
Using Jalangi for

Automatic Error Detection

in JavaScript Games

Andrey Ryzhov
St Cross College

University of Oxford

A dissertation submitted for the degree of

Master of Science in Computer Science

Supervised by Franck van Breugel

Trinity 2014

Acknowledgements

I am grateful to my project supervisor Franck van Breugel for introducing me to
this research topic, for guiding my work and significantly helping me with the
game localisation process.

I also thank Kaitlin Smith and Owen Lawson of Uken Games for providing us with
a great game for our research and for answering our questions.

In addition, I would like to thank Koushik Sen and Manu Sridharan for developing
the Jalangi tool, which formed the basis for our research, and assisting us in solving
various issues.

My sincere thank goes to my dear parents, without whom, I would not be able to
spend this wonderful year at Oxford.

Abstract

Considering that today’s computer games are becoming more complex, guarantee-
ing their correctness is becoming more and more challenging. Numerous game
development studios create browser games using HTML and JavaScript, mainly
because they can be run on multiple platforms. In this dissertation, we apply an au-
tomated framework, called Jalangi, for developing and performing dynamic anal-
yses for the JavaScript language, to the Crime Inc. game provided by the Uken
Games company. At first, we present the facilities offered by the tool and review
the important technical aspects of writing new or of invoking existing analyses.
We further explain the reasons for localising a web application, in particular the
Crime Inc. game, to fit the Jalangi requirements. We then describe the process of
applying different analyses to the localised version of the game, and explain the
results produced from our experiments. The results show various warnings, gen-
erated during an execution of the Crime Inc. game, and indicate robustness of the
applied analyses.

Contents

1 Introduction 1

2 The Jalangi Tool 3
2.1 Selective Record-Replay . 5
2.2 Shadow Values and Shadow Execution . 7
2.3 Instrumentation . 8
2.4 Installation and Requirements . 11
2.5 Jalangi Analyses . 13

2.5.1 The Offline Mode . 13
2.5.1.1 Concolic Testing . 14
2.5.1.2 Dynamic Analyses . 15

2.5.2 The Online Mode . 16
2.5.2.1 Record-Replay a Web Application 16
2.5.2.2 In-Browser Analysis . 19

3 Localising the Crime Inc. Game 20
3.1 Localising the Home Page . 20
3.2 Downloading Missing URLs . 23

3.2.1 The Localizer Approach . 23
3.2.2 The Wget Tool . 24
3.2.3 The Fly.js Analysis . 24
3.2.4 Processing the Downloaded Files . 28

3.3 Merging the Instrumented Files . 29
3.3.1 Setting up the Apache Server . 29
3.3.2 Locating the Instrumented Files . 31
3.3.3 Redirecting the Requests . 32

i

4 Experiments and Results 34
4.1 Preparation . 34
4.2 Chained Analysis . 35
4.3 Likely Type Inference . 40
4.4 Statistical Analyses . 42

5 Conclusion 43

A Localizer Source Code 45

B Fly.js Source Code 68

Bibliography 72

ii

Chapter 1

Introduction

According to the statistics provided by RedMonk Programming Language Rankings1

JavaScript is ahead of all other programming languages2. The popularity data is based on
the number of projects hosted at GitHub and questions posted at StackOverflow. Figure 1
illustrates the graph obtained by measuring data from the StackOverflow and GitHub sites:

Figure 1.1: Programming Languages Ranking

JavaScript is an object-oriented language developed for simple scripting – extending a web
site with client-side executable code [7, 5]. Currently, it plays a substantial role in web appli-

1http://redmonk.com/sogrady/2014/01/22/language-rankings-1-14/
2It might not be clear because of the image resolution, but JavaScript is ahead of Java.

1

cation development. Its popularity is increasing and it has started to garner academic attention
[1, 7]. The key advantage of the JavaScript language is its portability – a single program can be
executed on any machine that has a web browser supporting JavaScript. Recent progress in the
mobile market and browser technologies have boosted the use of JavaScript in such mobile plat-
forms as Android, iOS, Windows 8, Blackberry, Firefox OS and in Rich Internet Applications
[8].

Richards gathered observations that indicate a high popularity of dynamic features of
JavaScript that make the language hard to be analysed statically [7]. Unlike many popular
programming languages, such as C, C++ or Java, there is a lack of tool support for testing
JavaScript code [1, 8]. At the same time, a significant number of game studios develop browser
games using JavaScript to enhance the portability of applications, which is one of the most
crucial emerging factors due to the enormous variety of platforms [2].

Because we were attracted by the popularity of the JavaScript language and the lack of sup-
port for automatic testing, we decided to focus our research on one specific type of applications:
games. Initially, we concentrated on finding an optimal tool for analysing JavaScript programs.
In particular, we tested our approach on the mobile browser game called Crime Inc., provided
by the Uken Games company3. To fit the nature of the language, we only considered software
that offers dynamic analyses, which are those that take place at an application’s run-time. We
searched for a framework that would be able to perform the required analyses in the background
while the user plays the game. Moreover, for reasons further described in this report, we re-
quired a tool that would work in an in-browser mode (Section 2.5.2.2), producing the results
immediately during execution. At first, we attempted to apply the tool called Artemis [1], but
it did not work, because of the specific JavaScript features (such as Web Worker4) used in the
implementation of the game. We then moved to another tool named Jalangi5. By investigating
this tool, we found that it allows a user to easily implement new dynamic analyses and run them
in a browser window without any issues.

In this report, we describe the Jalangi framework and explain the most essential aspects of
writing new dynamic analyses and of using existing ones. We also demonstrate how we applied
the tool to the Crime Inc. game and discuss necessary preparations steps. At the end of this
paper, we present the analyses that we were able to perform and interpret the obtained results.

3http://www.uken.com
4http://www.w3schools.com/html/html5 webworkers.asp
5https://github.com/SRA-SiliconValley/jalangi

2

Chapter 2

The Jalangi Tool

Jalangi provides a dynamic analysis framework to allow a user to easily build platform-
independent analyses for the JavaScript language. These are the main design decisions that
guided the process of development of the Jalangi tool [8]:

• Independence of browsers and JavaScript version. The developers aimed to create a
tool that is not restricted by a specific JavaScript technology. With this design decision,
Jalangi addresses the rapid evolution in web browser technologies and omits the need
to refactor or rebuild the framework whenever an underlying browser is updated. Such
independence is achieved through a selective record phase described in Section 2.1. One
of the key features of Jalangi is an ability to perform an analysis even if some fragments
of the source code are not instrumented1.

• Independent analysis execution. Jalangi can perform dynamic analyses on a desktop
or a cloud machine. Some dynamic analyses cannot be performed due to insufficient
computational resources when working in the online mode2. Furthermore, analyses that
require access to the file system or other specific resources cannot be launched in the
in-browser mode without modifying the browser. This challenge is addressed through
the record-replay technique described in Section 2.1. The first phase of this technique
records and saves the actual execution of an application, whereas the second phase uses
a trace of the execution to imitate the recorded behaviour of the program. In this way,
the replay phase can be performed in a browser-independent environment, such as a
computer desktop.

• Ease of writing dynamic analyses. Jalangi supports shadow execution and shadow values
(described in Section 2.2) – these features create an opportunity to associate additional

1As we will discuss in Section 2.3, Jalangi’s instrumentation annotates the JavaScript code with additional
information that can be exploited by the analyses.

2The online mode provides facilities to analyse an application or record its behaviour directly in a browser
window.

3

information with every JavaScript variable, object or function. Consider the following
example of declaring a JavaScript variable:
var x = 5;

Jalangi allows a user to implement a dynamic analysis that annotates the above statement
with shadow information and transforms it into the code below:
x = {actual: 5, shadow: "unsigned int"};

This replacement also requires modifications in every standard operation (for example,
multiplication or boolean operation) such that an updated version first extracts the actual
value, and then performs an appropriate operation. The fragment of the source code
below represents how Jalangi maintains binary operations:
function B(iid, op, left, right) {

var left_c, right_c, result_c, isArith = false;
...
left_c = getConcrete(left);
right_c = getConcrete(right);

switch (op) {
case "+":

isArith = true;
result_c = left_c + right_c;
break;

...
case "<<":

isArith = true;
result_c = left_c << right_c;
break;

...
case "==":

result_c = left_c == right_c;
...

}

...
return result_c;

}

The full set of supported binary operations is as follows:
+, -, *, /, %, <<, >>, >>>, <, >, <=, >=, ==, !=, ===, !==, &, |, ˆ,
instanceof, in, &&, ||, regexin

Shadow values are propagated along with the execution of a program. For example,
consider a declaration of another JavaScript variable:
var y = x * 2;

Using the previously annotated variable x and the binary function B(iid, op, left, right),
the above statement is converted into:

4

var y = B(operationID, "*", x, {actual: 2, shadow: "unsigned int"});

As the result of the above operation, the unsigned int information is propagated to the y

variable during execution:
var y = {actual: 10, shadow: "unsigned int"};

One of the major weaknesses of Jalangi is handling native JavaScript code, since this
code cannot be instrumented. The following example illustrates the problem:
var numbers = [1, 2, 3];
numbers.pop();

The array numbers can be instrumented, whereas the function pop() cannot be, as it is
a native function. Since Jalangi generates an ”Analysis exception” error whenever an
analysis executes native code, the selective record technique helps to avoid that problem
by instrumenting only user-specified parts of the code, skipping any native JavaScript
by default. In this way, the recorded execution of a program contains only instrumented
code, preventing Jalangi from executing native JavaScript.

The technical implementation of the Jalangi framework is based on two key ideas, further
discussed in this chapter: the selective record-replay technique and shadow values and shadow

execution [8].

2.1 Selective Record-Replay

Given an application, the record-replay technique allows a user (1) to select parts of an appli-
cation by specifying the source code directory containing those parts, (2) record the program’s
behaviour, and (3) replay the recorded execution [6]. The latter can be replayed on a platform
different from the one it was recorded on. For example, if the user records an application’s
execution in a web browser, he can later replay it on a desktop platform. There are two phases
that form the record-replay technique:

• During the recording phase the application is run in a user-specified platform (such as
web browser) where the entire program’s source code is executed. This stage includes
instrumentation and recording of the specified parts of the program.

• During the replay phase Jalangi only reproduces those parts of an application that were
initially instrumented. While a user records a behaviour of the program on the actual web
platform, he can perform an analysis in the replay phase on a desktop or cloud machine,
using system resources that are not available in an alternative, browser-implemented solu-
tion. Furthermore, an analysis, which purely depends on the instrumented code, provides
wider opportunities for applying various dynamic analyses.

5

There are two key advantages obtained by the division of the record-replay technique into
two phases:

• The execution of the JavaScript application can be recorded on an actual platform and
replayed on a desktop machine that supports a JavaScript engine (Jalangi uses the Node.js

framework to enable this technique). Furthermore, it provides an analysis writer with an
access to substantially larger computational resources for performing expensive analyses.

• The user can implement a number of dynamic analyses that are built upon the shadow
execution technique, assuming that un-instrumented and native code is ignored in the
replay phase.

The common way to perform record-replay of an application is to collect and save every
memory variable during the record phase and use them in the replay phase to reconstruct the
program’s behaviour. This approach has two problems associated with it: (1) How to record val-
ues of JavaScript objects and functions? (2) How to replay an execution when an instrumented
function is called by un-instrumented or native code? Sen et. al solved the first problem by
assigning a unique numerical identifier to each JavaScript function and object and recording
values of those identifiers. The second issue is resolved by an explicit recording and calling of
instrumented functions that are invoked by un-instrumented segments of code or dispatched by
the JavaScript events dispatcher.

Jalangi provides the following optimization in the record-replay technique: a value of mem-
ory load is not recorded if it can be computed during the replay phase by solely executing in-
strumented code. Jalangi maintains a shadow memory in order to determine which values need
to be recorded. While shadow memory is updated along with the actual memory during the ex-
ecution of instrumented code, it (shadow memory) remains the same when the un-instrumented
or native code is executed. During the record phase such convention allows Jalangi to track the
difference between the value of the actual memory load and the corresponding shadow memory
value and, if such a difference is found, record that memory load. This ensures faithful loading
of memory values during the replay phase [8].

6

2.2 Shadow Values and Shadow Execution

Shadow values allow to associate additional information with any value used in a dynamic
analysis. This information depends on the type of the analysis and can contain useful details
about a program value, such as symbolic representation. Shadow execution happens in parallel
with the actual execution and propagates shadow values until the application terminates [4].

In Jalangi, shadow execution is performed only during the replay phase, where only instru-
mented code is invoked. Therefore, any possible execution of native JavaScript code, which
might generate exceptions, is avoided. The code below represents a fragment of the JavaScript
implementation of the ConcolicValue object that annotates program values:
function ConcolicValue (concrete, symbolic) {

this.concrete = concrete;
this.symbolic = symbolic;

}

ConcolicValue.getConcrete = function (val) {
if (val instanceof ConcolicValue) {

return val.concrete;
} else {

return val;
}

}

ConcolicValue.getSymbolic = function (val) {
if (val instanceof ConcolicValue) {

return val.symbolic;
} else {

return undefined;
}

}

The above code is used in the Jalangi analyses to wrap a program value into the ConcolicValue

object. For example, a boolean variable can be transformed into {concrete: true, symbolic: ”x1

- 100 > 0”}.
Shadow execution enables a user to associate any program value with a shadow value car-

rying additional information. The example above illustrates one of such annotated values. The
object called ConcolicValue contains two fields: the field concrete that refers to an actual vari-
able value and the field symbolic that denotes a symbolic representation. This technique is
called concolic wrapping – an association of symbolic expression with a program value. It is
used in different Jalangi analyses that depend on symbolic representation: tracking of undefined
and null values, taint analysis, likely type inference analysis, coverage analysis and others. A
more detailed description of concolic testing is given in Section 2.5.1.1.

