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Abstract

Labelled transition systems are useful for giving semantics to programming languages. Kok and Rutten
have developed some theory to prove semantic models defined by means of labelled transition systems
to be equal to other semantic models. Metric labelled transition systems are labelled transition systems
with the configurations and actions endowed with metrics. The additional metric structure allows us to
generalize the theory developed by Kok and Rutten.

Introduction

The classical result due to Banach [Ban22] that a contractive function from a nonempty complete metric space
to itself has a unique fized point plays an important role in the theory of metric semantics for programming
languages. Metric spaces and Banach’s theorem were first employed by Nivat [Niv79] to give semantics to
recursive program schemes. Inspired by the work of Nivat, De Bakker and Zucker [BZ82] gave semantics
to concurrent languages by means of metric spaces. The metric spaces they used were defined as solutions
of recursive domain equations. By means of Banach’s theorem America and Rutten [AR89] proved that a
particular class of domain equations has unique solutions. Banach’s theorem has also been used to prove
semantic models to be equal. Kok and Rutten [KR90] applied a proof principle which we baptize the unigue
fized point proof principle. By means of this proof principle elements of a metric space can be proved to be
equal. First, one introduces a function from the metric space to itself. Second, one shows that the function is
a contraction. And finally, one shows that the elements to be proved equal are fixed point of the contraction.
To apply this proof principle to prove semantic models to be equal, the models should be element of a
metric space. Furthermore, a contractive function from the metric space to itself with the semantic models
as fixed point is needed. Kok and Rutten developed some theory to prove operational semantic models
defined by means of labelled transition systems a la Plotkin [Plo81] equal to other semantic models—in
particular denotational semantic models—by uniqueness of fixed point. For numerous applications of their
theory we refer the reader to De Bakker and De Vink’s textbook [BV95]. Their results are only applicable
to operational semantic models induced by finitely branching labelled transition systems. Although most
programming languages can be modelled operationally by means of a finitely branching labelled transition
system, there are languages which cannot. For example, the real-time language ACPrp introduced by Baeten
and Bergstra in [BB91] gives rise to infinite branching.

In this paper we generalize the theory developed by Kok and Rutten. In the generalized setting we are
able to deal with the above mentioned real-time language. To generalize the results we supply the labelled
transition systems with some additional metric structure. These enriched labelled transition systems we
call metric labelled transition systems. The additional metric structure enables us to generalize finitely
branching to compactly branching. All results proved by Kok and Rutten for finitely branching labelled
transition systems are generalized for compactly branching metric labelled transition systems. This amounts
to a theory of metric labelled transition systems.
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1 Metric labelled transition systems

A metric labelled transition system is a labelled transition system with some additional structure. The
structure is added by endowing the sets of configurations and actions with 1-bounded complete metrics.

Definition 1.1 A metric labelled transition system is a triple (C, A, —) consisting of
e a l-bounded metric space of configurations C,
e a l-bounded complete metric space of actions A, and

e a transition relation — C C' x A x C.

Instead of (c,a,¢’) € — we write ¢ ¢ Most of the time we only present the transition relation
of a metric labelled transition system. Frequently we depict (the transition relation of) a metric labelled
transition system by a directed graph. The nodes are labelled with configurations and the edges are labelled
with actions.

Example 1.2 The labelled transition system
({0,0.5,1},[0,1],{(0,a,0.5) | a € [0,1] U {(0,a,1) |a € [0, 1] }U{(1,1,1)})
is presented by

005 foraclo1]

0-—1 foraclo,1]
1
1—1

and depicted by
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By endowing the set of configurations and the set of actions both with the Euclidean metric we obtain a
metric labelled transition system.
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a
If ¢ — ¢’ then we say that there exists a transition from ¢ to ¢’ labelled with a. If there exists a
transition from ¢ then we call ¢ a nonterminal configuration and write ¢ —. Otherwise we call ¢ a terminal
configuration and write ¢ /.

Example 1.3 In Example 1.2 the configurations 0 and 1 are nonterminal and the configuration 0.5 is
terminal.

