
Semantic Analysis of Pict in Java

Darius Antia

A thesis submitted to the Faculty of Graduate Studies

in partial fulfilment of the requirements

for the degree of

Master of Science

Graduate Programme in Computer Science

York University

Toronto, Ontario

February 2004

c© Copyright by
Darius Antia
February 2004

Abstract

Our objective is to examine semantic analysis as it applies to a compiler for Pict. We show how syntax
tree construction, syntax tree transformation, scope checking, and kind checking can be automated. This
requires developing small specification languages for each of these tasks. The purpose of such languages is
to allow a compiler writer to specify each phase in a manner that is lucid and precise. Accompanying each
such specification language is a tool that can mechanically convert a specification into code. The ability
to transform high level specifications into implementation level code eliminates a large amount of tedious
manual coding. This consequently enhances maintainability since changes to the definition of the language
only need to be reflected in the easily modifiable specifications.

In the development of our Pict compiler we want that both the code we write by hand, and the code
we mechanically generate be highly object oriented, that is, we try to leverage core object oriented concepts
including encapsulation, inheritance and polymorphism as much we can. In several object oriented compiler
frameworks, these concepts are not considered in the interest of programmer convenience. In our work
we aim to steadfastly adhere to the object oriented paradigm, while at the same time retain, or possibly
even enhance, programmer convenience. It is a well documented fact that object oriented code is easily
maintainable. However, the main advantage of the mechanically generated code being object oriented is
robustness. Encapsulation, for example, limits the scope of what the generated code is capable of doing.
Often times, errors in the generation process, which would otherwise have gone unnoticed, show up as
encapsulation violations in the resulting object oriented code. Polymorphism eliminates the need for case
analysis, contributing not only to robustness, but also to the overall ease of generating the code.

Using Java as the target and implementation language allows us to experiment with object oriented
compiler generation techniques. Another reason for choosing Java as our implementation language is that
our compiler is capable of running on all major platforms. Additionally, the current popularity of Java makes
the inner workings of our compiler accessible to a larger audience.

iii

Acknowledgements

I am most grateful to my supervisor, Franck van Breugel, for his invaluable guidance throughout the
course of this thesis. Without his untiring efforts this thesis would not have reached completion.

I am also grateful to Jonathan Ostroff for his assistance with Eiffel, Eshrat Arjomandi for meticulously
proof reading the final draft of this document, and Richard Paige for his help with early versions of this
thesis.

I am also indebted to York University’s Computer Science department for providing me with the necessary
support to complete this thesis.

v

Table of Contents

Abstract iii

Acknowledgements v

Table of Contents vii

1 Introduction 1

1.1 Hello World in Pict . 1
1.2 Research Goals . 2

1.2.1 Platform Independence . 2
1.2.2 Object Oriented Construction . 2
1.2.3 Attention to Static Typing . 2
1.2.4 High Level Specification Languages . 2

1.3 Previous Work . 2
1.3.1 Pict Compiler . 3
1.3.2 Object Oriented Compiler Design . 3
1.3.3 Compiler Toolkits for Java . 3
1.3.4 Semantics-Directed Compiler Construction . 3

1.4 Our Contributions . 3
1.4.1 Formal Language Definition . 3
1.4.2 AST Generation Framework . 4
1.4.3 Specifying Semantics Analysis . 4

1.5 Overview . 5

2 Lexical Analysis 7

2.1 Mechanically Generating a Lexer . 7
2.1.1 Readability of Specification . 7
2.1.2 Object Orientedness of Generated Code . 8

2.2 Writing a Lexer Specification . 8
2.2.1 Embedding User Defined Code . 8
2.2.2 Distributing User Defined Code . 9
2.2.3 Inheriting User Defined Code . 9

2.3 Handling Error Conditions . 11

3 Lexical Definition 13

3.1 Unicode Support . 13
3.2 Escape Conventions . 13

3.2.1 Unicode Escapes . 14
3.3 Lexical Structure . 14

3.3.1 Identifiers . 14
3.3.2 Keywords . 14

vii

3.3.3 String Literals . 15
3.3.4 Character Literals . 15
3.3.5 Integer Literals . 15
3.3.6 Whitespace . 16
3.3.7 Comments . 16
3.3.8 Line Termination . 16

3.4 Conventional Escape Sequences . 16
3.5 Differences . 17

4 Parser 19

4.1 Tree Generation . 19
4.2 Parser Generation . 20

4.2.1 Explicit Action Code . 20
4.2.2 Implicit Action Code . 20
4.2.3 The Corretto Parser Generator . 21

5 Concrete Syntax 23

5.1 Definition . 23
5.1.1 Compilation units . 24
5.1.2 Declarations . 24
5.1.3 Abstraction . 24
5.1.4 Patterns . 24
5.1.5 Process . 24
5.1.6 Values . 25
5.1.7 Types . 25
5.1.8 Polarities . 26
5.1.9 Kinds . 26

6 Syntax Tree Construction 27

6.1 Encoding a Program . 27
6.2 Implementing a Syntax Tree . 27

6.2.1 Heterogeneous Syntax Trees . 28
6.3 Deriving an Inheritance Hierarchy . 28

6.3.1 Transforming a Grammar to INF . 29
6.3.2 Preservation of Structure . 30
6.3.3 Handling Multiple Inheritance . 32
6.3.4 Multiple Inheritance Via Interfaces . 34

7 Abstract Syntax Design 35

7.1 Removal of Keywords . 35
7.2 Rearrangement of Productions . 36
7.3 Representation of Lists . 36
7.4 The Pict Abstract Syntax . 37

8 Syntax Tree Implementation 41

8.1 The Need for Automation . 41
8.1.1 JavaCC . 41
8.1.2 SableCC . 42
8.1.3 Grappa . 43

viii

9 Syntax Tree Transformation 45

9.1 A Sample Transformation . 45
9.1.1 Conversion to Java Code . 46

9.2 Generalized Return Type . 47
9.2.1 Limitation of Java’s Type System . 47
9.2.2 Possible Remedies . 47

9.3 Type Mismatches . 48
9.3.1 Unsafe Type Conversion . 48
9.3.2 User Defined Type Conversions . 49
9.3.3 Automatically Inferred Type Conversions . 49

10 Symbol Table Design 51

10.1 Avoiding a Symbol Table . 51
10.2 Need for a Symbol Table . 52
10.3 Conformance to Scoping Rules . 52

10.3.1 Symbol Name Reuse . 53
10.4 Symbol Table Data Structures . 53

10.4.1 Per Node Name Spaces . 53
10.4.2 Persistent Symbol Tables . 54

11 Scope Checking 57

11.1 Separate Scope Checking Phase . 57
11.2 Code Placement . 57

11.2.1 Syntax Separate From Interpretation . 58
11.2.2 Visitor Design Pattern . 59

11.3 Generation of Scope Checking Code . 60
11.3.1 Scope Specification Language . 60

11.4 Subset of Raw Scope Rules . 62
11.5 Formatted Scope Rules . 63

12 Kind Checking 65

12.1 Type Expressions and Kinds . 65
12.2 Representing Kinds . 65
12.3 Kinding Rules . 66

12.3.1 Formally Defining Kinding Rules . 67
12.3.2 Normalizing Kinding Rules . 67
12.3.3 Representing Kinding Rules . 68

12.4 Translating Rules . 68
12.4.1 Code Generation . 68
12.4.2 Code Placement . 69
12.4.3 Return Types . 69

13 Conclusion 71

13.1 Implementation Language Paradigms . 71
13.1.1 Defining Syntax Trees . 72
13.1.2 Tree Traversals . 73
13.1.3 Choosing a Paradigm . 75

13.2 Java . 75
13.3 Helper languages . 75
13.4 Specification Languages . 75
13.5 Future Work . 76

ix

Bibliography 79

x

Chapter 1

Introduction

The π-calculus [16] provides a theory of communicating and mobile systems. Pict [23] is a high-level language
built on top of the π-calculus. As such, the concurrent language Pict is related to the π-calculus much like
functional languages such as ML are related to the λ-calculus.

Compilers for Pict should be designed to accommodate frequent changes to the language. This is because
Pict is used as a basis for experimenting with variations on the π-calculus, as well as various kinds of type
systems. Consequently, its definition and semantics are volatile in nature, and compilers unable to cope with
such changes can soon become defunct.

1.1 Hello World in Pict

A program in Pict essentially consists of concurrent processes communicating over channels. The process
print!"hello, world", demonstrates the concept of communicating over channels. In it, we transmit the
string hello, world over the channel print. Communication over channels is akin to function calls in
conventional languages, and as such is an easily understood concept.

A more interesting aspect of the π-calculus, and consequently Pict, is that, not only can channels carry
ordinary data like the string hello, world, but they can also carry other channels. This is refered to as
mobility. In the following mobile version of a hello world program,

1 new request: ^[]

2 new response: ^^String

3
4 ({-- Server process --}

5 request?[] = (new x:^String

6 (response!x

7 | x?str = print!str))

8
9 {-- Client process --}

10 | (request![]

11 | response?pr = pr!"Hello World")))

the channel response, in Line 6, is used to carry the channel x. In this program, the server process, upon
receiving a signal over channel request, creates a new channel called x (Line 5), which it then transmits
over channel response (Line 6). It then prints out whatever it receives over channel x (Line 7). The client
process on the other hand, sends a signal along the channel request (Line 10), and then reads from channel
response. What it reads is an actual channel (pr), along which it transmits the string hello, world

(Line 11).
The Pict Tutorial [21] further elaborates on the topics of communication and mobility. It also discusses

other important concepts such as concurrency, synchronization, and typing. We refer the interested reader
to this document.

1

1.2 Research Goals

The overall goal of our research is to develop a Pict compiler that will serve as a convenient basis for further
research and development of (a) languages based on the π-calculus, (b) type systems for concurrency, and
(c) Pict itself. Additionally we wish to explore the applicability of object oriented techniques in compiler
development.

1.2.1 Platform Independence

In the interest of widespread utilization we have decided that our compiler should be capable of running on all
major platforms. To this end we chose to develop our compiler in Java [10], specifically the Java Development
Kit (JDK). Additionally, the current popularity of Java makes the inner workings of our compiler accessible
to a larger audience.

Considering that our compiler can run on several different platforms, it behooves us to have our compiled
code run on those platforms too. We therefore chose to make our compiler’s target language executable
on the Java virtual machine (JVM) [14]. The widespread availability of the JVM and the JDK makes our
compiler and compiled code potentially platform independent.

1.2.2 Object Oriented Construction

We wish to examine how applicable object oriented techniques are in the realm of compiler development. We
observed that in several object oriented language processors (or toolkits), core object oriented concepts are
violated in the interest of programmer convenience. In our work we aim to steadfastly adhere to the object
oriented paradigm, while at the same time retain (or even enhance) programmer convenience. Using Java as
an implementation language allows us to experiment with object oriented compiler construction techniques.

1.2.3 Attention to Static Typing

Static typing is in our opinion crucial to safe programming. However, since it is limited in our implementation
language (Java), it makes our compiler susceptible to runtime type violations.

In our work we attempt to utilize Java’s type system in a manner that reduces the risk of runtime type
mismatches. Such an approach is particularly important when a large number of classes is involved. In our
compiler we often deal with over two hundred classes at the same time.

1.2.4 High Level Specification Languages

One of our design goals is to be able to view our compiler as a series of specifications. This requires developing
small specification languages for each major compilation phase. The purpose of such languages is to allow a
compiler writer to specify semantic actions in a manner that is lucid, terse and precise.

Accompanying each such specification language is a tool that can convert it into highly object oriented
Java code. This generated code is intended to be understood by humans, and is thus very readable and well
documented.

The ability to transform high level specifications into implementation level code also eliminates a large
amount of tedious manual coding. This consequently enhances maintainability since changes to the definition
and semantics of Pict only need to be reflected in the (easily modifiable) specification files.

1.3 Previous Work

A considerable amount of work with goals closely related to ours has already been carried out. First of
all, there already exists a Pict compiler. Furthermore, considering the current popularity of object oriented
programming, a large variety of techniques to develop object oriented software have been developed. Several

2

of these are applicable to compiler construction. Also, a large variety of tools to automate various compilation
tasks, several of them producing Java code, have already been built.

1.3.1 Pict Compiler

Previous work on a Pict compiler has been performed by Pierce and Turner [23]. This includes a working Pict
compiler as well as a precise definition of the language’s semantics. However, this compiler is implemented
in Objective CAML [6] — a language supported on most major platforms, but little known outside of
the functional programming community. Consequently, further development on this compiler is limited to
functional programmers.

1.3.2 Object Oriented Compiler Design

Modern Compiler Implementation in Java [4], is a well recognized text for compiler construction. It describes
how to develop a compiler using an object oriented implementation language. Some of the techniques
described in this book however, depart from fundamental object oriented principals.

Design Patterns [9] describes a wide range of object oriented techniques in general. Some of these
techniques, for example visitor design, are quite applicable to compiler development.

1.3.3 Compiler Toolkits for Java

There exist several compiler development toolkits for Java. These include JLex [5] and JFlex [12] for
generating scanners, CUP [11] and JavaCC [15] for generating parsers, and JJTree [15] for generating syntax
trees. There also exist more general purpose toolkits such as SableCC [8] and ANTLR [19], which handle
everything from scanning to syntax tree generation. These toolkits also make provisions for traversing the
parse trees that they generate. We discuss some of the pros and cons of such toolkits in Chapter 8.

1.3.4 Semantics-Directed Compiler Construction

There exist several systems which are able to construct a working compiler given an input specification.
An important differentiating point among these systems is the nature of the input that they accept. AC-

TRESS [18], is one such system that generates a compiler from an input based on action semantics [17].
PERLUETTE [7] is another such system, but uses algebraic semantics as input instead.

1.4 Our Contributions

Our main contributions are to (a) formally define the syntax of Pict, (b) develop a framework for generating
syntax trees, (c) using high level specification languages to perform semantic analysis, and (d) evaluate
contemporary object oriented approaches to compiler development.

1.4.1 Formal Language Definition

The original Pict definition is a rather informal document. Several aspects of its lexical definition are
ambiguous, and its grammar is missing some productions. It should be noted that this document is only
intended to give a flavour of the language’s syntax rather than rigorously define it.

We begin our work by formally defining a core fragment of the Pict language. In our definition we correct
the errors found in the original definition, as well as incorporate Unicode support into the language.

3

1.4.2 AST Generation Framework

An abstract syntax tree (AST) is a core data structure in any multi-pass compiler. Conceptually it is
a data structure that represents the essential structure of an input program. It typically serves as the
interface between the syntactic phase of compilation, in which it gets generated, and the semantic phases of
compilation, in which it gets utilized.

It is important that an AST implementation be both robust and easily maintainable. Upon an AST rests
the entire semantic analysis phase of a compiler, so it is crucial that it be robustly implemented. Additionally,
in order to cope with an evolving language definition, ASTs also need to be maintainable enough to facilitate
frequent modifications. We have developed a framework for generating ASTs that meets both of the above
criteria. Our ASTs mainly rely on encapsulation and static typing to achieve their robustness. Furthermore,
since they are automatically generated, they are inherently maintainable.

1.4.2.1 Representing Syntax Trees

A parse tree for a string s and a context free grammar G represents the way in which s can be decomposed
as per the rules of G. A syntax tree — as defined for the purpose of this discussion — is a data structure
capable of representing all parse trees for G.

We propose a method by which any context free grammar G can be converted into a syntax tree S. We
then prove that there is a one-to-one correspondence between the set of all parse trees for G and the set of
all instances of S.

The syntax tree data structure that is produced by our transformation is object oriented in nature. In
fact, the output of the transformation is an inheritance hierarchy of Java classes.

1.4.2.2 Specifying and Transforming Syntax Trees

We first introduce a simple language for specifying tree-like (i.e., hierarchical) data structures. Our main
intent for doing so is to be able to specify the inheritance hierarchy mentioned above.

We also introduce a language for mapping one kind of syntax tree into another. This language permits
for a high level specification to indicate how the nodes of one syntax tree should be transformed into the
nodes of another. Normally, this a tedious task to code in a language like Java, so the ability to only have
to specify it provides a great degree of convenience.

For both of the above languages, we develop tools that transform specifications written in these languages
into implementation level Java code. Like all our other mechanically generated code, this code too is object
oriented, readable and well documented. Additionally, we ensure that our tree transformation code is type
safe.

1.4.3 Specifying Semantics Analysis

Semantic analysis is of course the process by which a compiler examines a syntactically correct input for
conformance to the language’s semantics. It is however a rather tedious process to perform. Firstly, there
are a lot of checks that need to be performed. In a language like Pict, where there are about eighty semantic
constructs and five separate semantic phases (e.g., scope checking, type checking, etc.), there would be about
four hundred individual cases that would need to be checked. Secondly, there is no assurance (other than
rigorous testing) to ensure that the semantic analyzer has been implemented in a manner consistent with
that of the formal semantic definition.

In our work we address both of the aforementioned issues. We propose a framework in which a compiler
writer only be required to provide a high level specification of the language semantics. This definition, which
is both terse and precise, should be considered as an authoritative source of the language’s semantics. A
program then converts this definition into implementation level code. Our experience suggests that it is
well worth the effort to create a framework such as the one described above. A compiler writer now only

4

needs to maintain a high level semantic description (and its corresponding simple transformation program),
rather than a voluminous quantity of implementation level code. Additionally, proving the correctness of a
semantic analyzer generated in this manner, reduces to the task of proving the correctness of a relatively
simple transformation program.

The transformation programs that we develop have several notable properties. Firstly, they produce Java
code that is both human readable and documented. Secondly, the code generated is not only highly object
oriented, it is also statically typed. Lastly, in addition to just transforming a specification into Java code,
our program is also capable of converting it into a LATEX document, suitable for publication.

1.5 Overview

The remainder of this thesis can be subdivided into three broad categories — syntactic analysis, description
of data structures, and semantics analysis. In Chapter 2 to 5 we discuss syntactic analysis. In Chapter 6 to
10 we discuss those data structures that are crucial to our implementations. And, in Chapter 11 to 12 we
discuss semantic analysis.

In discussing syntactic analysis we describe how we go from program text to parse tree. Our main focus
here is to precisely define the syntax of Pict, propose object oriented approaches to lexical analysis, and
minimize the amount of user defined code used for parsing.

Our discussion on data structures concerns syntax trees and symbol tables. When discussing syntax trees
we are mostly concerned with object oriented design, static typing, and overcoming limitations of Java’s type
system. Later, we describe how we implement persistent symbol tables, and how they are integrated into
our abstract syntax trees.

Scope checking and kind checking are the major topics in our discussion on semantic analysis. Here
our emphasis is on describing a mechanism for automatically converting high level semantic definitions into
implementation level Java code.

We conclude by comparing our object oriented approach with a potential functional approach.

5

Chapter 2

Lexical Analysis

Lexical analysis is the process of identifying and categorizing tokens in an input program. Conceptually this
is a fairly simple process to implement, but in the case of a language like Pict, care must be taken to keep
it maintainable. This is because Pict is still in an experimental stage, and thus its lexical definition is still
volatile.

