), all elements of f−1(e′) are incomparable,

so by Proposition 2.23, the sets in {Be
S′ | e ∈ f−1(e′)} are disjoint. �

The function f could map more than one element of min(EpUq
Sq (T¬q)) to the same

element of min(EpUq
S′ (T¬q)). Below, we show that the union of basic cylinder sets

whose prefixes are mapped to a common prefix e′ ∈ min(EpUq
S′ (T¬q)) is a subset of

the basic cylinder set formed by e′.

Proposition 6.10 Let the PTS S ′ extend the search T of the PTS S. Then for all
e′ ∈ min(EpUq

S′ (T¬q)), ⋃
e∈f−1(e′)

Be
S′ ⊆ Be′

S′ .

Proof If e ∈ f−1(e′), then e′ is a prefix of e, and hence Be
S′ ⊆ Be′

S′ . �

Now, we show that union of all basic cylinder sets whose prefixes are mapped
by f to a common element e′ has a measure less than or equal to that of the basic
cylinder set formed by e′.

Proposition 6.11 Let the PTS S ′ extend the search T of the PTS S. For all
e′ ∈ Im(f),

µSq

 ⋃
e∈f−1(e′)

Be
Sq

 ≤ µS′(B
e′

S′).
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Proof

µSq

 ⋃
e∈f−1(e′)

Be
Sq


=

∑
e∈f−1(e′)

µSq(B
e
Sq) [Proposition 4.14, and f−1(e′) ⊆ min(EpUq

Sq (T¬q))]

=
∑

e∈f−1(e′)

µS′(B
e
S′) [Proposition 6.5]

= µS′

 ⋃
e∈f−1(e′)

Be
S′

 [Proposition 6.9]

≤ µS′(B
e′

S′) [Proposition 6.10 and Proposition 2.9]

�

Next, we show that a union of basic cylinder sets whose prefixes map to a
common element of Im(f) is disjoint from any union of basic cylinder sets with
prefixes that map to a different element in Im(f).

Proposition 6.12 Let e1
′, e2

′ ∈ Im(f). If e1
′ 6= e2

′, then ⋃
e1∈f−1(e1′)

Be1
Sq

 ∩
 ⋃
e2∈f−1(e2′)

Be2
Sq

 = ∅.

Proof Let e1
′, e2

′ ∈ Im(f) and assume that e1
′ 6= e2

′. It suffices to prove that for
all e1 ∈ f−1(e1

′) and e2 ∈ f−1(e2
′), Be1

Sq ∩B
e2
Sq = ∅.

Since e1
′, e2

′ ∈ Im(f) ⊆ min(EpUq
S′ (T¬q)) and e1

′ 6= e2
′, e1

′ and e2
′ are incomparable.

Because e1 ∈ f−1(e1
′) and e2 ∈ f−1(e2

′), e1
′ and e2

′ are prefixes of e1 and e2,
respectively. Hence, e1 and e2 are incomparable and by Proposition 2.23, Be1

Sq ∩
Be2
Sq = ∅. �

We now use the properties of the function f described above to prove that the
union of all basic cylinder sets formed by elements of min(EpUq

Sq (T¬q)) has a measure
less than or equal to that of the union of basic cylinder sets formed by elements of
min(EpUq

S′ (T¬q)).
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Proposition 6.13 Let the PTS S ′ extend the search T of the PTS S. Then

µSq

(⋃
{Be
Sq | e ∈ min(EpUq

Sq (T¬q))}
)
≤ µS′

(⋃
{Be
S′ | e ∈ min(EpUq

S′ (T¬q))}
)
.

Proof

µSq

(⋃
{Be
Sq | e ∈ min(EpUq

Sq (T¬q))}
)

= µSq

 ⋃
e′∈Im(f)

 ⋃
e∈f−1(e′)

Be
Sq


=

∑
e′∈Im(f)

µSq

 ⋃
e∈f−1(e′)

Be
Sq

 [Proposition 6.12]

≤
∑

e′∈Im(f)

µS′(B
e′

S′) [Proposition 6.11]

≤
∑

e∈min(EpUqS′ (T¬q))

µS′(B
e
S′) [Im(f) ⊆ min(EpUq

S′ (T¬q))]

= µS′
(⋃
{Be
S′ | e ∈ min(EpUq

S′ (T¬q))}
)

[Proposition 4.14]

�

Finally, we show that the measure of BpUqSq (T¬q) is less than or equal to the

measure of BpUqS′ (T )

Proposition 6.14 Let the PTS S ′ extend the search T of the PTS S. Then

µSq(B
pUq
Sq (T¬q)) ≤ µS′(BpUqS′ (T )).
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Proof

µSq(B
pUq
Sq (T¬q))

= µSq

(⋃
{Be
Sq | e ∈ E pUq

Sq (T¬q)}
)

= µSq

(⋃
{Be
Sq | e ∈ min(EpUq

Sq (T¬q))}
)

[Proposition 4.13]

≤ µS′
(⋃
{Be
S′ | e ∈ min(EpUq

S′ (T¬q))}
)

[Proposition 6.13]

= µS′
(⋃
{Be
S′ | e ∈ E pUq

S′ (T¬q)}
)

[Proposition 4.13]

≤ µS′
(⋃
{Be
S′ | e ∈ E pUq

S′ (T )}
)

[Proposition 6.4 and Proposition 2.9]

= µS′(BpUqS′ (T ))

�

In the following proofs we use ST , as defined in Definition 5.1, as a specific
instance of an extension of a search. The overall goal of Proposition 6.15 to 6.17 is
to prove Proposition 6.18, which states that the measure of BpUqSq (T¬q) is equal to

the measure of BpUqS′ (T ) for some extension S ′.

Proposition 6.15 Let the PTS S ′ extend the search T of the PTS S. Then

min(EpUq
S′ (T )) = min(EpUq

S′ (T¬q)).

Proof

We distinguish two cases. In the first case, min(E pUq
S′ (T )) contains a prefix of length

0, which we call ε. This occurs when every execution path of the system satisfies
p U q. In this case, min(E pUq

S′ (T )) = min(E pUq
S′ (T¬q)) = {ε}.

Now, we assume that all prefixes in min(E pUq
S′ (T )) have length greater than zero.

Because of Proposition 6.4, min(EpUq
S′ (T )) ⊇ min(EpUq

S′ (T¬q)).

Next, we prove that e ∈ min(EpUq
S′ (T )) implies e ∈ T¬q∗. Toward a contradiction,

suppose e contains a transition whose source satisfies q. Let tq be the first transition
in e such that q ∈ labelS′(sourceS′(tq)), let sq = sourceS′(tq)), and let e[i] be the
prefix of e up to and including the first transition with target sq. Since tq has source
sq, the final transition of e[i] cannot be tq, so e[i] 6= e.

For any extension e′ of e, e′ |=S′ pU q. Therefore, e[i] reaches only states that satisfy
p before it reaches sq. Therefore, all extensions of e[i] satisfy p U q. Thus, e[i] ∈
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EpUq
S′ (T ). Since e[i] 6= e, this contradicts the assumption that e ∈ min(EpUq

S′ (T )).
So e does not contain any transition tq such that q ∈ labelS′(sourceS′(tq)), thus

e ∈ T¬q∗. Therefore, min(EpUq
S′ (T )) ⊆ min(EpUq

S′ (T¬q)). �

Now, we show that the set of minimal prefixes in T¬q whose extensions satisfy
p U q in ST is a subset of those whose extensions satisfy p U q in Sq.