7

2.3 Instrumentation

The instrumentation phase declares a global variable sandbox that contains Jalangi’s settings
and constants. One of the main properties of this variable is the field sandbox.analysis – a
user defined object that is invoked during the replay phase or during the in-browser analysis.
When Jalangi instruments a program’s source code it inserts callbacks to methods defined in
the Jalangi analysis.js module. When we were writing our own dynamic analysis (Section
3.2.3), implementation of callbacks was an essential part of the development. The code below
illustrates a simple analysis that we applied to the Crime Inc. game (Section 4.2) to detect an
access to a non-existing property of an object:
(function (sandbox) {

function MyAnalysis () {

var iidToLocation = sandbox.iidToLocation;
var info = {};

this.getFieldPre = function(iid, base, offset) {
if (offset === undefined) info[iid] = (info[iid] | 0) + 1;

};

this.putFieldPre = function(iid, base, offset, val) {
if (offset === undefined) info[iid] = (info[iid] | 0) + 1;

};

this.endExecution = function() {
sandbox.Utils.printInfo(info, function(x) {

console.log("Accessed property ’undefined’ at " +
iidToLocation(x.iid) + " "+ x.count + " time(s).");

});
};

}

sandbox.analysis = new MyAnalysis();
})(J$);

The main functions getFieldPre(iid, base, offset) and putFieldPre(iid, base, offset, val) track
the cases where a particular property does not belong to the referenced object and record the
error in the info variable3. The iid argument is a unique numerical identifier assigned to every
program value during the instrumentation phase. The base parameter refers to an object that
gets or sets the property. The third argument, offset, denotes the name of the property that is
being called. The last parameter in the putFieldPre() method, val, contains the new value that
is assigned to the base[offset] field – this parameter is not used in the example analysis. When
the endExecution() function is invoked, the analysis reports all locations recorded in the info

object.

3(info[iid] | 0) statement in the example code returns zero, if the info[iid] property was not initialised before.

8

The actual range of callbacks supported by Jalangi is much wider. Initially, the instrumen-
tation phase annotates all the source code statements with intermediate functions which then
invoke the appropriate callbacks. Table 2.1 represents the available annotation prefixes, their
meaning and relation to the intermediate functions:

Prefix Meaning Intermediate function
J$.Fe Entering a function Fe(iid,val,dis,args)
J$.Fr Function return Fr(iid)
J$.M Method call M(iid, base, offset, isConstructor)
J$.A Assign value A(iid, base, offset, op)
J$.P Put object’s field P(iid, base, offset, val)
J$.G Get object’s field G(iid, base, offset, norr)
J$.Se Script enter Se(iid, val)
J$.Sr Script exit Sr(iid)
J$.R Variable read R(iid, name, val, isGlobal, isPseudoGlobal)
J$.W Variable write W(iid, name, val, lhs, isGlobal, isPseudoGlobal)
J$.T Object literal T(iid, val, type, hasGetterSetter)
J$.N Variable declaration N(iid, name, val, isArgumentSync, isLocalSync)
J$.B Binary operation B(iid, op, left, right)
J$.U Unary operation U(iid, op, left)
J$.C Conditional statement C(iid, left)
J$.C2 Case label in switch C2(iid, left)

Table 2.1: Intermediate methods in the analysis.js

Prefix Method in sandbox.analysis
J$.Fe functionEnter(iid,val,dis,args)
J$.Fr functionExit(iid)
J$.M invokeFunPre(iid, f, base, args, isConstructor)
J$.A putFieldPre(iid, base, offset, val)
J$.P putFieldPre(iid, base, offset, val)
J$.G getFieldPre(iid, base, offset)
J$.Se scriptEnter(iid, val)
J$.Sr scriptExit(iid)
J$.R readPre(iid, name, val, isGlobal)
J$.W writePre(iid, name, val, lhs)
J$.T literalPre(iid, val, hasGetterSetter)
J$.N declare(iid, name, val, isArgumentSync)
J$.B binaryPre(iid, op, left, right)
J$.U unaryPre(iid, op, left)
J$.C conditionalPre(iid, left)
J$.C2 conditionalPre(iid, left)

Table 2.2: Callback methods in the sandbox.analysis

9

Every intermediate function listed in Table 2.1 invokes a callback method implemented
in the sandbox.analysis variable. As a result, every instrumentation prefix has an associated
callback method invoked from the appropriate intermediate function. Table 2.2 represents
the correlation between Jalangi prefixes and the resulting callback methods declared in sand-

box.analysis.
Notice that for the same prefix, methods from Table 2.1 and callbacks from Table 2.2 may

have different number of input parameters. For example, prefix J$.M has the intermediate
function W(iid, name, val, lhs, isGlobal, isPseudoGlobal) taking six arguments, whereas the
corresponding callback writePre(iid, name, val, lhs) requires only four. This happens because
intermediate functions can absorb or produce new variables in the process of invoking the
related callback. For example, the W() function uses the isGlobal and isPseudoGlobal variables
only to perform additional operations in the record-replay mode, but does not transmit these
variables further to the writePre() method.

In this way, whenever a JavaScript statement is executed in the replay phase or during the
in-browser analysis, the corresponding method in sandbox.analysis is called to perform the
specified tests. The following example is a statement from the Annex game provided in the
Jalangi distribution:
board[place[0]][place[1]] = color;

The instrumentation phase converts the above code into the following Jalangi statement:
J$.P(16513, J$.G(16473, J$.R(16441, ’board’, board, false, false), J$.G(
16465, J$.R(16449, ’place’, place, false, false), J$.T(16457, 0, 22, false)
, false), false), J$.G(16497, J$.R(16481, ’place’, place, false, false), J$
.T(16489, 1, 22, false), false), J$.R(16505, ’color’, color, false, false))

It starts with the J$.P prefix that refers to the property assigning callback – putFieldPre(iid,

base, offset, val). The first argument indicates an iid of the JavaScript value – a unique number
identifying the program objects during the analysis. The second argument refers to the base
object board[place[0]] that owns the property – J$.G(16473, J$.R(16441, ...), J$.G(16465,

...), false). This argument invokes another Jalangi ”getField” prefix J$.G(16465, J$.R(16449,

...), J$.T(16457, ...), false) that denotes a field access to place[0]. The third parameter off-

set presents the property of the object that is being modified – J$.G(16497, J$.R(16481, ...),

J$.T(16489, ...), false) that refers to place[1]. And the last argument, val, carries the new value
of the object’s field – J$.R(16505, ’color’, color, false, false).

Table 2.2 only contains methods with -pre suffix, such as putFieldPre() or binaryPre().
This suffix indicates that a callback is invoked before an actual code is executed. For example,
putFieldPre() is called before the object’s property is read. Jalangi extends its capabilities and
allows to modify a program’s behaviour by changing a return value in callbacks with -pre suffix.
We used this technique to implement an HTTP redirection feature described in Section 3.3.3.
However, it is not mandatory to include return statements in these functions, as demonstrated in

10

the example analysis at the beginning of Section 2.3. Jalangi also provides alternative versions
for the callbacks with -pre suffix:
invokeFun(iid, f, base, args, isConstructor),
getField(iid, base, offset, val), putField(iid, base, offset, val),
literal(iid, val, hasGetterSetter), read(iid, name, val, isGlobal),
write(iid, name, val, lhs), binary(iid, op, left, right, result_c),
unary(iid, op, left, result_c), conditional(iid, left, ret)

The above listed methods allow a programmer to operate with values after an actual program’s
code was executed. Therefore, these functions do not affect an application’s behaviour and also
might have different number of arguments than their -pre counterparts, as an implementation
of a callback might depend on the priority (order) of its execution.

2.4 Installation and Requirements

Since we performed all our tests and experiments on Mac OS X v.10.7.5, further description is
related only to this operating system.

Jalangi is a free open-source project and available at https://github.com/SRA-
SiliconValley/jalangi. It also requires the following frameworks and libraries to be
installed on the machine:

• Node.js – an asynchronous framework for easily building network applications, including
web servers. This framework is essential for applying the record and replay technique
to a web application and performing in-browser analysis in Jalangi. It is available for
download at http://nodejs.org/download/. The downloaded package can be
installed via the standard Mac OS Installer.

• Sun’s JDK 1.6 or higher – this library is a part of the Java Standard Edition Devel-
opment Kit and can be downloaded at https://edelivery.oracle.com/otn-
pub/java/jdk/8u11-b12/jdk-8u11-macosx-x64.dmg. The standard Mac
OS Installer is sufficient to launch the downloaded disk image.

• GMP library – an open source library for performing precise arithmetical operations on
rational numbers, floating-point numbers, and signed integers. The library is required by
Jalangi’s concolic analysis that uses cvc34 and automaton.jar to solve constraints. The
GMP library package can be downloaded at https://gmplib.org/#download.
Once downloaded, the package needs to be unzipped (we used Mac OS Archive Utility).
This will create a folder named gmp-ver in the current directory, where ver is the version
of the library. Using the Terminal application, a user should navigate to the newly created
folder and type the following instructions sequentially:

4http://www.cs.nyu.edu/acsys/cvc3/

11

./configure
make
make check
make install

The above commands configure the installation settings, check for all the required li-
braries and install the GMP library into the /usr/local/ directory. Note that Jalangi au-
tomatically reports any missing or incorrectly installed libraries during the installation
process.

• Python 2.7 or higher – a programming language used to install Jalangi and run anal-
yses in the offline mode. Available for download at https://www.python.org/
download/releases/2.7.8/ and can be installed using the standard Installer ap-
plication.

• Git – a source code management system that is needed to download Jalangi and available
at http://git-scm.com/download/mac. This program is not essential, since
the Jalangi archive can be downloaded manually. However, it is recommended to use
Git, as the framework is still under development and is constantly updated. Git allows a
user to update the local repository using the git pull command to keep the current version
of Jalangi up-to-date.

Once all of the above-listed libraries and tools are properly installed, Jalangi can be
copied to the machine using the following command in the Mac OS Terminal: git clone

https://github.com/SRA-SiliconValley/jalangi. The latest version of the Jalangi tool will be
downloaded to the current directory. The next step is to use Terminal to navigate into the
downloaded folder and start the installation process using the command below:
python ./scripts/install.py

Successful installation of the tool produces the following output:
---> Installation successful.
---> run ’npm test’ to make sure all tests pass

The final step is to run the Jalangi tests:
npm test

The node test package within the Jalangi distribution includes all tests required before launch-
ing Jalangi: test cases for the Node.js framework, tests for the current version of Java and tests
for checking the robustness of the Jalangi modules and analyses. The testing phase might take
up to an hour to run entirely, depending on a speed of the machine. Initially, three tests failed
to pass, so we reported that issue to the developers of Jalangi and they updated the version for
us. Since then, every test passed successfully and we did not experience any other problems

12

with installing the software. The list below summarises the full set of technologies we used to
run Jalangi analyses:
64-bit Mac OS X v.10.7.5, Node.js v.0.10.30, Java v.1.8.0_05,
GMP library v.6.0.0, Python v.2.7.1, Git v.1.7.12

2.5 Jalangi Analyses

The Jalangi framework provides two different modes of analysis: offline and online. Note that
prior to perform any testing, a Mac OS user should navigate to the folder containing Jalangi
using the Terminal application.

2.5.1 The Offline Mode

The offline mode is the mode in which analyses are performed on a program units without any
user interaction with the program. The main downside of this mode is that it only works with
unit testing – a technique where a program is decomposed into several units such that each unit
contains a collection of JavaScript functions. A unit also specifies inputs to the program and is
run independently of other units [9]. To add the support for the unit testing in a .js (JavaScript)
file a user has to add the following code at the beginning of that file:
if (typeof window === "undefined") {

require(’../../src/js/InputManager’);
require(process.cwd()+’/inputs’);

}

This code supports the tested unit with the Jalangi libraries to automatically generate input at
the specified locations, if the unit is not executed in a browser environment. To indicate an
input entry, the user has to insert the following statement at the desired location:
J$.readInput(arg);

An example unit with the input generation is provided in Section 2.5.1.1.
The offline mode relies on two key techniques described earlier in Section 2.1 and 2.2. The

record-replay technique enables a tool to instrument user-selected fragments of the application,
whereas shadow execution and shadow values allow to attach additional information to program
variables.

Initially, when the Crime Inc. game is localised, as described in Chapter 3, all source
code is extracted from HTML pages into multiple JavaScript files which are linked to each
other within the corresponding HTML. As the JavaScript language has no support for external
linking to other .js files [3], the extracted JavaScript cannot be divided into isolated modules
for performing unit testing. For this reason, we were unable to apply offline analyses in our
research.

13

2.5.1.1 Concolic Testing

Concolic testing (the term is formed from concrete and symbolic) is a variation of offline analy-
sis that performs symbolic execution along with the concrete execution of a program, generates
the logical constraints on the input values, and solves these constraints (using the GMP library)
to generate new input values. The generated input is further used by the concolic engine to
investigate previously unexplored execution paths of a program [8, 9]. We demonstrate the
application of the concolic testing to the JavaScript unit sample.js:
if (typeof window === "undefined") {

require(’../InputManager’);
require(process.cwd()+’/inputs’);

}

var x = J$.readInput(0);
function foo() {

if (x > 5) {
if (x > 8) {

console.log("x > 8");
}
else {

console.log("x > 5 and x <= 8");
}

}
}

foo();

The code above is prepared for the offline mode as explained earlier in Section 2.5.1. The
following command initialises the automated input generation:
python scripts/jalangi.py concolic -i 10 sample

The parameter -i 10 specifies the upper bound for the total number of generated inputs, which
are saved to the jalangi tmp folder. The concolic analysis produced two sets of inputs for the
example unit:
jalangi_inputs1.js: J$.setInput("x1",6,[]);
jalangi_inputs2.js: J$.setInput("x1",9,[]);

The above inputs specify the values for the x1 argument that refers to the x variable from the
source code. The generated values are 6 and 9, respectively. To execute the sample.js unit
applying these inputs, a user has to invoke the command:
python scripts/jalangi.py rerunall sample

The concolic analysis uses the generated input to imitate every possible execution and produces
the following results:
Running sample on jalangi_inputs1.js
x > 5 and x <= 8
Running sample on jalangi_inputs2.js
x > 8

14

Figure 2.1 represents the corresponding execution tree with generated logical constraints de-
noted on the edges:

Figure 2.1: Execution tree of the sample.js unit

As was outlined in Section 2.5.1, the Crime Inc. source code cannot be decomposed into
single units, as all source .js files are linked between each other. Moreover, Jalangi’s concolic
testing cannot be used in the online mode, and therefore we could not apply it to the game.