Our lexical analyzer (lexer) is developed in a very object oriented manner. Our goal was to implement a
lexer capable of coping with changes in Pict’s lexical definition. To this end, we used several object oriented
design techniques when implementing our lexer. Although the techniques we utilized are not new, we have
hitherto not seen them used in the context of lexical analysis.

2.1 Mechanically Generating a Lexer

In Chapter 3, we will define the tokens that constitute a Pict program. We would like to implement a lexer
capable of identifying these tokens from a stream of input. It is of course a simple matter to hand code
a program capable of doing so, but using a lexer generator is a far more convenient approach. A lexer
generator is a tool that uses a high level specification of a language’s lexical structure to generate a lexer for
it. The idea of mechanically generating a lexer is very well known and documented in [1, Chapter 2].

Since our compiler is being implemented in Java, it is desirable to utilize a lexer that too is coded in
Java. Fortunately, we have at our disposal several tools that meet this requirement. JLex [5] and JFlex [12]
are two popular stand alone lexer generators. JavaCC [15], SableCC [8], and ANTLR [19] are popular Java
based compiler toolkits, part of which include a facility for lexer generation.

Two of the main factors dictating our choice of lexer generator were: (a) The overall readability of the
specification file, and (b) the object orientedness of the generated code. Together, these criteria determine
the overall maintainability of the lexical phase of our compiler. Since all of the aforementioned tools generate
adequately fast code, performance was not a deciding factor. For reasons we shall explain below, we settled
upon using JFlex as our lexer generator.

2.1.1 Readability of Specification

Most of the effort involved in creating a mechanically generated lexer lies in writing a specification for it. It
therefore behooves us to utilize a lexer generator that supports a rich and uncluttered specification syntax.

For the most part, the input to a lexer generator is an encoding of generalized finite automaton (GFA).
A GFA is merely a finite automaton whose transitions are labeled by regular expressions, rather than just
individual characters. The richer the set of regular expressions supported by a lexer generator, the fewer
will be the states in the underlying GFA, and consequently the more high level the resulting specification.

JFlex supports a rich set of regular expressions in its specification syntax. It for instance supports the
concept of a minimal match (i.e., the ~ operator). This allows us for example to easily specify a string literal
using the expression "~" (assuming for the sake of simplicity that a string literal itself does not contain a "

character). Using some of the other lexer generators we would need to specify a string literal as:

7

State DEFAULT:

" goto state STRING

State STRING:

. save this character as being part of the string

" goto state DEFAULT

The convenience of such extended regular expression operators greatly contributes to the overall succinctness
of the lexer specification. For this reason it is advantageous to use JFlex as a lexer generator instead of
SableCC or JavaCC.

ANTLR too has a rich set of operations available for specifying tokens. In fact, whereas all the other
lexer generators we looked at only allow regular expressions to be utilized, ANTLR actually allows us to use
context free grammars! The additional expressiveness of a context free grammar can be put to good use in
a lexical specification. Pict for example allows comments to be nested, as in { a { b } }. Using ANTLR,
such a comment can be easily identified by the expression, COMMENT: ’{’ (COMMENT | ~’}’)* ’}’. For
exact detail about this expression we refer the reader to the ANTLR documentation [19], but the main point
to note is that a COMMENT is defined in terms of itself (i.e., recursively). Any of the other lexer generators
would require us to introduce an explicit COMMENT state, and also keep track of the nesting level ourselves.

Pict programs are written in Unicode, so we require a lexer that can work with a steam of Unicode
input. At the time of this writing JLex does not support Unicode at all, and ANTLR only supports it
poorly. While it is still possible to perform lexical analysis on a Unicode input stream using a lexer that
only has a concept of one byte characters, it is however inconvenient to do so. For instance, an integer can
be specified as [0-9]+ using a lexer generator that supports Unicode, but without the benefit of Unicode
support it would have to be specified as (\000[0-9])+. For this reason we opt to choose JFlex, which has
good Unicode support, over ANTLR or JLex.

2.1.2 Object Orientedness of Generated Code

A good guideline to writing a maintainable lexer specification is to minimize the amount of user defined code
it contains. Not only does this aid in readability, but it also separates the task of identifying tokens from
the task of interpreting (processing) them.

The separation between identification and interpretation can be very naturally modeled in an object
oriented manner. As we shall explain in Section 2.2, a mechanically generated lexer can be viewed as an
abstract class that knows how to identify tokens, but does not define the methods required to process them.
We then extend such a lexer with the methods required for interpretation.

In order to formally define and enforce such a separation, we need to utilize a lexer generator that supports
the notion of an abstract lexer. JFlex supports such a notion, and does so in a very flexible manner. Toolkits
such as SableCC, ANTLR, and JavaCC intend for the lexer that they generate to be used in conjunction
with the rest of tools they provide, and so do not necessarily support features required for implementing a
flexible stand alone lexer.

2.2 Writing a Lexer Specification

Despite the rich set of regular expressions provided by JFlex, a JFlex specification can easily get cluttered
and unmaintainable if not done properly.

2.2.1 Embedding User Defined Code

There is a tendency to squeeze a lot of code into a lexer definition file. This is typically done in the interest of
efficiency and possibly convenience, but at the cost of maintainability. For example, the JFlex distribution
provides a sample Java specification that suffers from this malady. In this specification an integer literal is

8

handled as follows: (a) It is first identified, (b) it is converted to a mathematical integer, (c) error checking
is performed (for example checking for overflow), and (d) any potential errors are reported.

The underlying problem with action code in the lexer specification is that the generated lexer processes
its input in addition to identifying it. In such a scenario, if some implementation of Pict decided to utilize 64
bit integers rather than 32 bit, the overflow checking code would need to be modified. But this modification
would have to be made in the lexical specification, where clearly it does not belong. Consequently, this
specification cannot be shared with the 32 bit version of Pict, even though the lexical structure of both is
identical.

2.2.2 Distributing User Defined Code

An alternative to embedding code in the lexical specification is to place it in some other file instead. A
seemingly obvious object oriented approach would be to create a separate class of each kind of token known
to the lexer. In Pict for example we would have an IntegerToken class, a StringToken class, and a
CharToken class, to name a few. These classes would then be equipped with the methods required to
perform conversions and error checking. For instance, we would no longer error check an integer for overflow
in the lexical specification, but instead do so somewhere in the IntegerToken class.

This approach certainly minimizes the clutter in the specification file, but still contains some flaws. The
main problem with this approach is that policy decisions get distributed into classes, when in fact such
decisions are best centralized. For instance, it is now up to the IntegerToken class to decide whether out of
bound integers are an error or a warning. Furthermore, there are some sections of code that simply do not
belong in any of the token classes (e.g., the code to convert escapes sequences to characters).

While such problems can be remedied through the use of additional classes that define policy and con-
version rules, the overall solution gets needlessly complicated. As indicated earlier in Section 2.1.2, we can
achieve a rather elegant solution using an object oriented approach that utilizes inheritance.

2.2.3 Inheriting User Defined Code

Writing a lexical specification is similar to writing an event driven program. An event in this case is the
identification of a token, and the action is the task of interpreting it. For any given lexical specification the
set of events remain constant. In a Pict lexer for example, some of these events would be foundInteger,
foundString, etcetera. However, there can be a variety of interpretations of these events. For example, a
32 bit implementation of Pict would handle a foundInteger event differently from a 64 bit implementation.
For maximum flexibility we need to come up with a scheme that allows us to associate with a set of events,
an arbitrary set of actions (or event handlers).

Object oriented design techniques allow us to conveniently create a flexible interface between events and
event handlers. One obvious approach is to formally define an interface of events that an event handler
object must implement. Then any object that implements this interface can be utilized as an event handler.
This of course gives us the ability to handle any event in an arbitrary number of ways. When applying this
approach to the task of lexical analysis, we would initialize our lexer object, with an event handler that
implements our choice of behavior. Thus the behaviour of our lexer will be governed by the arguments used
to initialize it.

An alternative approach is to use an abstract base class rather than an interface to specify events. Doing
so, allows us to introduce the concept of an abstract lexer — an object that knows how to recognize tokens,
but does not know how to process them. For instance, a specification such as,

"~" { foundString(matching-text); }

[0-9]+ { foundInteger(matching-text); }

results in a lexer such as,

abstract class Lexer {

9

Private methods for identifying tokens and triggering actions.
...
abstract foundInteger (String s);

abstract foundString (String s);

}

Note the conceptual similarities between the lexical specification and the abstract object. Both of them are
only concerned with identifying tokens, and neither of them describe how to process them.

Using inheritance, we can now morph the abstract lexer object into a concrete lexer object of our choosing.
For instance, if we wanted to create a 32 bit implementation of a Pict lexer, we would simply extend the
Lexer as follows

class Lexer32 extends Lexer {

foundInteger (String s) { . . . ; x = Integer.parseInt(s); . . . }
...

},

and to create a 64 bit implementation we can extend Lexer32 like,

class Lexer64 extends Lexer32 {

foundInteger (String s) { . . . ; x = Long.parseLong(s); . . . }
...

}

We believe that for practical as well as esthetic reason, using inheritance to define a lexer’s behaviour, is a
better approach than initializing a lexer with an appropriate event handler.

• From a design point of view we can now say that a Lexer32 is a Lexer, rather than a Lexer has an

event handler for 32 bit integers. We feel that in this case an is a relationship is more natural than a
has a relationship.

• It is also more object oriented, as the behaviour of an object is transformed using inheritance and
polymorphism, rather than special initialization parameters.

• Finally, this approach is also more practical since the automatically generated lexer does not make
provisions for working with an event handler parameter.

2.2.3.1 Limitations

The concept of inheriting an abstract lexer ensures that the lexical specification is immune from implemen-
tation level changes. However, changes in the lexical structure of the language still need to be reflected in
the lexer specification. This of course could result in having to define new event handlers, and consequently
require us to update all subclasses of the abstract Lexer class.

An abstract lexer only declares abstract method for events (i.e., patterns) that occur in the lexical
specification. Therefore, using the same abstract lexer, in different applications is not necessarily feasible.
For instance, our lexer declares methods such as foundInteger, foundString, etc., but does not define a
method such as foundComment. Consequently, an application such as a pretty printer, which requires the
presence of a foundComment method will not be able to reuse our abstract lexer. Its implementation would
require us to create a different (albeit very similar) lexical specification, and derive a new abstract lexer from
it.

10

2.3 Handling Error Conditions

It is of course important to be able to report errors in the lexical structure of an input program. It is also
important to be able to continue on, in spite of such errors. At first it may seem appropriate to use Java’s
exception handling mechanism to handle error conditions. Exceptions are designed to allows us to report
errors and potentially even recover from them. We however have found this not to be the case in a lexer
implementation.

The problem with using exceptions in a lexer is that an exception can leave a lexer in an undefined state.
Recall that a lexer is essentially a large finite state automaton. But, when an exception is thrown, a lexer is
forced to enter a state that is not part of its underlying finite automaton. Worse still, there is no obvious way
in which to restore the lexer to a known state. Consequently, throwing an exception hinders the possibility
of error recovery.

How then should errors in a lexer be dealt with? We believe that in a lexer, an error condition should be
the norm and not the exception. That is to say, our lexer should handle error events, using exactly the same
mechanism it uses to handle normal events (such as foundInteger or foundString). An example of an error
event handler would be extraBackslash. Typically, this event handler would be called when an extraneous
\ character is detected. When such an event occurs it is up to the event handler code to decide whether
to abort the processing, or emit a warning and continue. Throwing an exception named ExtraBackslash

would leave little room for recovery.

11

Chapter 3

Lexical Definition

The purpose of a language’s lexical definition is to clearly describe the textual elements of that language.
Examples of textual elements would include string literals, comment delimiters, escape conventions, etc.
Naturally, it is only after these components have been described that it is possible to identify them. This
description is therefore the basis of the lexical analysis process that we described in Chapter 2.

The original Pict language definition [22, Chapter 3] is both brief and informal in its treatment of lexical
rules. Consequently, it suffers from certain minor omissions and errors. In our work we rigorously define
a revised set of lexical rules that addresses these shortcomings. Additionally, our lexical rules permit for a
greater degree of internationalization.

3.1 Unicode Support

Programs are written in Unicode and are allowed to contain Unicode escapes anywhere within their text.
Unicode is an evolving standard, the latest information about which is available at unicode.org. Informally,

the Unicode character set can be viewed as a “wide” version of ASCII. It utilizes 16 bits to encode its
characters (as opposed to ASCII’s 7 bits). The Unicode Standard [2] is a mapping that provides a unique
number for every character.

The most obvious advantage of allowing a program to be written in Unicode is that its tokens are not
restricted to basic Latin characters. We feel that for identifiers within a program such a feature provides
little advantage. Furthermore, it is liable to result in cryptic identifier names such as ∪ instead of union.
However, for string and character literals it provides a considerable degree of useful flexibility. For instance,
a string may now trivially contain a £ character. Additionally, by virtue of the consistency of the Unicode
standard, a precise lexicographic order exists amongst Unicode characters (e.g., a $ always precedes a £).

3.2 Escape Conventions

Typically a character is represented by a single symbol. For example, the digit one is represented by the
symbol 1. An escaped character however is represented by multiple symbols. For instance, in the C language,
the digit one can be represented by the escape sequence \061. The need for escape sequences arises because
there exist more characters than we have symbolic representations. For example a US keyboard lacks a
symbolic representation (i.e., key) for the £ character.

Pict supports three different kinds of escape conventions: octal number escapes, character escapes, and
Unicode escapes. Escape sequences such as \061 are referred to as octal number escapes. Specifically, an
octal number escape is a sequence of the form \ooo, where ooo is a three digit octal number. Such an
escape sequence represents the character at location ooo in the ASCII table. Escape sequences such as \c

are referred to as character escapes (where c is one of n, t, ", ’, or \). These can be viewed as predefined
abbreviations for octal number escapes. For instance, \n is an abbreviation for \012. Octal number escapes

13

and character escapes are commonly found in programming languages, and hence should be familiar to most
programmers.

3.2.1 Unicode Escapes

Unicode escapes deserve some additional attention. Since the Unicode sequence consists of many thousand
characters, and a keyboard consist of only a few hundred symbols, most Unicode characters would need to
be represented by escape sequences. The Unicode standard defines an escape sequence for every Unicode
character. Furthermore, every Unicode escape sequence can be represented using only ASCII characters.
This fact makes it possible to represent any Unicode character using only a standard keyboard.

A Unicode escape looks like, \uhhhh, where hhhh is a four digit hexadecimal number. This escape
sequence represents the character at location hhhh in the Unicode standard. For example, the Unicode
escape for £ is \u00a3, and location 163 (i.e., A3 in base 16) of the Unicode standard is the £ symbol.
Unicode escapes are case insensitive, so \u00a3 is the same as \U00A3, or \u00A3.

Unicode escapes make octal number escapes and character escapes redundant. However, as we will argue
in Section 3.4, it is still desirable to maintain these older escape conventions.

3.3 Lexical Structure

A Pict program can be viewed as being consisted of tokens, whitespaces, and comments. However, only
tokens play a role in any further compilation stages. Whitespace and comments are discarded. Tokens can
be subdivided into five categories: identifiers, keywords, string literals, character literals, and integer literals.

3.3.1 Identifiers

There are two classes of identifiers: alphanumeric and symbolic. Alphanumeric identifiers begin with one of
the following symbols:

A . . . Z a . . . z _

Subsequent symbols may contain the following characters in addition to those mentioned above:

0 . . . 9 ’

Upper and lower case letters are different. Symbolic identifiers only consist of one or more of the following
symbols:

~ * % \ + - < > = & | @ $, ’

The maximum allowable length of an identifier is implementation dependent. In our compiler we limit it to
256 characters.

3.3.2 Keywords

The following identifiers are reserved for use as keywords, and may not be used otherwise.

and Bool Char Con def else false if

import inline Int Neg new now Pos rec

run String then Top true Type type val

where with ! # () -> .

/ : ; < = > ? @

[\] ^ _ { | }

14

3.3.3 String Literals

A string literal is a sequence of the form "x", where x can be a finite sequence of zero or more Unicode
characters, Unicode escapes, octal escapes or one of the escape sequences shown below:

newline NL \n

carriage return LF \r

double quote " \"

horizontal tab HT \t

However x cannot contain the Unicode character (or the Unicode escape, or the octal escape) for " unless it
is immediately preceded by a \. String literals cannot contain the character (or the Unicode escape, or the
octal escape) that represents a line break. The \n or \r escape must be used instead.

The reason for disallowing line breaks is that different host systems encode line breaks differently. Unicode
does not attempt to standardize the encoding of a line break, hence the behavior of a program would depend
on the host system on which it was compiled.

Examples of valid strings include "hello\n", "" and "\u00a3 10". Examples of incorrect string literals
include """ and "\u0022" (Unicode for ").

3.3.4 Character Literals

A character literal is a sequence of the form ’x’, where x is either a Unicode character, a Unicode escape,
an octal escape, or one of the escape sequences shown below:

newline NL \n

carriage return LF \r

single quote ’ \’

horizontal tab HT \t

However x cannot be the Unicode character (or the Unicode escape, or the octal escape) for ’. The only
way in which to create a character literal for ’ is to use the special escape sequence \’ as defined above.

Also x cannot be the Unicode character (or the Unicode escape, or the octal escape) that represents a
line break (newline or carriage return). The only way in which to create a character literal to represent a
line break is to use the special escape sequence \n or \r.

Examples of correct character literals include: ’a’, ’\’’ and ’\n’. Examples of incorrect character
literals include: ’aa’, ’’’ and ’\u000a’ (Unicode escape for a newline).

3.3.5 Integer Literals

An integer literal is a finite sequence of one or more digits optionally prefixed by a - sign. A - sign indicates
a negative integer while the lack of a sign indicates a non-negative integer. Integer literals attempting to
represent the value zero should not be prefixed by a sign. Examples of valid integer literals include 10, -10,
01 and -001.

All integer literals are a decimal encoding of the integer value they represent. The largest and smallest
such values that can be represented are implementation dependent. In our implementation integers range
from −231 to 231 − 1.

15

3.3.6 Whitespace

White space is mostly ignored during lexical analysis, but is required in some scenarios to separate otherwise
adjacent tokens, as illustrated by the following examples:

Input Tokens
[false 7] [key · falsekey · 7int ·]key

[false7] [key · false7iden ·]key

[7false] [key · 7int · falsekey ·]key

x!y xiden · !key · ykey

->*-#? ->*-iden · #key · ?key

a’b’ a’b’iden

a ’b’ aiden · ’b’char

a’ b’ a’iden · b’iden

3.3.7 Comments

A comment is introduced by the characters {- and terminated by the characters -}. Comments can be
nested and can be as long as desired. However, comments cannot occur within a string or character literal.
Examples of some comments include:

{- comment -}

{-

x!y {- comment -}

-}

3.3.8 Line Termination

Lines can be terminated using the newline convention of the host system.