Proposition 6.16 Let T be a search of the PTS S. Then

min(EpUq
ST (T¬q)) ⊆ min(EpUq

Sq (T¬q)).

Proof Let e ∈ min(EpUq
ST (T¬q)), and let e′ ∈ Be

ST .

Because e ∈ min(EpUq
ST (T¬q)), e

′ |=ST pUq. So e′ must have some prefix e′[i] such that
q ∈ labelST (targetST (e′[i])), and for all t ∈ e′[i], q /∈ labelST (sourceST (t)) and p ∈
labelST (sourceST (t)). The state s⊥ satisfies neither p nor q, so e′[i] does not include
a transition to s⊥. All transitions of ST that do not lead to s⊥ are in T , so e′[i] ∈ T ∗.
And since for all t ∈ e′[i], q /∈ labelST (sourceST (t)), e′[i] ∈ T¬q∗.
Since the final transition of e′[i] has a target that satisfies q, e′[i+ 1] 6∈ T¬q∗. Since
e ∈ T¬q∗, e cannot be longer than e′[i], therefore e v e′[i].

Thus, every extension e′ of e in ST includes some path e2 that leads to a state
that satisfies q, and whose intermediate states satisfy p, such that e′[i] = ee2 and
ee2 ∈ T¬q∗.
Since the transitions in T¬q are the same in ST and Sq, e, ee2 ∈ pref(ExecSq). And
since traceST (ee2) = traceSq(ee2), all extensions of ee2 in Sq also satisfy p U q.
So in Sq, every extension of e also includes a path e2 leading to a state that satisfies
q, and whose intermediate states satisfy p. Thus, all extensions of e in Sq satisfy

p U q. Therefore e ∈ EpUq
Sq (T¬q).

Furthermore, e ∈ min(EpUq
Sq (T¬q)). As proof, suppose the contrary. Because e ∈

E pUq
Sq (T¬q), e must have some prefix e[i] 6= e such that e[i] ∈ min(EpUq

Sq (T¬q)). As

shown in Proposition 6.4, e[i] ∈ EpUq
S′ (T¬q), which contradicts the assumption that

e ∈ min(EpUq
S′ (T¬q)). �

Next, we show that the measure of basic cylinder sets with prefixes in T whose
execution paths satisfy p U q in ST is less than or equal to the measure of basic
cylinder sets with prefixes in T¬q which satisfy p U q in Sq.
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Proposition 6.17 Let T be a search of the PTS S. Then

µST (BpUqST (T )) ≤ µSq(B
pUq
Sq (T¬q)).

Proof

µSq(B
pUq
Sq (T¬q))

= µSq

(⋃
{Be
Sq | e ∈ E pUq

Sq (T¬q)}
)

= µSq

(⋃
{Be
Sq | e ∈ min(EpUq

Sq (T¬q))}
)

[Proposition 4.13]

=
∑

e∈min(EpUqSq (T¬q))

µSq(B
e
Sq) [Proposition 4.14]

=
∑

e∈min(EpUqSq (T¬q))

µST (Be
ST ) [Proposition 6.5]

≥
∑

e∈min(EpUqST
(T¬q))

µST (Be
ST ) [Proposition 6.16]

=
∑

e∈min(EpUqST
(T ))

µST (Be
ST ) [Proposition 6.15]

= µST

(⋃
{Be
ST | e ∈ min(EpUq

ST (T ))}
)

[Proposition 4.14]

= µST

(⋃
{Be
ST | e ∈ E pUq

ST (T )}
)

[Proposition 4.13]

= µST (BpUqST (T ))

�

Using the propositions above, we are now able to prove that the measure of basic
cylinder sets with prefixes in T¬q whose executions satisfy pU q in Sq is the same as
the measure of basic cylinder sets with prefixes in T whose executions satisfy pU q
in some extension of the search.

Proposition 6.18 There exists an extension S ′ of the search T of the PTS S such
that

µSq(B
pUq
Sq (T¬q)) = µS′(BpUqS′ (T )).
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Proof Let S ′ = ST . This is then a direct result of Proposition 6.14 and Proposition
6.17. �

Consider a search T of a PTS S, and consider the measure of BpUqSq (T¬q). We now
have Proposition 6.14, which shows that this measure is less than or equal to the
measure of BpUqS′ (T ) for any extension S ′, and Proposition 6.18, which shows that

this measure is equal to the measure of BpUqS′ (T ) for at least one extension. Together
with the definition of the progress measure (Definition 2.43), these propositions give
rise to the following theorem, which states that the measure of BpUqSq (T¬q) is equal
to the progress of the search toward verifying p U q.

Theorem 6.19 Let T be a search of the PTS S. Then

progS(T, p U q) = µSq(B
pUq
Sq (T¬q)).

Proof This is an immediate consequence of Proposition 6.14 and Proposition 6.18.
�

Now that we have shown that µSq(B
pUq
Sq (T¬q)) is equal to the progress of the

search toward verifying p U q, we show that it is also equal to the reachability
probability of the state s⊥ in Sq, provided that the search has not found a violation
of p U q.

By the construction of Sq, any execution path that reaches s⊥ contains t⊥. So,

Proposition 6.20 to 6.26 show that the measure discussed above, µSq(B
pUq
Sq (T¬q)),

is equal to the measure of executions of Sq that do not include t⊥. We begin by

showing that no execution in BpUqSq (T¬q) contains t⊥.

Proposition 6.20 Let T be a search of the PTS S. If e ∈ BpUqSq (T¬q), then t⊥ /∈ e.

Proof If |e| = 0, clearly t⊥ /∈ e. Otherwise, because e ∈ BpUqSq (T¬q), it must reach
a state that satisfies q. By the construction of Sq, all states that satisfy q have
probability-one self-loops, so no execution that reaches them can later reach s⊥.
Therefore, e cannot contain t⊥. �

Corollary 6.21 Let T be a search of the PTS S. Then

µSq(B
pUq
Sq (T¬q)) ≤ µSq({e ∈ ExecSq | t⊥ /∈ e}).
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Proof The set
⋃
{Be
Sq | t⊥ ∈ e} is a countable union of measurable sets and hence

is measurable. Therefore, its complement {e ∈ ExecSq | t⊥ 6∈ e} is measurable as
well.

As shown in Proposition 6.20, if e ∈ BpUqSq (T¬q), then t⊥ /∈ e. So, since µSq is

monotone (Proposition 2.9), µSq(B
pUq
Sq (T¬q)) ≤ µSq({e ∈ ExecSq | t⊥ /∈ e}). �

Below, we present two situations in which properties of Sq indicate that the
search has found a violation of p U q. Firstly, we prove that the search has found a
violation if Sq has an execution path in T¬q

ω.

Proposition 6.22 Let T be a search of the PTS S. If there exists e ∈ T¬q
ω ∩

ExecSq , then the search has found a violation of p U q.

Proof Let e ∈ T¬qω ∩ ExecSq , and let S ′ extend the search T of the PTS S. The
transitions of T¬q, as well as the states they visit and their labels, are identical in
every PTS that extends the search. Therefore, e ∈ ExecS′ . Because no transition
in T¬q has a source that satisfies q, an execution in T¬q

ω has not visited any state
that satisfies q. Thus, e 6|=Sq p U q. Since traceSq(e) = traceS′(e), e 6|=S′ p U q.
Therefore, every extension S ′ contains this execution e that does not satisfy p U q.
By definition, this constitutes a violation of p U q within the search T of S. �

Secondly, we show that the search has found a violation if any execution path
in Sq does not satisfy p U q and does not contain t⊥.