2.5.1.2 Dynamic Analyses

This section presents a full list of dynamic analyses provided by the Jalangi framework. Even
though, these analyses work in the offline mode, all of them can be used in the record-replay
analysis of a web application (Section 2.5.2.1) and the majority of them have support or an
alternative version for the in-browser mode (Section 2.5.2.2). The table below gives a brief
overview including the analysis name, its executable path and support for the in-browser mode:

Name Executable Path In-browser
Call Graph callgraph/CallGraphEngine.js Yes
Coverage coverage/CoverageEngine.js No

Shadow Property dlint/ShadowProtoProperty Yes
Undefined Offset dlint/UndefinedOffset.js Yes

Eval Analysis evalusage/EvalUsageAnalysisEngine.js Yes
LikelyType Inference likelytype/LikelyTypeInferEngine.js Yes

NaN Analysis logNaN/logNaN.js Yes
Object Allocation objectalloc/ObjectAllocationTrackerEngine.js Yes

Object Index objectindex/ObjectIndex.js Yes
Taint Analysis simpletaint/SimpleTaintEngine.js No
Track Values trackallvalues/TrackValuesEngine.js No

Track Undefined tracknull/UndefinedNullTrackingEngine.js No
Chained Analysis ChainedAnalysis.js No

Table 2.3: Jalangi dynamic analyses

15

To perform unit testing using any of the analyses listed above in the offline mode, a user
has to issue the following command in the Terminal application:
python scripts/jalangi.py analyze -a src/js/analyses/path unitFile

Where path has to be replaced with a concrete analysis path.
The analyses listed in Table 2.3 could not be applied to the Crime Inc. game in the offline

mode, for the same reasons explained in Section 2.5.1. However, we used alternative versions
of the analyses that have support for the in-browser mode to perform our experiments described
in Chapter 4.

2.5.2 The Online Mode

This mode was our main selection for the analysis of the Crime Inc. game. It incorporates
support for both, direct and in-direct, web application analyses. On the one hand, the in-direct
variation assumes that a user initially records the execution of an application in a web browser
and then uses the recorded behaviour to perform dynamic analyses summarised in Table 2.3.
On the other hand, the direct version, also called in-browser analysis, can be performed in
the real-time web browser environment. This mode allows an analysis to use shadow memory
on-the-fly to track bugs or collect statistics along with the actual execution of an application.

2.5.2.1 Record-Replay a Web Application

This analysis requires a manual user interaction with an application to record its behaviour. The
rest of this section illustrates an example of a record-replay analysis on the Crime Inc. game.

The user starts with navigating to the Jalangi folder using the Mac OS Terminal. The
instrumentation of an application is initialised by issuing the following command:
node src/js/commands/instrument.js --outputDir /tmp tests/uken/game

It creates an instrumented version of the game in the /tmp/ directory on the user’s machine.
Jalangi only instruments JavaScript files found in the specified directory (in this example –
tests/uken/game) and the related sub-directories. Every .js file is instrumented in accordance
with the prefix rules summarised in Table 2.1. Before starting to play the game, the user has to
ensure that no living processes exist in Node.js:
killall node

Then the user should be able to launch the application on the record-replay server called
rrserver. Note that the application will be opened in the default browser specified by the operat-
ing system. For this example we used Google Chrome v.36.0 in combination with the standard
Chrome iPhone simulator, which is needed to run the Crime Inc. game (it only has the mobile
version). The command below initialises the recording phase of the instrumented version:
python scripts/jalangi.py rrserver file://localhost/tmp/game/home.html

16

Figure 2.2: Instrumented home page of the Crime Inc. game

After the browser window has opened, the user can start performing actions on the dis-
played HTML page (Figure 2.2). To complete the tracing the user has to press Shift+Alt+T

combination on the keyboard: the JavaScript alert message ”trace flush complete” should ap-
pear in the browser window, indicating that the recording phase has terminated. This generates
the jalangi traceX file in the current Terminal directory, where X is a serial number based on
the count of the previously generated trace files. Before performing an analysis, Jalangi re-
quires the trace file to be in the same location, as the instrumented version of the game. The
following command copies the trace file to the tmp/game directory:
cp jalangi_trace1 /tmp/game

Afterwards, we can perform for example the ObjectAllocationTrackerEngine.js analysis on the
trace file by issuing the instruction below:

17

node src/js/commands/replay.js --tracefile /tmp/game/jalangi_trace1
--analysis src/js/analyses/objectalloc/ObjectAllocationTrackerEngine

This command launches the replay phase, applying the object allocation analysis to the be-
haviour recorded in the jalangi trace1 file. Below is a fragment of the log produced by the
analysis (the actual log is too large to submit it in the report):
Location (js0.js:2688:118) has created object 330 times

with max last access time since creation = 0 instructions
and average last access time since creation = 0 instructions
and seems to be Read Only

Location (js0.js:1447:32) has created object 180 times
with max last access time since creation = 274617 instructions
and average last access time since creation = 2528.00555 instructions

The output represents the numbers of objects created in the period of the recorded execution and
the frequency of accessing these objects. For example, the statement at line (js0.js:1447:32)

created 180 objects:
return new r.fn.init(e, t);

Value 274617 from the log indicates the maximum number of program instructions5 that were
executed between the last two accesses of a single object created at location (js0.js:1447:32).
Value 2528.055 denotes the average number of instructions that were invoked between the last
two accesses of a single object, among all objects that were created at line (js0.js:1447:32).
The object allocation tracker analysis might be useful in identifying inefficient memory usage
of a specific function or a whole application.

The major benefit of a record-replay of a web application is its ability to analyse the gen-
erated trace file independently of a browser or operating system. In this way, an analysis,
checking the recorded behaviour, has significantly larger computational resources than the in-
browser alternative. Such analysis can also access the machine’s file system, whereas the in-
browser mode does not support this feature. Furthermore, a user can perform various dynamic
analyses on the same trace file without a need to re record the application’s behaviour.

As explained in Chapter 3, in order to play the instrumented version of the game, we have
developed an analysis that redirects original HTTP requests to our own server. Incompatible
with this design decision, the record-replay variation of the online mode does not allow to
inject additional analyses while recording the behaviour of a web application. Therefore, in
this mode, we could not embed HTTP redirection in the instrumented version of the game and
were only able to analyse the home.html page without a possibility to navigate further in the
application.

5An instruction is a single call of a method from Table 2.2, excluding functionEnter(), functionExit, scriptEn-
ter() and scriptExit().

18

2.5.2.2 In-Browser Analysis

This type of analysis played a key role in our research, as we applied it not only to find bugs
in the Crime Inc. game, but to also localise it (Chapter 3). From a user’s perspective, an in-
browser analysis is simple to use in comparison to others. The user only needs to specify the
analysis and the tested application:
node src/js/commands/instrument.js --inbrowser --smemory --analysis
src/js/analyses/logNaN/LogNaN.js --outputDir /tmp tests/uken/game

The above command instruments the Crime Inc. game, enables the in-browser mode, allows
an analysis to use the shadow memory and attaches the LogNaN.js analysis. As before, the in-
strumented game is copied into the /tmp/ directory. The user can start executing the application
along with the associated analysis by launching the instrumented version:
open file://localhost/tmp/game/home.html

Some of the analyses from Table 2.3 support both, offline and in-browser, modes by utilising
the sandbox.Constants.isBrowser variable that denotes the current mode. For example, the
fragment of code below illustrates the modification made to the LogNaN.js analysis to expand
it for the in-browser mode:
if (sandbox.Constants.isBrowser) {

window.addEventListener(’keydown’, function (e) {
if (e.altKey && e.shiftKey && e.keyCode === 84) {

sandbox.analysis.endExecution();
}

});
}

The code attaches the specific event listener to a browser window, if an analysis is performed
in a browser environment. This listener awaits for the control keyboard sequence Shift+Alt+T

and invokes the endExecution() method that has to be declared in the sandbox.analysis variable.
In the case of the LogNaN.js analysis, endExecution() prints all occurrences of not-a-number
(NaN) values detected during the execution of an application.

The remaining part of the report demonstrates the reasons for using the in-browser mode
(such as HTTP requests redirection) and provides more low-level details in combination with
our research results.

19

Chapter 3

Localising the Crime Inc. Game

We focused our research on the development of general and systematic approach suitable for
analysing any JavaScript game. As Jalangi only allows to instrument source code located on
a local machine, any web application, initially, needs to be downloaded from a remote server.
To accomplish this task, we created the Localizer tool that downloads the specified HTML
page, extracts all JavaScript code and saves it into separate files. In order to achieve a complete
localisation of the Crime Inc. game, we implemented our own dynamic analysis named Fly.js

(Section 3.2.3). Furthermore, in the process of development, we discovered the need to set up
a local server on our machine (Section 3.3.1) and add an HTTP redirection feature to the Fly.js

analysis (Section 3.3.3).

3.1 Localising the Home Page

We developed the Localizer tool (Appendix A) that performs two actions with the URL pro-
vided to it: downloads the linked HTML file and decomposes it. In the context of this re-
search, HTML decomposition is a process of downloading source images, external CSS and
JavaScript files into the folder located on our machine, in combination with extracting embed-
ded JavaScript and CSS code from the target HTML page. To enhance the convenience of using
the Localizer tool, it is accompanied with a game.loc file that contains settings. The below ex-
ample is a set of parameters that we used to localise the home.html page from the Crime Inc.
game:
url = http://m.staging.crimeinc.uken.com/?udid=v&app_launch=1&
app_version=2.00&ios_bundle_id=com.uken.crimeinc&language=en&
system_version=9
user.agent = iphone4
directory = /Library/WebServer/jalangi/tests/uken/game/
cookies = JSESSIONID="779ce000afb0e1dc";

20

The above properties specify the target URL, the user agent1, the directory in which the down-
loaded and decomposed files are saved, and the request cookies. Setting up the user agent is
critical if Localizer attempts to download a page from a mobile version of a web application, as
it was in case of the Crime Inc. game. The cookies contain specific information without which
a download request can be redirected or blocked. We copied the cookies from a browser log by
accessing the home.html page in the original version of the game.

The main Localizer’s work flow consists of several stages that process, extract and modify
the content of the downloaded HTML file:

• Set up a connection – reads properties from the game.loc file.

• Download HTML – downloads the target HTML page using the URL specified in the
game.loc file. This step also creates the Java Document object and parses the content
of the downloaded HTML file into that object, using the Jsoup library2. All further
modifications of the HTML page (such as code extraction) are only applied to the newly
created Document object.

• Process links to external JavaScript files – searches for external JavaScript links within
the source HTML page and downloads them to the specified directory. The links to these
JavaScript files are rewritten within the Document object, so that new links refer to the
localhost directory – the root directory of our local server, as explained in Section 3.3.1.

• Process embedded JavaScript – this stage extracts the JavaScript code embedded into
the target HTML page. When a particular fragment of code is extracted into an external
.js file, it is replaced by a link to that file. Such a link is also attached to the localhost

directory.

• Process links to external CSS – downloads all CSS files to the specified directory. Since
a CSS file might contain links to other web application resources, its content is parsed,
extracting any external links to JavaScript, HTML, images, fonts or other CSS. For ev-
ery found link, the corresponding file is downloaded and the related URL is properly
modified.

• Process all embedded CSS – this step works in almost the same way as the previous one.
The only difference is a creation of a CSS file: it is extracted from the original HTML
page and saved into the specified directory. Extracted CSS files are also parsed to process
any external links, as described in the previous step.

1The user agent is part of an HTTP request that provides a web application with information about the device
that sends the request.

2http://jsoup.org

21

• Process image links – identifies all image links found in the target HTML page and
downloads them locally. In comparison to a .js file, an image does not need to be linked to
the localhost address, because it is not processed by an ajax() request (see Section 3.3.1).
However, the image file has to be saved into the appropriate directory. For instance,
consider the image URL derived from the home.html page:
/d2tqjmbrfd3d8u.cloudfront.net/assets/static/chevron_retina.png

This image is saved locally to dir/d2tqjmbrfd3d8u.cloudfront.net/

assets/static/, where dir is the directory specified in the game.loc file.
In this way, the image can further be accessed by a localised version of the
game using the file://dir/d2tqjmbrfd3d8u.cloudfront.net/assets/
static/chevron_retina.png URL. In other words, a localised HTML page is
able to access linked images using the machine’s file system.

• Saving the document – the last step in the localisation process is to save the Document
object. The file saved is the modified version of the original HTML page, where all
JavaScript and CSS code is completely extracted and the associated links are properly
modified.

To use the Localizer tool, a user needs to navigate to the folder containing the Localizer.java

file using the Terminal application and type in the following instruction:
javac Localize.java -cp jsoup-1.7.3.jar:commons-io-2.4.jar:.

It compiles the specified Java file, using two external JAR libraries that are located in the Lo-
calizer folder. Once the class is compiled, the user can launch the tool by issuing the command
below:
java -cp jsoup-1.7.3.jar:commons-io-2.4.jar:. Localize game.loc

This instruction applies the settings from the game.loc file and downloads the requested HTML
into the specified directory.

Applying the Localizer tool on the Crime Inc. game provided us with an exact copy of
the original home.html page. The resulting folder contained 16 separate JavaScript files named
js0.js, ..., js15.js, where js0.js is an external iPhone jQuery library3. We also downloaded the
css0.css file and two HTML files: home.html – the main page, and html1.html – the embedded
HTML file extracted from the css0.css file. Initially, css0.css contained some outdated links to
images which our Localizer tool detected. We reported these outdated links to the developers
of the game. After the required update, all image files were properly located in sub-directory
folders so that launching of the localised version in the Chrome browser produced the expected
result, identical to the original home page (Figure 2.2).

3http://jquery.com

22

3.2 Downloading Missing URLs

After we localised the home.html page, we started to apply different types of Jalangi analyses
to it. The instrumentation phase proceeded successfully and all JavaScript code was properly
annotated. As explained in Section 2.5.1, we concluded that Jalangi’s offline mode is not
suitable for the Crime Inc. game. Therefore, we moved to the online analyses category where
we explored the need to localise more than one page, in order to obtain interesting results.
Since Jalangi instruments only locally stored JavaScript code, we needed to download other
game pages to our machine and decompose them.