3.4 Conventional Escape Sequences

Unicode support would seem to imply that all conventional escapes such as \n, \\, \ooo etc. can be replaced
with their Unicode counterparts. For example, \\ can be replaced by \u005c. Obviously this is possible,
since we are merely substituting one set of symbols for another. However there are good reasons for not
doing so.

The first such reason is to do with the fact that Unicode escapes and conventional ASCII escapes convey
different meaning. For example, the ASCII escape \" conveys the fact that “this double quote does not
terminate the string”, whereas normally the Unicode escape sequence \u0022 indicates that “this is a double
quote”. Treating \" as equivalent to \u0022 overloads the meaning of the Unicode escape. It now conveys
two pieces of lexical information: (a) this is character 0022 (hex) in the Unicode chart, and (b) do not
mistake this for a string terminator. The additional complexity that arises from this overloading does not
justify the need for having it. For this reason the \" escape is retained and \u0022 is not given any special
treatment. Similar arguments can be made for retaining \’, \n, \r and \\. Also since \" is more intuitive
than \u0022 to represent a " it would likely be the preferred choice for programmers.

Another reason for not blindly substituting escapes such as \t with its corresponding Unicode escape
\u0009 is that the interpretation of \t is context dependent. Within a string literal it represents a horizontal
tab, but it may also appear outside a string literal as in the following legal Pict statement for process
abstraction:

\t=()

16

In the latter case it does not mean a horizontal tab. The complexity involved with selectively replacing a \t

is significantly greater than treating \t as a special case within string and character literals. For this reason
it too is retained.

Escape sequences such as \ooo are in fact quite easily replaceable by Unicode escapes. In our compiler a
preprocessing pass is made over the input to convert every sequence of the form \ooo to \uhhhh.

Converting octal escapes to Unicode escapes, rather than actual Unicode characters has 2 advantages.
Firstly, there already exists a mechanism in the second pass of the compiler to handle Unicode escapes.
Secondly, converting to Unicode escapes has the advantage of not creating any additional (and unwanted)
Unicode escapes for the second pass. For instance consider two cases of how the string \134u005c (octal
backslash - u - 0 - 0 - 5 - c) could be preprocessed. In the first case, pass 1 of the compiler replaces octal
escape sequences with Unicode escape sequences (as implemented in our compiler), while in the second case,
octal escapes are replaced with actual Unicode characters.

Case 1: (Unicode escape) Case 2: (Unicode character)
Input \134u005c \134u005c

After pass 1 \u005c005c \u005c

After pass 2 \005c \

As evident from the above example case 1 yields a more reasonable result.

3.5 Differences

The original Pict language definition [22] captures the essence of the language reasonably well but is somewhat
lacking in detail. Our language definition remedies that situation as well as introduces Unicode support.
Some minor differences between our definition and the original one include:

• Allow octal escapes \ooo (the original allows decimal escapes).

• Allow leading underscore in identifier names.

• Disallow integers such as -0, -00, etc.

• Disallow \" escape in character literals.

• Disallow \’ escape in string literals.

• Allow \r in string and character literals.

17

Chapter 4

Parser

Parsing, for the purposes of our discussion, is a process that transforms an input program into some imple-
mentation dependent output format. This format, in the case of a multi-pass compiler is a parse tree, while
in the case of a single-pass compiler is the corresponding target language code. A parser is a program that
performs this transformation. It should be noted that the input to a parser first undergoes lexical analysis,
as described in Chapter 2.

In this chapter we discuss issues such as maintainability, robustness, and programmer convenience within
the context of implementing parsers.

4.1 Tree Generation

There are a variety of ways in which a parser can transform its input. In the case of a multi-pass compiler
however, we need to transform the input in a manner that is conducive to making multiple passes over it.
A parse tree data structure is a good candidate for fulfilling this requirement. It not only allows us to make
multiple passes over the input, but also preserves the essential structure of the input program. For example,
consider the context free grammar (CFG)

Dec −→ def DefList

DefList −→ Id Abs | Id Abs and DefList

Abs −→ Id = Proc

Proc −→ ()

Id −→ a | b | x | y.

This CFG is a simplified version of the Pict CFG defined in Chapter 5. As per standard convention, keywords
are displayed using a typewriter font, and non-terminals are displayed using an italic font. The start symbol
is Dec. Using this grammar, the parse tree for the Pict program def x a = () and y b = (), would be

Dec

def

kkkkkkk
DefList

Id

x

ggggggggggg
Abs

Id

a

xxx
= Proc

(

xxx
)

FFF

xx
and

FFF

DefList

Id

y

xxx
Abs

Id

b

xxx
= Proc

(

xxx
).

FFF

FF

WWWWWWWWW

SSSSS

Notice how this parse tree preserves the syntactic structure of the input program.

19

4.2 Parser Generation

Parsers can be very easily generated from a CFG. Most texts on automata theory, such as Sipser’s book
[24], will formally define this process. Tools known as parser generators will implement it. We, for example,
generate our parser from the CFG shown in Chapter 5, using the CUP [11] parser generator.

There are many advantages to using a parser generator. Parsers created by a parser generator typically
run faster than what can be reasonably expected from a hand coded equivalent. Furthermore, the effort
involved in using a parser generator is insignificant compared to the effort involved in writing a well optimized
parser. For these reasons, parser generators are now the de facto means of obtaining a parser.

Compiler writers have at their disposal a wide variety of parser generators. In fact, we know of at least
six such programs for generating parsers in Java. These include JavaCC [15], SableCC [8], ANTLR [19],
Zephyr [26], Corretto [3] and CUP. These tools can all generate a parser which would meet our needs.
However, they differ in the amount of user defined action code that they require us to provide.

4.2.1 Explicit Action Code

Action code is a code fragment that is associated with a rule of a CFG. Every time a parser performs a
reduction on this rule (i.e., collapse of the parse stack), the corresponding action code gets triggered. The
result from that action code is subsequently placed on the parse stack. Parser generators such as YACC [13],
CUP, ANTLR, and JavaCC support this mechanism.

We can use action code to build a parse tree. Consider for example, the CFG from Section 4.1. A
simplified CUP specification corresponding to this CFG would be,

Dec ::= DefList:dl {: new Dec(dl); :}

DefList ::= Id:i Abs:a {: new ShortDefList(i, a); :}

| Id:i Abs:a DefList:dl {: new LongDefList(i, a, dl); :}

Abs ::= Id:i Proc:p {: new Abs(i, p); :}

Proc ::= ǫ {: new Proc(); :}.

Note that in the interest of clarity we have omitted keywords such as def, and, (, etc. Nevertheless, this
specification largely resembles the CFG, except that it contains labels and action code. For example, in the
case of rule

Abs ::= Id:i Proc:p {: new Abs(i, p); :},

the label i refers to the Id component of the rule, and the label p refers to the Proc component. The action
code, which is defined within {: and :}, creates a node whose left child is the subtree Id and right child is
the subtree Proc. Essentially, as the parser performs reductions, it creates corresponding nodes of the parse
tree. Eventually, it will create the root node of the parse tree and place it on the parse stack.

Action code is a valuable mechanism to employ when we wish to transform our input in an arbitrary
manner. However, as we shall describe next, when we only need to transform our input into a parse tree, we
can do so without using any action code.

4.2.2 Implicit Action Code

A closer look at the above CUP specification will reveal an obvious correspondence between a rule and its
action code. Essentially, the left hand side of a rule becomes a new node of the parse tree, and the individual
components on the right hand side, become the children of that node. Tools such as Corretto and SableCC,
exploit this fact to relieve the user from writing any action code at all.

There are many advantages to using a parser generator such as Corretto. In our experience, about half
the data in a CUP specification is action code, and thus being able to eliminate it, greatly contributes
to readability. Secondly, by virtue of not having to write action code, the specification is inherently more

20

maintainable. Lastly, by eliminating the human factor entirely from the parsing process, we can go from
program text to parse tree without fear of committing any errors.

In our work we used CUP as our parser generator. However, motivated by the inconveniences we expe-
rienced owing to this choice, and the fact that eliminating action code is entirely possible, the tool Corretto

was subsequently (and separately) developed.

4.2.3 The Corretto Parser Generator

Corretto is designed to mechanically build a CUP specification from an annotated CFG. For this reason,
it is really a wrapper around CUP, rather than a full fledged parser generator. The main advantages that
Corretto offers over directly using CUP are (a) it allows us to write a more readable specification, and (b)
it does not require us to write any action code. The following is a Corretto specification corresponding to
the CFG in Section 4.1:

% Declaration %

Dec := % dl: list of definitions %

DefList

% List of definitions %

DefList := % Single element definition list %

ShortDefList

% i: name of abstraction,

a: body of abstraction %

Id Abs

| % Multiple element definition list %

LongDefList

% i: name of abstractions,

a: body of abstraction,

dl: remainder of list %

Id Abs DefList

% Abstraction %

Abs ::= % i: name of parameter,

p: process %

Id Proc

% Process %

Proc.

Note that here too, in the interest of clarity, we have omitted terminals. Corretto, like CUP, requires
components of a production to be labeled. Unlike CUP however, labels are not specified in-line, but rather are
specified separately between % delimiters. Furthermore, labels can be augmented with descriptive comments.
For example in the case of the Corretto fragment

Abs ::= % i: name of parameter,

p: process %

Id Proc,

i and p are labels that refer to components Id and Proc with respect to the production Abs → Id = Proc.
Upon feeding this input to Corretto, we would get an output that very much resembles the CUP speci-

fication shown in Section 4.2.1. Corretto will of course have generated all the action code that is present in
this output. The large quantity of comments that are present in a Corretto specification would at first glance

21

seem superfluous. However, there is an additional component of Corretto, called Grappa, which makes good
use of these seemingly superfluous comments. We will discuss Grappa in Chapter 8.

22

Chapter 5

Concrete Syntax

A grammar describes a language’s syntactic structure. In this chapter we provide a precise grammar for our
implementation of Pict. We henceforth refer to this grammar as the concrete syntax of Pict. This should
avoid confusing it with any other grammar that we utilize.

Our concrete syntax borrows heavily from that of the original Pict compiler. A notable difference between
the two is that ours is considerably smaller than the original one, as we only implement a core subset of
Pict. The original definition defines what is core and what is derived. Additionally the original contains
some omissions, that we have addressed.

5.1 Definition

The concrete syntax defined below is in LALR form. It is therefore suitable for using with parser generators
like CUP [11]. In our definition we adopt the following conventions:

• Keywords are written in a typewriter font, while non-terminals are written in italized font. The
symbol “=” separates the left hand side of a production from its right hand side. The terminal symbol
ǫ represents the empty string.

• The symbols Id , String, Char , and Int are not defined in this chapter. Instead, they are defined in
Chapter 3, which concerns itself with lexical structure.

• Productions that only consist of a right hand side, are assumed to have the same left hand side of the
production above them. For example,

Consyn = Dec DecList

Dec

is equivalent to,

Consyn = Dec DecList

Consyn = Dec

• The rightmost column optionally contains a comment. Its presence or absence has no bearing on
the grammar itself. Often these comments employ the adjectives long and short to describe list like
structures, as in

DefList = Id Abs Short definition list
Id Abs and DefList Long definition list

What follows is the Pict concrete syntax.

23

5.1.1 Compilation units

Consyn = Dec DecList Long declaration list
Dec Short declaration list

5.1.2 Declarations

Dec = new Id : Type Channel creation
def DefList Recursive definition

DefList = Id Abs Short definition list
Id Abs and DefList Long definition list

5.1.3 Abstraction

Abs = Pat = Proc Process abstraction

5.1.4 Patterns

Pat = Id RType Variable pattern
[FieldPatList] Record pattern
(rec RType Pat) Recursive type pattern

RType Wild card pattern
Id RType @ Pat Layered pattern

FieldPat = Pat Value field
Id < Type Subtype constraint
Id : Kind Kinding constraint
Id = Type Equality constraint

FieldPatList = Id = FieldPat FieldPatList Named record field
FieldPat FieldPatList Anonymous record field
ǫ End of record

5.1.5 Process

Proc = Val ! Val Output atom
Val ? Abs Input prefix
() Null process
(ProcList) Parallel composition
(DecList Proc) Local declarations
if Val then Proc else Proc Conditional

24

ProcList = Proc | ProcList Long process list
Proc | Proc Short process list

DecList = Dec DecList Long declaration list
Dec Short declaration list

5.1.6 Values

Val = Constant Constant
Path Path (projection)
[FieldValList] Record
(rec RType Val) Recursive type value

FieldValList = Id = FieldVal FieldValList Named record field
FieldVal FieldValList Anonymous record field
ǫ End of record

FieldVal = Val Value field
Type Type field

Constant = String String constant
Char Character constant
Int Integer constant
true Boolean constant
false Boolean constant

Path = Id Variable
Path . Id Record field pattern

5.1.7 Types

Type = Top Top type
Id Type identifier
^ Type Input/output channel
! Type Output channel
/ Type Responsive output channel
? Type Input channel
Int Integer type
Char Character type
Bool Boolean type
String String type
[FieldTypeList] Record type
\ KindedPolarityIdLs = Type Type operator
(Type TypeLs) Type application
(rec Id Kind = Type) Recursive type

25

TypeLs = Type TypeLs Long type list
Type Short type list

FieldType = Type Value field
Id < Type Type field with subtype constraint
Id : Kind Type field with kinding constraint
Id = Type Type field with equality constraint

FieldTypeList = Id = FieldType FieldTypeList Named record field
FieldType FieldTypeList Anonymous record field
ǫ End of record

RType = ǫ Omitted type annotation
: Type Explicit type annotation

5.1.8 Polarities

Polarity = ǫ Mixed polarity
Pos Positive polarity
Neg Negative polarity
Con Constant polarity

5.1.9 Kinds

Kind = (PolKindPairLs -> Kind) Operator kind
Type Type kind

PolKindPairLs = Polarity Kind Short polarity-kind list
Polarity Kind PolKindPairLs Long polarity-kind list

KindedPolarityId = Id : Polarity Kind Explicitly-kinded identifier

KindedPolarityIdLs = Id : Polarity Kind Short kinded-polarity-id list
Id : Polarity Kind KindedPolarityIdLs Long kinded-polarity-id list

OptKind = : Kind

ǫ

The above concrete syntax definition was automatically derived from the CUP specification. It is therefore
not as compact as it can be.

26

Chapter 6

Syntax Tree Construction

A syntax tree, as defined for the purposes of this discussion, is a data structure that is capable of representing
all parse trees of a given context free grammar (CFG). Syntax trees play a vital role in the implementation
of a modern compiler. While their exact utilization varies between implementations, their essential role
remains to encode a program in a manner that is convenient for subsequent analysis and transformation.

As one could reasonably expect, there exists a close relationship between a CFG and its corresponding
syntax tree. In our work we formally define what this relationship is, and consequently develop an algorithm
to transform a grammar into a syntax tree (and vice-versa). On the basis of this algorithm, as we describe
later in Chapter 9, we mechanically generate the code required to implement a syntax tree.

6.1 Encoding a Program

As described in Chapter 4, the parser transforms an input program into a concrete syntax tree (CST) —
the structure of which closely corresponds to that of the input program. Consider for instance, the following
trivial Pict program:

def a [] = (new c: Bool c ! true)

Here we define a process wherein, first, a boolean channel named c is created, and then the value true is
transmitted along it. As per the syntax of Pict, this process is the right hand side of an abstraction named a.
The CST for even this small program is eight levels deep and hence too large to elaborate upon here. Thus, in
the interest of brevity, we shall confine our discussion to the incomplete program (new c: Bool c ! true).
Furthermore, we shall ignore the keywords new, :, and !. Now, our simplified CST would be as follows:

LocDec

ShortDecList

NewChan

Id

c

��
Bool

???

oooo
Output

ShortPath

Id

c

��
ConstVal

true

OOO

OOO

This CST contains seven different kinds of internal nodes: LocDec — a local declaration, ShortDecList —
a single element declaration list, NewChan — a new channel declaration, Id — an identifier, Output — an
output process, ShortPath — a single element path, and ConstVal — a constant value.

6.2 Implementing a Syntax Tree

When implementing syntax trees in Java, we are faced with fundamental design questions. Should the nodes
of the syntax tree be typed based on the semantic constructs they represent, or should we use one and the

27

same type for all nodes? That is, should syntax trees be heterogeneous or should they be homogeneous?
On the one hand, in a homogeneous syntax tree all the nodes are instance of one and the same class, say
Node. On the other hand, a heterogeneous syntax tree utilizes a different type for every kind of node that it
contains.

6.2.1 Heterogeneous Syntax Trees

In terms of robustness, heterogeneous syntax trees offer a significant advantage over homogeneous syntax
trees. In the heterogeneous setting, the type system of the implementation language can be exploited to
constrain the shape of a node. Here for example, a NewChan node can only be of the form,

NewChan

Id

��
Type.

??

The implementation language’s type system will prohibit us from having a NewChan node with, say three
children. This is because our implementation would have a class called NewChan, whose constructor would
only accept input of type 〈Id, Type〉. By contrast, in a homogeneous setting, since we would only have a
class called Node, its constructor would not be able to impose any such constraints. As a result, we can write
valid code that generates a nonsensical syntax trees.

In our work we utilize a heterogeneous syntax tree, as outlined by Appel [4, Chapter 4]. The code for
this data structure is statically typed, and does not require on any type casting. The main point about this
implementation is that, different kinds of nodes are instances of different classes. For example, a NewChan

node would be an instance of class NewChan. This class would have a constructor of the form,

NewChan(Id iden, Type ty).

Naturally, this enforces the constraint that a NewChan node must only consist of an Id node and a Type

node.
At first glance there may appear to be a discrepancy in our above discussion. Notice that, in the figure

shown in Section 6.1, the right child of node NewChan is node Bool, and not node Type, as the above
constructor would suggest. Nevertheless this is correct, since in our definition Bool is a subclass of Type. As
we will show next, such subclass relationships are not arbitrarily imposed, but in fact arise quite naturally.

6.3 Deriving an Inheritance Hierarchy

The subclass relationship between classes is of course defined by the inheritance hierarchy of the syntax
tree. The inheritance hierarchy however is designed to closely parallel the production rules of the underlying
grammar. For instance a grammar fragment such as

A −→ B | C | D

would result in the inheritance hierarchy

A

B

??���
C

OO

D.

__???

Observe that according to the grammar, B, C or D can be used wherever A is expected, and according to
the inheritance hierarchy, instances of class B, class C or class D can be used wherever an instance of class A

is expected.
Any CFG can be modeled in terms of an inheritance hierarchy by rewriting it such that all its productions

are of the form

A −→ α | β | . . . | ω

28

or

A −→ α β . . . ω

where A is a nonterminal and α, . . . , ω are either nonterminals or terminals. We henceforth refer to a
grammar in this format as being in inheritance normal form (INF).

As a rule of thumb, in the former case, class A would be a direct superclass of classes α, . . . , ω (i.e., there
is an is a relationship between classes α, . . . , ω and class A). In the latter case, class A would have member
variables of types α, . . . , ω (i.e., there is a has a relationship between class A and classes α, . . . , ω).