A labelled transition system is called finitely branching if every configuration has only finitely many
outgoing transitions. Because we have a metric on the sets of configurations and actions (and hence on the
Cartesian product of these sets), finitely branching can be generalized to compactly branching: for each
configuration, its set of outgoing transitions is compact.

Definition 1.4 A metric labelled transition system (C, A, —) is called compactly branching if, for all ¢ € C,
the set

CB(c) = {(a.¢') | e —¢'}

is compact.



If we endow the configurations and the actions of a finitely branching labelled transition system both with
an arbitrary 1-bounded (complete) metric, then we obtain a compactly branching metric labelled transition
system. A compactly branching metric labelled transition system is in general not finitely branching.

Example 1.5 The metric labelled transition system introduced in Example 1.2 i1s not finitely branching but
is compactly branching. If we endow the actions with the discrete metric then the obtained metric labelled
transition system is no longer compactly branching.

For a compactly branching metric labelled transition system we introduce the condition of transitioning
being nonexpansive. To formulate this condition we provide the compact sets of outgoing transitions of

the configurations, elements of P, (A4 x '), with a metric. The action-configuration pairs are endowed with

1

the metric obtained from the metric on the actions and the metric on the configurations multiplied by a 3,

denoted by A x % -C. As we will see below the introduction of the % gives rise to a less restrictive condition.
The (compact) sets of these pairs are endowed with the Hausdorff metric [Haul4].

Definition 1.6 A compactly branching metric labelled transition system (C, 4, —) is called nonexpansive
if the function

CB:C—P.(Ax1-0)
defined by

CB(e)={(a,¢) | e — ¢}
1s nonexpansive.

Example 1.7 The compactly branching metric labelled transition system of Example 1.2 is not nonexpan-
sive, because

d(CB(0.5),CB (1))

= d(0,{(1, 1)}
= 1

£ 05
= d(05,1).

By adding the transition

1
0.5— 0.5

we obtain the compactly branching metric labelled transition system

which is nonexpansive.

The % in the above definition does not change the compactness condition. By leaving out the % we
obtain a more restrictive nonexpansiveness condition.

Example 1.8 The labelled transition system

0
025 — 0

0
0.7 —1



depicted by

0.25 0.75
/ AN
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e AN
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with the set of configurations endowed with the Euclidean metric, is (compactly branching and) nonexpansive,
since

d (CB(0.25),CB(0.75))
d ({(0,0)},{(0,)})

= 05
d (0.25,0.75).
If we leave out the % we have that
d(CB(0.25),CB(0.75))
= 1
£ 0.5
= d(0.25,0.75).

A finitely branching labelled transition system with the configurations endowed with an arbitrary 1-
bounded metric and the actions endowed with the discrete metric is (compactly branching and) nonexpansive.
Consequently we have generalized finitely branching to compactly branching and nonexpansive.

2 Operational semantics

The operational semantics induced by a metric labelled transition system is a function assigning to each
configuration a (nonempty) set of (finite and infinite) action sequences. This assignment is driven by the
transition relation of the metric labelled transition system.

Definition 2.1 An operational semantics induced by a metric labelled transition system (C,A4,—) is a

function O : C' — P, (A°) defined by

a1 az Ap
(’)(c):{ala2~~~an|c:c1 Co cn+17L>}U
a a
{a1a2~~~ |c:cl—1>cz—2>~..},
In the above definition we use
a1 az Ap
c=cC Co cn-l—l 7L>

as an abbreviation for
am
c=cr AV1<m<n:cn — cme1 ACng1 7~

and

ay ag
c=¢] ——Cy — -

as an abbreviation for
am
c=ca AVYm>1:¢pn — Cmt1-

A sequence aias - --a, is an element of the operational semantics of the configuration c¢ if there exists a
transition sequence from ¢ to some terminal configuration labelled with ayas - - - a,. If there exists an infinite
transition sequence from c¢ labelled with ajas --- then the infinite sequence ajas--- 1s an element of the
operational semantics of ¢. Consequently the operational semantics of a terminal configuration is a singleton
set consisting of the empty sequence ¢. Note that each configuration is mapped to a nonempty set.