3.2.1 The Localizer Approach

The simplest way to download missing pages would be to use the Localizer tool that we de-
veloped earlier. However, this approach led us to undesired results due to technical aspects of
the game implementation. As we investigated, the original version of the game uses only one
static HTML page, home.html, and loads the rest of its content dynamically during the process
of playing. It means that whenever a user plays the game and performs a trigger action, the
game sends an HTTP request to the http://m.staging.crimeinc.uken.com server
and downloads dynamic HTML and JavaScript code to inject it into the current page. For ex-
ample, the following is the home page address of the original Crime Inc. game (tested in the
Chrome browser with iPhone 4 emulator):
http://m.staging.crimeinc.uken.com/?udid=v&app_launch=1&app_version=2.00&
ios_bundle_id=com.uken.crimeinc&language=en&system_version=9

When the user presses the ”Battle” button, an HTTP response from the server returns HTML
together with JavaScript code which is embedded into the current home.html using an ajax()

call (the ajax() function is described further in Section 3.2.3). After embedding the new content,
the source code of the current page is modified and the new URL becomes:
http://m.staging.crimeinc.uken.com/?udid=v&app_launch=1&app_version=2.00&
ios_bundle_id=com.uken.crimeinc&language=en&system_version=9#url=battle

When we apply the Localizer tool to the above URL, it downloads the page called battle.html

that consists of content almost identical to the home.html page, but with some additional frag-
ments of HTML and JavaScript code that was loaded dynamically. In this way, we not only
receive a lot of redundant content, but we also cannot utilise the downloaded battle.html page
in the instrumented version of the game. On the one hand, the ajax() function requires dynam-
ically loaded content to be unique. On the other hand, the battle.html page constructed by the
Localizer tool is just another version of home.html with some additional code, rather than an
individual page with absolutely unique content.

23

The alternative option was a replacement of the ajax() calls with the standard HTML href 4

attributes so that when a user presses the ”Battle” button, the home.html page is redirected to
a completely new battle.html page, instead of dynamically loading its content. This approach
intervenes with the internal game mechanics and breaks the redirection process, as some game
scripts are only invoked when particular dynamic content is loaded on the current page.

Due to the reasons described above, we had to find other ways of downloading the missing
HTML files such that they contain only unique game code.

3.2.2 The Wget Tool

Wget5 is a command line tool for retrieving files via the most widely-used Internet protocols,
such as HTTP or FTP. The initial plan was to use this utility to automatically download missing
HTML pages from the remote server. At first, we tried to imitate the original request manually
and download the previously mentioned battle.html by issuing the following command in the
Mac OS Terminal:
wget
--header="Host: m.staging.crimeinc.uken.com" /
--header="User Agent: Mozilla/5.0 (iPhone; U; CPU iPhone OS 3_0 like Mac
OS X; en-us) AppleWebKit/528.18 (KHTML, like Gecko) Version/4.0 Mobile/
7A341 Safari/528.16" /
--header="Cookie: u_vln=31c435f4f5d8bf9d06eac40be5af1180; NTPClockOffset=
23|1408121028017"
http://m.staging.crimeinc.uken.com/?udid=v&app_launch=1&app_version=2.00&
ios_bundle_id=com.uken.crimeinc&language=en&system_version=9#url=battle

The above request fully imitates the one, which is created when playing the original version
of the Crime Inc. game. Nevertheless, the file retrieved by executing the above command is
identical to the one constructed by the Localizer tool – an HTML page with a lot of redundant
content. Therefore, we had to search for another solution.

3.2.3 The Fly.js Analysis

After our unsuccessful attempts, we tackled the problem in a different way: we decided to
detect a missing URL during an actual HTTP request. This approach required deeper under-
standing of the game and of processing dynamically loaded content. For this purpose, we
developed a Jalangi analysis (Appendix B), named Fly.js, that works in the in-browser mode,
detects missing URLs and saves the linked files to our machine.

The initial step was a detection of the common source of HTTP requests, which is respon-
sible for loading of dynamic content. This step required a detailed analysis of a browser logs
and the game source code. We used the Firefox browser v.31.0 in combination with the User

4The href attribute explicitly specifies the URL of the page to which it is linked.
5http://www.gnu.org/software/wget/

24

Agent Switcher v.0.7 add-on6 set to iPhone 4. Figure 3.1 and 3.2 represent the example logs
that we were examining:

Figure 3.1: The Firefox console

Figure 3.2: The request details

We examined the source code of the earlier decomposed home.html page, searching for the
request details observed from the browser logs. As we found out, the only function responsible
for loading of dynamic content was ajax():
$.ajax(arguments);

Ajax()7 is a jQuery function used to send various types of request (such as GET or POST) to a
server and dynamically process or embed the received content into the current web page.

Having found the common source of HTTP requests, we needed to detect it automatically
at run-time, that is, while playing the game. We decided to use the Jalangi framework for this,
as it provides a wide range of callbacks (Section 2.3), among which we selected invokeFun-

Pre(iid, base, f, args, isConstructor). This method traces invocations of all JavaScript functions
together with their properties. The arguments of this callback are: the unique Jalangi object id,
the invoking object, the function body, its arguments, and a boolean variable indicating if the
function is a constructor or not. The simplest way would be to detect the ajax() calls by tracking
the function name:
this.invokeFunPre = function(iid, base, f, args, isConstructor) {

var fname = f.toString().match(/function ([ˆ\(]+)/));
fname = fname || ’anonymous’;

}

6https://addons.mozilla.org/en-US/firefox/addon/user-agent-switcher/
7The $ sign refers to the jQuery library call.

25

However, this solution did not work, as the ajax() function is interpreted as an anonymous
function – a function without a name.

A more complicated solution implied an analysis of the body of the ajax() function in order
to find a particular statement responsible for sending HTTP requests. For this purpose, we used
the jQuery library (the js0.js file) downloaded earlier via the Localizer tool. By annotating
the body of the ajax() function with console.log() statements, we were able to examine its
behaviour and to find the statement that initialises all dynamic requests in the Crime Inc. game:
y.send(a || r.data == null ? null : r.data);

The next question that we had to solve was how to track the invocation of the above statement.
A systematic approach was to use Jalangi to find any unique details about the above statement.
As mentioned in the beginning of Section 3.2, we were able to instrument the jQuery library,
in which we found the Jalangi equivalent of the above statement:
J$.M(301657, J$.R(301593, ’y’, y, false, false), ’send’, false) (J$.C
(20448, J$.C(20440, J$.R(301601, ’a’, a, false, false)) ? J$._() :
J$.B(26618, ’==’, J$.G(301617, J$.R(301609, ’r’, r, false, false),
’data’), J$.T(301625, null, 25, false))) ? J$.T(301633, null, 25,
false) : J$.G(301649, J$.R(301641, ’r’, r, false, false), ’data’));

By taking advantage of using the unique object identifier 301657 derived from the method
call J$.M specified in Table 2.2, we implemented a callback to print the details of the y.send()

function:
this.invokeFunPre = function (iid, base, f, args, isConstructor) {

if (iid == 301657) {
console.log("Base = " + base + ". Function = " + f + ".
Arguments = " + args);

}
}

We tested the sample analysis in the online mode using the Chrome browser and received the
following output:
Base = function send() {[native code]}. Function = [object XMLHttpRequest].
Arguments = [object Arguments]

Note that we could not use object identifiers (iid) to trace the ajax() calls for the following
reason: Jalangi associates a unique id with every JavaScript variable, function and object, based
on the number of previously assigned ids. Whenever source code of a program is changed, the
new instrumentation may generate different id values for the same objects, because the total
number of variables in the code has changed. Therefore, the final version of the callback
method, detecting the ajax() calls, is based on the function’s details, rather than on a concrete
identifier value:
this.invokeFunPre = function (iid, base, f, args, isConstructor) {

if (base == "function send() { [native code] }" && f == "[object
XMLHttpRequest]")

26

{ urlSent = true; }
}

Using this method, the analysis sets the global urlSent flag to true, whenever the y.send() state-
ment is reached within the ajax() body.

After we were able to detect an HTTP request, the next task for us was to derive the URL
from that request. We accomplished this by implementing another callback method in our
analysis – readPre(iid, name, val, isGlobal). It records every variable read in a program. When
we analysed the y.send(a || r.data == null ? null : r.data) statement, we observed that it
sends a request accompanied with the object r. Moreover, as we further examined the ajax()

function body, we found that it contains the r.url property – the target URL that we needed to
detect automatically in our analysis. The readPre() function allows us to track the name of the
variable that is being read. In combination with the earlier defined urlSent flag, we developed
the following conditional statement to catch missing URLs:
this.readPre = function (iid, name, val, isGlobal) {

if (urlSent && name == "r" && val == "[object Object]")
{

urlSent = false;

// check that val.url does not exist on the local
// machine and save it to the download map
...

}
}

To avoid redundant downloads, all URLs found during the Fly.js analysis execution are stored
in a Map object. A user has to execute the Shift+Alt+T keyboard combination to download
the links recorded in Map. The downloading of files is implemented using the SaveToDisk()

function written by Khan8.
When the user plays the instrumented version of the game using the Fly.js analysis, a com-

bination of the implemented callbacks invokeFunPre() and readPre() successfully recognises
an ajax() request and derives the corresponding URL link from it. For example, when the user
presses the ”Battle” button, our analysis catches the following URL:
battle?wrapper=loader&u_vln=31c435f4f5d8bf9d06eac40be5af1180&udid=v&
app_launch=1&app_version=2.00&ios_bundle_id=com.uken.crimeinc&language=en&
system_version=9&rt_con=2003454&rt_evt=2&rt_dur=231&_=1408209568751

This URL is then used to download the corresponding file from the original http://m.
staging.crimeinc.uken.com/ server. The download process only works in the Firefox
browser, as Chrome complains about the provided URL and produces an ”unknown error”

message.

8http://muaz-khan.blogspot.ru/2012/10/save-files-on-disk-using-javascript-or.html

27

In our experiments with the Fly.js analysis, we used the Firefox v.31.0 together with the
User Agent Switcher v.0.7 to emulate the iPhone device. We applied the analysis to download
missing URLs using the commands described in Section 2.5.2 to instrument the source code
and initialise the in-browser mode:
node src/js/commands/instrument.js --inbrowser --smemory --analysis
src/js/analyses/Fly.js --outputDir /Library/WebServer/jalangi/tests/
tests/uken/game

open file://localhost/Library/WebServer/jalangi/tests/game/home.html

Notice that the location of the instrumented version has changed to /Library/WebServer/-

jalangi/tests/ – the purpose of this is explained in Section 3.3.2.
After the browser window was opened, we performed as many game actions as was possible

to collect missing links that were available at the home.html page. Pressing Shift+Alt+T saved
the linked files to our hard drive. These files contained only unique HTML and JavaScript code,
as was required by our Jalangi analysis.

3.2.4 Processing the Downloaded Files

By this moment, we had a folder of HTML files downloaded in the process of applying the
Fly.js analysis to the home.html page. Before adding these files to the instrumented version of
the game, we had to decompose them in a similar way to the one described in Section 3.1.

For this purpose, we created a new version of the Localizer tool that could work in the
offline mode, that is, decompose the pages stored on our hard drive. The new tool utilises the
code from Localizer to extract images and JavaScript code from the target HTML. It starts by
exploring the given root directory, decomposes all the HTML files found there, and recursively
proceeds to the sub-directories until all the paths are examined. The new version also incor-
porates a slightly different technique of modifying JavaScript links for the reason described
below.

Default mapping – a default redirection is widely used in the implementation of the
Crime Inc. game. To understand the behaviour of that feature, consider the following sce-
nario: ajax() sends a request to the http://hostname/battle/?wrapper=... ad-
dress and waits for the response. Since the initial request does not specify the name of the
requested file (/battle/?wrapper=... does not contain the name of an HTML file, but only
contains the parameters), the default mapping will redirect the request to the new address
http://hostname/battle/index.html?wrapper=.... In this way, whenever a
URL misses the name of an HTML file, the default mapping automatically substitutes the in-

dex.html string.
To address the default mapping in the original version of the game, we had to restructure

the folders containing our .html files downloaded in the process of the Fly.js analysis. Every

28

default HTML file with name urlname.html was renamed to index.html and relocated into the
appropriate folder /urlname/index.html. Using this technique, we were able to properly locate
the game resources of the instrumented version to further imitate HTTP requests in a strict
accordance to the original ones.

In summary, we used the Fly.js analysis to detect and download missing URLs that were
later decomposed by the modified localisation tool. Nevertheless, the newly downloaded pages
were unavailable for access from our analysis, as the ajax() function was sending HTTP re-
quests to the original http://m.staging.crimeinc.uken.com/ server. In order to
perform in-browser analyses, the requests had to be redirected to the instrumented HTML and
JavaScript files stored on our machine. The next section describes how we achieved this.

3.3 Merging the Instrumented Files

Even though we were able to download and decompose the additional HTML pages from play-
ing the game, we still had to find a way to redirect the original requests to these pages at the
analysis run-time. Before discussing the implementation of the redirection technique (Section
3.3.3), we first introduce the need to set up a local server.

3.3.1 Setting up the Apache Server

When we tested the redirection of HTTP requests to the instrumented files, we discovered a
violation of the Same Origin policy. For example, when the ajax() function sends a request
to the file://localhost/Library/WebServer/tests/game/battle/ address,
the request goes to the machine’s file system – file://localhost/. In this case, any HTTP request
sent to the file system fails, because the file system sends back a response annotated with a
null-origin header, as illustrated in Figure 3.3:

Figure 3.3: The null-origin error from the Chrome browser console

For this reason, we decided to create a local server that would respond to the incoming
requests with an appropriate header.

Apache9 allows a user to set up a web server locally. This application was installed on
our machine by default (Mac OS X v.10.7.5), so we only had to tune some settings to switch
the server on and update the server address. To enable the local server, we modified Apache’s
configuration file /etc/apache2/httpd.conf. We uncommented the below statement by removing
the ’#’ sign:

9http://www.apache.org

29

#LoadModule php5_module libexec/apache2/libphp5.so

This instruction enables the PHP library and initialises the local host. The next step was to edit
the root directory of the server. For the reason further explained in Section 3.3.2, we attached
the local host directory to the Jalangi folder. We modified paths in the configuration file as
follows:
DocumentRoot "/Library/WebServer/jalangi"
<Directory "/Library/WebServer/jalangi">

Afterwards, the Apache server had to be restarted by issuing the following instruction in the
Terminal application:
sudo apachectl restart

Once the local server started to work properly, we repeated the ajax() request to the previ-
ously mentioned battle URL, but now using the localhost address – http://localhost/
tests/game/battle/. This time, the Same Origin policy generated another type of ex-
ception, complaining about Cross-Origin-Resource-Sharing (CORS), as shown in Figure 3.4:

Figure 3.4: Cross-Origin-Resource-Sharing error

The error indicates that the Same Origin policy forbids any form of communication between
two servers with different domains, unless they explicitly specify the settings that allow external
requests. In order to enable CORS, we had to set up a virtual host container to annotate the
responses with the required headers. The configuration file for virtual hosts httpd-vhosts.conf is
located in the /etc/apache2/extra/ directory. We updated it by creating a new virtual container
and enabling CORS as follows:
<VirtualHost *:80>

ServerName localhost

Header always set Origin "*"
Header always set Access-Control-Request-Method "GET, POST, PUT, DELETE

, OPTIONS"
Header always set Access-Control-Request-Headers "Authorization,
X-Requested-With, X-Prototype-Version, X-CSRF-Token, Content-Type,
Accept, Origin"

Header always set Access-Control-Allow-Origin "*"
Header always set Access-Control-Allow-Methods "GET, POST, PUT, DELETE,

OPTIONS"
Header always set Access-Control-Allow-Headers "Authorization,
X-Requested-With, X-Prototype-Version, X-CSRF-Token, Content-Type,
Accept, Origin"

DocumentRoot /Library/WebServer/jalangi
</VirtualHost>

30

These settings allow external requests to communicate with our local host by annotating
the outgoing responses with CORS-friendly headers. Finally, we restarted the Apache server
to apply the recent changes:
sudo apachectl restart

After the server enabled support for cross-origin requests, the Fly.js analysis gained access to
the instrumented files located on our machine.