In the special case, where we have a rule of the form A −→ α, and there is no other rule which has A

on its right-hand side, we have two options available to us. We can either make α a subclass of A or make α

an instance variable in A. Despite the fact that the former option seems more natural, we choose to adopt
the latter one, for reasons we describe in Section 6.3.3.

6.3.1 Transforming a Grammar to INF

It is trivial to rewrite a grammar so that it is in INF. Informally, an algorithm to do this would involve
converting rules of the form

A −→ α . . . ω | . . .

to

A −→ A′ | . . .

A′ −→ α . . . ω

where A′ is a newly introduced fresh non-terminal. In order to formally define our transformation to INF
we adopt the following conventions when discussing grammars:

• Letters A, B, and C denote nonterminals. Letters a, b, and c denote terminals. Letters α, β and γ

denote either terminals or nonterminals.

• A sequence of the form α1 . . . αn has length at least 1. Likewise the sequence α1α2 . . . αn has length
at least 2.

• Grammars are represented by the tuple 〈N, T, P, S〉, where N is a set of non-terminals, T is a set of
terminals, P is a set of productions, and S is the start symbol.

Definition 6.1 A nonterminal A is complex if there are distinct production rules of the form A −→
α1α2 . . . αn, and A −→ β1 . . . βm.

We now define a single step of our transformation, wherein we replace a production that violates INF with
a pair of productions that satisfy it.

Definition 6.2 A transformation relation → on grammars labeled by nonterminals is defined by

〈N, T, P, S〉
A′

−−→ 〈N ′, T, P ′, S〉

where

N ′ = N ∪ {A′}
P ′ = (P \ {A −→ α1α2 . . . αn}) ∪ {A −→ A′, A′ −→ α1α2 . . . αn}

if

• A −→ α1α2 . . . αn ∈ P ,

29

• A is complex and

• A′ 6∈ N .

Definition 6.3 The transformation relation ⇒ on grammars labeled by sets of nonterminals is defined by

〈N, T, P, S〉
{A1,...,An}

========⇒ 〈N ′, T, P ′, S〉

if

〈N, T, P, S〉
A1−−→ · · ·

An−−−→ 〈N ′, T, P ′, S〉 6→ .

The notation 6→ implies that no additional → transformation are possible. Note that according to this

definition the transformation G
A

==⇒ G′ introduces the set of fresh nonterminals A in G′.

Proposition 6.1

1. For every grammar G there exists a grammar G′ such that G ⇒ G′.

2. If G ⇒ G′ then G′ is in INF.

Proof Both follow from the observation that each single transformation step

• removes a production which causes the grammar not to be in INF and

• does not introduce any productions which would cause the grammar not to be in INF.

�

6.3.2 Preservation of Structure

An important property of the transformation relations → and ⇒ is that derivation trees obtained from the
grammar before transformation are similar to those obtained after transformation. By similar we mean that
the transformation operation does not alter the intended meaning of the grammar.

It can be argued that the INF is merely a special case of Chomsky Normal Form (CNF), and hence our
transformations are redundant. However, a transformation to CNF could easily result in a grammar whose
derivation trees bear no resemblance to those in the original grammar. The notion of similar derivation trees
is very important to us since a grammar is structured the way it is for a purpose, and significantly altering
its structure defeats that purpose.

6.3.2.1 Collapsing a Derivation Tree

Note that if a transformation introduces a nonterminal A′ then a derivation tree containing A′ has a subtree
of the form

A

A′

|| CC

t1 · · · tn

where the nonterminal A was already present in the original grammar. Therefore a derivation tree of
the transformed grammar can be collapsed to a derivation tree of the original grammar. This collapse is
formalized as follows.

30

Definition 6.4 The collapse colA (t) of derivation tree t with respect to the set of nonterminals A is defined

by

colA (a) = a

colA (A

A′

|| CC

t1 · · · tn

) = A
qq

qq MMM
M

colA (t1) · · · colA (tn)

colA (A
{{{ CCC

t1 · · · tn

) = A
qq

qq MMM
M

colA (t1) · · · colA (tn)

where A′ ∈ A and A 6∈ A.

First, we show that each transformation step preserves most of the structure of the derivation trees. In
the following proposition we use Tα (G) to denote the collection of derivation trees of grammar G with root α.

Proposition 6.2 Let G
A′

−−→ G′.

1. For all t ∈ Tα (G) there exists a t′ ∈ Tα (G′) such that col{A′} (t′) = t.

2. For all t′ ∈ Tα (G′) there exists a t ∈ Tα (G) such that col{A′} (t′) = t.

Proof We only prove the first part. The second part can be dealt with similarly. The proof of the first
part is by structural induction on t. The case where the tree t consists of a single terminal is trivial. Now
assume that the tree t is of the form

A
{{{ CCC

t1 · · · tn

where the subtrees t1, . . . , tn have roots α1, . . . , αn, respectively. By induction, there exist trees t′i ∈ Tαi
(G′)

such that col{A′} (t′i) = ti for i = 1, . . . , n. Clearly the production A → α1 . . . αn ∈ P . We distinguish the
following two cases.

• If the production A → α1 . . . αn is removed in the transformation then A → A′, A′ → α1 . . . αn ∈ P ′.
Hence,

t′ = A

A′

}}} AAA

t′1 · · · t′n

∈ TA (G′)

and col{A′} (t′) = t.

• If the production A → α1 . . . αn is not removed in the transformation then

t′ = A
}}
} BBB

t′1 · · · t′n

∈ TA (G′)

and col{A′} (t′) = t.

�

Next, we show that our transformation also has this property. Below, we write T (G) to denote the
collection Tα (G) where α is any nonterminal in grammar G.

31

Proposition 6.3 Let G
A

==⇒ G′.

1. For all t ∈ T (G) there exists a t′ ∈ T (G′) such that colA (t′) = t.

2. For all t′ ∈ T (G′) there exists a t ∈ T (G) such that colA (t′) = t.

Proof To prove the first part we show the above for G
A1−−→ · · ·

An−−→ G′ by induction on n. The case

n = 0 is trivial. Now assume that G
A1−−→ G′′ A2−−→ · · ·

An−−→ G′. Let t ∈ T (G). According to Proposition 6.2
there exists a t′′ ∈ T (G′′) such that col{A1} (t′′) = t. By induction there exists a t′ ∈ T (G′) such that
col{A2,...,An} (t′) = t′′. Hence,

col{A1,...,An} (t′)

= col{A1} (col{A2,...,An} (t′))

= col{A1} (t′′)

= t.

The second part can be proved similarly. �

6.3.3 Handling Multiple Inheritance

While constructing an inheritance hierarchy for a grammar it is quite possible for a class to have more than
one superclass. For instance, in the case of the grammar fragment,

A −→ α | . . .

B −→ α | . . .

(which is already in INF), the resulting inheritance hierarchy is,

A

α

__???
B??

��
�

That is, class α is a direct subclass of both class A and class B. Of course, this relationship can be easily
modeled using multiple inheritance. However, some object oriented languages, such as our implementation
language (Java), do not support multiple inheritance. We therefore need to devise a way in which to cope
with this limitation.

Our approach to dealing with multiple inheritance is to further normalize an INF grammar in such a
way that the need for multiple inheritance simply does not arise. For example, the above grammar would
be rewritten as

A −→ M | . . .

B −→ N | . . .

M −→ α

N −→ α

where M and N are fresh nonterminals.
Now according to our rule of thumb, class M would be a subclass of class A and class N would be a

subclass of class B. Note however that the productions for M and N are instances of the special case we
mentioned earlier. As a consequence class α would be a member variable of class M and of class N . Had
we chosen the other option of making class α a subclass of class M and of class N , multiple inheritance
would not have been resolved. We refer to INF grammars that have undergone this transformation as being
in single inheritance normal form (SINF).

32

6.3.3.1 Transformation to SINF

We now formally define how an INF grammar can be transformed to an SINF grammar. This process is
rather similar to the transformation to INF, so we omit parts of it for brevity.

Definition 6.5 A terminal or nonterminal α is multiparented if there are distinct production rules of the

form A −→ α and B −→ α.

We redefine Definition 6.2 for “→” as follows:

Definition 6.6 A transformation relation → on grammars labeled by nonterminals is defined by

〈N, T, P, S〉
A′

−−→ 〈N ′, T, P ′, S〉

where

N ′ = N ∪ {A′}
P ′ = (P \ {A −→ α}) ∪ {A −→ A′, A′ −→ α}

if

• A −→ α ∈ P ,

• α is multiparented and

• A′ 6∈ N .

Clearly Definition 6.3 remains unchanged. Proposition 6.1 can now be restated as:

Proposition 6.4

1. For every grammar G in INF there exists a grammar G′ such that G ⇒ G′.

2. If G ⇒ G′ then G′ is in SINF.

Proof Similar to the proof of Proposition 6.1. �

6.3.3.2 Preservation of Structure

Similar to what we showed in Section 6.3.2, we now show that going from INF to SINF also preserves the
structure of the derivation trees.

Note that if a transformation introduces a nonterminal A′ then a derivation tree containing A′ has a
subtree of the form

A

A′

t

where the nonterminal A was already present in the original grammar. Therefore a derivation tree of the
transformed grammar can be collapsed to a derivation tree of the original grammar.

33

Definition 6.7 The collapse colA (t) of derivation tree t with respect to the set of nonterminals A is defined

by

colA (a) = a

colA (A

A′

t

) = A

colA (t1)

colA (A
{{{ CCC

t1 · · · tn

) = A
qq

qq MMM
M

colA (t1) · · · colA (tn)

where A′ ∈ A and A 6∈ A.

Based on the above definition we can prove that the SINF transformation preserves the structure of the
derivation trees, like we showed for the INF transformation.

6.3.4 Multiple Inheritance Via Interfaces

Java does support the concept of interfaces, which can be used to roughly emulate multiple inheritance. It
is therefore possible to model an INF grammar using interfaces rather than inheritance. For instance, the
hierarchy

A

C

__???
B??

���

can be coded in Java as class C implements A, B { . . . }.
We however, choose not to use this feature since it does not allow for code sharing. Instead we use

abstract super classes.
As a consequence we are constrained to an implementation which does not support multiple inheritance.

However, since the need for multiple inheritance seldom arises while modeling the Pict abstract syntax this
fact is of little consequence.

34

Chapter 7

Abstract Syntax Design

To proceed with the task of semantic analysis, we need a suitable data structure to encode our input. The
concrete syntax tree (CST) that we constructed upon parsing the input, (see Chapter 4), can be looked at
as a possible candidate for this task. However, as we will shortly explain, it is not necessarily the most
convenient one. Having finished with the syntactic phase of compilation, we seek a data structure that is
abstracted from a program’s syntactic minutiae. The structure that we use for this purpose is called an
abstract syntax tree (AST), named so because, like a CST it too is a syntax tree, and the information it
contains is more abstract than that contained in a CST.

Designing an abstract syntax, and consequently an AST, is largely a subjective matter. Our overall
goal is to roughly achieve a one-to-one correspondence between the productions of the abstract syntax and
semantic rules of the language. In this chapter we outline some techniques used to achieve this. Of course,
what we present is not an algorithm but merely some rules of thumb. The later part of this chapter defines
the abstract grammar used in our compiler.

7.1 Removal of Keywords

One of the problems with using a CST to represent a program is that it contains a lot of extraneous
information. Since a CST is a parse tree based on the concrete grammar, it will contain nodes for all
terminals, including keywords and punctuation. For example, the CST for the Pict program new x:[] is

NewChan

new

oooo
x

���
: RecordTy

[

��
]

??

OOO

Clearly, if we seek an abstract description of this program, all we need to do is capture the fact that we
are declaring an empty record type named x. Hence, a suitable abstract encoding for this program could
simply be

NewChan

x

ooooo
EmptyRecordType

OOO

Notice the absence of keywords and punctuation in this encoding. From a semantic point of view keywords
and punctuation are of little importance. They are mainly hints given to a parser to enable it to uniquely
associate a portion of a program text with a production in the grammar. For instance, without keywords
and punctuation the above program would simply be x, and consequently nonsensical to parse. However,
since an abstract syntax is not intended for parsing, it need not contain all the keywords and punctuation
found in a concrete syntax.

35

What then should the terminals of an abstract syntax be? After all, keywords such as true, false,
and Int, for example, convey useful semantic information and cannot just be discarded. A good rule for
determining which terminals to preserve, and which to discard is:

Terminals for which there exists a production whose right-hand side solely consists of the that
terminal, should be retained. The rest can be discarded.

For example, in the case of the Pict grammar fragment,

Type −→ Int | ! Type,

we would retain the terminal Int (since it is the sole terminal on the right-hand side), but not the terminal
!.

7.2 Rearrangement of Productions

One of the steps in obtaining an abstract syntax is to rearrange the rules of the concrete syntax. The purpose
of the rearrangement is to have a syntax with production rules that capture those language constructs that
are meaningful during semantic analysis.

Consider for example the following grammar for a language that performs logical operations on bits:

S −→ B O B

B −→ 0 | 1

O −→ and | or

From a naturally occurring semantic point of view there are two main constructs in this language, conjunction
(C) and disjunction (D). We would therefore like our abstract grammar to explicitly contain production
rules for C and D. The following is one such grammar:

S −→ C | D

C −→ B B

D −→ B B

B −→ 0 | 1

The syntax tree for this grammar, as we explained in Chapter 6, will contain distinct nodes for C and D.
In an object oriented setting classes C and D will be equipped with the methods required to process them,
and class S would contain abstract declarations of these methods. Say one such method is called compile,
and we are given a node s of type S to compile. We could very elegantly achieve this by the code fragment
s.compile(). If instead we did not perform this rearrangement, S would not be a superclass, and its compile
method would roughly be implemented as follows:

if isConjunction() then . . . elif isDisjunction() then . . . else RUN-TIME-ERROR

The advantages of the rearrangement should now be obvious. Not only is the resulting code far more elegant,
it is also much safer, since in a language like Java, it is guaranteed to be free from runtime failure.

7.3 Representation of Lists

Often a grammar contains rules to represent a list like structure. For instance consider the grammar,

P −→ x P | x,

36

which produces a list of xs. Even though the above concrete syntax makes no reference to an end marker,
we find it useful to introduce such a construct in the abstract syntax. With this in mind our abstract syntax
would be,

P −→ x P | ǫ.

Introducing the end marker (i.e., ǫ) in the abstract syntax simplifies the semantic analysis phase. Firstly,
it gives us a way to represent an empty list. Secondly, it simplifies defining recursive functions on lists,
because we now have a consistent base case (i.e., the empty list).

In passing, note that the abstract grammar allows an empty sequence of xs, while the concrete syntax
does not. However this fact is irrelevant, since it is the concrete syntax that is used for parsing.

7.4 The Pict Abstract Syntax

Shown below is the abstract syntax we utilize in our compiler. We stress that this definition is our personal
interpretation of how a Pict program ought to be abstractly viewed. It is meant to document the internal
workings of our compiler, and is in no way a definition of any aspect of the Pict language.

The grammar shown here is in inheritance normal form (INF). Details about INF can be found in
Chapter 6. Here, the start symbol is Absyn, nonterminals are shown using slanted text, and terminals
are shown in typewriter text. The terminal Key represents an arbitrary identifier, such as the name of a
variable.

Absyn −→ Dec | Abs | Pat | FldPat | Constr | Proc | DecLs

| Val | Path | FldVal | Const | Type | OptKind

| KindPolIdLs | TypeLs | FldTy | RType

| Polarity | Kind | PolKindPairLs | Label

| KindPolId

Dec −→ NewChan | RecDef

NewChan −→ Key Type

RecDef −→ RecDefElem | RecDefEnd

RecDefElem −→ Key Abs RecDef

Abs −→ ProcAbs

ProcAbs −→ Pat Proc

Pat −→ Var | RecordPat | RecurPat | Wild | Layer

Var −→ Key RType

RecordPat −→ RecordPatElem | RecordPatEnd

RecordPatElem −→ RecordPatElemWithLabel

| RecordPatElemWithoutLabel

RecordPatElemWithLabel −→ Key FldPat RecordPat

RecordPatElemWithoutLabel −→ FldPat RecordPat

RecurPat −→ RType Pat

Wild −→ RType

Layer −→ Key RType Pat

FldPat −→ ValFldPat | TypeFldPatKindConstr

| TypeFldPatSubtypeConstr

| TypeFldPatEqConstr

ValFldPat −→ Pat

TypeFldPatSubtypeConstr −→ Key SubtypeConstr

TypeFldPatKindConstr −→ Key KindConstr

TypeFldPatEqConstr −→ Key EqConstr

Constr −→ TypeConstr | KindConstr

TypeConstr −→ SubtypeConstr | EqConstr

37

SubtypeConstr −→ Type

EqConstr −→ Type

KindConstr −→ Kind

Proc −→ Output | Input | NullProc | LocDec

| IfThen | ParProc

Output −→ Val Val

Input −→ Val Abs

LocDec −→ DecLs Proc

IfThen −→ Val Proc Proc

ParProc −→ ParProcElem | ParProcEnd

ParProcElem −→ Proc ParProc

DecLs −→ DecLsElem | DecLsEnd

DecLsElem −→ Dec DecLs

Val −→ ConstVal | ValPath | RecordVal

| RecurVal

ConstVal −→ Const

ValPath −→ Path

RecordVal −→ RecordValElem | RecordValEnd

RecordValElem −→ Label FldVal RecordVal

RecurVal −→ RType Val

Path −→ PathElem | PathEnd

PathElem −→ Path Key

FldVal −→ ValFldVal | TypeFldVal

ValFldVal −→ Val

TypeFldVal −→ Type

Const −→ StrConst | CharConst | IntConst | True

| False
StrConst −→ String

CharConst −→ Character

IntConst −→ Integer

Type −→ TopTy | TyIden | InOutTy | OutTy | InTy

| RespOutTy | IntTy | CharTy | BoolTy | TyOp

| StrTy | RecordTy | TyApp | RecTy

TyIden −→ Key

InOutTy −→ Type

OutTy −→ Type

RespOutTy −→ Type

InTy −→ Type

RecordTy −→ RecordTyElem | RecordTyEnd

RecordTyElem −→ Label FldTy RecordTy

TyOp −→ Type KindPolIdLs

TyApp −→ Type TypeLs

RecTy −→ Key Kind Type

OptKind −→ ExpKind | OmitKind

ExpKind −→ Kind

KindPolIdLs −→ KindPolIdLsElem | KindPolIdLsEnd

KindPolIdLsElem −→ Key Polarity Kind KindPolIdLs

TypeLs −→ TypeLsElem | TypeLsEnd

TypeLsElem −→ Type TypeLs

FldTy −→ ValFldTy | TypeFldTySubtypeConstr

| TypeFldTyKindConstr

38

| TypeFldTyEqConstr

ValFldTy −→ Type

TypeFldTySubtypeConstr −→ Key SubtypeConstr

TypeFldTyKindConstr −→ Key KindConstr

TypeFldTyEqConstr −→ Key EqConstr

RType −→ OmitTy | ExpTy

ExpTy −→ Type

Polarity −→ MixPol | PosPol | NegPol | ConstPol

Kind −→ OpKind | TyKind

OpKind −→ PolKindPairLs Kind

PolKindPairLs −→ PolKindPairLsElem

| PolKindPairLsEnd
PolKindPairLsElem −→ Polarity Kind PolKindPairLs

KindPolId −→ ExpKindPolId

ExpKindPolId −→ Key Polarity Kind

Label −→ AnonLabel | ExpLabel

ExpLabel −→ Key

39

Chapter 8

Syntax Tree Implementation

There are several tools that can mechanically generate the code for a syntax tree data structure. JavaCC [15]
and SableCC [8] are two of the better known tools to perform this task. We however do not use either of
these tools, preferring instead to use a simple syntax tree generation tool, called Grappa, that we developed
ourselves.