Example 2.2 The metric labelled transition system of Example 1.2 induces the operational semantics O
defined by
0(0.5) = {=}
o) ={1+}
To prove an operational semantics to be equal to another semantics by means of the unique fixed point
proof principle, the operational semantics should be an element of a metric space. To turn the space

C' — P, (A®) into a metric space we first endow the set of finite and infinite action sequences A with the
following metric.

Definition 2.3 The metric dge : A™ x A® — [0, 1] is defined by

0 if g1 = 02
sup ({271 da (01 (1), 0 () | 1 < 0 < Jor| YU L2721} if o] < o]
sup ({271 dy (o1 (1), 03 (1)) | 1 < 0 < |z YU L27140) if [y > o]
sup {27t . dy (01 (n),02(n)) |1 <n < |oy|} otherwise

das (01,09) =

where |o;| denotes the length of the sequence ¢; and o; (n) denotes the n-th element of o;.
In case we endow the action set A with the discrete metric we obtain the usual Baire-like metric [Bai09]:

_ 0 if oy =09
dae (01,02) = { 2"  otherwise

where n is the length of the longest common prefix of o7 and o5.

Second, we endow the (nonempty) sets of action sequences with the Hausdorff metric induced by the
above introduced 1-bounded metric on action sequences. In this way we obtain a pseudometric space rather
than a metric space. The restriction to (nonempty and) compact sets of action sequences gives rise to a
metric space. Finally, the functions from configurations to (nonempty and compact) sets of action sequences
are endowed with the supremum of the pointwise distances. We restrict our attention to operational semantic
models being element of this metric space.

Definition 2.4 An operational semantics O : €' — P, (A%) is called compact if O € C — Py (A®).

Example 2.5 The operational semantics presented in Example 2.2 is compact if the action set [0,1] is
endowed with the Fuclidean metric. If we endow the action set [0, 1] with the discrete metric then the
operational semantics is not compact any more.

Not every metric labelled transition system induces a compact operational semantics. If we restrict our-
selves to compactly branching and nonexpansive metric labelled transition systems then we obtain compact
operational semantic models. Without the additional nonexpansive condition we do in general not obtain
compact operational semantic models.

Example 2.6 The compactly branching metric labelled transition system

0
0—0

0 — % for n € IN
depicted by

W <— wl-

with the set of configurations and the set of actions both endowed with the Fuclidean metric, does not induce
a compact operational semantics. Note that the function CB is not nonexpansive.



Next we prove that a compactly branching and nonexpansive metric labelled transition system induces
a compact operational semantics. To prove this we first prove two additional propositions. In the first
proposition we demonstrate that the nonterminal and terminal configurations of a compactly branching and
nonexpansive metric labelled transition system have distance 1 to each other.

Proposition 2.7 The nonterminal and terminal configurations of a compactly branching and nonexpansive
metric labelled transition system have distance 1 to each other.

Proof For a nonterminal configuration ¢, CB(¢) # ( and for a terminal configuration ¢’, CB (¢’) = §). Since
the metric labelled transition system 1s nonexpansive,

1=d(CB(c),CB()) < d(c,c).
O

In the second proposition we show that, for a compactly branching and nonexpansive metric labelled
transition system, for all configurations ¢ and natural numbers n, the set of transition sequences starting
from the configuration ¢ and truncated at length n is compact.

Proposition 2.8 Let (C, A, —) be a compactly branching and nonexpansive metric labelled transition sys-
tem. For allc € C and n € IN, the set

ai a2 an

CB" (¢) = {(a1,e2,az,...,an,cp41) | c =1 ¢ Cntl }

is compact L.

Proof This proposition is proved by induction on n. For n = 0 the proposition is vacuously true. Let
n > 0. Let ¢ € C'. Because the metric labelled transition system is compactly branching, for all ¢,, € C', the
set CB (e,) is compact. Consequently, for all ca,... ¢y € C' and ay,as,...,a,-1 € A, the set

a
{(al,cz,az, . ~~,an,cn+1) | cn — Cnt1 }

is also compact. Since the metric labelled transition system is nonexpansive, the function corresponding
to the above set is nonexpansive in (ai, 2, as,...,@,_1,¢,). By induction, the set CB" ™! (¢) is compact.
Because the nonexpansive image of a compact set is compact,

a
{{(al,cz,az, . ~~,an,cn+1) | cn — Cnt1 }

(a1, 3, az,. .., an_1,cn) € CB" ! (c)}

is a compact set of compact sets. From Michael’s theorem (Theorem 2.5 of [Mich1]), the compactness of the
set

Ay
U{{(al,cz,az, s ln, Cng1) | e —— Cnya )

(a1, 3, az,. .., an_1,cn) € CB" ! (c)}

i.e. CB" (¢), can be concluded. O
Now we are ready to prove the main result of this paper.