3.3.2 Locating the Instrumented Files

As described in the previous section, we set up the local server to overcome the Same-Origin

policy and maintain the external HTTP requests sent to our server. By that moment, our analysis
was able to access URLs starting with http://localhost/. For this reason, we modified
all JavaScript and HTML links within the instrumented files and attached them (links) to the
http://localhost/ address (Section 3.1). In order for an HTTP request to find an in-
strumented file linked to the localhost address, this file needs to be located in the server’s root
directory.

Instead of transferring an instrumented content to the localhost location every time an in-
strumentation phase is performed, we decided to set the Jalangi folder as the server’s root
directory:
/Library/WebServer/jalangi/

Additionally, the example below, extracted from the instrumented version of the battle/in-

dex.html page, shows how Jalangi annotates source HTML files with additional JavaScript
links:
<head>
...
<script src="/Library/WebServer/jalangi/src/js/Constants.js"></script>
<script src="/Library/WebServer/jalangi/src/js/Config.js"></script>
<script src="/Library/WebServer/jalangi/src/js/Globals.js"></script>
...
</head>

These links are automatically injected by Jalangi to import the required source files during
an in-browser analysis. When a user performs an action that invokes the ajax() request sent to
http://localhost/battle/?wrapper=..., the links listed above are also processed
dynamically. In this case, the ajax() method, when embedding the battle/index.html page,
will attempt to search for the specified links in the file system at file://localhost/ by
default. Since any HTTP request sent to the file system file:// fails (Section 3.3.1), we also
had to automatically redirect Jalangi source requests to the localhost address, where these files
were located, because we set the Jalangi folder as the root directory.

31

3.3.3 Redirecting the Requests

We decided to expand the existing Fly.js analysis by implementing an additional callback func-
tion, responsible for redirection of the original requests to our local server. When studying the
ajax() method, we discovered that the object r contains the url field, as was discussed in Section
3.2.3. In order to redirect an HTTP request, we had to detect the moment, when this property is
instantiated and change the base domain to our local server. For this purpose, Jalangi provides
the putField(iid, base, offset, val) callback that is triggered by every ”put” access to an object’s
field.

In comparison to the previously defined callbacks that detect missing URLs, the putField()

method does not provide the name of the object that accesses a field. Due to this limitation, we
had to examine the specific properties that belong to the r object and use them, as the part of
the conditional statement that detects the access to the r.url field:
this.putFieldPre = function (iid, base, offset, val) {

if (base.constructor.name == "Object" && base.hasOwnProperty("url") &&
base.hasOwnProperty("type") && offset == "url" && urlSent)

{
// change the URL
...
return newURL;

}
return val;

}

In fact, using two fields type and url in combination with the earlier declared urlSent flag was
sufficient for the successful recognition of the r.url field access. In our analysis, we observed
various types of HTTP requests where each of them had to be treated differently:

• Jalangi source file – this type of request attempts to access the Jalangi source libraries
linked from within the instrumented HTML files. It is the only kind of request that starts
with the file://localhost/ address. An example URL is as follows:
file://localhost/Library/WebServer/jalangi/src/sourceLibrary.js

Since the /Library/WebServer/jalangi/ folder is the local host address, the extended ver-
sion of Fly.js redirects this request to:
http://localhost/src/sourceLibrary.js

• Content requests – these requests attempt to load new content on the current page. Such
request URLs start without a domain specified. Below is an example of the original
request:
/battle/rivals?wrapper=loader&...

For the above address, our analysis builds the new URL as follows:

32

http://localhost/tests/game/battle/rivals?wrapper=loader&...

Notice that the redirected request has an intermediate path /tests/game/ – this is the di-
rectory where the source files are saved after instrumentation.

• Default requests – this type is similar to the previous one, except that the ajax() function
applies the default mapping technique to the original request:
empire/?wrapper=...

To imitate the original behaviour, the extended analysis automatically implements the
default mapping and the new address becomes:
http://localhost/empire/index.html?wrapper=...

• Redirected requests – sometimes the analysis detects a URL that was already modified in
the process of analysis. Such a URL starts with the http://localhost/ string and
is simply ignored.

With accordance to the new callback function and the Apache local server running, we
updated the downloading part of the Fly.js analysis so that it can decide if a certain URL is
missing by accessing the local host directory and sending a test request to that file. If a request
receives a ”not found” message in response then the URL is saved to the download list.

After the Fly.js analysis was expanded to a new version that automatically supports redirec-
tion, we finally could access newly instrumented files from the home.html page and continue to
download missing game resources by accessing the newly decomposed pages.

33

Chapter 4

Experiments and Results

After collecting a sufficient number of HTML pages from the Crime Inc. game, we decomposed
them and stored the obtained files in the Library/WebServer/jalangi/tests/uken/game directory.
We then instrumented the source code and started to apply different in-browser analyses offered
by the Jalangi framework, summarised in Table 2.3. At first, we give an overview of additional
functions implemented in every analysis that we performed in this research.

4.1 Preparation

The redirection function was used to enable an analysis to freely navigate within the instru-
mented version of the game. We updated the original code of every analysis by inserting the
putField(iid, base, offset, val) callback that we developed earlier (Section 3.3.3). This modifica-
tion provided an opportunity to access the files stored in the local server directory Library/Web-

Server/jalangi by using the http://localhost/ address.
During our experiments with different analyses, we noticed that Jalangi only records the

location of an error at the lowest level of a program’s source code and does not provide any
facility to find the initial statement that caused this error. For example, the original version of
the CheckNaN.js analysis produces the following output:
Observed NaN at (js0.js:6498:28) 5 time(s).

The (js0.js:6498:28) location refers to:
pageX: (Math.min.apply(Math, n) + Math.max.apply(Math, n)) / 2

Using the obtained information, we can conclude that this particular line of code generates a
not-a-number (NaN) value, but we cannot trace the initial cause of that error at higher levels of
the source code. For this purpose, we added the CallStack object to the global sandbox variable
described in Section 2.3. The source code is presented below:

34

function CallStack () {
var iidToLocation = sandbox.iidToLocation;
var stack = [];

this.functionEnter = function(iid, val, dis, args) {
stack.push(val);

}

this.functionExit = function(iid) {
stack.pop();

}

this.toString = function() {
var cs = "";
for (var i = stack.length - 1; i >= 0; i--)

cs += iidToLocation(stack[i]) + (i != 0 ? " -> " : "");
return cs;

}
}
sandbox.CallStack = new CallStack();

This object provides two callbacks to trace the function call stack of a program: functionEn-

ter(iid, val, dis, args) and functionExit(iid). In this way, every analysis can retrieve the current
stack by referring to the sandbox.CallStack.toString() method.

4.2 Chained Analysis

In the beginning of the research, Jalangi did not support chained analysis in the in-browser
mode. However, in the process of work, the Jalangi developers released a new version of the
framework that introduced a modified chained analysis working in online mode.

Chained analysis is a supporting unit that does not perform any tests by itself, but serves
to combine other analyses and run them sequentially. We updated the original ChainedAnaly-

sis2.js code to incorporate the redirection feature and the call stack, as described in the previous
section. We named the new version ModifiedChained.js and used it in combination with six
other dynamic analyses, accompanied with the Utils.js file that provides a method to print the
results:
node src/js/commands/instrument.js --analysis2 --analysis src/js/analyses2/

ModifiedChained.js --analysis src/js/analyses2/Ryzhov/Utils.js --
analysis src/js/analyses2/Ryzhov/CheckNaN.js --analysis src/js/analyses2
/Ryzhov/FunCalledWithMoreArguments.js --analysis src/js/analyses2/Ryzhov
/CompareFunctionWithPrimitives.js --analysis src/js/analyses2/Ryzhov/
ShadowProtoProperty.js --analysis src/js/analyses2/Ryzhov/
ConcatUndefinedToString.js --analysis src/js/analyses2/Ryzhov/
UndefinedOffset.js --outputDir /Library/WebServer/jalangi/tests/ tests/
uken/game

35

The above instruction launches the instrumentation phase that uses the analysis2.js1 module to
insert callback functions. The command also specifies the main ModifiedChained.js unit that
takes a list of actual analyses to be combined.

After the instrumentation phase terminated, we played the game for a short period of time
and pressed the Shift+Alt+T combination to print the results in the browser console. Since the
full log is huge, we only present the most interesting samples.

CheckNaN.js

This unit tracks if an execution invokes a NaN value, records the location of the error and the
number of occurrences of that error. The following observations were made by applying this
analysis to the instrumented game:
(1) Observed NaN at (js0.js:6498:28) 22 time(s).
CallStack: (js0.js:6493:24) -> (js0.js:6432:31) -> (js0.js:6411:51)

(2) Observed NaN at (js2.js:1567:28) 1 time(s).
CallStack: (js2.js:1559:3) -> (js2.js:1317:3) -> (js2.js:1193:25)

The first NaN observation is a pure jQuery error. The value occurs at the following line:
(1) pageX: (Math.min.apply(Math, n) + Math.max.apply(Math, n)) / 2

The recorded function stack consists of the following elements:
getCenter(t) -> collectEventData(t, r, i) -> onTouch(t, r, u)

The interpretation is: the onTouch(t, r, u) method invokes collectEventData(t, r, i) which in
turn invokes getCenter(t) which contains (1) pageX: The call chain indicates that a NaN
value appears every time a user performs a click action in a browser window that invokes the
onTouch(t, r, u) method.

The second error refers to the js2.js file – a part of the game source code. The corresponding
line is:
(2) currentPage_zindex = parseInt(currentPage.css("z-index")) || 1;

The parseInt(currentPage.css(”z-index”)) function generates a NaN value, whereas the final
result of the (NaN || 1) operation produces 1. It means that the analysis mistakenly records a
NaN value that is not assigned to any concrete variable. The issue was emailed to Koushik Sen,
who is responsible for the development of the Jalangi analyses.

1Analysis2.js is an advanced interface for performing in-browser analyses. It is more efficient and less error
prone than the previous version analysis.js.

36

FunCalledWithMoreArguments.js

FunCalledWithMoreArguments records the number of occurrences where a particular function
was invoked with more arguments than expected. Native functions are ignored, as Jalangi
does not instrument native JavaScript code. Since this analysis generated a large number of
warnings, mostly related to the js0.js file (jQuery), we selected the most promising samples:
(1) Function at (js2.js:1022:29) called 8 time(s) with more arguments than

expected.
(2) Function at (js2.js:1321:5) called 7 time(s) with more arguments than

expected.
(3) Function at (battle/battlejs0.js:100:9) called 1 time(s) with more

arguments than expected.
(4) Function at (missions/missionsjs0.js:99:9) called 1 time(s) with more

arguments that expected.
(5) Function at (missions/missionsjs1.js:53:3) called 1 time(s) with more

arguments that expected.

The first two examples complain about the respective statements:
(1) var loadBodyPerfEvent = PerfMonitor.loadBody(url);
(2) PerfMonitor.loadSuccess(otherData.url, otherData.loadBodyPerfEventId);

The source of these errors is a specific implementation of the PerfMonitor, which is part of the
jQuery library. As we found out, methods of this object are generated dynamically, as shown
in the example from the js2.js file:
perfEventSequences = [... , { name: ’loadBody’, setupFunction:

setupFromUrl}, ..., name: ’loadSuccess’, hasAsyncParent: true,
setupFunction: setupFromUrlAndParentId }, ...]

initPerfMonitor(perfEventSequences, 87, 2003454, ...);

By testing the behaviour of the PerfMonitor object, we figured out that a function call made
from this object is initially converted into the getFakePerfEvent() function, which does not take
any arguments. Therefore, the analysis evaluates all function invocations from the PerfMonitor

object as an arguments mismatch error.
Samples 3 and 4 refer to the following lines of code from the battlejs0.js and missionsjs0.js

files respectively:
(3) $("#Energy_amount").U_BasicAnim(’stop’).U_BasicAnim(’flash’, {textFlash

: true, textShadow: true, ...});
(4) $("#money.price").U_BasicAnim(’stop’).U_BasicAnim(’flash’, {textFlash:

true, textShadow: true, ...});

The cause of the errors is the U BasicAnim(n) function, provided by the jQuery library. To
understand the details of the problem, we examined the body of this function:
U_BasicAnim: function (n) {

var r = arguments;
...

}

37

The above definition shows that the function takes a single input parameter n. Nevertheless,
it can read all arguments passed to it, storing them into the r variable. Such behaviour is
explained by the nature of the JavaScript language: every function is annotated with the default
arguments variable that stores a full list of parameters provided to that function [3]. According
to the definition, the analysis works correctly and records all cases, where the U BasicAnim(n)

function is invoked with more than one parameter, even if an error does not have a harmful
impact on the execution of an application.

The example 5 is associated with the following statement from the missionsjs1.js file:
(5) $("#overlay").after("<div class...");

The analysis signals an error due to another jQuery function after(). We investigated the details
of that method and found the definition listed below:
after: function () {

...
if (arguments.length) {

...
}

}

By default the function takes no arguments, but can read them dynamically during run-time.
Similar to errors 3 and 4, this one does not affect the program’s behaviour in a negative way.

All other errors, recorded by FunCalledWithMoreArguments were similar to the samples
illustrated above.

CompareFunctionWithPrimitives.js

This analysis reports an error if a program performs a comparison operation between a function
and a primitive2. The list of included comparison operators is: ==, ===, !=, !==, <, >, <=,
>=. This test did not produce any warnings and indicated that all comparisons in the source
code of the game are performed correctly.