We have found that in several popular object oriented compiler construction methodologies (and toolkits)
syntax trees are neither robust nor object oriented. Robustness, for example the prevention of runtime type
mismatches, is often sacrificed in favour of reduced code size. Fundamental object oriented principles, such
as encapsulation for example, are compromised in the interest of programmer convenience. The syntax tree
data structure we utilize however is free from such problems while at the same time is very usable.

8.1 The Need for Automation

A typical heterogeneous syntax tree implementation requires a significant number of classes. While the actual
code itself is not particularly complicated, it is voluminous enough to consider automating. For instance, a
toy language like Tiger [4, Chapter 3], as implemented by Appel, requires in excess of 35 different classes.
Our implementation of Pict, which is relatively small and developed along similar lines, requires in excess of
110 classes. In general, the number of classes required will roughly equal to the number of production rules
in the grammar. Hence, in the case of a large language like Java, we would require over 270 classes!

A syntax tree is intrinsically linked with a language’s grammar, and therefore, updates to the grammar
must be reflected in the syntax tree implementation. Given the large number of classes involved, and the
interdependency between them, this task is particularly cumbersome to perform manually. Furthermore,
changes to the grammar (such as resolving an ambiguity) are quite common during development, and hence
the frequent burden of updating the syntax tree implementation is undesirable.

8.1.1 JavaCC

JavaCC is a commonly used toolkit for constructing compilers in Java. JJTree is a component of it which
can be used to generate code for syntax trees. While JJTree may be a viable option for some, we however
do not use it because it offers us neither flexibility nor robustness nor readability.

• Using JJTree requires that JavaCC be used for lexical analysis and parsing. However, as described in
Chapter 2 and Chapter 4, we find JFlex and CUP are a superior alternative for the syntactic phase of
a compiler.

• The syntax tree generated by JJTree is a homogeneous tree, whose nodes are indistinguishable to the
type system. This makes our implementation inherently fragile, as per our discussion in Section 6.2.1.

• The JJTree specification is rather unwieldy. It is essentially a union of the parser specification, the
syntax tree specification, and the user defined action code. Consequently it is difficult to read.

41

Considering our strong preference for robust and readable code, we find JJTree to be a poor candidate for
generating syntax trees.

8.1.2 SableCC

SableCC is another compiler construction toolkit for Java. Like JavaCC, it too can mechanically generate
syntax trees from a context free grammar. In many ways it is superior to JavaCC. Not only is its input
specification very readable, the syntax trees that it generates are also heterogeneous in nature.

Our main problem with SableCC is its tree traversal mechanism. In it, SableCC creates a tree walker

class that knows how to traverse a syntax tree. We then extend this class in a manner that allows us
to process the tree as its nodes are encountered. For a simplified discussion on tree walkers consider the
grammar from Section 4.1, restated below:

Dec −→ def DefList

DefList −→ Id Abs | Id Abs and DefList

Abs −→ Id = Proc

Proc −→ ()

Id −→ a | b | x | y.

Assuming that we had a SableCC specification for it, we could generate the following tree walker object:

class TreeWalker {

. . . internal traversal code . . .

void inDec(Dec node) {};

void outDec(Dec node) {};
...
void inProc(Proc node) {};

void outProc(Proc node) {};

}

The methods inNode and outNode get called every time node Node is entered or exited. For instance, the
inDec method is called when entering a Dec node, and the outDec method is called when exiting it. The
intent is for us to override these methods, so that our custom code gets to run at entry and exit points
instead. For instance, if we wished to perform scope checking, we would write a ScopeChecker class such as
the following:

class ScopeChecker extends TreeWalker {

void inDec(Dec node) { . . . scope checking code . . . };
...

}

While this appears to be an elegant solution, we find it to be non object oriented, inflexible, and fragile.
Our first objection to this approach is that it is non object oriented. The core tenants of object oriented

design dictate that a Dec object should know how to scope check itself. Yet here, we do the exact opposite,
placing the scope checking code outside the Dec object.

Secondly, a tree walker is quite inflexible in the kinds of traversals it can perform. We often need the
ability to perform arbitrary traversals. For instance, scope checking would require us to traverse every node
in the tree, but kind checking would only require us to traverse nodes pertaining to type information. More
importantly, in the case of a language like Pict (that supports mutually recursive definitions), we need at
any given point, the ability to revisit an arbitrary node of the syntax tree. Currently SableCC only knows

42

how to traverse a tree in either a preorder or a postorder fashion. Consequently, it does not provide us the
flexibility that we need.

Finally, based on the signatures of methods such as inDec, there is no provision to pass extra parameters
(such as a symbol table for instance), nor is there a way to return a result. The option that SableCC

provides, involves using global variables, and requires type casting. This approach, is in our opinion fraught
with danger, and quite fragile.

In hindsight however, we could have used SableCC to just construct our syntax trees, and ignored its tree
walker mechanism. However, in the interest of maximum flexibility we developed a simple tool to generate
our syntax tree.

8.1.3 Grappa

Grappa is a tool to generate a syntax tree from a CFG. In its original incarnation (that we developed), it
was a simple Perl script, but it was subsequently reimplemented by Apostoloiu [3], and packaged with the
Corretto parser generator. Corretto is described in Chapter 4.

The input to Grappa is not a CFG, but is instead a Grappa specification. It is the job of Corretto to
generate this specification. Considering that a Grappa specification is seldom written by hand, we omit
discussing it here (we refer the interested reader to [3]), and focus instead on Grappa’s output. The Grappa

output corresponding to the Corretto fragment,

DefList := % Single element definition list %

ShortDefList

% i: name of abstraction,

a: body of abstraction %

Id Abs.

from Section 4.2.3 is,

/**

* Single element definition list.

*/

class ShortDefList extends DefList {

private i;

private a;

/**

* Single element definition list.

*

* @left position in input of left side of token represented by the node.

* @right position in input of right side of token represented by the node.

* @param i name of abstraction.

* @param a body of abstraction.

*/

ShortDecList(int left, int right, Id i, Abs a) {

super(left, right);

this.i = i;

this.a = a;

}

}.

While conceptually, Grappa’s output is similar to SableCC ’s, it differs in the quantity of meaningful
documentation. Grappa’s output is extensively documented using JavaDoc comments, while SableCC ’s is
not. This may seem frivolous to document mechanically generated code, but in the case of a syntax tree,

43

this documentation is particularly useful. Such documentation is frequently consulted when implementing
later phases of the compiler. We, for instance, heavily rely on this documentation when writing our scope
checking (Chapter 11) and kind checking (Chapter 12) rules.

Finally, notice how a single production results in over 30 lines of Java code. In our opinion, this fact
alone justifies the need to automate the generation of a syntax tree data structure.

44

Chapter 9

Syntax Tree Transformation

In Chapter 6 we addressed the issue of how to construct a concrete syntax tree (CST). In this chapter we
look at how to transform a CST into an abstract syntax tree (AST). It is only after we have an AST, that
we can begin the task of semantic analysis.

Manually implementing a transformation from a CST to an AST is a tedious process. This is mainly so
because a typical CST, as we described in Chapter 6, consists of a large number of different classes of nodes.
In order to transform it, each class of nodes needs to be considered individually. Consequently there are a
large number of cases to consider. In our implementation of Pict there are in excess of a 100 such cases,
but for a large language like Java there will be many more. Furthermore, since the structure of an AST is
subject to frequent modifications, so too are such transformation functions.

In our work we develop a high level language to specify a transformation between two syntax trees.
Additionally, we develop a program that converts a specification written in this language into Java code that
can implement it. By doing so we greatly reduce the tedium associated with creating and maintaining tree
transformation functions. Additionally, in keeping with the design goals of our compiler, the emitted code
is documented, object oriented, and free from potential type mismatches at runtime.

9.1 A Sample Transformation

The following is a sample transformation of a CST to an AST. The grammars used in this example are
similar to what is used in our actual implementation. However, it should be borne in mind that for the
purpose of illustration, these grammar contain some superfluous productions.

Consider the following fragment of concrete grammar:

DecLsc → LongDecListc | ShortDecListc | NullDecListc

LongDecListc → Decc : decc DecLsc : decListc

ShortDecListc → Decc : decc

NullDecListc → ǫ

WrapperDecLsc → DecLsc : decListc

We adopt the convention that boldface entries in the grammar are labels. These labels only provide a means
to refer to individual components of a production. A similar notation is utilized in parser generators such as
CUP [11] and ANTLR [19]. Also, for the sake of brevity we omit listing the productions for the nonterminal
Decc. According to our discussion on heterogeneous syntax trees in Section 6.2.1, the inheritance class
hierarchy for the corresponding CST would be,

CST

DecLsc

LongDecList
c

33ggggggg
ShortDecListc

OO

NullDecListc.

kkWWWWWWW

33gggggggggg
WrapperDecLs

c

kkWWWWWWWW

45

For reasons we explained in Chapter 7 our goal is to transform parse trees corresponding to above concrete
grammar, into parse trees corresponding to the following abstract grammar:

DecLsa → DecLsEnda | DecLsElema

DecLsElema → Deca DecLsa

DecLsEnda → ǫ

We would for instance like to transform trees having root LongDecListc into trees having root DecLsElema.
To achieve this we need to define a CST to AST transformation function T , such as the one shown below:

Domain (CST) Range (AST)

LongDecListc

Decc

��
DecLsc

??

=⇒

DecLsElema

T (Decc)
xx

T (DecLsc)

FF

ShortDecListc

Decc
=⇒

DecLsElema

T (Decc)
xx

DecLsEnda

FF

NullDecListc =⇒ DecListEnda

WrapperDecList c

DecLsc
=⇒ T (DecLsc)

We utilize a similar function in our compiler. However, it is specified using a special language that we
developed for this purpose. In this language, the above transformation can be very succinctly specified as

LongDecListc -> DecLsElema(decc, decListc)

ShortDecListc -> DecLsElema(decc, DecLsEnda())

NullDecListc -> DecLsEnda()

WrapperDecLsc -> decListc.

Note that in our specification shown above we apply the transformation function T to the node DecLsc,
yet do not specify how to transform DecLsc. In fact we only specify how the leaf nodes of a CST hierarchy
should be transformed. Notice that the left hand side of every rule in the specification is indeed a leaf node
in the CST hierarchy shown in Section 9.1. However, we will in Section 9.3.3 describe how non leaf nodes of
a class hierarchy can be transformed.

9.1.1 Conversion to Java Code

As per our inheritance hierarchy above, we have classes such as LongDecListc, Decc, and DecLsElema, to
name a few. Since it is instances of these classes, that we wish to transform, it makes sense to equip these
classes with a transform method. Therefore, in the case of class LongDecListc, we would have a transform
method such as,

public Absyn transform () {

return new DecLsElema(decc.transform(), decListc.transform());

}.

46

The correspondence between this method, and the rule

LongDecListc -> DecLsElema(decc, decListc)

should be obvious. In our work we have automated the task of converting such rules into Java code.

9.2 Generalized Return Type

We are faced with an implementation dilemma regarding the return type of a transform method. For
reasons we will elaborate on shortly, all transform methods, regardless of the class to which they belong,
have a return type of Absyn, where Absyn is the root node of the AST hierarchy. For all practical purposes
this means that transform maps its entire domain to a single point (i.e., Absyn). Clearly this is not what T
is defined to do. For instance, according to the definition of T , a LongDecListc node maps to a DecLsElema

node, but according to the signature of LongDecListc::transform, class LongDecListc maps to class Absyn.

9.2.1 Limitation of Java’s Type System

A seemingly obvious resolution to the above dilemma is to assign the appropriate return type to each
transform method. This would seem trivial to do, as the name of this type is already used in the new

statement. Assuming such a scenario, the transform method for LongDecListc would be,

public DecLsElema transform () {

return new DecLsElema(decc.transform(), decListc.transform());

},

and that for NullDecListc would be,

public DecLsEnda transform () {

return new DecLsEnda();

}

Recall however, that the inheritance hierarchy for above classes is,

DecLsc

LongDecList
c

44iiiiiiiii
ShortDecListc

OO

NullDecListc

jjUUUUUUUUU

Of course, each of LongDecListc, ShortDecListc, and NullDecListc have a transform method. However,
in order to support a call like decListc.transform() (where decListc is of type DecLsc), class DecLsc
needs a transform method too. What then would the return type of this transform method be?

An unfortunate limitation of Java is that in a given inheritance hierarchy one method can only override
another method if the return types of both methods are identical. In our case this would mean that the
transform methods of DecLsc, LongDecListc, ShortDecListc, and NullDecListc all must have the exact
same return type. Clearly, since the transform methods for LongDecListc returns DecLsElema, and that of
NullDecListc returns DecLsEnda this requirement of the Java type system cannot be fulfilled.

9.2.2 Possible Remedies

One possible remedy to this conundrum is for all transform methods to have a return type of class Object.
Such a solution is typical of what is found in the Java standard libraries. However, we believe that this
solution is dangerously general. In such a scenario the following clearly incorrect transform method would
successfully compile:

public Object transform () { return "nonsense"; }

47

Since our transform methods are automatically generated we would very much like for our implementation
language’s type system to detect such obvious errors. The more constraints that a type system is able to
provide, the better we are able to verify the correctness of our generated code.

Working within the limitation of Java’s type system the best we can seem to do is to use class Absyn

as the return type of our transform function. Since Absyn is the root of the AST class hierarchy, it is
general enough to utilize as the return type of any transform method. While not perfect, it would prevent
nonsensical code, such as the above example, from compiling. However, the unpleasant fact remains that
the return type of a transform method is more general than it needs to be, and consequently the signature
of a transform method is not consistent with the definition of T .

9.3 Type Mismatches

Having settled for an imperfect definition of transform, we now address the type mismatches that arise as
a result of this decision.

Recall from our discussion in Section 6.2.1 on heterogeneous syntax trees, that in order to construct
a node N , it must be supplied with nodes N1, . . . , Nn, such that N −→ N1 . . . Nn is a production in the
corresponding syntax. For instance, in the case of our abstract syntax specified in Section 9.1, there exists a
production of the form DecLsElema −→ Deca DecLsa. Since a DecLsElema node can only be formed given
a Deca node and a DecLsa node, the constructor for class DecLsElema will have a signature of the form,

DecLsElema(Deca, DecLsa).

However, the code fragment shown in Section 9.1, invokes this constructor as

new DecLsElema(decc.transform(), decListc.transform()).

This in fact is a violation of Java’s type system. Since all transform methods have a return type of Absyn,
we are attempting to create a DecLsElema object from a pair of 〈Absyn, Absyn〉, rather than a pair of
〈Deca, DecLsa〉. To correct this we have to resort to type casting. However, as we describe next, we achieve
this in a manner that assures us freedom from any runtime type mismatches.

9.3.1 Unsafe Type Conversion

A naive manner in which to perform casting is to perform it solely with the intent of satisfying the type
system. In this approach, whenever the type system is expecting an object of type X, and we instead have
an object of type Y, we would simply cast the Y object to an X object.

Utilizing such an approach in our case, we would notice that the type system expects a tuple of type
〈Deca, DecLsa〉, and we instead have a tuple of type 〈Absyn, Absyn〉. So to satisfy the type system we would
modify our code to the following form:

new DecLsElema((Deca)(decc.transform()), (DecLsa)(decListc.transform())).

Even though such an approach is simple, and guaranteed to fix all compile time type mismatches, it is
quite unsafe. The fundamental flaw with it is that it relaxes the constraints of the type system with the sole
intent of suppressing compile time errors, whether they be legitimate or not. For instance, when utilizing
such an approach, the following meaningless piece of code will compile just as well:

new DecLsElema((Deca)(new Object()), (DecLsa)(new Object()))

In the interest of good programming practice we reject such an approach.

48

9.3.2 User Defined Type Conversions

Another possible solution to the casting problem is to simply augment the transformation specification with
casting information. For instance, the transformation for LongDecListc can be specified as,

LongDecListc -> DecLsElema((Deca)decc, (DecLsa)decListc).

Such an approach places the entire responsibility of type conversion upon the user. A careful user, it can be
argued, is less likely to make incorrect type conversion decision, and hence less likely to encounter runtime
failure.

Besides its visual unattractiveness, this approach suffers from several fundamental problems. Firstly,
it introduces into the specification, information that is only meaningful to the eventual implementation
language. Recall, that the reason we are performing type conversion is to compensate for the inadequacies of
Java’s type system. Hence, if we were to use an implementation language with a more advanced type system,
the need for explicit type conversion may not even arise. Furthermore, our goal is to keep our specification,
as close as possible to its mathematical definition, and since the mathematical definition makes no mention
of type conversion nor should we.

Secondly, determining the correct type to convert to is necessarily not a trivial matter. For example,
consider the statement (DecLsa)(decListc.transform()), that we have used above. The specification itself
makes no mention of how to convert a DecLsc node. Hence, there is no immediate reason to believe that
the object yielded upon transforming decListc (of type DecLsc), can be type converted to DecLsa. This
is information that needs to be indirectly inferred from the specification, as we describe next. Thus it is
unreasonable to expect a user to annotate the specification with type conversion information.

9.3.3 Automatically Inferred Type Conversions

Having realized that blind type conversion is too dangerous, and user defined type conversion too impractical,
we develop a simple inference algorithm that suffers from neither of these defects. This algorithm, uses the
transformation specification, the CST hierarchy, and the AST hierarchy, to determine the AST node that is
yielded as a result of transforming a given CST node.

9.3.3.1 Terminal Nodes

Recall that we mentioned in Section 9.1, that our transformation specification only deals with terminal nodes
of the CST hierarchy. Considering that the transformation of terminal nodes is explicitly specified, the task
of determining T (n), where n is a terminal node, is almost trivial. For instance, since we have the rule,
LongDecListc -> DecLsElema(. . .), it trivially follows that T (LongDecListc) yields DecLsElema.

A slightly more complicated case arises with rules such as WrapperDecLsc -> decListc. The difficulty
here is that the right hand side of these rules specifies the name of a variable, rather than the name of a
class. We refer to such rules as indirect rules. They are indirect in the sense that we first have to obtain the
class name corresponding to the variable, and then apply T on that class name.

To handle such a rule we first define a function typeOf that when given a variable name returns its
corresponding class name. For example, typeOf (decListc) yields DecLsc.