Theorem 2.9 The operational semantics induced by a compactly branching and nonexpansive metric labelled
transition system 1s compact.

Proof Let (C,A,—) be a compactly branching and nonexpansive metric labelled transition system. We
prove that the induced operational semantics @ is compact, i.e., for all ¢ € C| the set O (¢) is compact.

1To be precise, CB™ (c) is a compact subset of A x % -(Cx Ax % (- AX % - (). We leave it to the reader to fill in these

details in the proof.



Let ¢ € C. Let (0,)n be a sequence in O (c). We show that there exists a subsequence (0s(n))n of (00 )n

converging to some ¢ € O (c).

The subsequence (o(,))n Will be constructed from a collection of subsequences (o, (n))n satisfying
(VmeWN:Q(m))V(FkeIN: VI <m < k:Q(m)AR(K))
where

Q(m) <= Vn€IN: 04, (n) = QLs(n)02,5m(n) " Emys e (7)Tm,s m(n)\
al,sm(n) a2,sm(n) am,sm(n)

cZ,sm(n) o cm+1,sm(n) — A

€= Cl,sm(n)
Um,sm(n) €0 (cm+1,sm(n))/\
VI<j<m:limya;,,n) = ajA
VI<j<m+1:limpej,, n) = cA

a1 a2 Gm
c=cC C2 ce Cm+1 —

and

R(m) <— YnelN: Osm(n) = 01 5, (n)02 5,m(n) " 'am,sm(n)/\
@150 () @25, (n) o5 (1)
C=Clsmn) = C2sm(n) t Cm41,5m(n) 7L> A

VI<j<m:limga;s,,n) = ajA

VI<j<m+1:limpej,, n) = cA
a as Am

c=cy co Cmt1 7=

The existence of the subsequences (o, (n))n is verified by proving, for all i € IN,
PH) <= (V1<m<i:Q(m)v @A <k <i:VI<m<k:Q(m)AR(K))

by induction on 1.
To prove P(0) it suffices to show Q(0) vV R(0). Obviously the sequence (o), satisfies Q(0) VvV R(0).
Let ¢ > 0. To prove P(i — 1) = P(%) it suffices to show Q(i — 1) = Q(¢) V R(¢). If Q(i — 1) then

¥Yn € 1IN : ((Us,_l(n) = Q15,_4(n)A2,s,_1(n) " 'ai,s,_l(n)ai,s,_l(n)/\
@1,5;_1(n) @2,5;_1(n) Giys;_1(n)
C=1C1s5,_4(n) C2.5,_1(n) c Citl,5,_1(n) — A
Tisica(n) € O (Cig1s.y(m))V

(Csiia(n) = @15, 1 (n)@2,5,_1(n) "~ Qi si_1(n)/N
A1,s;_1(n) 2,5, _1(n) Qiys;_q(n)
C=Clsia(n) — C2,5,_4(n) e Citl,s,_1(n) 72N

VI<j<i—1:lmpa;,,_ n) = a;A

V1< <q:limy i sisa(h) = N

aq as Gi—1
cC=0C C2 s C; — .
Since the sequence
(al,s,_l(n)a cZ,s,_l(n)a a2,s,_1(n)a sy ai,s,_l(n)a ci+1,s,_1(n))ia

(1)

is a sequence in CB° (¢) and by Proposition 2.8 the set CB (¢) is compact, the sequence has a subsequence

(al,s’l_l(n)a €250 (n); 2,5t (n)s---) Q5! (n) ci+1,s’l_1(n))i



which converges to (a1, c2,a9,...,a;,¢41) in cB! (¢) for some a; € A and ¢;41 € C i.e.

ay ag a;
c=¢ ——Cy —— " — Ciyl.