Proposition 6.23 Let T be a search of the PTS S. If there exists e ∈ ExecSq such
that e 6|=Sq p U q and t⊥ /∈ e, then the search has found a violation of p U q.

Proof Let e ∈ ExecSq such that e 6|=Sq p U q and t⊥ /∈ e.
t⊥ /∈ e, so e can contain only transitions in T¬q, and probability-one self-loops on
states that satisfy q, because these are the only transitions in Sq that do not lead
to s⊥ and t⊥.

If e contains no probability-one self-loops on states that satisfy q, then e ∈ T¬qω,
and the proof is the same as in Proposition 6.22.

Suppose e does contain probability-one self-loops on states that satisfy q. Because
these self-loops have probability 1, e can only include one such loop, and therefore
reaches only one state that satisfies q.

Because e 6|=Sq pU q, e must have reached some state that does not satisfy p before
reaching the state that satisfies q. Therefore, e has some prefix e[i] that consists
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of all transitions up to and including the first transition to a state that does not
satisfy p. Clearly, any possible extension of e[i] will violate p U q. Furthermore,
because e[i] occurs before e reaches the state that satisfies q, e[i] itself does not
contain any states that satisfy q. And, by assumption e[i] does not contain t⊥.
Therefore, e[i] ∈ T¬q∗.
For any extension S ′, T¬q , all the states these transitions visit, and the labels of
these states, are identical in Sq and S ′. Therefore, e[i] ∈ pref(ExecS′). And because
any extension of e[i] violates p U q, every S ′ contains some execution with prefix
e[i] that violates p U q. By definition, this constitutes a violation of p U q within
the search T of S. �

Next we show that in Sq, only execution paths in BpUqSq (T¬q) satisfy p U q.

Proposition 6.24 Let T be a search of the PTS S. For all e ∈ ExecSq , if e /∈
BpUqSq (T¬q), then e 6|=Sq p U q.

Proof Let e ∈ ExecSq and e /∈ BpUqSq (T¬q).

Toward a contradiction, suppose e |=Sq p U q. If the initial state satisfied q, there

would be no executions not in BpUqSq (T¬q). Therefore, the initial state does not satisfy
q. So e must have some prefix that reaches only states that satisfy p, followed by
a state that satisfies q. Let e[i] be the prefix of e up to and including the first

transition whose target satisfies q. Clearly, ∀e′ ∈ Be[i]
Sq : e′ |=Sq p U q.

Since s⊥ has a probability-one self-loop and does not satisfy q, t⊥ /∈ e[i]. And
since the final transition of e[i] is the first whose target satisfies q, for all t ∈ e[i] :
q /∈ labelSq(sourceSq(t)). Thus, e[i] ∈ T¬q∗.

So, e ∈ B
e[i]
Sq ∈ B

pUq
Sq (T¬q). This contradicts the assumption that e /∈ BpUqSq (T¬q).

Therefore, e 6|=Sq p U q. �

We now show the set of execution paths in Sq that do not contain t⊥ has a

measure less than or equal to the measure of BpUqSq (T¬q).

Proposition 6.25 If the search T of the PTS S has not found a violation of pU q,
then

µSq({e ∈ ExecSq | t⊥ /∈ e}) ≤ µSq(B
pUq
Sq (T¬q)).
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Proof Let {e ∈ ExecSq | t⊥ /∈ e} = E6B ∪ EB, where EB = {e ∈ ExecSq | t⊥ /∈ e
and e ∈ BpUqSq (T¬q)}, and E 6B = {e ∈ ExecSq | t⊥ /∈ e and e /∈ BpUqSq (T¬q)}. Clearly
EB ∩ E6B = ∅, and µSq({e ∈ ExecSq | t⊥ /∈ e}) = µSq(EB) + µSq(E6B).

By definition, EB ⊆ BpUqSq (T¬q), so µSq(EB) ≤ µSq(B
pUq
Sq (T¬q)).

E6B is empty. Toward a contradiction, assume that e ∈ E6B. Because e /∈ BpUqSq (T¬q),
according to Proposition 6.24, e 6|=Sq p U q. Furthermore, t⊥ /∈ e by definition.
Therefore, according to Proposition 6.23, there is a violation of p U q in the search
T . By assumption no violation has been found, which is a contradiction.

Therefore,

µSq({e ∈ ExecSq | t⊥ /∈ e}) = µSq(EB) + µSq(E6B)

= µSq(EB)

≤ µSq(B
pUq
Sq (T¬q))

�

Finally, we improve the result above by showing that the measure of execution
paths in Sq that do not contain t⊥ is in fact equal to the measure of BpUqSq (T¬q).

Proposition 6.26 If the search T of the PTS S has not found a violation of pU q,
then

µSq({e ∈ ExecSq | t⊥ /∈ e}) = µSq(B
pUq
Sq (T¬q)).

Proof Direct result of Corollary 6.21 and Proposition 6.25. �

The two corollaries below help clarify the relationship between the probability
of reaching s⊥, and the progress toward verifying p U q.

Corollary 6.27 If the search T of the PTS S has not found a violation of p U q,
then

µSq(B
pUq
Sq (T¬q)) = 1− µSq({e ∈ ExecSq | e contains t⊥}).

Proof Result of Proposition 6.26, and 1 − µSq({e ∈ ExecSq | e contains t⊥}) =
µSq({e ∈ ExecSq | t⊥ /∈ e}). �
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Corollary 6.28 If the search T of the PTS S has not found a violation of p U q,
then

progS(T, p U q) = 1− µSq({e ∈ ExecSq | e contains t⊥})

Proof This is a result of Theorem 6.19 and Corollary 6.27. �

Due to the construction of Sq, the measure of execution paths that contain t⊥ is
equal to the measure of execution paths that reach s⊥. Therefore, calculating the
progress for p U q when the search T of the PTS S has not found a violation can
be reduced to calculating the reachability probability of s⊥ in Sq. As discussed in
Chapter 5, this can be done by many well-known algorithms in polynomial time.
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7 Computing Reachability Probabilities on a

GPU

In this chapter, we consider the problem of calculating reachability probabilities,
which can be used to calculate progress for invariants [30], progress for properties
of the form p U q (Chapter 6), and the lower bound of progress (Chapter 5). We
consider two methods to calculate these probabilities: the Jacobi method and the
biconjugate gradient stabilized (BiCGStab) method. For each of the two methods,
we present both a sequential and GPU implementation.

In Chapter 8, we will compare the performances of the algorithms presented
here on randomized data, and on actual probabilistic model checking data.

7.1 Reachability Probabilities of a PTS

Below, we review the well-known problem of computing the reachability probabili-
ties of a PTS. Our presentation is based on [2, Section 10.1].

The transition probability function of a PTS S can be represented as a matrix
PS .

Definition 7.1 Let S be a PTS. Let n be the number of states in S. A transition
probability matrix PS can be created from S as follows:

• PS is an n× n matrix.

• The states of S are numbered from 0 to n− 1.