Therefore,

T (WrapperDecLs
c
) = T (typeOf (decListc)) = T (DecLsc)

9.3.3.2 Non Terminal Nodes

We begin by considering the simple task of determining T (DecLsc). As we mentioned in Section 9.1, DecLsc

is a non leaf node in the CST hierarchy, and lacks an explicitly specified transformation rule. The key to
determining T (DecLsc), is to first determine T for each of the subclasses of DecLsc, and then find a class

49

common to them all. The following diagram shows the mapping (indicated by dotted arrows) between CST
nodes and AST nodes. Note that this mapping information is directly available from the transformation
specification.

DecLsc

LongDecList
c

33ggggggg
ShortDecListc

OO

NullDecListc

kkWWWWWWW
DecLsa

DecLsEnda66

55kkkk
DecLsElema44 77

iiSSSS

Intuitively speaking, DecLsc is a generalized version of LongDecListc, ShortDecListc, and NullDecListc.
Hence it is only logical to conclude that class T (DecLsc) will be a generalized version of T (LongDecListc),
T (ShortDecListc), and T (NullDecListc). Determining T (DecLsc) therefore involves following the dotted
arrows, and then ascending up to a common point in the AST hierarchy, namely class DecLsa.

To formalize the above process we begin by introducing the following notational preliminaries:

• The function leaves(n) returns the set of leaf nodes that are reachable from node n. For example, in
the case of the CST hierarchy shown in Section 9.3.1

leaves(DecLsc) = {LongDecList
c
, ShortDecListc, NullDecListc}.

Note that if n is a leaf node itself then leaves(n) = {n}. We often use l(n) as an abbreviation for
leaves(n).

• The predicate ancestor(n1, n2) yields true if node n1 is an ancestor of node n2. Note that we allow a
node to be its own ancestor.

• The common ancestors (ca) for a non empty set of nodes N are those nodes from which all nodes in
N are reachable. That is,

ca(N) = {x | ∀n ∈ N : ancestor(x, n)}

• The most common ancestor (mca), for a non empty set of nodes N , is that common ancestor which
has the greatest depth. That is,

mca(N) ∈ ca(N) ∧ ∀x ∈ ca(N) : ancestor(x, mca(N))

Based on these definition, T for a non terminal node n, can be defined as

T (n) = mca





⋃

x∈l(n)

T (x)



 .

50

Chapter 10

Symbol Table Design

A symbol table is essentially a data structure that allows us to associate with a given symbolic identifier, a
set of properties. For example, in the case of the Pict program new s: String, we would like to use a symbol
table to store the fact that symbol s, has been declared to be of type String. Any data structure that is
capable of storing key-value pairs is a candidate for implementing a symbol table. For a general discussion
on symbol table design and implementation we refer the reader to Appel [4], Aho [1] and Watt [27].

In this chapter we discuss some of the core issues pertaining to symbol table design in the context of a
multi pass compiler. In particular we emphasis the benefits of using a symbol table based on a persistent
data structure.

10.1 Avoiding a Symbol Table

In a single pass compiler the need for a symbol table is quite obvious. Since such a compiler only gets to
visit its input once, it must store information about the symbols it encounters, when it encounters them. For
instance, when given the input def a b = () and c d = a!d, a single pass compiler for Pict would create
symbol table entries for a, b, c, and d just as soon as it encountered them. Not doing so would result in
having no contextual information when processing the expression a!d.

In a multi pass compiler however, the need for a symbol table is somewhat debatable. Since such
a compiler first converts its input into an abstract syntax tree (AST), every symbol that occurs in the
program will also occur in the AST. For instance, the AST for the above program would roughly resemble
the following:

RecDef

a

jjjjjjjjjj
b

oooooo
NullProc

���
RecDef

c

oooooo
d

���
Output

a

���
d

???

???

OOOO

When performing semantic analysis on the expression a!d, (i.e., the Output node), the compiler has at
its disposal the entire AST, and consequently every symbol that occurs in the program. For this reason, it
can be argued that the AST can itself be used for maintaining symbol information. For instance, the scope
checking phase, when examining the expression a!d, would require us to verify that symbol a has indeed
been defined. In the absence of a symbol table we can traverse the AST upwards from the node Output until
we find a RecDef node for symbol a.

To counter the claim, that repeatedly traversing the AST is inefficient, we point out that the traversal is
in an upward direction, and will on average have a cost of O(log(n)), where n is the number of nodes in the
AST. To further improve efficiency we can store a pointer from the occurrence of a symbol to its declaration,

51

thereby making all future lookups instantaneous. However, as we will describe next, there are some serious
flaws with this approach.

10.2 Need for a Symbol Table

The approach of using an AST in place of a symbol table is not problem free. We often require certain
symbols to be predefined and globally visible throughout a program. The print channel is one such symbol
in a Pict, as illustrated in the program def a b = print!b. The difficulty with handling such a scenario
using only an AST is that, there is no node in the AST corresponding to the declaration of symbol print.
Consequently it is not possible to set or retrieve information about the symbol print. Using a symbol table
however, such a scenario can be easily handled by initializing the symbol table with the symbol print. In
general, using an AST for maintaining symbols results in the inability to import symbols into a name space.

An even greater flaw with using only an AST is that it is not always trivial to locate the node in which
a symbol was declared. In the examples given above we suggested that looking for the declaration of a node
merely involves an upward traversal. Depending on the language’s scoping rules this may not always be the
case. Consider for instance the valid Pict program def a b = c!b and c d = a!d, the AST for which is

RecDef1

a

gggggggggggg b

ooooo
Output1

'&%$!"#c

ooooo

First use of c

77 b

OOOOO

RecDef2

'&%$!"#c

gggggggggggg

Declaration of c

<< d

ooooo
Output2

a

ooooo
d

OOOOO

OOO

[[[[[[[[[[[[[[[[[[[[[[[[

This program is valid since Pict allows for mutually recursive definitions. Hence it is possible to use the
symbol c, in the definition a, despite the fact that c has yet to be declared. As shown in the above AST,
the symbol c is used before it is declared. Furthermore, there is no upward path from the node in which
it is used, to the node in which it is declared. Hence, when processing the expression c!b, it is non trivial
to locate the node corresponding to the declaration of symbol c. More generally, locating symbols used in
mutually recursive definitions could involve us having to search the entire AST. The needless complexity
and expense associated with such an operation makes a good case for using a symbol table.

10.3 Conformance to Scoping Rules

Scoping rules, which we shall elaborate on later in Chapter 11, define the visibility of symbols with respect
to their location in a program. For example, in the case of the Pict program def A b = () and C d = (),
the symbol b is only visible in definition A. We would therefore like our symbol table to be designed such
that symbol b is only accessible when we are examining definition A. Not doing so may cause an incorrect
usage of symbol b to go undetected, as in the program def A b = () and C d = print!b. Here b is not in
the scope of definition C, but unless after examining definition A it is purged from the symbol table, it will
remain accessible even when examining definition C.

In the case of a single pass compiler it is simple to keep a symbol table consistent with the underlying
scoping rules. Such a compiler does not revisit its input, and hence only needs to maintain the scope of the
program fragment it is currently examining. Consequently, we are only interested in the current state of
the symbol table, and thus are free to add and delete symbols regardless of side effects. That is to say, the
symbol table can be destructively updated. The ability of performing destructive updates makes it relatively
simple to maintain a consistent symbol table. For example, in the case of the program fragment def a b

= () and c d = (), a single pass compiler would add the symbols a and b upon encountering the keyword
def, and remove the symbol b upon encountering the keyword and. Considering, that by design, keywords

52

are intended to trigger such additions and deletions, updating a symbol table in a consistent manner can be
quite a routine task.

In the case of a multi pass compiler however, maintaining a consistent symbol table is more challenging.
Recall that a multi pass compiler constructs an AST with the intent of repeatedly traversing it (often in an
arbitrary manner). Consequently, it is crucial that updates made to the symbol table be retained between
traversals. For instance, if in the case of the program def a b = () and c d = (), symbol b is removed
after the scope checking phase finishes examining definition a, it will be erroneously missing when the type
checking phase proceeded to examine the definition a. This observation quite clearly rules out the possibility
of destructively updating the symbol table. What is needed instead is for every node of the AST to have a
copy of the symbols it can access. In Section 10.4 we discuss how this can be achieved.

10.3.1 Symbol Name Reuse

In most programming languages, identifier names do not have to be unique. It is possible therefore to
have two distinct identifiers with the same symbolic name. For instance, in the program def a b = ()

and c a = print!a and d e = a!2, there are two distinct identifiers named a. The first one is the name
of a definition, while the second one is an input parameter. Therefore, when examining definition c it is
important that symbol a be considered as a parameter, but when examining definition d, symbol a ought to
be considered as a definition.

10.4 Symbol Table Data Structures

In Section 10.3 we mentioned that each node of an AST ought to have a list of symbols that it can access.
We now consider how this can be achieved. The key to successfully achieving this involves using a persistent
data structure.

10.4.1 Per Node Name Spaces

A seemingly obvious manner in which to implement an association between an AST node and its name space
is to store within the AST node a pointer to its name space. For instance, in the case of the previous AST
(for program def a b = c!b and c d = a!d), this association would be implemented as depicted below:

RecDef1
..
a c

Output1

sssssss

22

RecDef2

KKKKKKK

22 a c

Output2

KKKKKKK

11 d a c

b a c

Here a name space is represented by a sequence of boxed symbols, and a name space pointer by a dotted
arrow. Note that in the interest of brevity only the non-leaf nodes of the original AST have been shown.

Introducing name space pointers into an AST node is a fairly easy task to accomplish. In an object
oriented environment it is also quite natural to do, as we are merely modeling the fact that a node has

a name space pointer. In the case of a heterogeneous AST implementation such as ours (as described in
Section 6.2.1), we would essentially introduce a namespace member variable into the top class of the AST
hierarchy.

This approach, despite its simplicity, contains several major flaws. Firstly, it is quite space intensive.
Since in a given program the same symbol can appear in several scopes, it will therefore need to be repeated

53

in several different name spaces. In the case of the above example, the symbol a is repeated in four different
name spaces. In a worst case scenario, all symbols would be visible in all nodes. Since in the case of an n

node AST there are O(n) symbols, the worst case space requirement for maintaining name spaces is O(n2).
Note that the worst case scenario is not just a theoretical possibility, and will occur in the case of a language
that only supports a global scope. Furthermore, n can be a large number, often in excess of 2000, so an
O(n2) data structure is quite impractical.

Another problem with this approach is related to updating information about symbols. Say at some point
we wished to associate the signature Int 7→ void with the symbol a. To do so every occurrence of symbol a
would need to be updated. Such an operation would have a time complexity of Ω(n), since at the very least
every node of the AST would need to be visited. This problem of slow updates can however be alleviated if
the name spaces were to store pointers to symbols, rather than the symbols themselves. However, this is not
an option we choose to adopt as (a) the additional level of indirection adds an additional level of complexity,
and (b) the O(n2) space requirement still remains.

On the whole, this approach is simple, but is neither space efficient nor time efficient. The duplication
of symbols not only wastes memory, but also complicates update operations. To remedy the situation we
require a data structure where symbols (or pointers to symbols) are not duplicated.

10.4.2 Persistent Symbol Tables

Observe that in an AST, for the most part, the name space of a child node is just an extension of the name
space of its parent node. If therefore, we could extend the name space of the parent, without actually altering
it, all symbols common to both parent and child would be shared, and hence only have a single occurrence.
For instance, the name space of node RecDef 2 is {a, c} and that of its child node Output2 is {a, c, d}.

Assuming that name spaces are implemented using linked lists we could create a list such as,

d // c // a

and have node RecDef 2 point to symbol c and node Output2 point to symbol d, as depicted below:

a

RecDef2 11 c

OO

Output2

OOOOOO

33 d

OO

Note that despite the fact that the name space is implemented as a single list, node RecDef 2 can only access
symbols in its name space (for example it cannot access symbol d). Furthermore, there is only one occurrence
of symbols c and a, despite the fact that they occur in two different name spaces.

The most important detail about such a data structure is that the lists are created in a non destructive
manner. For example, concatenating symbol d with list [c, a], does not alter the state of list [c, a].
Hence, any nodes that are pointing to list [c, a] can safely continue to do so. Functional programmers
would no doubt recognize this concept as being the basis of the cons function in LISP, or the :: operator
in SML.

Extending the concept of a persistent symbol table to the entire AST for program def a b = c!b and

c d = a!d, we would end up with a structure such as the following:

RecDef1

))

a

Output1

oooooo

55

RecDef2

OOOOOO

44 c

OO

Output2

NNNNNN

44 d

AA�����
b

]]:::::

54

Note that the data structure described above is a persistent list. Consequently when using such a symbol
table, there is an O(1) cost for adding a symbol, and an O(n) cost for finding a symbol. Since searching for
a symbol is a very frequently performed operation, a data structure with better search capability may be
desirable. Appel [4, Chapter 4] recommends that a symbol table be implemented using a persistent AVL tree.
This data structure has an O(log n) time complexity for searching, but is more complicated to implement.
In the interest of simplicity we opted to use a list based symbol table instead.

55

Chapter 11

Scope Checking

Scope checking involves analyzing a program to see if conforms to its language’s scoping constraints. The
task of scope checking itself is conceptually quite simple. However, some of the design decisions that get
made during this process have far reaching consequences.

In our implementation we have attempted to remain true to the object oriented paradigm. We have
found that while the utilization of object oriented principles improves code organization, it also creates a
considerable amount of programmer overhead, especially when there are a large number of classes involved.
In our implementation we have minimized this disadvantage by automating most programmer intensive tasks.

There are two noteworthy points about our scope checking implementation. Firstly, the code to perform
scope checking is mechanically generated from a high level specification syntax. Secondly, the design of the
scope checking code is more object oriented than what is found in conventional object oriented compiler
construction.

11.1 Separate Scope Checking Phase

Traditionally, the task of scope checking is intertwined with the task of type checking. That is, the judgment
about where a variable gets used is performed in conjunction with how it gets used. The primary advantages
to such an approach are (a) efficiency — since two tasks are performed in the same phase, and (b) programmer
convenience — since separate subroutines for scope checking and type checking need not be coded. This also
happens to be the approach taken in the original Pict compiler.

In our compiler however, we decided to clearly differentiate between the task of scope checking and that
of type checking. Our decision to do so is primarily based upon the following facts:

• In Pict, both the scope checking rules and the type checking rules are quite complex. Thus combining
the tasks of scope checking with that of type checking would hinder maintainability.

• It is not entirely clear how much more efficient the task of semantic analysis becomes when scope
checking is combined with type checking. It can be argued to the contrary that by separating the two
tasks, and thus detecting scoping errors before beginning type checking, the compilation of incorrectly
scoped programs can be aborted sooner.

• The programmer inconvenience of coding separate subroutines for scope checking and type checking
is inconsequential. As we describe later, in our compiler the code required to perform these tasks is
mechanically generated.

11.2 Code Placement

In an object oriented language there are two logical places where scope checking code can be placed — either
it can be internal to the AST, or it can be external. In the former case, scope checking would become a

57

feature of the AST, while in the latter it would be an operation that gets performed on the AST. From an
object oriented design point of view it is much better to make scope checking a feature of the AST. Not only
does this improve organization of the code, it also serves to encapsulate it.

Placing code scope checking code inside an AST is quite a straightforward task. It merely involves placing
the scoping rule for a given clause into the AST class that represents it. It is however a rather tedious task
to do manually. There are after all a large number of scoping rules and AST classes. As we will explain later,
in our compiler we have automated the generation and placement of scoping rules, therefore the programmer
effort involved with the object oriented approach is inconsequential.

For compiler implementation where programmer effort is an issue, scope checking code (and semantic
analysis code in general) is often placed outside the AST. Below we explain some of the more popular
alternatives we initially considered.

11.2.1 Syntax Separate From Interpretation

Appel [4] clearly separates the code to build an AST (i.e., syntax related code) from the code that analyzes
it (i.e., its interpretation). In this syntax separate from interpretation approach, the AST code is kept very
simple, consisting of nothing more than member variables and constructors (as described in [4, Chapter 4]).
Any analysis that is performed on the AST is done though external functions.

Consider for instance the Pict abstract grammar from Section 7.4. An external function to perform
semantic analysis on it would be as follows:

function scopecheck (Node: n, SymbolTable: s): Boolean

if n is Abs

then

s1 = . . .

s2 = . . .

return scopecheck(n.pattern, s1) and scopecheck(n.process, s2)

elif n is IfThen

then

s1 = . . .

s2 = . . .

return scopecheck(n.if , s1) and scopecheck(n.then, s2)
...
else

Error: Case not handled

This function would of course not be part of the AST. Notice that in this approach there would be one
function for every phase of the compiler. Therefore adding a new phase to a compiler is merely a matter
of coding a function for that new phase. Like all the other “interpretation” functions it too would do case
analysis on each of the AST’s nodes.

Appel argues that in a typical language the abstract syntax is relatively static. Therefore, the case
analysis structure of the interpretation functions is unlikely to change. However, the compilation phases
are liable to change. For example, each machine architecture would have a different code generation phase.
It is therefore necessary to be able to add and replace phases as a whole. Since a syntax separate from
interpretation approach allows this to happen it provides for a maintainable compiler.

While the above argument itself is correct there are still several disadvantages to this approach.

• The idea of having to do case analysis in an object oriented language is quite undesirable. It is in sharp
contrast to the object oriented paradigm, and hence questions the purpose of employing an object
oriented language.

58

• There is no compile time guarantee that each function is able to handle every kind of node in the AST.
Observe that in the above code there is always the possibility of reaching the last else statement, and
hence having a runtime failure.

• In the case of our language Pict, the syntax is quite likely to change. This is contrary to Appel’s
conjecture that the syntax is relatively stable. We for instance are currently only implementing a
core subset of the language, and therefore implementing the entire language would result in significant
additions to the AST. Furthermore, Pict itself is a rather new language and hence liable to syntactic
changes. This would of course mean that every “interpretation” function would have to be modified
in order to accommodate the new clauses.

11.2.2 Visitor Design Pattern

Visitor design [9, Chapter 5] is a variation of the syntax separate from interpretation approach. It too
separates the AST code from the semantic analysis code. However it differs from the syntax separate from
interpretation approach in the following respects.

• Rather than having a single function that does case analysis on each clause, each clause is placed in
a separate function. For instance, the Abs clause is moved to function scopecheckAbs , and the IfThen

clause is moved to function scopecheckIfThen . These methods are placed in a Visitor class, as shown
below.

Object Visitor

function scopecheckAbs (Abs: a, SymbolTable: s)

s1 = . . .

s2 = . . .

return a.pattern.scopecheck(s1) and a.process .scopecheck(s2)

function scopecheckIfThen (IfThen: i, SymbolTable: s)

s1 = . . .

s2 = . . .

return i.if .scopecheck(s1) and i.then.scopecheck(s2)

...

• The AST nodes are not completely devoid of methods. Each node will contain a stub method for each
compilation phase. For instance the Abs class will contain methods called scopecheck, typecheck,
codegen, etc. as will the IfThen class.