ShadowProtoProperty.js

ShadowProtoProperty tests if a property of an object, created during the application execution,
shadows a property defined in the prototype of that object. A prototype is an additional object
associated with every JavaScript object and can be accessed using Object.prototype. The latter
object inherits the properties from the prototype. For example, an array created using the
constructor new Array() inherits all its properties from Array.prototype [3]. All errors reported

2In the context of CompareFunctionWithPrimitives, primitive is any JavaScript number, string or boolean.

38

by this analysis referred to the jQuery file js0.js. Some samples are presented below:
(1) Written property length at (js0.js:1482:72) 4018 time(s) and it shadows

the property in its prototype.
CallStack: (js0.js:1479:23) -> (js0.js:1448:21) -> (js0.js:3845:202) -> (

js0.js:3886:15) -> (js0.js:3873:13) -> (js0.js:3910:15)
(2) Written property selector at (js0.js:1493:52) 3 time(s) and it shadows

the property in its prototype.
CallStack: (js0.js:1479:23) -> (js0.js:1448:21) -> (js2.js:2168:21) -> (js0

.js:1558:24) -> (js0.js:1721:108)

For all generated errors, the call stack was registering the same initial location (js0.js:1479:23).
We examined the body of the related function and found the following code:
init: function (e, n) {

...
(1) this.length = 1;
...
(2) this.selector = e;
...

}

The above statements, indeed, rewrite the prototype properties length and selector. Neverthe-
less, these changes do not affect the program’s behaviour.

ConcatUndefinedToString.js

ConcatUndefinedToString analysis checks if any string concatenation contains undefined argu-
ments. The analysis reported two errors illustrated below:
(1) Concatenated undefined to a string at (js7.js:15:5) 6 time(s).
CallStack: (js7.js:7:1) -> (js7.js:22:1)

(2) Concatenated undefined to a string at (js3.js:40:30) 3 time(s).
CallStack: (js3.js:21:24) -> (js3.js:154:53) -> (js0.js:1316:5) -> (js0.js

:2164:17) -> (js0.js:2072:167)

The first error points to the code statement at the js7.js file:
$(’#banner_carousel.carousel_button_’ + $oldItem.data(’index’)).remove()

In the above line, the data(’index’) function returns the undefined result. This function belongs
to the jQuery library and returns a value associated with the provided parameter. In this case,
the error indicates that no element with the index key is found in the data storage. The call
stack refers to the following function chain:
(1) showCarouselItem(index) -> nextCarouselItem()

As we found out by further examining the js7.js file, nextCarouselItem() is a function that
updates the advertisement banner initialised at:
carouselIntervalId = setInterval(nextCarouselItem, 8000);

39

The above line of code illustrates that the error caught by the analysis is generated every eight
seconds, signalling that the ’index’ element is missing on the current web page.

The second error is generated during the execution of the js3.js module:
(2) $(’.chat_header’).find("[data-tab=" + tab + "]").addClass(’selected’);

The error shows that the tab variable is evaluated as undefined. Below is the interpretation of
the recorded call stack:
chatTabClick(tab) ->
$(’.segmentedControlBase .tab’).live("click", function() {

var tab = $(this).data(’tab’);
chatTabClick(tab);

}); -> o(e) -> ...

The important segment in the above trace is the second function live(”click”, function() ...

that creates the tab object using the jQuery function data(’tab’). Similarly to the first error
produced by the analysis, this one signals that the ’tab’ element is missing on the web page.

UndefinedOffset.js

The UndefinedOffset analysis was given as an example in Section 2.3. It records all cases where
a program attempts to access a non-existing property of an object. Note that this test does not
validate if a value of a property is undefined, but only checks if it belongs to a particular object.
The output of this analysis reported a single error, which is originated at jQuery:
Accessed property ’undefined’ at (js0.js:1813:29) 45 time(s).
CallStack: (js0.js:1807:21) -> (js0.js:2093:17) -> (js0.js:2359:17)

The location (js0.js:1813:29) referred to the following statement from the jQuery library:
o = r ? s[i] : i;

The above line indicates that the i property of the s object is evaluated as undefined. The
interpretation of the call stack did not lead us to any meaningful conclusion, because all related
functions were specific to jQuery. Apart from that error, we can conclude that all property
referencing statements are correctly implemented in the source code of the game.

4.3 Likely Type Inference

This analysis tracks if a function, object or array created at a particular program location can
assume multiple inconsistent types. It uses the shadow memory described in Section 2.2 to
annotate the program variables with their types and a location of creation. The shadow values
are propagated along with the execution of an application and stored in a Map object. When
the result printing method is invoked (Shift+Alt+T), the analysis compares types of identical
objects recorded in the map and generates a warning if an object was saved with more than one
type.

40

We added the redirection method to the LikelyType.js module, but we did not implement
the function call stack, because the data recorded by the original analysis provides sufficient
information to identify the source location of an error. To instrument the game we instructed
the following command in the Terminal window:
node src/js/commands/instrument.js --inbrowser --smemory --analysis src/js/

analyses/Ryzhov/LikelyType.js --outputDir /Library/WebServer/jalangi/
tests/ tests/uken/game/

After playing the instrumented game for a short period, we printed the results using the
Shift+Alt+T combination. The vast majority of warnings originated at the jQuery library, and
only two of them were related to the actual game code:
(1) Warning: arg3 of function originated at (js2.js:1019:3) has multiple

types:
1a) undefined found at (js2.js:2508:9),
1b) null found at (js2.js:2083:5)

(2) Warning: return of function originated at (js2.js:692:3) has multiple
types:
2a) object originated at (js2.js:654:17) found at (js2.js:606:22),
2b) object originated at (js2.js:653:17) found at (js2.js:606:22),
2c) object originated at (js2.js:681:15) found at (js2.js:606:22)

The first sample indicates that the third argument of the function, invoked at the location
(js2.js:2508:9), is undefined. The associated code for the warning is below:
1a) var selector = a.attr("data-parent");

loadBody(href, {}, selector, options, noScroll);
1b) loadBody(url, {}, null);

The cause of the error is that the selector variable in the 1a statement is undefined. The
attr(”data-parent”) function, which produces the incorrect result, is part of the jQuery library
that serves to get the value of an attribute that matches the provided element name. In this way,
the undefined value is returned due to absence of the ”data-parent” attribute on the current web
page.

The second warning is associated with a potential inconsistency of returned objects. We
analysed the related code statements:
2a) ’/battle’: {contentAreaSelector: ..., navButton: ..., beforeLoad:

function() {...}, advisorClass: ...}
2b) ’/home’: {contentAreaSelector: ..., navButton: ..., advisorClass: ...}
2c) ’/clan’: {contentAreaSelector: ..., advisorClass: ...}

As presented above, all object have a different number of properties: battle has four, home has
three and clan has two. The warnings are generated when we play the game and access different
game tabs by pressing the navigation buttons. Our analysis detects types inconsistency, because
the page loader block at (js2.js:606:22) processes the same object with various number of
properties.

41

In conclusion, the LikelyType analysis works properly on the instrumented game and de-
tects potential errors accordingly to the Jalangi specification. However, none of the reported
warnings pointed on an actual bug, indicating that all type definitions in the game code are
consistent.

4.4 Statistical Analyses

This section briefly describes two other dynamic analyses provided by Jalangi that work in
in-browser mode: these analyses do not detect any potential bugs in the execution of an ap-
plication, but serve to collect source code information that could be useful for the application
developers to examine concrete functions and their usage statistics.

Call Graph Analysis

This unit implements its own call stack that traces all function invocations during a particular
period of execution. Additionally, it saves set of called methods for every recorded function.
Native JavaScript code is not considered due to the Jalangi restrictions. Below is an example
entry from the log produced by the analysis:
Function setupRealtimeEventHandlers defined at (js2.js:443:1) was invoked 1
time(s) and it called:

function anonymous defined at (js0.js:1446:21) 1 time(s) at call site (
js2.js:444:7)

function anonymous defined at (js0.js:2395:23) 1 time(s) at call site (
js2.js:444:7)

The example illustrates the information about the setupRealtimeEventHandlers() function de-
fined in the js2.js file. It shows details about the methods that were invoked by that particular
function and the related call locations. Notice that jQuery functions are evaluated as anony-
mous.

Although this analysis does not provide any technique for automatic error detection, the
game developers can use the obtained statistics to debug the source code manually by tracking
the behaviour of the concrete function.

Object Allocation Tracker

The example output of the allocation tracker was illustrated in Section 2.5.2.1. In the in-browser
mode, this analysis traces the number of objects created at a particular execution period of a
web application and evaluates frequency of accessing these objects. On the one side, the results
of applying ObjectAllocationTracker to the Crime Inc. game were too huge and, therefore,
were indefinite for us, external observers. On the other side, the game developers can use the
obtained statistics to precisely analyse memory efficiency of a particular function.

42

Chapter 5

Conclusion

In this research, we explored the capabilities of the Jalangi framework and investigated the
details of implementing new dynamic analyses and of applying previously existing ones. We
also explained the reasons for the incompatibility of Jalangi’s offline mode with complex web
applications that contain more than one JavaScript source file. For this research we selected the
online mode, which is suitable for analysing JavaScript games of any scale.

We demonstrated a need to localise a web application and to extract the JavaScript code in
order to apply the Jalangi analyses directly in a browser window. For this purpose, we devel-
oped the Localizer tool to download and decompose application’s HTML pages, particularly
testing our approach on the Crime Inc. game. In addition, we discussed the various attempts
at expanding the localised version of the game to obtain a larger set of original HTML pages.
To address the problem, we wrote the Fly.js analysis that is able to detect the missing resources
on a user’s machine and save them locally. We also explained the difficulties associated with
dynamic content loading caused by the jQuery library. We resolved the issue by setting up a
local server and implementing the redirection feature. We expanded the Fly.js analysis so that
the new version allows a user to play the instrumented game by redirecting the original ajax()

requests to the local server and to download the external resources missing on that server.
We also showed the required preparation procedures for applying the Jalangi analyses to the

instrumented game. We performed various analyses on the Crime Inc. game and interpreted
the results. Even though our experiments only reported warnings that do not affect the game
behaviour, we demonstrated the robustness and correctness of the Jalangi analyses on the Crime
Inc. game. We can conclude that the game is written in a professional manner and the code
does not contain bugs of the specific types that we were looking for.

In summary, we developed a systematic approach to analysing JavaScript games of any
scale using the Jalangi tool. Because jQuery is the most popular JavaScript library1, we can

1http://blog.jquery.com/2014/01/13/the-state-of-jquery-2014/

43

claim that our technique is applicable to a large set of JavaScript applications that use the ajax()

function to dynamically load additional HTML and JavaScript content.

44

Appendix A

Localizer Source Code

import java.awt.image.RenderedImage;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.InputStream;
import java.io.IOException;
import java.io.PrintWriter;
import java.io.StringWriter;
import java.net.HttpURLConnection;
import java.net.MalformedURLException;
import java.net.UnknownHostException;
import java.net.URL;
import java.net.URLConnection;
import java.nio.channels.Channels;
import java.nio.channels.FileChannel;
import java.nio.channels.ReadableByteChannel;
import java.nio.file.Files;
import java.nio.file.Path;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;
import javax.imageio.ImageIO;
import org.apache.commons.io.IOUtils;
import org.jsoup.Jsoup;
import org.jsoup.nodes.DataNode;
import org.jsoup.nodes.Document;
import org.jsoup.nodes.Element;
import org.jsoup.parser.Tag;
import org.jsoup.select.Elements;

public class Localizer
{

// mode
private static boolean verbose;

// name of directory in which all files are stored
private static String directory;

45

// default directory
private static final String DEFAULT_DIRECTORY = File.separator + "tmp"

+ File.separator + "d" + System.currentTimeMillis() + File.separator
;

// cookies
private static String cookies;

// default cookies
private static final String DEFAULT_COOKIES = "";

// user agent
private static String userAgent;

// default user agent
private static final String DEFAULT_USER_AGENT = "Java/" + System.

getProperty("java.version");

// predefined user agents
private static final Map<String, String> USER_AGENT = new HashMap<

String, String>();
static
{

USER_AGENT.put("iphone4", "Mozilla/5.0 (iPhone; U; CPU iPhone OS 4
_2_1 like Mac OS X; en-us) AppleWebKit/533.17.9 (KHTML, like
Gecko) Version/5.0.2 Mobile/8C148 Safari/6533.18.5");

USER_AGENT.put("ipad4", "Mozilla/5.0 (iPad; CPU OS 7_0 like Mac OS
X) AppleWebKit/537.51.1 (KHTML, like Gecko) Version/7.0 Mobile
/11A465 Safari/9537.53");

USER_AGENT.put("x11", "Mozilla/5.0 (X11; Linux x86_64; rv:30.0)
Gecko/20100101 Firefox/30.0");

}

// counter used to name HTML files
private static int HTMLcounter = 0;

// map from already localized HTML files to their counter
private static Map<String, Integer> HTMLmap = new HashMap<String,

Integer>();

/**
* This exception is thrown whenever a non-supported feature is

encountered.

*/
private static class NotSupportedException extends Exception
{

/**
* Initializes this exception with the given error message.

*
* @param message the error message of this exception.

*/
NotSupportedException(String message)
{

super(message);

46

}
}

/**
* This exception is thrown whenever something has been skipped.

*/
private static class SkippedException extends RuntimeException
{

/**
* Initializes this exception with the given error message.

*
* @param message the error message of this exception.

*/
SkippedException(String message)
{

super(message);
}

}

// map from URLs which are not supported to their exception
private static Map<String, NotSupportedException> notSupportedMap = new

HashMap<String, NotSupportedException>();

/**
* Reads the file with the given name and stores it in a file.

*
* @param name the name of the file.

* @return the name of the created file.

* @exception MalformedURLException if the given name is a malformed
URL.

* @exception IOException if an IO error occurred during reading or
writing

* the file.

* @exception NotSupportedException if the type of the file is not
supported.

* @exception UnknownHostException if the given name contains an
unknown host.