• Each entry PS i,j represents the probability of taking a single transition from
state i to state j in S, calculated as follows:

PS i,j =
∑

t∈TS | sourceS(t)=i∧ targetS(t)=j

probS(t)
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Example 7.2 The probability transition function of the PTS S depicted by

s0

0.5

��
??

??
??

?
0.5

��

s1

1

JJ
s2

0.6oo

0.4

FF

s3

1

TT

can be represented by the matrix

PS =


0 0 0.5 0.5
0 1 0 0

0.4 0.6 0 0
0 0 0 1


The probability of going from state i to state j, which is equal to the matrix

entry PS i,j, can also be expressed as PS(i, j).
In the following, we are interested in two particular events. First of all, given a

PTS S, a state s ∈ SS , and a set of states GS ⊆ SS , known as the goal states, we
are interested in the probability of reaching a state in GS in one transition when
starting in s. We denote the set of execution paths starting in s that reach a state
in GS in one transition by { e ∈ ExecsS | e |=S ©GS }. This set is measurable, that
is, it belongs to the σ-algebra ΣS [25].

Secondly, given a PTS S, a state s ∈ SS , and a set of goal states GS ⊆ SS , we
are interested in the probability of reaching a state in GS in zero or more transitions
when starting in s. We denote the set of execution paths starting in s that reach a
state in GS in zero or more transitions by { e ∈ ExecsS | e |=S ♦GS }. This set is
measurable [25].

The problem we are examining in this chapter is the following: Given a PTS
S, and set of goal states GS, what is the probability to reach a state in GS in
zero or more transitions from the initial state? In other words, what is the prob-
ability of states in GS eventually being reached? That is, we want to compute
µS({e ∈ ExecS | e |=S ♦GS}). This is what is referred to as computing reachability
probabilities in [2, Section 10.1.1]. This probability could be computed with an al-
gorithm like that in [11, Section 3.1] discussed in Chapter 4. However, as explained
in [2, Section 10.1], this measure can be calculated more efficiently using matrix
operations on PS .

To compute the reachability probabilities, one usually first partitions the set of
states of S into three parts, based on their probability to reach the set GS of goal
states.
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Definition 7.3 Let S be a PTS, and GS ⊆ SS a set of goal states. Then:

• S=1 = { s ∈ SS | µS({e ∈ ExecsS |=S ♦GS}) = 1 }

• S=0 = { s ∈ SS | µS({e ∈ ExecsS |=S ♦GS}) = 0 }

• S? = SS \ (S=1 ∪ S=0)

The partitioning of the set of states can be done easily by considering the under-
lying digraph of S. The vertices of this digraph are the states of S. There is an edge
from state s to state s′ if and only if PS(s, s′) > 0. Using graph algorithms, such
as depth-first-search or breadth-first-search, the set of states can be partitioned as
follows:

• To find S=0, determine the set of all states that can reach GS (including the
states in GS ). The complement of this set is S=0.

• To find S=1, determine the set of all states that can reach S=0. The comple-
ment of this set is S=1.

• To find S?, simply take the complement of S=1 ∪ S=0.

Example 7.4 Consider the PTS S of Example 7.2 and let s3 be the only goal state.
Then S=0 = {s1}, S=1 = {s3} and S? = {s0, s2}.

To compute the reachability probabilities, one must determine the probability
of the initial state leading to a state in GS. That is, one has to compute
µS({e ∈ ExecS | e |=S ♦GS}). To do so, one must also determine the probabilities
of reaching a state in GS from other states.

For each state s ∈ SS we compute xs, which is the probability of reaching
GS from s, that is, xs = µS({e ∈ ExecsS | e |=S ♦GS}). The values of xs can be
expressed as a vector, x. For any state s ∈ S=1, by definition xs = 1. Similarly, for
each s ∈ S=0, xs = 0. So once the states have been partitioned into the three sets
of Definition 7.3, the only values of x that need to be calculated are {xs | s ∈ S? }.
These values satisfy the following equation:

xs =
∑

s′∈S\GS

PS(s, s′) · xs′ +
∑
s′∈GS

PS(s, s′).

So, we will create a matrix M, which includes only the transition probabilities
between states in S?. For each s, s′ ∈ S?, Ms,s′ = PS(s, s′).

To aid in calculations, we will also create a vector b. For each s ∈ S?, bs =
µS({e ∈ ExecsS | e |=S ©GS}) =

∑
s′∈GS PS(s, s′), that is, the probability of a

state in GS being reached from s in one transition.
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Example 7.5 Consider the PTS of Example 7.2 and let s3 be the only goal state.
Then states s1 and s3 are excluded because they do not belong to S?, and

M =

[
0 0.5

0.4 0

]
and b =

[
0.5
0

]
For brevity, we will refer to the vector {xs | s ∈ S? } as x. The equation for x

can be written as x = M · x + b. Rearranged, this becomes (I−M) · x = b, where
I is the identity matrix. M and b are already known from PS . So, x can be found
by solving the linear equation (I−M) · x = b for x.

We refer to the matrix I−M as A for brevity. There are several ways to solve
the equation A ·x = b for x. Most obviously, one can find A−1. However, methods
to find matrix inverses tend to have high computational complexity and, hence, for
large matrices this becomes infeasible. For instance, Gauss-Jordan elimination has
time complexity O(n3) (see, for example, [22, Section 2]).

Iterative approximation methods find solutions that are within a specified mar-
gin of error of the exact solutions, and can work much more quickly. The methods
used in this thesis are in this category, and will be discussed in more detail next.

7.2 Iterative Methods

Solving the linear equation A · x = b for x can be very time-consuming, especially
when A is large. To solve this equation, there are numerous iterative methods.
These methods compute successive approximations to obtain a more accurate so-
lution to the linear system at each iteration.

These iterative methods can be classified into two groups: the stationary meth-
ods and the nonstationary ones. In stationary methods, the same information is
used in each iteration. As a consequence, these methods are usually easier to un-
derstand and implement. However, convergence of these methods may be slow. In
this thesis, we consider one stationary linear method, namely the Jacobi method.
We chose this method because it is very well-known, and commonly used in model
checking as well as other areas.

In nonstationary methods, the information used may change per iteration.
These methods are usually more intricate and harder to implement, but often give
rise to faster convergence. In this thesis we focus on one particular nonstationary
linear method, namely the biconjugate gradient stabilized (BiCGStab) method.
BiCGStab was chosen because it can be used on non-symmetric matrices, such
as those found in model checking. It is also designed to minimize the impact of
rounding errors, making it appropriate for computerized calculations.
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Given a matrix A and a vector b, the Jacobi method returns an approximate
solution for x in the linear equation A · x = b. This method is a simplified
version of an algorithm developed in 1846 by Carl Jacobi. It is derived in a fairly
straightforward manner from the equation A · x = b, by considering the equation
for each individual element of x while assuming that all other elements of x are
fixed. The derivation is described more precisely in [4, Section 2.2.1]. Below, we
present pseudocode for the Jacobi method.

1 Jacobi (A,b ) :
2 x := a r b i t r a r y vec to r
3 repeat
4 x′ := x
5 for a l l i = 1 . . . n do
6 xi := 1

Ai,i
· (bi −

∑
j 6=iAi,j · x′j)

7 until x i s accurate enough
8 return x

To know when x is accurate enough to terminate, we calculate the difference
between the current value of x, and its value from the previous iteration x′. As
the Jacobi algorithm approaches the correct solution, x changes more gradually.
So when the change in x is less than some predetermined amount, we accept that
x is close enough to the exact solution for our purposes. The larger the amount
chosen, the less accurate x will be, but the fewer iterations will be needed. With
implementations such as ours that use finite-precision data types, too small an error
value, such as zero, may not be achievable.