The arguments to the stub methods are the visitor class and a symbol table. Whenever a stub method gets
called it immediately invokes its corresponding method from the visitor class, sending as arguments itself
and the symbol table. For instance, the scope checking stub method for the Abs class would be,

function scopecheck (Visitor: v, SymbolTable: s): Boolean

return v.scopeCheckAbs(this, s).

The visitor design pattern offers some major advantages over the plain syntax separate from interpretation
method. One of them is that it is possible to ensure that every clause has a semantic method associated
with it. Another is that it is possible to override select methods in the Visitor class and hence get greater
reusability.

Even though the visitor design pattern utilizes several object oriented features to its advantage, it violates
the notion of encapsulation. As it stands, the visitor class needs to know the structure of every class of the
AST.

59

11.3 Generation of Scope Checking Code

In our compiler we automated the generation of code that does scope checking. Our decision to do so was
based primarily on the following facts:

• The Pict Language Definition [22] presents the scoping rules in a very cogent and programmable
manner. Mechanically generating code for these rules is merely a matter of translating a specification
language into an implementation language.

• The number of scoping rules involved is large — there are rules for both value variables and type
variables. Coding these rules by hand is a tedious and error prone task.

• One of the primary goals of this project was to develop a maintainable compiler for a still evolving
language. Thus generating scope checking code from a high level specification language is a positive
step in that direction.

11.3.1 Scope Specification Language

The process of scope checking is performed on an AST. It is essentially a recursive process such that an AST
is well-scoped if its subtrees are well-scoped. In the Pict Language Definition, scope checking is specified in
term of axioms. For instance the process abstraction scope checking axiom is,

Γ ⊢ p ⊲ ∆ Γ, ∆ ⊢ e

Γ ⊢ p = e
.

That is, a process abstraction consisting of the pattern p and an expression e, is well-scoped, if both p and e

are well-scoped. The items on the right-hand side of the ⊢ symbol, represent the context (i.e., symbol table)
that should be used for scope checking. Specifically, it states here that, p should be scope checked in the
same context as p = e, but e should be scope checked in a context that includes the symbols introduced by
p. Clearly, the axiomatic definition is more precise than the corresponding prose definition.

In our work we adopt the axiomatic specification found in the original Pict Language Definition, but
with the following minor modifications:

• The ASCII character set is used to specify a rule. Therefore, to compensate for the lack of Greek
characters we adopt the convention that uppercase G, H and I represents environments.

• The conclusion of an axiom (i.e., its bottom line) merely contains the name of an AST node that it
corresponds to, rather than its contents. So in the case of our process abstraction axiom, we would
use procAbs rather than p = e.

• The premises in the top line would utilize names of instance variables found in the corresponding AST
node. For example, since the class procAbs contains instance variables pat and proc, we would use
these instead of p and e.

With these modifications in place, the above axiom for process abstraction would be specified as,

G |- pat > H G + H |- proc

----------------------------------- .
G |- ProcAbs

Most of the effort involved in writing scoping rules is concentrated in the premises. Informally, premises can
be though of as the tests which collectively determine the scope correctness of some clause. One of the most
fundamental test is to check for the existence of a symbol. Since Pict has the concept of both value variables

60

and type variables, we require tests to check for each. The exist_v and exits_t functions serve these roles.
The following is a list of premises that can occur in a scope checking specification:

G |- c Clause c is well scoped in environment G.
G |- c > H Clause c is well scoped in environment G and yields bindings H.
uniq(x, xs) Label x does not occur in list xs.
exist v(x, G) Symbol x exists as a value variable in environment G.
exist t(x, G) Symbol x exists as a type variable in environment G.

Symbol table manipulation is another common task performed in the premises. The following is a list of
symbol table manipulations that can occur in a scope checking specification:

[] Create an empty type or value binding table.
[s] Create a one element type or value binding table.
[]:[] Create an empty environment.
G:[] Create an environment consisting only of the value bindings found in G.
[]:G Create an environment consisting only of the type bindings found in G.
G + H Create an environment by merging H with G.

The following grammar defines the language of the scope checking rules:

RuleList = Rule RuleList

ǫ

Rule = PremiseList ----. . .---- Conclusion

PremiseList = Premise PremiseList

ǫ

Conclusion = RecvParam |- iden > Yield

RecvParam |- iden

RecvParam = iden

iden , iden

Premise = SendParam |- iden > iden

SendParam |- iden

uniq (iden , UniqList) > iden

exist v (iden , iden)

exist t (iden , iden)

*

Yield = EnvironExp

UniqList = iden

[]

ValTab = iden

[]

[iden]

TypeTab = iden

[]

61

[iden]

SendParam = EnvironExp , UniqList

EnvironExp

ǫ

Environ = TypeTab : ValTab

iden

EnvironExp = Environ + EnvironExp

Environ

11.4 Subset of Raw Scope Rules

Below we present some scope checking rules using the conventions defined above.

G |- type

G |- NewChan > []:[iden]

G + []:[iden] |- defls > F G + []:[iden] + F |- abs

--

G |- RecDefElem > []:[iden] + F

*

G |- RecDefEnd > []:[]

G |- pat > H G + H |- proc

G |- ProcAbs

G |- rtype

G |- Var > []:[iden]

uniq(label, ul) > newul G |- fldpat > H G + H:[], newul |- next > I

--

G, ul |- RecordPatElemWithLabel > H + I

G |- fldpat > H G + H:[], ul |- next > I

G, ul |- RecordPatElemWithoutLabel > H + I

*

62

G, ul |- RecordPatEnd > []:[]

11.5 Formatted Scope Rules

From the scope checking rules we not only mechanically generate the Java code, but also a LATEXrepresentation
of the rules. Below we give the formatted scoping rules that correspond to the rules given above.

G ⊢ type

G ⊢ NewChan ⊲ idenv

G · idenv ⊢ defls ⊲ F G · idenv · F ⊢ abs

G ⊢ RecDefElem ⊲ idenv · F

·

G ⊢ RecDefEnd ⊲ •

G ⊢ pat ⊲ H G · H ⊢ proc

G ⊢ ProcAbs

G ⊢ rtype

G ⊢ Var ⊲ idenv

distinct(label , ul) ⊲ newul G ⊢ fldpat ⊲ H G · Ht ,newul ⊢ next ⊲ I

G, ul ⊢ RecordPatElemWithLabel ⊲ H · I

G ⊢ fldpat ⊲ H G · Ht , ul ⊢ next ⊲ I

G, ul ⊢ RecordPatElemWithoutLabel ⊲ H · I

·

G, ul ⊢ RecordPatEnd ⊲ •

63

Chapter 12

Kind Checking

Kinding is the process of checking a program’s type expressions for well-formedness. In our implementation
of kinding we make design decisions similar to those we made in our implementation of scope checking, as
described in the previous chapter. In particular, we continue to remain true to the object oriented paradigm.
Furthermore, our Java code for kinding is also mechanically generated from a high level specification. As we
will see, special attention has to be paid to return types of kind checking methods.

12.1 Type Expressions and Kinds

In a language such as Java, which lacks parameterized types, type expressions are solely categorized as proper

types. Examples of proper types include, String and Int[]. These type expressions are proper in the sense
that they completely describe the type that they represent. On the other hand, in a language such as Pict,
which supports parameterized types, type expressions can also be categorized as type operators. An example
of a type operator, would be \X = ^X. This type expression is an operator in the sense that it maps an
arbitrary type X into an input channel for type X.

A kind is a means of classifying type expressions. Proper type expressions have kind Type. Opera-
tor type expressions have kind K1 . . .Kn → K, where each Ki and K is itself a kind. Informally we can
view it as a mapping from a tuple of kinds K1 ∗ . . . ∗ Kn to a kind K. For example, the kind of the
type expression \X = ^X is Type → Type (note that unless specified otherwise a type parameter X is as-
sumed to be a proper type, and hence have kind Type). Another example would be the type expression
\X Y = X, which has kind Type Type → Type, or the type expression \X Y:(Type->Type) = ^X which has
kind Type (Type->Type)→ Type.

The process of kind checking can be summarized as comparing the kind of a type expression for confor-
mance to the language’s kinding rules. It is similar to the more familiar concept of type checking, where
value expressions are compared for conformance to the language’s typing rules.

12.2 Representing Kinds

The need to represent a kind exists not only for the purpose of kind checking but also for the purpose of
constructing an abstract syntax tree. The Pict grammar defines a kind as follows:

Kind −→ (Polarity Kind1 . . . Polarity Kindn -> Kind) | Type

For the purpose of this discussion assume that Polarity is always ǫ. Considering the recursive nature of
this definition it is reasonable to use a tree data structure to represent it. The leaves of such a tree would
correspond to Type and its internal nodes would correspond to ->. For instance, the kind Type (Type →

65

Type) → Type would be represented by the tree:

→

Type

ooooo
→

Type

���
Type

???
Type

OOOOO

The rightmost branch of each → node would correspond to its return value, while the other branches would
correspond to its input parameters.

However, as discussed in Chapter 6, the use of a homogeneous tree for representing such a structure is
undesirable. In keeping with our discussion on representing abstract syntax trees (ASTs), we first normalize
the above grammatical definition into the following form:

Kind −→ OpKind | TyKind

TyKind −→ Type

OpKind −→ PolKindPairLs -> Kind

PolKindPairLs −→ PolKindPairLsElem | PolKindPairLsEnd

PolKindPairLsElem −→ Polarity Kind PolKindPairLs

PolKindPairLsEnd −→ ǫ

Polarity −→ ǫ

Note that we intend to use this grammar as the basis of our abstract syntax representation of kinds. There-
fore, the fact that it does not represent the exact same language as the previous grammar is irrelevant.
Keywords such as Type and -> are only shown here in the interest of clarity. According to our previous dis-
cussion in Chapter 6, on converting grammars into inheritance hierarchies, we end up the following hierarchy
of classes.

ROOT

/. -,() *+Polarity

44

/. -,() *+Kind

/. -,() *+OpKind

99ttttt
/. -,() *+TyKind

eeJJJJJ

99

/. -,() *+PolKindPairLs

/. -,() *+PolKindPairLsElem

44iiiiiiiii
/. -,() *+PolKindPairLsEnd

jjUUUUUUUUU

hh

In this scheme of things, the kind Type → Type is represented by the following structure:

OpKind

PolKindPairLsElem

Polarity

fffffffffffffff
TyKind

mmmmmm

PolKindPairLsEnd

QQQQQQQ

mmmmmm
TyKind

QQQQQQ

Each node of this tree is labeled by the type of the instance variable that it represents.

12.3 Kinding Rules

A language’s kinding rules define what the kind of a given type expression should be. For instance, in Pict,
the kinding rule for an input channel type expression ^T is that, the kind of ^T is Type if the kind of T is
also Type.

66

12.3.1 Formally Defining Kinding Rules

It should be evident that prose definitions of kinding rules are generally informal. For instance, the above
description for ^T fails to mention the context in which kind checking should take place. Consequently such
descriptions are open to alternate interpretations.

Fortunately, the original Pict definition defines the language’s kinding rules in a very succinct manner.
In it, kinding is defined in terms of a proof system. For instance, the kinding rule for ^T is stated in terms
of the following proof rule:

Γ ⊢ T ∈ Type

Γ ⊢ ^T ∈ Type

The notation Γ ⊢ T ∈ Type simply means that in context Γ type expression T is a proper type (i.e., has kind
Type). As per this definition we can conclude Γ ⊢ ^T ∈ Type if we can prove Γ ⊢ T ∈ Type.

12.3.2 Normalizing Kinding Rules

Several kinding rules in the original Pict definition are defined with a human audience in mind. Almost
always, rules dealing with list like structures are described with “. . .”, rather than recursively defined.
While there is nothing imprecise about such rules, we prefer to redefine these rules in a recursive fashion.
Our purpose for doing so is related to the fact these kinding rules are later mechanically transformed into
executable code. Having them recursively defined considerably simplifies the transformation process. In
many respects this task is akin to transforming an EBNF grammar to an equivalent BNF grammar.

Consider for example the following kinding rule for type applications:

Γ ⊢ S ∈ (K1 . . . Kn → K) Γ ⊢ T1 ∈ K1 . . . Γ ⊢ Tn ∈ Kn

Γ ⊢ (S T1 . . . Tn) ∈ K

This rule states that the type application (S T1 . . . Tn) has kind K, if each of its arguments Ti has kind Ki.
We begin the transformation by eliminating the “. . .” from between the premises. This is achieved simply
by rewriting this rule as:

Γ ⊢ S ∈ (K1 . . .Kn → K) Γ ⊢ T1 . . .Tn ∈ K1 . . . Kn

Γ ⊢ (S T1 . . .Tn) ∈ K

Notice that we have now introduced the notion of kind checking a list of types T1 . . . Tn. Next, we eliminate
the “. . .” within the list structures. To do so we first introduce an alternate notation for representing lists.
The empty list is represented by [] and nonempty lists are represented by T::TS (where T forms the head
and TS forms the tail). The type application rule can then be restated as:

Γ ⊢ S ∈ (KS → K) Γ ⊢ TS ∈ KS

Γ ⊢ (S TS) ∈ K
(12.1)

However, to complete the proof system we need to introduce kinding rules for lists of types. To do so, we
first define the rule

true

Γ ⊢ [] ∈ []

for empty lists, and the rule

Γ ⊢ T ∈ K Γ ⊢ TS ∈ KS

Γ ⊢ T :: TS ∈ K :: KS
(12.2)

for non-empty lists.

67

12.3.3 Representing Kinding Rules

As we will describe shortly, we mechanically translate the above rules into Java code. However, before we
can do so, we make some syntactic modifications to these rules. Specifically,

• Each rule is named to match its corresponding node in the abstract syntax class hierarchy. For instance,
since rule 12.1 corresponds to type applications, we will name it TyApp.

• Variables intended to represent the structure of a node, are replaced with the variables defined in the
corresponding abstract syntax node. So in the case of rule 12.1, we will use type and typels instead
of S and TS.

• Symbols such as ⊢, ∈, →, and Γ are replaced by |-, >, ->, and G respectively.

Applying these modifications, rule 12.1 would be written as,

G |- type > KS -> K G |- typels = KS

--

G |- TyApp > K

. (12.3)

It should be evident that these modifications have no impact on the semantics of the rule.

12.4 Translating Rules

One of the main features of our compiler implementation is that we automatically generate the code for kind
checking from the aforementioned kinding rules. To do so we need to consider implementation issues such
as where the code should be placed and what it should look like.

12.4.1 Code Generation

Converting a kinding rule into Java code is a relatively straightforward process. For each rule we create
a kindCheck method. The conclusion of a rule determines the signature of the corresponding kindCheck

method. For example, in the case of rule 12.3 the signature of the corresponding Java function would be

public Kind kindCheck (Env G)

Each premise in the rule transforms into an invocation of method kindCheck. So in the case of rule 12.3,
we have

Kind tmp1 = type.kindCheck(G);

PolKindPairLs tmp2 = typels.kindCheck(G);

Based on whether the right hand side of a premise is a > or an =, we will translate it into a corresponding
assignment or comparison. In the case of our current example, we would generate the code

PolKindPairLs KS = tmp1.lhs();

Kind K = tmp1.rhs();

if (! tmp2.equals(KS))

throw new KindingException();

Finally, the right hand side of the conclusion will determine the return value of the function. Therefore, in
our case we would have,

return K;

Applying transformations such as these, every kinding rule can be translated into equivalent Java code.
These transformations are fairly straightforward, and writing a tool to perform them is a simple task. The
astute reader will notice that the return type of the kindCheck method seems to vary. This is indeed the
case, and we shall elaborate on it in Section 12.4.3.

68

12.4.2 Code Placement

Having figured out how to generate Java code for kind checking, we need to decide where this code should
be placed. We decided to place the kindCheck methods in the nodes of the AST. Our rational behind this
decision is based on the following:

• We know with certainty that for every kinding rule there should exist a corresponding node in the
AST (otherwise we would have a broken kind system). So by placing a kindCheck method in the
nodes themselves, we can exploit Java’s type system to detect cases of missing kindCheck methods,
and hence detect an incomplete kind system.

• From a design point of view, each node should be equipped to kind check itself, and hence should have
a method to do so.

• Our scope checking methods too are placed within the nodes of an AST, so it would be unreasonable
to place some semantic checking methods within the nodes, and others elsewhere.

12.4.3 Return Types

Although a kindCheck method always takes a value of type Env as its input argument, its return type is not
always the same. For instance, the kindCheck method for node TyApp (rule 12.3) returns a value of type
Kind, but the kindCheck method for node TypeLsEnd (rule 12.2) returns a value of type PolKindPairLs

(i.e., a list of kinds). Therefore, we need to take a closer look at how we derive the signature of a kindCheck

method.
An examination of the entire kind system reveals that there are four different return types that a

kindCheck methods can have. In addition to the types Kind and PolKindPairLs that we have just seen,
there also exists the type Env, as in the case of rule

G |- type = Type

G |- ValFldTy > G

,

and the type Type, as the the case of rule

*

G |- IntTy > Type

.

The mapping between nodes and the return type of their kindCheck methods is actually quite straightfor-
ward. Based on which subtree a given node is rooted in we can determine the return type of its kindCheck
method by using the following function:

f(node) =























Kind if node is a Type

Env if node is a KindPolIdLs

Env if node is a FldTy

PolKindPairLs if node is a TypeLs

Type if node is a TypeConstr

69

Chapter 13

Conclusion

One of our primary goals was to examine the applicability of object oriented techniques to compiler con-
struction. To this end we have implemented the concurrent language Pict in the object oriented language
Java. In particular, we have implemented lexical analysis, parsing, syntax tree construction, syntax tree
transformation, scope checking, and kind checking, all in a very object oriented manner.

Good code maintainability was another of our key goals. We initially believed that a good object oriented
design would be the key to maintainability. However, we found that often, the very features that contribute
to object orientedness, also detract from maintainability. In order to preserve maintainability and object
orientedness, we wrote portions of our code in a very maintainable specification language, which we then
translated into very object oriented Java code.

Robust code (by which we mean code that is resilient to runtime failure) has consistently been a driving
force in all our design decisions. We have concluded that using Java (in its current incarnation) is not
conducive to robustness. This is mainly due to its support for type casting instead of type polymorphism.
Despite the fact that type casting is the norm in Java, we performed our work with a minimal use of castings.

13.1 Implementation Language Paradigms

The underlying implementation of our compiler significantly differs from that of the original Pict com-
piler [22]. For one, not only are the implementation languages disparate, but so are the central design
paradigms. Our compiler is written in Java, and employs object oriented design techniques. The original
Pict compiler instead, is implemented in Objective Caml [6], and is very functional in its design. Based on our
experience with both compilers, we have concluded that, while modern functional languages are particularly
well suited to compiler implementation, object oriented languages provide a compelling alternative.