*/
private static String read(String name) throws MalformedURLException,

IOException, NotSupportedException, UnknownHostException
{

if (notSupportedMap.containsKey(name))
{

throw notSupportedMap.get(name);
}
else
{

try
{

// determine the type of the URL
URL url = new URL(name);
HttpURLConnection connection = (HttpURLConnection) url.

openConnection();
connection.setRequestMethod("HEAD");
connection.connect();

47

String type = connection.getContentType();

if (type == null)
{

// type unknown
NotSupportedException exception = new

NotSupportedException("type of file " + name + " is
unknown");

notSupportedMap.put(name, exception);
throw exception;

}
else if (type.contains("html"))
{

return readHTML(name);
}
else if (type.contains("javascript"))
{

return readJS(name);
}
else if (type.contains("css"))
{

return readCSS(name);
}
else if (type.contains("image"))
{

return readImage(name);
}
else if (type.contains("font"))
{

return readFont(name);
}
else
{

NotSupportedException exception = new
NotSupportedException("type (" + type + ") of file "
+ name + " is not supported");

notSupportedMap.put(name, exception);
throw exception;

}
}
catch (ClassCastException e)
{

// (HttpURLConnection) failed
NotSupportedException exception = new NotSupportedException

("type of file " + name + " is unknown");
notSupportedMap.put(name, exception);
throw exception;

}
}

}

/**
* Reads the HTML file with the given name and stores it in a file

* named htmlx.html, where x is value of the HTML counter.

48

*
* @param name the name of the HTML file.

* @return the name of the created HTML file.

* @exception MalformedURLException if the given name is a malformed
URL.

* @exception IOException if an IO error occurred during reading or
writing

* the HTML file.

*/
private static String readHTML(String name) throws

MalformedURLException, IOException
{

String fileName;

if (HTMLmap.containsKey(name))
{

fileName = directory + "html" + HTMLmap.get(name) + ".html";
}
else
{

URL url = new URL(encode(name));
URLConnection connection = url.openConnection();
connection.setRequestProperty("Cookie", cookies);
connection.setRequestProperty("User-Agent", userAgent);
connection.connect();

InputStream stream = null;
ReadableByteChannel streamChannel = null;
FileOutputStream fileOutput = null;
FileChannel fileChannel = null;

try
{

stream = connection.getInputStream();
streamChannel = Channels.newChannel(stream);
fileName = directory + "html" + HTMLcounter + ".html";
fileOutput = new FileOutputStream(fileName);
fileChannel = fileOutput.getChannel();
fileChannel.transferFrom(streamChannel, 0, Long.MAX_VALUE);

HTMLmap.put(name, HTMLcounter);
HTMLcounter++;

if (verbose)
{

System.out.println("Downloading HTML file " + name + "
as " + fileName);

}
}
finally
{

if (stream != null)
{

stream.close();
}

49

if (streamChannel != null)
{

streamChannel.close();
}
if (fileOutput != null)
{

fileOutput.close();
}
if (fileChannel != null)
{

fileChannel.close();
}

}
}

return fileName;
}

// counter used to name JavaScript files
private static int JScounter = 0;

// map from already localized JavaScript files to their counter
private static Map<String, Integer> JSmap = new HashMap<String, Integer

>();

/**
* Reads the JavaScript file with the given name and stores it in a

file

* named jsx.js, where x is value of the JavaScript counter.

*
* @param name the name of the JavaScript file.

* @return the name of the created JavaScript file.

* @exception MalformedURLException if the given name is a malformed
URL.

* @exception IOException if an IO error occurred during reading or
writing

* the JavaScript file.

*/
private static String readJS(String name) throws MalformedURLException,

IOException
{

String fileName;

if (JSmap.containsKey(name))
{

fileName = directory + "js" + JSmap.get(name) + ".js";
}
else
{

URL url = new URL(encode(name));
URLConnection connection = url.openConnection();
connection.setRequestProperty("Cookie", cookies);
connection.setRequestProperty("User-Agent", userAgent);
connection.connect();

50

InputStream stream = null;
ReadableByteChannel streamChannel = null;
FileOutputStream fileOutput = null;
FileChannel fileChannel = null;

try
{

stream = connection.getInputStream();
streamChannel = Channels.newChannel(stream);
fileName = directory + "js" + JScounter + ".js";
fileOutput = new FileOutputStream(fileName);
fileChannel = fileOutput.getChannel();
fileChannel.transferFrom(streamChannel, 0, Long.MAX_VALUE);

JSmap.put(name, JScounter);
JScounter++;

if (verbose)
{

System.out.println("Downloading JavaScript file " +
name + " as " + fileName);

}
}
finally
{

if (stream != null)
{

stream.close();
}
if (streamChannel != null)
{

streamChannel.close();
}
if (fileOutput != null)
{

fileOutput.close();
}
if (fileChannel != null)
{

fileChannel.close();
}

}
}

return fileName;
}

/**
* Writes the given content to a file named htmlx.js, where x is

* value of the HTML counter.

*
* @param content the content of the HTML file.

* @return the name of the created HTML file.

*/
private static String writeHTML(String content) throws

51

FileNotFoundException
{

String fileName = directory + "html" + HTMLcounter + ".html";
HTMLcounter++;

writeHTML(content, fileName);

return fileName;
}

/**
* Writes the given content to a file with the given name.

*
* @param content the content of the HTML file.

* @param the name of the created HTML file.

*/
private static void writeHTML(String content, String name) throws

FileNotFoundException
{

PrintWriter output = new PrintWriter(name);
output.println(content);
output.close();

if (verbose)
{

System.out.println("Writing HTML file " + name);
}

}

// counter used to name CSS files
private static int CSScounter = 0;

// map from already localized CSS files to their counter
private static Map<String, Integer> CSSmap = new HashMap<String,

Integer>();

/**
* Reads the CSS file with the given name and stores it in a file

* named cssx.css, where x is value of the CSS counter.

*
* @param name the name of the CSS file.

* @return the name of the created CSS file.

* @exception MalformedURLException if the given name is a malformed
URL.

* @exception IOException if an IO error occurred during reading or
writing

* the CSS file.

* @exception FileNotFoundException if the CSS file cannot be found.

*/
private static String readCSS(String name) throws MalformedURLException

, IOException
{

String fileName;

if (CSSmap.containsKey(name))

52

{
fileName = directory + "css" + CSSmap.get(name) + ".css";

}
else
{

URL url = new URL(encode(name));
HttpURLConnection connection = (HttpURLConnection) url.

openConnection();
connection.setRequestProperty("Cookie", cookies);
connection.setRequestProperty("User-Agent", userAgent);
connection.connect();

InputStream stream = null;
PrintWriter output = null;

try
{

stream = connection.getInputStream();

// contents of the CSS file
StringWriter writer = new StringWriter();
IOUtils.copy(stream, writer); // which encoding?
StringBuffer contents = writer.getBuffer();

// remove comments
int begin = contents.indexOf("/*");
while (begin != -1)
{

int end = contents.indexOf("*/");
contents.delete(begin, end + 2);
begin = contents.indexOf("/*", begin);

}

// read embedded URLs and modify contents
int index = 0;
do
{

index = contents.indexOf("url(", index + 1);
if (index != -1)
{

// extract the URL
begin = index + 4;
int end = contents.indexOf(")", begin);
String part = contents.substring(begin, end);

if (part.length() > 0) // skip empty URLs
{

if (part.charAt(0) == ’"’ || part.charAt(0) ==
’\’’)

{
// remove " or ’ at beginning and end
part = part.substring(1, part.length() - 1)

;
}

53

try
{

if (part.startsWith("#"))
{

// skip
}
else
{

part = processURL(part, name);
String replacement = read(part);
contents.replace(begin, end,

replacement);
}

}
catch (NotSupportedException e)
{

System.out.println("Warning: " + e.
getMessage());

}
catch (FileNotFoundException e)
{

System.out.println("Warning: file " + e.
getMessage() + " could not be found");

}
catch (IllegalArgumentException e)
{

System.out.println("Warning: URL " + part +
" could not be handled (" + e.

getMessage() + ")");
}
catch (IOException e)
{

System.out.println("Warning: URL " + part +
" could not be handled (" + e.

getMessage() + ")");
}
catch (SkippedException e)
{

// data URLs are skipped
}

}
}

}
while (index != -1);

// write the modified CSS file
fileName = directory + "css" + CSScounter + ".css";
output = new PrintWriter(fileName);
output.println(contents.toString());

CSSmap.put(name, CSScounter);
CSScounter++;

if (verbose)
{

54

System.out.println("Downloading CSS file " + name + "
as " + fileName);

}
}
catch (FileNotFoundException e)
{

throw e;
}
catch (IOException e)
{

throw e;
}
finally
{

if (stream != null)
{

stream.close();
}
if (output != null)
{

output.close();
}

}
}

return fileName;
}

/**
* Writes the given content to a file named jsx.js, where x is value of

the

* JavaScript counter.

*
* @param content the content of the JavaScript file.

* @return the name of the created JavaScript file.

*/
private static String writeJS(String content) throws

FileNotFoundException
{

String fileName = directory + "js" + JScounter + ".js";
JScounter++;

PrintWriter output = new PrintWriter(fileName);
output.println(content);
output.close();

if (verbose)
{

System.out.println("Writing a JavaScript file");
}

return fileName;
}

/**

55

* Writes the given content to a file named cssx.css, where x is value
of the

* CSS counter.

*
* @param content the content of the CSS file.

* @param base the URL of the HTML that contains the CSS.

* @return the name of the created CSS file.

* @throws FileNotFoundException if the file cannot be written.

* @throws MalformedURLException if content contains any malformed URLs
.

* @throws IOException if something goes wrong with IO.

*/
private static String writeCSS(String content, String base) throws

FileNotFoundException, MalformedURLException, IOException
{

// read embedded URLs and modify contents
StringBuilder copy = new StringBuilder(content);
int index = 0;
do
{

index = copy.indexOf("url(", index + 1);
if (index != -1)
{

// extract the URL
int begin = index + 4;
int end = copy.indexOf(")", begin);
String part = copy.substring(begin, end);
if (part.charAt(0) == ’"’ || part.charAt(0) == ’\’’)
{

// remove " or ’ at beginning and end
part = part.substring(1, part.length() - 1);

}

try
{

part = processURL(part, base);
String replacement = read(part);
copy.replace(begin, end, replacement);

}
catch (NotSupportedException e)
{

System.out.println("Warning: " + e.getMessage());
}
catch (FileNotFoundException e)
{

System.out.println("Warning: file " + e.getMessage() +
" could not be found");

}
catch (IllegalArgumentException e)
{

System.out.println("Warning: URL " + part + " could not
be handled (" + e.getMessage() + ")");

}
catch (UnknownHostException e)
{

56

System.out.println("Warning: host of URL is unknown ("
+ e.getMessage() + ")");

}
catch (SkippedException e)
{

// data URLs are skipped
}

}
}
while (index != -1);

String fileName = directory + "css" + CSScounter + ".css";
CSScounter++;

PrintWriter output = new PrintWriter(fileName);
output.println(copy);
output.close();

if (verbose)
{

System.out.println("Writing a CSS file");
}

return fileName;
}

// images that have been downloaded
private static Map<String, String> imageMap = new HashMap<String,

String>();

/**
* Dowmloads the image file with the given name.

*
* @param name the name of the image file.

* @return the name of the created image file.

* @exception MalformedURLException if the given name is a malformed
URL.

* @exception IOException if an IO error occurred during reading or
writing

* the image file.

* @exception IllegalArgumentException if reading the image fails.

*/
private static String readImage(String name) throws

MalformedURLException, IOException, IllegalArgumentException
{

if (imageMap.containsKey(name))
{

return imageMap.get(name);
}
else
{

URL url = new URL(encode(name));

// create directory
String temp = name.substring("http://".length()); // remove

57

http:// prefix
temp = temp.replaceAll("/", File.separator); // replace / with

OS specific file separator
int separator = temp.indexOf(File.separator);
while (separator != -1)
{

String path = temp.substring(0, separator);
File file = new File(directory + path);
file.mkdir();
separator = temp.indexOf(File.separator, separator + 1);

}

// download the file
URLConnection connection = url.openConnection();
connection.setRequestProperty("Cookie", cookies);
connection.setRequestProperty("User-Agent", userAgent);
connection.connect();

InputStream stream = null;
ReadableByteChannel streamChannel = null;
FileOutputStream fileOutput = null;
FileChannel fileChannel = null;

try
{

stream = connection.getInputStream();
streamChannel = Channels.newChannel(stream);
fileOutput = new FileOutputStream(directory + temp);
fileChannel = fileOutput.getChannel();
fileChannel.transferFrom(streamChannel, 0, Long.MAX_VALUE);

}
finally
{

if (stream != null)
{

stream.close();
}
if (streamChannel != null)
{

streamChannel.close();
}
if (fileOutput != null)
{

fileOutput.close();
}
if (fileChannel != null)
{

fileChannel.close();
}

}

imageMap.put(name, directory + temp);

if (verbose)
{

58

System.out.println("Downloading image file " + (directory +
temp));

}

return directory + temp;
}

}

// fonts that have been downloaded
private static Map<String, String> fontMap = new HashMap<String, String

>();

/**
* Dowmloads the font file with the given name.

*
* @param name the name of the font file.

* @return the name of the created font file.

* @exception MalformedURLException if the given name is a malformed
URL.

* @exception IOException if an IO error occurred during reading or
writing

* the font file.

* @exception IllegalArgumentException if reading the font fails.

*/
private static String readFont(String name) throws

MalformedURLException, IOException, IllegalArgumentException
{

URL url = new URL(encode(name));
URLConnection connection = url.openConnection();
connection.setRequestProperty("Cookie", cookies);
connection.setRequestProperty("User-Agent", userAgent);
connection.connect();

// create directory
name = name.substring("http://".length()); // remove http:// prefix
name = name.replaceAll("/", File.separator); // replace / with OS

specific file separator
int separator = name.indexOf(File.separator);
while (separator != -1)
{

String path = name.substring(0, separator);
File file = new File(directory + path);
file.mkdir();
separator = name.indexOf(File.separator, separator + 1);

}

InputStream stream = null;
ReadableByteChannel streamChannel = null;
FileOutputStream fileOutput = null;
FileChannel fileChannel = null;

try
{

stream = connection.getInputStream();
streamChannel = Channels.newChannel(stream);

59

fileOutput = new FileOutputStream(directory + name);
fileChannel = fileOutput.getChannel();
fileChannel.transferFrom(streamChannel, 0, Long.MAX_VALUE);

}
finally
{

if (stream != null)
{

stream.close();
}
if (streamChannel != null)
{

streamChannel.close();
}
if (fileOutput != null)
{

fileOutput.close();
}
if (fileChannel != null)
{

fileChannel.close();
}

}

return directory + name;
}

/**
* Encodes the given URL.