Like the Jacobi method, the BiCGStab method returns an approximate solution
to A · x = b for a given matrix A and vector b. The BiCGStab method was
developed by Van der Vorst [24]. It is a type of Krylov subspace method. This
category of linear methods includes several other algorithms, such as the Conjugate
Gradients Squared and Bi-Conjugate Gradients methods from which BiCGStab was
developed. The word “stabilized” in its name refers to the fact that rounding errors
cause less irregular behavior than they do in related methods, making the BiCGStab
algorithm appropriate for use with a computer’s finite-precision data types. Unlike
most Kyrlov subspace methods, the BiCGStab method can solve non-symmetric
linear systems, which is necessary when working with probabilistic model checking
data.

If exact arithmetic is used, the BiCGStab method will terminate in at most n
iterations for an n × n matrix [24, page 636]. In practice, it often requires fewer
iterations to find an approximate solution.

The un-preconditioned version of this method was used, as the sequential and
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GPU performance of the preconditioning method would be a separate issue. Buch-
holz [8] did a limited comparison between a preconditioned and un-preconditioned
version of the BiCGStab method specifically on matrices that represent stochastic
processes, and it does not show a large performance difference.

A precise explanation of how the BiCGStab method operates requires numerous
concepts otherwise unrelated to our work, and is thus beyond the scope of this
thesis. Hence, we present only the pseudocode. For more details, we refer the
reader to the highly cited paper [24] in which Van der Vorst introduces the method.

1 BiCGStab (A,b ) :
2 x := a r b i t r a r y vec to r
3 r := b−A · x
4 q := a r b i t r a r y vec to r such that q · r 6= 0
5 y := 1 ; a := 1 ; w := 1 ; v := 0 ; p := 0
6 repeat
7 y′ := y
8 y := q · r
9 p := r + y·a

y′·w · (p− w · v)

10 v := A · p
11 a := y

q·v
12 s := r− a · v
13 t := A · s
14 w := t·s

t·t
15 x := x + a · p + w · s
16 r := s− w · t
17 until x i s accurate enough
18 return x

For this algorithm, we know when x is accurate enough to terminate based on
the vector s, which is called the residual. For reasons discussed in [24], the residual
approaches 0 as x becomes more accurate. Thus, some predetermined maximum
value of s is used to decide when to terminate the algorithm. As for the Jacobi
method, a maximum value of zero might not be possible due to rounding errors.

7.3 Binary Reachability

Before applying an iterative algorithm to an actual transition probability matrix,
reachability properties need to be determined to divide the states into S=1, S=0

and S? sets, as described in Section 7.1. We refer to this as binary reachability,
since the property of interest is whether or not each state can reach some subset of
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states.
This calculation reduces the size of the matrix that needs to be solved and thus

makes finding the solution faster. It is also necessary because the matrix A is often
singular, and may not have specific properties required for iterative methods to
solve equations containing it. For instance, the Jacobi method can only solve an
equation A ·x = b when A has no zero diagonal entries. The transition probability
matrix of a system with a probability-one self-loop will have a one on the diagonal,
and when subtracted from I will result in a matrix with a zero diagonal element.
The Jacobi method will not be able to solve this matrix. However, since any state
with a probability-one self-loop will reach the goal with either probability 0 or 1 (0
if it is not part of the goal set, 1 if it is), it will be in the S=1 or S=0 set, and can
be eliminated before the Jacobi algorithm is applied.

To reduce the matrix to only S? states, first the S=0 states are found using
reachability algorithms, and then the S=1 states, as explained in Section 7.1. Both
these calculations can be done using the same basic reachability algorithm.

Below, we represent the sequential binary reachability pseudocode. The variable
canReach is a boolean vector of length n. Each vector entry indicates whether or
not the corresponding state can reach the goal states. Initially, only the entries
corresponding to goal states are set to true, and all others to false.

1 Reachab i l i t y (canReach ) :
2 boolean changed
3 repeat
4 changed := f a l s e
5 for each non−zero element Ai,j
6 changed | = canReachj & ! canReach i
7 canReachj | = canReach i
8 until !changed
9 return canReach

7.4 General Purpose Graphics Processing Units (GPGPU)

Graphics processing units (GPUs) were primarily developed to improve the per-
formance of graphics-intensive programs. The market driving their production has
traditionally been video game players. They are a throughput-oriented technology,
optimized for data-intensive calculations in which many identical operations can be
done in parallel on different data. Unlike most commercially available multi-core
central processing units (CPUs), which normally run up to eight threads in par-
allel, GPUs are designed to run hundreds of threads in parallel. They have many
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more cores than CPUs, but these cores are generally less powerful. GPUs sacrifice
latency and single-thread performance to achieve higher data throughput [15].

Originally, GPU APIs were designed exclusively for graphics use, and their un-
derlying parallel capabilities were difficult to access for other types of computation.
This changed in 2006 when NVIDIA released CUDA, the first architecture and API
designed to allow GPUs to be used for a wider variety of applications [18, Section 1].

All parallel algorithms discussed in this thesis were implemented using CUDA.
Different generations of CUDA-enabled graphics cards have different compute ca-
pability levels, which indicate the sets of features that they support. The graphics
card used here is the NVIDIA GTX260, which has compute capability 1.3. Cards
with higher compute capability have been released by NVIDIA since the GTX260
was developed.

The GTX260 has 896MB global on-card memory. This GPU supports double-
precision floating-point operations, which is required for BiCGStab. Lower compute
capabilities (1.2 and below) do not support this. The GTX260 does not support
atomic floating-point operations. This limits the way operations that require dot-
products and other row sums can be separated into threads. Since these sums
require all elements of a row to be summed to a global variable, and atomic addi-
tion can not be used to protect the integrity of the sum, the structure of the threads
must do so. Here, we have simply created one thread per row and done these addi-
tions sequentially. The next generation of NVIDIA GPUs (compute capability 2.0
and higher) support atomic floating-point addition, though only on single-precision
numbers.

Current GPUs have limited memory to store matrix data. For all but the small-
est matrices, some sort of compression is necessary so that they can be transferred
to the GPU in their entirety.

For this work, data is stored using a compressed row storage, as described in
[4, page 57]. In this format, only the non-zero elements of the matrix are recorded.
The size of an n×n matrix with m non-zero elements compressed in this manner is
O(n+m), whereas uncompressed it is O(n2). This representation saves significant
space when used to store sparse matrices.

Definition 7.6 Given an n× n matrix with m non-zero elements, its compressed
row storage representation consists of three vectors:

• rstart contains integers and has length n+1, where rstart i is the total number
of non-zero elements in the first i rows.

• col also contains integers and has length m. It stores the column position of
each non-zero element.
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• nonzero contains floating points and has length m. It stores the non-zero
elements of the matrix.

Example 7.7 The matrix  0.4 0 0
0 0 0.5
0 0 0.6


is represented by the vectors

rstart : [0, 1, 2, 3]
col : [0, 2, 2]

nonzero : [0.4, 0.5, 0.6]

CUDA code consists of C code executed on a CPU, which in turn can exe-
cute portions of code on the GPU. We refer to methods that are executed on the
GPU as kernels. Code in a kernel function is executed in parallel by each GPU
core. Our GPU, like most at this point in time, requires each core to perform
the same operations at the same time. When the kernel contains instructions that
cause some threads to execute different operations than other threads (e.g., if state-
ments), threads following one set of instructions must wait until threads following a
different set are finished. This is called divergence. Divergence negatively impacts
performance, and GPU algorithms are designed to minimize it whenever possible.