Modern functional languages such as Standard ML [20], Objective Caml, and Haskell [25], support several
features that are very applicable to implementing multi-pass compilers. The two most notable such features
are recursive data types, and exhaustive pattern matching. These, as we will describe shortly, provide a very
simple but powerful mechanism for manipulating syntax trees. Additionally, features such as strong static
typing, complete type inference, and higher order functions allow for robust, yet elegant expression of ideas.

At first glance it may not be apparent how a typical object oriented language can be readily exploited
for the task of compiler development. Compiler development largely involves manipulating syntax trees, and
object oriented languages, unlike functional languages, are not particularly biased towards such operations.
However, during the course of our work, we have realized that object oriented features such as inheritance
and polymorphism can be profitably used for manipulating syntax tree.

The fundamental differences between a functional approach and an object oriented approach become
quite apparent when commenting upon how we define and traverse syntax trees.

71

13.1.1 Defining Syntax Trees

A syntax tree is a data structure for representing parse trees. We can achieve an equally robust implemen-
tation of a syntax tree regardless of whether we adopt a functional approach or an object oriented approach.
On the one hand, when it comes to simplicity, a functional implementation is clearly superior to an object
oriented one. One reason why this is the case is that functional languages are by design directed towards
trees and lists. There is a lot of syntactic sugar available for this. On the other hand, data encapsulation is
better supported by object oriented languages.

13.1.1.1 Recursive Data Types

A syntax tree can be readily implemented in a programming language that permits data structures to
be recursively defined. Most general purpose languages meet this requirement. However, programming
languages that explicitly support a recursive data type, such as Standard ML, Objective Caml, and Haskell,
allow for a particularly elegant implementation of syntax trees. For instance, in Standard ML, a syntax tree
for the CFG fragment

Proc −→ Val Val (1) output
| Val Abs (2) input
| Val Proc Proc (3) conditional

would simply be implemented as

datatype Proc = Out of Val * Val

| In of Val * Abs

| Cond of Val * Proc * Proc

For the sake of brevity we have omitted the rules and data types for the non-terminals Val and Abs.
While there are several implementations possible, we consider the above one to be particularly advanta-

geous. Firstly it is extremely simple. Despite the fact that the above code appears only to be a definition, it
is in fact a working implementation. Secondly, by virtue of the obvious similarity between the CFG and the
datatype, changes made to one can be trivially reflected in the other. Finally, Standard ML’s strong type
system will statically ensure that no matter how the syntax tree is instantiated, it will always be consistent
with the datatype. Clearly, a functional approach such as the one above will result in a simple, maintainable,
and robust implementation.

It should be quite apparent that the above functional implementation completely lacks data encapsulation.
For instance, the structure of the Out, In, and Cond nodes is completely exposed. While this is not necessarily
a bad design, it is still a violation of one of the most basic principles of good design. Object oriented
programmers would be justified in finding fault with it.

13.1.1.2 Inheritance Hierarchies

We can also adopt an object oriented approach to designing syntax trees. In this case, the key to obtaining
a robust solution lies in creating an inheritance hierarchy that mimics a CFG. For instance, in the case of
the above CFG, we would create the inheritance hierarchy,

Proc

Out

;;xxx
In

OO

Cond.

ccFFF

Based on the above inheritance hierarchy, a Java implementation of a syntax tree would resemble

abstract class Proc { ... }

class Out extends Proc { Val v1; Val v2; ... }

class In extends Proc { Val v; Abs a; ... }

class Cond extends Proc { Val v; Proc p1; Proc p2; ... }

72

For details on how to convert an arbitrary CFG into an inheritance hierarchy we refer the reader to our work
in Chapter 6.

From an object oriented point of view, this implementation is quite good. Here, classes are effectively used
to isolate name spaces, and inheritance formally captures the relation between these classes. Constructor
methods (which are not shown here) will ensure that any instantiation of a syntax tree will be true to its
definition.

The biggest problem with this implementation however, is its large size. While the incomplete code
snippet shown above is quite small, an actual working implementation would be about five times as large.
Therefore, the programmer effort required to write such code is significant. We estimate that coding a syntax
tree for a large programming language would involve tens of thousands of words and span hundreds of files
(one per class). In our compiler for instance, the syntax tree implementation uses in excess of 6000 words,
and is spread amongst more than 100 files. By the contrast, the original Pict compiler is able to do the same
in under 600 words of code. However, note that our syntax tree implementation was mechanically extracted
from a specification of only 1200 words.

Of course, it is possible to ignore object oriented constructs such as constructors, protected name spaces
etc., in order to obtain a terse implementation. However, there is little sense in using an object oriented
implementation language, while simultaneously disregarding object oriented design principles.

13.1.2 Tree Traversals

Syntax tree traversal is an operation that is frequently performed by a multi-pass compiler. While the
concept of traversing a syntax tree is elementary, the design challenges associated with it are numerous. We
required that our traversal mechanism simultaneously be simple, robust, and object oriented.

Deciding between a functional approach and object oriented one, comes down to deciding whether we
want to preserve encapsulation or discard it. In a functional approach encapsulation is traded in favour of
simplicity, whereas in a purely object oriented approach the reverse holds true.

13.1.2.1 Pattern Matching

Pattern matching is a feature particularly well suited to traversing syntax trees. Most modern functional
languages, including Standard ML, support this feature very well. Readers unfamiliar with functional lan-
guages can consider pattern matching to be an enhanced kind of a case expression. For example, in the
following Standard ML program,

fn Out(_,_) = "out";

| In(_,_) = "in";

we use pattern matching to map Out nodes to the string out, and In nodes to the string in. Specifically,
we first attempt to match our input against the pattern Out(_,_), and failing that, attempt to match it
against the pattern In(_,_). To a casual observer this may appear as just some syntactic sugar for an
if-then-else construct. However, pattern matching is more than just syntactic sugar. Its greatest benefit
lies in the compile time consistency checks it is able to perform. For instance, in the case of the above
program, the compiler will notice that there is no clause for Cond nodes. In fact, regardless of how complex
the patterns are, we are guaranteed to be able to statically detect missing or redundant clauses. We believe
therefore, that pattern matching greatly aids writing robust code.

Had we written our compiler in a functional manner we would have made extensive use of pattern
matching during semantic analysis. For example, consider the following subset of Pict’s simplified scoping
rules:

⊢ v1 ⊢ v2

⊢ Out(v1, v2)
,

⊢ v ⊢ a

⊢ In(v, a)
,

⊢ v ⊢ p1 ⊢ p2

⊢ Cond(v, p1, p2)
.

73

Based on these rules, a Standard ML implementation of scope checking would resemble,

fun scopeCheck Out(v1,v2) = scopeCheck(v1); scopeCheck(v2)

| scopeCheck In(v,a) = scopeCheck(v) ; scopeCheck(a)

| scopeCheck Cond(v,p1,p2) = scopeCheck(v) ; scopeCheck(p1); scopeCheck(p2)

The clarity and robustness of such an implementation is quite admirable. Not only is there an obvious
similarity between the definition and the implementation, but there is also the guarantee that we are not
missing any clause.

13.1.2.2 Polymorphism

Object oriented programmers would be correct in observing that the benefits offered by pattern matching
can also be realized through the use of inheritance and polymorphism. In fact, not only can polymorphism
be used to the same effect as pattern matching, it can even do a better job. There is however, a considerable
amount of tedium associated with this approach.

The Standard ML implementation shown above can be easily converted to a robust Java implementation.
Essentially, each clause of the scopeCheck function would be moved into a class corresponding to that clause.
For example, the clause Out(v1,v2) would be moved into the class Out, as in,

class Out extends Proc {
...
void scopeCheck () { v1.scopeCheck(); v2.scopeCheck(); }

}.

The inheritance hierarchy apparent in this example is as per our discussion in Section 13.1.1.2. Our need
however, is to be able to invoke the scopeCheck method on a Proc object, as in the case of the code,

Proc p = . . . ;

p.scopeCheck();

This necessitates that class Proc must have a scopeCheck method. We make this scopeCheck method an
abstract method, since after all scope checking a Proc object is an abstract idea. After we do so, the class
Proc will resemble,

class Proc {
...
abstract void scopeCheck ();

}.

This object oriented implementation now has all the robustness of the corresponding functional imple-
mentation. Here, Java’s type system will ensure that it is impossible to omit a scopeCheck method in
any descendant of class Proc. This is much like Standard ML’s type system ensuring that the scopeCheck

function has a clauses for all variations of datatype Proc. In fact, Java is better in this regard, since any
such omission results in a fatal error, whereas Standard ML only generates a warning.

Based on our description above, the object oriented code looks fairly terse. However, this is only because
we have omitted everything but the bare essentials. In reality it would be larger by a factor of four.
Furthermore, each scopeCheck method will need to be inserted into a separate class. As per Java’s coding
conventions, these classes will be in individual files. Considering the 100 plus classes in our implementation
this is no doubt a tedious task.

74

13.1.3 Choosing a Paradigm

Deciding whether we want an object oriented solution or a functional solution, is really a matter of deciding
whether we want encapsulated code, or whether we want simple (and high-level) code. Modern functional
languages are designed for constructing and traversing heterogeneous syntax trees. Features such as exhaus-
tive pattern matching and strong static tying, if judiciously used, can result in a simple and robust solution.
However, these benefits typically come at the cost of violating the cherished principle of data encapsulation.
Object oriented languages are also well equipped for handling heterogeneous syntax trees. They can be used
to attain a solution that is not only robust, but also encapsulated. However, achieving such a solution is not
simple, for it involves a large quantity of code, that typically is distributed amongst hundreds of files.

In our work, we have adopted a somewhat hybrid approach. Our implementation code is indeed object
oriented, well encapsulated, and quite voluminous, but none of it is manually written. This code is actually
mechanically generated from a series of high level (almost functional) specifications. Our effort lay in writing
these specifications, and the programs that translate them.

13.2 Java

Java, our implementation language, though adequate for our task, lacks certain features, which make it
inconvenient and fragile. A considerable amount of our design effort was devoted to avoiding what we
perceived to be the shortcomings of Java.

One shortcoming is the lack of multiple inheritance. Recall in Chapter 6 we had to compensate for it by
introducing SINF. While interfaces compensate of this shortcoming, they are a poor substitute in our case.

Another hindrance is the inability to overload return types. This was a problem in our tree transformation
program as it forced us to cast, despite there being no apparent ambiguity as to the type in question. We felt
this to be a completely unnecessary restriction, since there is no reason why parameters can be overloaded,
but not return types.

Perhaps the biggest flaw with the current version of Java is the absence of polymorphic types. This
creates an unhealthy dependence on casting. Java may well be type-safe, but that is of little reassurance to
us as casting makes it dynamically typed.

13.3 Helper languages

We often used helper languages such as Perl for the purpose of prototyping and testing. For instance, the
lexer and parser have been tested with the help of Perl scripts. Furthermore, the AST generation program
has been implemented in Perl. We found it convenient to work with such helper languages. They are easy
to develop in, and what they lack in robustness, they compensate for in convenience. Once fine tuned, these
tools can be reimplemented. In our case, the AST generation program was reimplemented in Java.

13.4 Specification Languages

A somewhat unique part of our semantic analysis is to create specification languages that are used to
describe the various semantic phases of our compiler. Using specifications written in these languages, we
mechanically generate working implementations for each phase. As can be expected, there is some initial
overhead associated with this approach. Not only do we have to design a specification language, but we also
have to write a translator for it. This overhead however is quite small, and the benefits it provides outweighs
its cost.

The specification languages we use are actually very simple. They largely mimic the syntax of proof
systems (which incidentally are already used to describe semantic analysis). For instance, one of the rules

75

in Pict’s scope checking proof system is

Γ ⊢ p ⊲ ∆ Γ, ∆ ⊢ e

Γ ⊢ p = e
,

which in our scope checking language would be specified as

G |- p > H G + H |- e

G |- ProcAbs

.

Differences between the two specifications are largely cosmetic. For example, in our language we are restricted
to only using ASCII characters. Furthermore, we use identifiers such as ProcAbs in place of descriptions
such as p = e. Clearly, designing the syntax of such a language is not difficult. It should be noted however,
that as per our discussion in Section 12.3.2, we occasionally have to normalize certain rules in order to
accommodate them into our language.

Implementing a translator for these languages is not difficult either. Recall from our discussion in Sec-
tion 12.4 that there is a fairly obvious mapping from our specification language to our implementation
language. Given the widespread availability of lexer generators such as JFlex, and parser generators such
as CUP, a translator to Java can be easily implemented. Using JFlex and CUP we implemented our scope
checking and kind checking translators in about 500 lines of code each.

The correctness of our approach has been a contentious point. It has been correctly argued that subtle
errors in the translating process can lead to hard to find errors in the final implementation. Our main defense
against this problem is to ensure that the implementation code produced by our translators is statically
typed. In our experience, once we get past Java’s type system, the implementation almost immediately
works. However, if one wishes to formally prove the correctness of a compiler, then our approach definitely
has its merits. If for instance we wished to formally verify the correctness of our scope checking and kind
checking phases, then in our approach we would only need to examine about 1000 lines of relatively high
level translator code. The alternative to this would be to examine over 12,000 lines of implementation code.

Using specification languages also affords us the flexibility to frequently modify our semantics without
worrying about the underlying implementation. Considering that Pict is an evolving language, such modifi-
cation are not uncommon. The benefits of only having to alter high level specification code rather than low
level implementation code are obvious.

Finally, having a high level specification also helps with formally defining our language’s semantics. By
virtue of being lucid and terse, the specification itself can be made a part of the official language definition.
In fact, we can do even better. Our translator programs not only produce Java code, but also produce
LATEX code. See for example Section 11.5 for such a formatted listing of our scope checking rules. This
has the added benefit of ensuring that our implementation remains consistent with the language’s semantic
definition.

13.5 Future Work

There are three promising areas for future work. The first is to simply complete the semantic phases that we
left unfinished. The second is to unify the specifications used in different semantic phases. And, the third is
to add editor support for writing specification languages.

In our work we have only completed the scope checking and kind checking phases. Still pending, are the
type checking and code generation phases. We believe that it would be particularly appropriate to tackle
the type checking phase next. It is a large phase that encompasses sub-typing and type inference. It should
therefore serve as a good proving ground for our approach.

An increasingly apparent flaw with our approach is the use of multiple specification languages. Currently,
each phase has a separate specification language, even though these languages are largely similar. For

76

instance, the scope checking rule, and the kind checking rule for node InOutTy are,

G |- type

G |- InOutTy

and

G |- type = Type

G |- InOutTy > Type

respectively. Syntactically, these rules are similar, but they are written in two different specification lan-
guages. Unifying these languages is a logical next step. Doing so should make our approach more palatable
to new users. It may in fact even encourage language designers to write their language’s semantics in this
unified specification language. This will no doubt help with clarity and documentation, but will also be a
big step in the direction of automatic compiler generation. The tree transformation language we described
in Section 9.1 should also be considered for this unification.

Editor support would be a great finishing touch to this project. An interactive editor, where proof rules
rather than characters, are the primitives, would be an asset for language designers. Having the ability to
work at the level of semantic proof rules, while ignoring implementation issues, will provide a very desirable
level of abstraction. It is likely that such an editor would be a front-end to a unified specification language.

77

Bibliography

[1] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers. Priciples, Techniques, and Tools. Addison-Wesley
Publishing Company, 1986.

[2] J. Aliprand and J. Allen. The Unicode Standard, Version 3.0. Addison-Wesley, 1991.

[3] L. Apostoloiu. Corretto: a CUP of Java with Grappa. Master’s project report, York University,
November 2002. www.cs.yorku.ca/~franck/students/laura.ps.gz.

[4] A.W. Appel. Modern Compiler Implementation in Java. Cambridge University Press, 1998.

[5] E. Berk. JLex: A lexical analyzer generator for Java, September 2000.
www.cs.princeton.edu/~appel/modern/java/JLex/current/manual.html.

[6] E. Chailloux, P. Manoury, and B. Pagano. Développement d’applications avec Objective Caml. O’Reilly,
Paris, April 2000.

[7] P. Deschamp. PERLUETTE: a compilers producing system using abstract data types. In M. Dezani-
Ciancaglini and U. Montanari, editors, Proceedings of the 5th International Symposium on Programming,
volume 137 of Lecture Notes in Computer Science, pages 63–77, Torino, April 1982. Springer-Verlag.

[8] E. Gagnon. Sable, an object-oriented compiler framework. Master’s thesis, School of Computer Science,
McGill University, Montreal, March 1998.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison Wesley, Reading, MA,
1995.

[10] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison Wesley, Reading, MA,
1996.

[11] S.E. Hudson. CUP User’s Manual. Georgia Institute of Technology, July 1999.
www.cs.princeton.edu/~appel/modern/java/CUP.

[12] G. Klein. JFlex User’s Manual, October 2001. www.jflex.de/manual.html.

[13] J.R. Levine. Lex & Yacc. O’Reilly & Associates, 1992.

[14] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison Wesley, Reading, MA,
1999.

[15] Metamata and Sun Microsystems. Java Compiler Compiler, October 2000.
www.webgain.com/products/metamata/zip files/javaccdocs.zip.

[16] R. Milner. Communicating and Mobile Systems: The π-Calculus. Cambridge University Press, 1999.

[17] P.D. Mosses and D.A. Watt. The use of action semantics. In Proceedings of the IFIP TC2 Working

Conference on Formal Description of Programming Concepts III, pages 135–166, Gl. Avernæs, 1986.
North-Holland.

79

[18] H. Moura and D.A. Watt. Action transformations in the ACTRESS compiler generator. In Proceedings

of the International Conference on Compiler Construction, volume 786 of Lecture Notes in Computer

Science, pages 16–30. Springer-Verlag, 1994.

[19] T. Parr. ANTLR Reference Manual, October 2000. www.antlr.org/doc.

[20] L.C. Paulson. ML for the Working Programmer. Cambridge University Press, 2nd edition, 1996.

[21] B.C. Pierce. Programming in the pi-calculus. www.cis.upenn.edu/~bcpierce/papers/pict/pict-
4.1/Doc/tutorial.ps.gz.

[22] B.C. Pierce and D.N. Turner. Pict language definition. www.cis.upenn.edu/~bcpierce/papers/pict/pict-
4.1/Doc/defn.ps.gz.

[23] B.C. Pierce and D.N. Turner. Pict: A programming language based on the pi-calculus. In G. Plotkin,
C. Stirling, and M. Tofte, editors, Proof, Language, and Interaction: Essays in Honour of Robin Milner,
Foundations of Computing, chapter 15, pages 455–494. The MIT Press, 2000.

[24] M. Sipser. Introduction to the Theory of Computation. PWS Publishing Company, 1997.

[25] S. Thompson. Haskell: The Craft of Functional Programming. Addison-Wesley, 2nd edition, 1999.

[26] D.C. Wang, A.W. Appel, J.L. Korn, and C.S. Serra. The Zephyr abstract syntax description language.
In Proceedings of the Conference on Domain-Specific Languages, pages 213–228, Berkeley, October 1997.
USENIX Association.

[27] D.A. Watt and D.F. Brown. Programming Language Processors in Java. Prentice-Hall, 2000.

80