If ¢iy1 — (or ¢;41 #~) then there exists a subsequence

(al,s,(n)a C2,5,(n)) A2,s,(n)y - -+ Ck s,(n)s ci+1,s,(n))i

of the sequence
(al,s’l_l(n)a €250 (n); 2,5t (n)s---) Q5! (n) ci+1,s’l_1(n))i

satisfying ¢; 41 5,(n) — (or Ci si(n) #), since the nonterminal and terminal configurations have distance 1 to
each other according to Proposition 2.7. Consequently Q(7) (or R(¢)).

From the subsequences (0, (n))n satisfying (1) we construct the subsequence (o)), distinguishing the
following two cases.

L. If ¥m € IN : Q(m) then we define s(n) = s, (n). In this case, the sequence (0(,))n converges to
o =ayas---in O ().

2. If 3k € IN : V1 <m < k : Q(m) A R(k) then we define s = s;. The sequence (0(,))n converges to
o =ayas---ap in O (c).

O

Given a finitely branching labelled transition system (C, A, —), we endow the action set A with the
discrete metric (consequently, the metric on A* is the usual Baire-like metric) and the configuration set C'
with an arbitrary 1-bounded metric. We obtain a compactly branching and nonexpansive metric labelled
transition system. According to the above theorem the corresponding operational semantics is compact.
Hence, the folklore result that a finitely branching labelled transition system induces a compact operational
semantics is a consequence of the above theorem.

The operational semantics induced by a compactly branching and nonexpansive metric labelled transition
system has another property besides being compact: it is nonexpansive. The nonexpansiveness of a compact
operational semantics is crucial when we want to apply the unique fixed point proof principle (the details
will be supplied in Section 3).

Theorem 2.10 The compact operational semantics induced by a compactly branching and nonerpansive
metric labelled transition system ts nonerpansive.

Proof Let (C, A,—) be a compactly branching and nonexpansive metric labelled transition system. Let
O be the induced compact operational semantics. To prove the nonexpansiveness of O, a sequence (Oy),
of nonexpansive functions converging to O is introduced. Because the set of nonexpansive functions C' —!
P (A%) is closed (a consequence of the completeness of 4 and Lemma 3 of Kuratowski’s [Kurb6]), we can
conclude that O is nonexpansive. The function O,, : €' — P, (A*) is defined by

aq az Gk —1
Op(c)={aaz-ap_1|c=a1 co er £~ Ne<n+ 13U
Ap—
{a1a2"'an—1|czcl = Ca 2, g Cn—>}~

We have left to prove that, for all n, 0,, € C —! P, (4>). We prove this by induction on n. Obviously,
Op € C =1 Py, (A%). Assume n > 0. Let ¢ € C. By definition,

o. (c):{ {e} if ¢ £

{ao|c AT €O, (¢')} otherwise



Clearly, the set O, (¢) is nonempty.

Next, we show that the set O, (¢) is compact. By induction, @, _1 delivers compact sets. One can easily
verify that, for all « € A and ¢/ € C, the set

{ao |0 €0nn(d)}

is compact. By induction, O, _1 is nonexpansive. As a consequence, the function corresponding to the above
set is nonexpansive in a and ¢’. Because the metric labelled transition system is compactly branching and
the nonexpansive image of a compact set is compact,

@y
C—>C}

{arlo€0,1(e))

is a compact set of compact sets. According to Michael’s theorem, the set

¢y
c—>c},

U{taoloe0ni(c)}

i.e. Oy (¢) is compact. Also {¢} is a compact set. Hence, the set O, (¢) is compact.

Finally, the nonexpansiveness of O,, is shown. We have to show that, for all ¢1, ¢s € C|
d (O (1), 0n (c2)) < d(e1,2).