7.5 Parallel Implementations in CUDA

Next, we present parallel versions of the Jacobi, BiCGStab and binary reachability
algorithms. These parallel versions are implemented in CUDA.

Our CUDA implementation of the Jacobi method is based on the one described
by Bosnacki et al. in [6, 7]. Given an n × n-matrix A and an n-vector b, in the
parallel implementation of the Jacobi method n threads are created. For each
thread i, where 0 ≤ i < n, the following algorithm is used. Essentially, one thread
traverses each row of the matrix A to compute the corresponding element of x.
Thus, each element of x is computed in parallel.

In the parallel implementation of the Jacobi method, each GPU thread performs
the following operations:
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1 i := thread id
2 i f i = 0 then
3 terminate := true
4 i f i < n then
5 d := bi
6 l := rstart i
7 h := rstart i+1 − 1
8 for a l l j = l . . . h do
9 d := d− nonzeroj · xcolj

10 xi := d
Ai,i

11 i f xi i s not accurate enough then
12 terminate = f a l s e

The variable terminate is shared by all the threads to determine when the iteration
can stop. Note that line 5–10 of the code above corresponds to line 5–6 of the
Jacobi method in Section 7.2. Thus, this algorithm represents one iteration of the
Jacobi method. The main program repeatedly launches the corresponding code on
the GPU, waiting between executions for all threads to complete, until x reaches
the desired accuracy.

When we started this research, we were aware of the paper by Gaikwad and
Toke [14] that mentions a CUDA implementation of the BiCGStab method. Since
we did not have access to their code, we implemented the BiCGStab method in
CUDA ourselves.

Each iteration of the BiCGStab method consists of several matrix and vector
multiplications, that each result in a vector. Most of these steps depend on com-
pletion of the previous step, and thus need to be done in sequence. Therefore, the
steps were parallelized individually by creating one thread for each element of the
resulting vectors.

For instance, the operation in line 15 is split between n threads, so for each
0 ≤ i < n a thread does the following:

xi = xi + a · pi + w · si

And thus each element of the vector is calculated in parallel. The matrix operation
in line 10 is done as follows for each of the n threads:

vi = Ai · p

where Ai denotes the ith row of the matrix A. Dot products are done sequentially.
It would be possible to increase parallelism by splitting these into multiple sums

62



done in parallel. This might require too much overhead to result in a significant
performance gain.

Currently, CUDA requires all threads running on a GPU to execute the same
code. There are some separate steps of the BiCGStab method which could be
executed in parallel, but this is not possible with a single GPU of the type used
here. This may be possible using the next generation of GPUs, or multiple GPUs.
However, as described earlier, most steps of the algorithm must be done in sequence.

Below is an abbreviated version of the CUDA code used to implement BiCGStab.
To save space, non-essential code has been removed, and some steps are summa-
rized in square brackets. Kernel numbering corresponds to the line numbers of the
algorithm in Section 7.2. Kernels for subsequent steps are combined when they
require the same number of threads. Sequential steps are done on the GPU with
a single thread, since this avoids time-consuming data transfers between the GPU
and host computer.

The first portion of the code, below, executes on the CPU. Pointers prefixed by
d indicate data stored on the GPU, and n is the dimension of the matrix. The
matrix A is represented on the GPU using compressed row storage as d rstart, d col
and d nonzero.

int terminate = 0;
for(int i = 0; i <= max_iterations && !terminate; i++)

[d_yprime = d_y, switch pointers without moving data];
step8Kernel<<<1,1>>>(d_B, d_y, d_yprime, d_a, d_w, d_q, d_r, n);
step9Kernel<<<grid,block>>> (d_p, d_r, d_B, d_w, d_v, n, blocksz);
matrixVectorMult<<<grid,block>>>

(d_col, d_rstart, d_nonzero, d_p, d_v, n, blocksz);
step11Kernel<<<1,1>>> (d_a, d_y, d_q, d_v, n);
step12Kernel<<<grid,block>>> (d_s, d_r, d_a, d_v, n, blocksz);
matrixVectorMult<<<grid,block>>>

(d_col, d_rstart, d_nonzero, d_s, d_t, n, blocksz);
step14Kernel<<<1,1>>> (d_w, d_t, d_s, n);
step15_16Kernel<<<grid,block>>>

(d_x, d_a, d_p, d_w, d_s, d_r, d_t, n, blocksz, d_terminate);
[terminate = d_terminate, transferred from GPU to host machine];

The kernel methods below execute on the GPU. The kernels for steps 12 are
14 are very similar to previous steps, and are excluded. The matrixVectorMult

method, not shown, is a generic parallel matrix-vector multiplication kernel.

__global__ static void step8Kernel(double *d_B, double *d_y, double *d_yprime,
double *d_a, double *d_w, double *d_q, double *d_r, int n)

double result = 0;
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for(int i = 0; i < n; i++) result += d_q[i] * d_r[i];
*d_y = result;
*d_B = (*d_y / *d_yprime) * (*d_a / *d_w); //prepare scalar for step 9

__global__ static void step9Kernel(double *d_p, double *d_r, double *d_B,
double *d_w, double *d_v, int n, int blocksz)

int i = blockIdx.x * blocksz + threadIdx.x; //thread index
if(i < n) d_p[i] = d_r[i] + *d_B * ( d_p[i] - *d_w * d_v[i]);

__global__ static void step11Kernel(double *d_a, double *d_y, double *d_q,
double *d_v, int n)

double dot_q_v = 0; //dot product of q,v
for(int i = 0; i < n; i++) dot_q_v += d_q[i] * d_v[i];
*d_a = *d_y / dot_q_v;

__global__ static void step15_16Kernel(double *d_x, double *d_a, double *d_p,
double *d_w, double *d_s, double *d_r, double *d_t, int n, int blocksz,
int* d_terminate)

int i = blockIdx.x * blocksz + threadIdx.x; //thread index
if(i == 0) *d_terminate = 1; //one thread sets d_terminate
if(i < n)

d_x[i] = d_x[i] + *d_a * d_p[i] + *d_w * d_s[i]; //step 15
double diff = abs(d_s[i]);
if(diff > ERROR) *d_terminate = 0; //stop when residual is near zero
d_r[i] = d_s[i] - *d_w * d_t[i]; //step 16

Binary reachability calculations are not usually a significant factor in model
checking performance. They take very little time compared to the iterative matrix
solvers, even when implemented sequentially. However, in certain situations there
is potential for some time gain by implementing these on a GPU.

In our parallel implementation of the binary reachability algorithm, each row
i of A is traversed independently by one thread. Each such thread contains the
following local boolean variables:

• changedNow indicates whether the element currently being examined by this
thread has caused a change.

• changedEver expresses whether any element seen by this thread has caused a
change.
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The threads also share one global boolean value:

• changedGlobal indicates whether any change has occurred in any thread dur-
ing the current kernel execution, and is set to false at beginning of each kernel
launch.