*
* @param name the name of the URL.

* @return the encoding on the URL.

*/
private static String encode(String name)
{

return name.replaceAll(" ", "%20");
}

/**
* Extracts the URLs from the given CSS import element.

*
* @param imports the CSS import element.

* @return the URLs from the given CSS import element.

*/
private static String[] extractImports(String imports)
{

String[] parts;
if (imports.contains(";"))
{

parts = imports.split("(\\s)*;(\\s)*");
}
else
{

parts = new String[1];
parts[0] = imports;

60

}
for (int i = 0; i < parts.length; i++)
{

if (parts[i].startsWith("@import"))
{

parts[i] = parts[i].substring("@import".length()).trim();
if (parts[i].startsWith("url"))
{

parts[i] = parts[i].substring("url".length()).trim();
}
if (parts[i].charAt(0) == ’(’)
{

assert parts[i].charAt(parts[i].length() - 1) == ’)’ :
"Warning: not well formed CSS import";

parts[i] = parts[i].substring(1, parts[i].length() - 1)
.trim();

}
assert parts[i].charAt(0) == ’"’ : "Warning: not well

formed CSS import";
assert parts[i].charAt(parts[i].length() - 1) == ’"’ : "

Warning: not well formed CSS import";
parts[i] = parts[i].substring(1, parts[i].length() - 1).

trim();
}
else
{

assert false : "Warning: unsupported CSS import";
}

}

return parts;
}
/**
* Processes the given URL with respect to the given base URL.

*
* @param url the url to be processed.

* @param host the base URL.

* @return the processed url.

* @throws MalformedURLException if the base is malformed.

* @throws IllegalArgumentException if the url is empty.

* @throws SkippedException if the url is a data URL.

*/
private static String processURL(String url, String base) throws

MalformedURLException, IllegalArgumentException, SkippedException
{

if (url.startsWith("data:"))
{

// skip data URIs
throw new SkippedException("data URL");

}
else if (url.length() == 0)
{

throw new IllegalArgumentException("empty URL");
}
else

61

{
URL temp = new URL(new URL(base), url);
return temp.toString();

}
}

// iframes that have been downloaded
private static Map<String, String> iframeMap = new HashMap<String,

String>();

public static void main(String[] args)
{

if (args.length < 1)
{

System.out.println("Use: java Localize <properties file>");
}
else
{

InputStream stream = null;

try
{

stream = new FileInputStream(args[0]);
Properties properties = new Properties();
properties.load(stream);

String baseURL = properties.getProperty("url");

userAgent = properties.getProperty("user.agent", "
DEFAULT_USER_AGENT");

if (USER_AGENT.containsKey(userAgent))
{

userAgent = USER_AGENT.get(userAgent);
}

cookies = properties.getProperty("cookies", DEFAULT_COOKIES
);

directory = properties.getProperty("directory",
DEFAULT_DIRECTORY);

int separator = directory.indexOf(File.separator);
while (separator != -1)
{

String path = directory.substring(0, separator);
File file = new File(path);
file.mkdir();
separator = directory.indexOf(File.separator, separator

+ 1);
}

verbose = Boolean.parseBoolean(properties.getProperty("
verbose", "false"));

String HTMLfile = readHTML(baseURL);

62

File file = new File(HTMLfile);
Document document = Jsoup.parse(file, "UTF-8");

// process all links to external JavaScript files
Elements elements = document.select("script[src]");
for (Element element : elements)
{

// extract the URL of the JavaScript file
String javaScriptURL = element.attr("src");
javaScriptURL = processURL(javaScriptURL, baseURL);

try
{

// download the JavaScript file
String JSfile = readJS(javaScriptURL);

// modify the HTML
element.attr("src", JSfile);

}
catch (FileNotFoundException e)
{

System.out.println("Warning: file " + javaScriptURL
+ " cannot be found");

}
catch (IOException e)
{

System.out.println("Warning: something went wrong
with reading file " + javaScriptURL);

}
}

// process all JavaScript embedded in the HTML
elements = document.select("script");
for (Element element : elements)
{

String data = element.data();

// write JavaScript to a file
if (data != null && data.length() != 0)
{

String JSfile = writeJS(data);

// modify the HTML
element.attr("src", JSfile);
element.attr("type", "text/javascript");
element.text("");

}
}

// process all links to external CSS files
elements = document.select("link");
for (Element element : elements)
{

String type = element.attr("type");
String rel = element.attr("rel");

63

if (type.equals("text/css") || rel.equals("stylesheet")
)

{
String CSSURL = element.attr("href");
CSSURL = processURL(CSSURL, baseURL);

try
{

String CSSfile = readCSS(CSSURL);

// modify the HTML
element.attr("href", CSSfile);

}
catch (FileNotFoundException e)
{

System.out.println("Warning: file " + CSSURL +
" cannot be found");

}
}

}

// process all CSS embedded in the HTML
elements = document.select("style");
for (Element element : elements)
{

String type = element.attr("type");
if (type.equals("text/css"))
{

String data = element.data().trim();

// write CSS to a file
if (data != null && data.length() != 0)
{

if (data.startsWith("@import"))
{

// process link to external CSS files
for (String CSSURL : extractImports(data))
{

CSSURL = processURL(CSSURL, baseURL);

try
{

String CSSfile = readCSS(CSSURL);

// add to the HTML
Element node = new Element(Tag.

valueOf("link"), "");
node.attr("type", "text/css");
node.attr("rel", "stylesheet");
node.attr("href", CSSfile);
element.after(node);

}
catch (FileNotFoundException e)
{

System.out.println("Warning: file "

64

+ CSSURL + " cannot be found");
}

}
// remove from the HTML
element.remove();

}
else
{

String CSSfile = writeCSS(data, baseURL);

// modify the HTML
Element replacement = new Element(Tag.

valueOf("link"), "");
replacement.attr("type", "text/css");
replacement.attr("rel", "stylesheet");
replacement.attr("href", CSSfile);
element.replaceWith(replacement);

}
}

}
}

// process all the images
elements = document.select("img");
for (Element element : elements)
{

String imageURL = null;
try
{

imageURL = element.attr("src");
imageURL = processURL(imageURL, baseURL);

String imageFile;
if (imageMap.containsKey(imageURL))
{

imageFile = imageMap.get(imageURL);
}
else
{

imageFile = readImage(imageURL);
imageMap.put(imageURL, imageFile);

}

// modify the HTML
element.attr("src", imageFile);

}
catch (FileNotFoundException e)
{

System.out.println("Warning: image file " +
imageURL + " could not be found");

}
catch (MalformedURLException e)
{

System.out.println("Warning: URL " + imageURL + "
is malformed");

65

}
catch (IllegalArgumentException e)
{

System.out.println("Warning: URL " + imageURL + "
could not be handled (" + e.getMessage() + ")");

}
catch (SkippedException e)
{

// data URLs are skipped
}
catch (IOException e)
{

System.out.println("Warning: IO failure when
reading image file " + imageURL);

}
}

// process all iframes
elements = document.select("iframe");
for (Element element : elements)
{

String iframeURL = null;
try
{

iframeURL = element.attr("src");
iframeURL = processURL(iframeURL, baseURL);

String iframeFile;
if (iframeMap.containsKey(iframeURL))
{

iframeFile = iframeMap.get(iframeURL);
}
else
{

iframeFile = readHTML(iframeURL);
iframeMap.put(iframeURL, iframeFile);

}

// modify the HTML
element.attr("src", iframeFile);

}
catch (FileNotFoundException e)
{

System.out.println("Warning: image file " +
iframeURL + " could not be found");

}
catch (MalformedURLException e)
{

System.out.println("Warning: URL " + iframeURL + "
is malformed");

}
catch (IllegalArgumentException e)
{

System.out.println("Warning: URL " + iframeURL + "
could not be handled (" + e.getMessage() + ")");

66

}
catch (SkippedException e)
{

// data URLs are skipped
}

}

// write modified HTML
writeHTML(document.toString(), directory + "index.html");

}
catch (MalformedURLException e)
{

System.out.println("URL is malformed: " + e.getMessage());
e.printStackTrace();

}
catch (IOException e)
{

System.out.println("IO failed: " + e.getMessage());
e.printStackTrace();

}
}

}
}

67

Appendix B

Fly.js Source Code

(function (sandbox) {

function Fly() {

var missingURLs = {};
var existingURLs = {};
var urlSent = false;

// checks if a URL exists on the localhost
function UrlExists(url) {

var http = new XMLHttpRequest();
http.open(’HEAD’, url, false);
try { http.send(); } catch (e) { return false; }
return http.status != 404;

}

// detects "r.url" usage after y.send() method is recognised,
// and record a missing URL if it does not exist on the localhost
this.readPre = function (iid, name, val, global) {

if (urlSent && name == "r" && val == "[object Object]") {
urlSent = false;

if (val.url != undefined && val.url) {
var sourceUrl = val.url;
var lh = "http://localhost/tests/uken/game";

console.log("JALANGI: reading URL " + val.url + ". Type
= " + val.type);

if (sourceUrl.indexOf(lh) != -1) sourceUrl = sourceUrl.
replace(lh, "");

// construct a basic key for the URL
var urlKey = sourceUrl;
var qmi = urlKey.indexOf(’?’);
if (qmi > -1) urlKey = urlKey.substr(0, qmi);

if (sourceUrl.indexOf("http") < 0 && sourceUrl.indexOf
("localhost") < 0) {
sourceUrl = "http://m.staging.crimeinc.uken.com" +

68

sourceUrl;
}

// download the missing URL (reload_partial does not
work this way)

if (!missingURLs[urlKey] && val.url.indexOf("http://
localhost") != -1 && !existingURLs[urlKey]) {
console.log("JALANGI: Checking " + sourceUrl);
if (!UrlExists(val.url)) {

missingURLs[urlKey] = sourceUrl;
console.log("JALANGI: Missing URL found. Key =

" + urlKey + ". Downloading " + sourceUrl);
}
else {

existingURLs[urlKey] = sourceUrl;
console.log("JALANGI: URL found on the

localhost " + val.url);
}

}
}

}

}

// trace ajax() method invoking y.send() statement
this.invokeFunPre = function (iid, base, f, args, isConstructor) {

if (base == "function send() { [native code] }" &&
f == "[object XMLHttpRequest]") {

urlSent = true;
}

}

// detect "r.url = ..." and redirect it to the localhost if not
already

this.putFieldPre = function (iid, base, offset, val) {

if (base.constructor.name == "Object" && offset == "url" &&
base.hasOwnProperty("url") && base.hasOwnProperty("type"))

{
var newUrl = val;

// dealing with file system addresses that start with file
://

if (newUrl.indexOf("file://") > -1)
{

newUrl = newUrl.replace("file://localhost", "");

// localhost final directory
var lh = "/jalangi";

// rewriting links to JALANGI source files (e.g, file
://localhost/Library/WebServer/jalangi/src/js to /
src/js)

// apparently, JALANGI instrumentation phase adds
source files to .html header

69

var ilh = newUrl.indexOf(lh);
if (ilh > - 1) {

newUrl = newUrl.replace(newUrl.substring(0, ilh +
lh.length), "");

}
}

// link instrumented files to the http://localhost/tests/
game/ directory

if (val.indexOf(lh) < 0) newUrl = "/tests/game" + newUrl;

newUrl = "http://localhost" + newUrl;

// check if the URL is a default URL
var qmi = newUrl.indexOf("?");
var defUrl = newUrl.substr(0, qmi) + "/" + newUrl.substr(

qmi);
if (qmi > -1 && UrlExists(defUrl)) {

console.log("JALANGI: DEFAULT redirecting " + val + "
to " + defUrl);

return defUrl;
}

console.log("JALANGI: redirecting " + val + " to " + newUrl
);

return newUrl;
}

return val;
}

// Saves a linked file to a hard drive
// http://muaz-khan.blogspot.ru/2012/10/save-files-on-disk-using-

javascript-or.html
function SaveToDisk(fileURL, fileName) {

var save = document.createElement(’a’);
save.href = fileURL;
save.target = ’_blank’;
save.download = fileName || fileURL;
var evt = document.createEvent(’MouseEvents’);
evt.initMouseEvent(’click’, true, true, window, 1, 0, 0, 0, 0,

false, false, false, false, 0, null);
save.dispatchEvent(evt);
(window.URL || window.webkitURL).revokeObjectURL(save.href);

}

// downloads the missing URLs (only works in Firefox)
this.endExecution = function() {

for (var key in missingURLs) {
console.log("JALANGI: Saving " + key); SaveToDisk(key);

}
}

}

sandbox.analysis = new Fly();

70

if (sandbox.Constants.isBrowser) {
window.addEventListener(’keydown’, function (e) {

// keyboard shortcut is Alt-Shift-T for now
if (e.altKey && e.shiftKey && e.keyCode === 84) sandbox.

analysis.endExecution();
});

}
}(J$));

71

Bibliography

[1] Shay Artzi, Julian Dolby, Simon Holm Jensen, Anders Møller, and Frank Tip. A Frame-
work for Automated Testing of Javascript Web Applications. In Richard N. Taylor, Harald
Gall, and Nenad Medvidovic, editors, Proceedings of the 33rd International Conference

on Software Engineering, pages 571–580, Waikiki, Honolulu, HI, USA, May 2011. ACM.

[2] Kevin Curran and Ciaran George. The future of web and mobile game development. In-

ternational Journal of Cloud Computing and Services Science (IJ-CLOSER), 1(1):25–34,
2012.

[3] David Flanagan. JavaScript: the definitive guide. O’Reilly Media, Inc., 2002.

[4] Gong, Liang and Nguyen, Cuong. A Shadow Execution and Dynamic Analysis Framework
for LLVM IR and JavaScript. 2013.

[5] ECMA International. ECMA-262: ECMAScript Language Specification. ECMA (Euro-
pean Association for Standardizing Information and Communication Systems), Geneva,
Switzerland, third edition, December 1999.

[6] Alessandro Orso and Bryan Kennedy. Selective capture and replay of program executions.
In ACM SIGSOFT Software Engineering Notes, volume 30, pages 1–7. ACM, 2005.

[7] Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. An analysis of the dynamic
behavior of JavaScript programs. 45(6):1–12, 2010.

[8] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. Jalangi: A selective
record-replay and dynamic analysis framework for JavaScript. pages 488–498, 2013.

[9] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a concolic unit testing engine for C.
In ESEC/FSE’05. ACM, September 2005.

72