If both ¢; and ¢y are terminal configurations then the above is vacuously true. Because the nonterminal and
terminal configurations have distance 1 to each other (Proposition 2.7), the above is also true if one of the
configurations is a nonterminal configuration and the other one is a terminal configuration. That leaves us
only the case that both ¢; and ¢» are nonterminal configurations. In that case,

d(On (c1), On (c2))

= d({ayor | et —— ¢, Aot € Onoy (€)) ), {asos | s —— ¢ A s € On_y (ch) })
d(U{taor o€ 0ui ()} e ==t} U {Taon [ 02 € Oni ()} er —= et })
d ({{“101 |01 € Onor (¢h) | er —— Cll}’ {{a202 | 02 € Onoi (¢h) | e —— 6/2})

U is nonexpansive]

< d({(@01, 001 () [ er == ) { (@2, 00 () | €2 —— 1)

d({ (al, cll) | c1 L cll }, { (az, 6/2) | co L 6/2 }) [by induction, Oy _1 is nonexpansive]

IN

—

INIA

d (cl, cz) [the metric labelled transition system is nonexpansive]

3 Semantics transformations

In the previous section we have shown that the operational semantics induced by a compactly branching
and nonexpansive metric labelled transition system is an element of a metric space. To apply the unique
fixed point proof principle we have to introduce a contractive function from the metric space to itself with
the operational semantics as fixed point. We call this function a semantics transformation: a function
transforming a semantics into another semantics. Like an operational semantics, a semantics transformation
is induced by a metric labelled transition system.

Definition 3.1 A semantics transformation induced by a metric labelled transition system (C, A, —) is a
function

TH(C=Pp (A7) = (€ =Py (47))



defined by

{¢} if ¢ £

{ao|c N = S(c)} otherwise

T(S)e) = {

The semantics transformation ¥ transforms the semantics S into the semantics T (S). This semantics
T (S) assigns to a terminal configuration the singleton set consisting of the empty sequence €. To a non-
terminal configuration ¢, the semantics T(S) assigns the set of sequences ac obtained from the label a
of a transition (of the metric labelled transition system inducing the semantics transformation) from the
nonterminal configuration ¢ to some configuration ¢/, and a sequence o of S (¢/).

Proposition 3.2 The operational semantics O induced by a metric labelled transition system is a fired point
of the semantics transformation % induced by the metric labelled transition system, i.e.

0=3(0).

Proof Let O and ¥ be the operational semantics and the semantics transformation induced by the metric
labelled transition system (C, A, —). Let ¢ € C. Obviously T(0)(¢) = O(c) if ¢ . Otherwise, for all
g € Pp(A™),

o €ZT(0)(e)
= EIaEA:EIU/EPn(AOO):EIc’EC':U:aU'/\ch//\U/E(’)(c/)
<= oc€e0(o).

O

According to the above proposition a semantics transformation has a fixed point. This fixed point is not
necessarily unique.

Example 3.3 Consider the semantics transformation ¥ induced by the metric labelled transition system of
Example 2.6. According to Proposition 3.2, the corresponding operational semantics O given by

00) ={0mL|mneN}uU{0*}
0(2)={e} for n € IN

is a fixed point of ¥. Also the semantics S defined by

S0) ={0mL|mnelN}
S(2)={e} for n € IN

is a fixed point of ¥.

We restrict ourselves to semantic transformations transforming compact and nonexpansive semantics into
compact and nonexpansive semantics.

Definition 3.4 A semantics transformation
T (C = Pn (A®)) = (C — P, (A™))

is called compactness and nonexpansiveness preserving if
T E(C =" Puc (A®)) — (C =" Ppe (A)).

Not every metric labelled transition system induces a compactness and nonexpansiveness preserving
semantics transformation.

10



Example 3.5 Consider the metric labelled transition system

1

OL%fornE]N

depicted by

s
<y

with the set of configurations and the set of actions endowed with the Euclidean metric. Although the
semantics S, defined by, for all ¢,

S(e) ={e}

is compact, the semantics ¥ (S) is not compact.

W ~-— W=

Not even a compactly branching metric labelled transition system induces a compactness and nonexpan-
siveness preserving semantics transformation.

Example 3.6 The metric labelled transition system of Example 2.6 is compactly branching. The semantics

S, defined by, for all ¢,
S(c) ={e}

is compact and nonexpansive. The semantics T (S) is compact but not nonexpansive.