Each thread of the parallel implementation performs the following operations:

1 changedNow := f a l s e
2 changedEver := f a l s e
3 i := thread number
4

5 for each non−zero element Ai,j in row i o f A
6 changedNow = canReachj & ! canReach i
7 changedEver | = changedNow
8 i f changedNow
9 canReach i := true

10

11 i f changedEver
12 changedGlobal := true

Kernels are launched repeatedly until changedGlobal remains false after all
threads finish.

The GPU algorithm considers all edges adjacent to each vertex in a single step,
instead of considering each edge individually as in the sequential algorithm. Thus
the average-case time complexity is lower.

The reason that line 8 of the pseudocode uses an if statement, which can cause
divergence, instead of something such as changedGlobal | = changedEver, which
would allow all threads to use an identical instruction, is the following:

If multiple threads with different values of changedEver try to simultaneously
update changedGlobal, it can cause incorrect results. For example, suppose changed-
Global is false. One thread i has its local value changedEveri = true, and another
thread j has changedEverj = false. At changedGlobal | = changedEver, each thread
fetches the current value of changedGlobal, false. Thread i determines that changed-
Global | changedEveri = true, the other that changedGlobal | changedEverj = false.
So thread i attempts to set changedGlobal to true, and thread j tries to set it to
false. changedGlobal should be set to true if any thread has caused a change, so
if it is set to false by thread j then the algorithm could produce incorrect results.
Our approach works since threads only attempt to update the global value to true,
so it cannot mistakenly be changed back to false.
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Atomic operations were attempted, but resulted in slower performance since
they cause each thread to perform the operation in sequence.

66



8 Performance of GPU Reachability Probability

Calculations

In this chapter, we present the results of our experiments on iterative methods.
We observe that which of the four algorithms performs best varies, depending on
the size and density of the matrix being solved. BiCGStab is best for larger,
denser matrices, and Jacobi for smaller, sparser ones. CUDA generally improves
the performance of the Jacobi method (though it was slightly slower for random
quick sort). CUDA improves BiCGStab performance on larger, denser matrices,
but reduces performance on smaller, sparser ones.

For reachability probability calculations in model checking, our results show
that CUDA Jacobi is a useful algorithm. CUDA BiCGStab was not very efficient
for our model checking calculations, but we show that it could perform very well
for problems involving denser matrices.

We also observed that GPU implementation could be beneficial for binary reach-
ability calculations on dense matrices, or graphs with high vertex degree.

8.1 Performance on Randomly Generated Matrices

For these tests, random matrices were generated. The entries were random positive
integers, placed in random locations. The matrices were then modified by adding
the non-diagonal elements to have non-zero diagonal entries and be diagonally-
dominant, which ensured that both the Jacobi and BiCGStab methods were able
to solve equations containing them. For each matrix A, a vector b of random
integers was also created. This formed the equation A · x = b, to be solved for x.
Each trial used a newly-generated matrix and vector.

Figure 8.1 shows the performances of the four implementations on random ma-
trices of several sizes, and varying densities. The matrix densities are similar to
those encountered in our probabilistic model checking examples. These graphs in-
dicate that the implementations’ relative performances change their order as the
density increases. Furthermore, as the size of the matrix increases, the density at
which the performance order changes becomes lower. Thus, which implementation
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performs best depends on the size and density of the matrix it is being used on.
Generally, the graphs in Figure 8.1 show that the BiCGStab method is superior

to the Jacobi method for denser matrices, but the Jacobi method performs best
for very sparse matrices. They also demonstrate a consistent performance benefit
from using CUDA to implement the Jacobi method. However, the third graph
shows that the CUDA version of the BiCGStab method is only beneficial for larger,
denser matrices. For other matrices, the sequential version of the BiCGStab method
outperforms the CUDA version.

To confirm this, Figure 8.2 and Figure 8.3 show the implementations’ perfor-
mances on random matrices with 10% density. As the sizes of these relatively
dense matrices increase, the CUDA versions of both implementations increasingly
outperform their sequential counterparts, and the BiCGStab method significantly
outperforms the Jacobi method.

It is easier to determine the relationship between matrix density and GPU
performance gain for the binary reachability algorithm. As discussed earlier, the
GPU algorithm examines all edges adjacent to a vertex in a single step, whereas
the sequential algorithm examines each edge in series. So, a dense matrix will
show the most benefit from GPU implementation. Similarly, the GPU algorithm
will perform best on a graph with high vertex degree, even if the matrix is sparse
overall.

For these tests, the density was approximately one non-zero entry for every ten
zero entries, or 10%. The results, shown in Figure 8.4, predictably show significant
performance gains from using the GPU. However, if the matrix had 1 entry or fewer
per row, no benefit would be expected.

8.2 Performance on Probabilistic Model Checking Data

For these tests, the implementations of the iterative methods were tested on ma-
trices representing PTSs based on actual randomized algorithms. These matrices
were then reduced to only S? states and subtracted from the identity matrix, as
discussed in Section 7.1.

JPF was used on two randomized algorithms to create this data. The biased
die algorithm simulates a biased dice roll by means of biased coin flips, and random
quick sort is a randomized version of the quick sort algorithm. Both algorithms
were coded in Java by Zhang, who also created the JPF extension that outputs
transition probability matrices of PTSs that correspond to the code being checked
[28].

The JPF search strategies used were chosen to create the largest S? matrices
relative to the size of the searched space. JPF’s built-in depth first search was used
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Figure 8.1: The effect of varying density on performance, for three matrix sizes. A
logarithmic scale is used on the y-axis. Average times are based on 20 trials. The
standard deviations of the times measured are too small to be shown.

for random quick sort, and a strategy called probability first search that prioritizes
high-probability transitions, also written by Zhang [28], was used for the biased die
example.

The results of the random quick sort tests are shown in Figure 8.5, and the
results of the biased die tests in Figure 8.6. Error bars representing standard
deviations of each data point are too small to be visible in the graphs. The matrix

69



 

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

100 200 300 400 500 600 700 800 900 1000 1100 1200

av
er

ag
e 

tim
e 

(s
ec

on
ds

)

size of matrix

Performance - Random Matrices with 10% Density

BiCGStab - CUDA

Jacobi - CUDA

BiCGStab - Sequential

Jacobi - Sequential

Figure 8.2: Performance on randomized matrices of varying sizes, all with 10%
density.
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Figure 8.3: BiCGStab performance on randomized matrices of varying sizes, all
with 10% density.

sizes in the random quick sort tests are much smaller than those in the biased die
tests because, while the matrices for random quick sort are initially the same size
as or larger than those produced for biased die, much fewer states belong to the S?

set. Furthermore, note that the densities of these matrices decrease as their sizes
increase. The sizes and densities of the matrices used in these tests are shown in
Table 8.1.

The relative performances of the sequential and CUDA implementations of the
Jacobi method, and the sequential implementation of the BiCGStab method, are
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Figure 8.4: Results of GPU reachability algorithm compared to the same algorithm
on the CPU. Averages are based on 10 trials. Matrices have 10% non-zero entries.

different for each algorithm. The best performance on the random quick sort data
was from the sequential implementation of the Jacobi method, while the best per-
formance for biased die was from the CUDA implementation of the Jacobi method.
The CUDA implementation of the BiCGStab method performs worst in both cases.
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Figure 8.5: Performance on matrices output by JPF, while checking the random
quick sort algorithm.
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Figure 8.6: Performance on matrices output by JPF, while checking the biased die
algorithm.

8.3 Comparing Probabilistic Model Checking Data with
Random Matrices

In this section, we compare the performance of the iterative methods on model
checking data and random matrices. For these tests, random matrices were gener-
ated with the same densities and sizes as those produced by JPF (as in Table 8.1).
The JPF matrices are reduced transition probability matrices, subtracted from the
identity matrix. So, they have entries in the interval [-1, 1] with locations based
on the structure of a PTS. In contrast, entries in the randomized matrices are
randomly-located positive integers, as described in Section 8.1. Unlike in the JPF
matrix tests, each trial uses a different matrix and vector. However, the standard
deviations of the times measured are still too small to be shown on the graphs.

Performance results for these matrices are shown in Figure 8.7 and Figure 8.8. It
is apparent that the ordering of the different implementations’ performances is the
same as it was for matrices of the same sizes and densities generated by JPF. This
suggests that size and density are the main determinants of which implementation
performs best on probabilistic model checking data, and whether CUDA will be
beneficial, rather than other properties unique to the matrices found in probabilistic
model checking.

Our results indicate that for the particular types of matrix encountered during
probabilistic model checking, implementing the BiCGStab method in CUDA does
not improve performance. CUDA does, however, improve the performance of the
Jacobi method.

In [6], the authors conjecture that the Jacobi method would be more suitable
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Sizes and Densities of S? Matrices
Random Quick Sort Biased Die
n m density n m density
92 211 0.025 667 1333 0.003
118 263 0.019 1333 2665 0.001
142 312 0.015 2000 3999 0.001
173 379 0.013 2668 5335 0.001
198 430 0.011 3647 7293 0.001
228 491 0.009 4647 9293 0.000
250 536 0.009 5647 11293 0.000
284 606 0.008 6647 13293 0.000
313 669 0.007 7647 15293 0.000

Table 8.1: Sizes and densities of the matrices produced by JPF for the two algo-
rithms. n is the matrix dimension, and m is the number of non-zero entries.
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Figure 8.7: Performance on randomized matrices, with the same sizes and densities
as the matrices produced by JPF when checking the random quick sort algorithm.
Averages times are based on 40 matrices.

for probabilistic model checking using CUDA than Krylov subspace methods such
as the BiCGStab method. This seems to be true. However, the results in Sec-
tion 8.1 suggest that this is due to the superior performance of the Jacobi method
on sparse matrices in general, rather than BiCGStab’s higher memory requirements
as proposed in [6]. For the probabilistic model checking data, the matrix density
decreases as the size increases, so the conditions in which the CUDA BiCGStab
implementation performs best (larger, denser matrices, as in Figure 8.2) are not
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as the matrices produced by JPF when checking the biased die algorithm. Average
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encountered.
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9 Conclusions

9.1 Summary

In this thesis, we continued work on the progress measure introduced in [30]. We
showed how it could be calculated for linear-time properties expressed as unipolar
LTL formulas, and we developed a more efficient algorithm to calculate progress
for properties of the form p U q. We also examined the relationships between the
progress of properties and their negations, and determined how to calculate a lower
bound of progress in polynomial time. Thus, the main contribution of this thesis
is to vastly increase the number of situations in which the progress measure can be
used.

Furthermore, as progress is calculated as a reachability equation for invariants
[30] and p U q-type properties (Chapter 6), we examined the performance benefits
of computing reachability on a GPU. We compared iterative and sequential imple-
mentations of the Jacobi and BiCGStab algorithms. In some cases, but not all,
the GPU implementation was beneficial. We observed that which algorithm gives
the best performance is related to the density of the transition probability matrix
of the system under verification. We also demonstrated how binary reachability
algorithms on dense graphs could be accelerated using a GPU.

9.2 Related Work

Our work on the progress measure is based on the paper by Zhang and Van Breugel
[30], and the thesis of Zhang [28]. These works first introduced the progress mea-
sure. They proved that the progress measure is less than or equal to the actual
measure of executions in the system under verification that satisfy the linear-time
property being verified (Theorem 2.45), and showed how to calculate progress for
invariants. They also created the probabilistic extension of JPF which we used to
generate test data for Chapter 7.

The work by Pavese, Braberman and Uchitel [20] is also related. They aim
to measure the probability that a run of the system reaches a state that has not
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been visited by the model checker. Also the work by Della Penna et al. [21] seems
related. They show how, given a Markov chain and an integer i, the probability of
reaching a particular state s within i transitions can be computed.

Our work on calculating reachability probabilities in CUDA is based on that of
Bosnacki et al. [6], which tests a CUDA implementation of the Jacobi method on
data obtained by another probabilistic model checker, PRISM. They used different
probabilistic algorithms in their probabilistic model checker, and for each algorithm
their results show a benefit from GPU usage. In a later expansion of their research
[7], they test a CUDA implementation of the Jacobi method that uses a backward
segmented scan, and one using two GPUs, which further improve performance. In
their second paper they also compare the performance on 32- and 64-bit systems,
and find that for one of the three algorithms they model check, the CPU algo-
rithm on the 64-bit system outperforms the CUDA implementation. In another r5
elated paper, Barnat et al. [3] improve the performance of the maximal accepting
predecessors algorithm for LTL model checking by implementing it using CUDA.

9.3 Future Work

As we have seen, there seems to be a trade off between efficiency and accuracy when
it comes to computing progress. Our most general algorithm to compute progress,
the algorithm for unipolar LTL in Chapter 4, is exponential in the size of the
unipolar LTL formula and polynomial in the size of the search. We conjecture, and
leave to future work to prove, that the problem of computing progress is PSPACE-
hard.

The approach to handle the unipolar fragment of LTL seems not to apply to
all of LTL. We believe a different approach is needed to create an algorithm that
applies to LTL in general. When an atomic proposition and its negation are both
included in a formula, situations arise where one must take into account the prob-
abilities of individual paths leading to the unexplored part of the system, and the
atomic propositions encountered along those paths, in order to measure progress.
So, we speculate that a modified version of an algorithm like the one to measure
executions that satisfy a property in [11, Section 3.1] might be useful. We leave the
development of a general progress measure algorithm to future research.

Regarding the lower bound algorithm, we hypothesize that Theorem 4.24 is true
without the precondition that no violation of the LTL property φ has been found.
However, proving this theorem without the assumption seems much more difficult,
and could be a topic for future work. Furthermore, as we have shown, the lower
bound is tight for at least one important class of properties, the invariants. Since
the lower bound can be calculated in polynomial time, determining the precise class
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of properties for which the bound is tight would be useful, and is another topic for
further research.

We also hypothesize that the algorithm to calculate progress for formulas of the
form p U q in Chapter 6 could be expanded to include formulas with a series of
atomic proposition connected by until operators, such as p1U p2U . . .U q. However,
we have not proven this, and leave it to future research.

Future work on using the GPU for reachability calculations could include ex-
periments on model checking data generated from the probabilistic algorithms used
with the model checker PRISM in [6], to allow closer comparison with that work.
Another possibility is to implement the CUDA BiCGStab algorithm using multiple
GPUs, so that different steps can be run in parallel.

In [19], Kwiatkowska et al. suggest considering the strongly connected compo-
nents of the underlying digraph of the PTS in reverse topological order. Since
the sizes and densities of the matrices corresponding to these strongly connected
components may be quite different from the size and density of the matrix corre-
sponding to the PTS, we are interested in seeing whether this approach will favor
different implementations.
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