But a compactly branching and nonexpansive metric labelled transition system gives rise to a compactness
and nonexpansiveness preserving semantics transformation.

Theorem 3.7 The semantics transformation induced by a compactly branching and nonexpansive metric
labelled transition system is compactness and nonerpansiveness preserving.

Proof Similar to the induction step of the proof of Theorem 2.10. a

A compactness and nonexpansiveness preserving semantics transformation is a function from a metric
space to itself. According to Proposition 3.2 and Theorem 2.9 and 2.10, the corresponding operational
semantics is a fixed point of the semantics transformation. To be able to apply the unique fixed point proof
principle we have left to prove that the semantics transformation is contractive.

Proposition 3.8 A compactness and nonexpansiveness preserving semantics transformation is contrac-
tive.

Proof Let T :(C —! Pp.(A%)) — (C —! P, (A>)) be a compactness and nonexpansiveness preserving
semantics transformation. Let 81, 8s € C' —! P, (4°) and ¢ € C'. We show that

d(T(S1)(c), T(S2)(e)) < 5 - d(S1, ).

We distinguish two cases.

1. If ¢ 4, then

d(3(81)(e), T(82)(¢))
d({e}{e})
2 d (81, 8).

IN
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2. If ¢ —, then
d(%(81)(¢), T(S2)(¢))
= a(U{tao loresi@)) e b {tao o2 €8 ()} e - ¢})
d({{am |U1631(C/)}|ci>c’},{{a02|02682(c’)}|ci>c/})

[U is nonexpansive]

IN

< sup{d({acy | o1 €8 ()}, {aos| o2 €8 ()} | e — ¢}
= sup {1 d(S (), S (c) |e— '}
< 1d(81,8).

Combining the above results we arrive at

Theorem 3.9 The operational semantics O wnduced by a compactly branching and nonexpansive metric
labelled transition system is the unique fized point of the semantics transformation ¥ induced by the metric
labelled transition system, i.e.

0 = fiz (%).

The above theorem generalizes the result of Kok and Rutten that the operational semantics induced
by a finitely branching labelled transition system is the unique fixed point of the semantics transformation
induced by the labelled transition system.

We conclude this section with an example motivating our restriction to (compact and) nonexpansive
semantics.

Example 3.10 The metric labelled transition system
¢ — ¢ for e, €10,1] and a € [0,1]

with the configurations and the actions endowed with the Euclidean metric, is compactly branching and
nonexpansive. Given the compact semantics § defined by

_ [ {1"} ife=1forsomeneN
Sle) = { {e}  otherwise

the semantics T (8) is not compact.

Conclusion

Already in the early sixties the problem what structure to add to an abstract machine—like a labelled
transition system—to obtain a topological machine was formulated by Ginsburg [Gin62]. Shreider [Shr64]
introduced a particular topological machine—a compact automaton—to study dynamic programming. A
general and detailed study of topological machines was developed by Brauer [Bra70]. Our metric labelled
transition systems are a special instance of his topological machines. Another instance are Kent’s metrical
transition systems [Ken87]. A metrical transition system is a labelled transition system with the configura-
tions endowed with a (generalized) ultrametric (the labels are not provided with any additional structure).
Neither Brauer nor Kent uses the topological machines to give (operational) semantics as we have done in
this paper.

This paper only describes part of a theory of metric labelled transition systems developed in the author’s
thesis [Bre94b]. We have shown how to generalize finitely branching to compactly branching and nonexpan-
sive. Similarly image finite can be generalized to image compact and binonezpansive. The semantic models
we have considered in this paper are linear: they assign to each configuration a set of sequences. By means
of (metric) labelled transition systems one can also define branching operational semantic models. These

12



semantic models assign to each configuration a tree-like object. The details are provided in [Bre94b]. For
an overview we refer the reader to [Bre94a].

If we replace nonexpansiveness by continuity (in Definition 1.6) all results still hold. In that case the in-
duced operational semantic models are continuous (and not nonexpansive in general). In several applications
of the theory the nonexpansiveness of the operational semantics is crucial (e.g. in application 2. below).

The presented theory has been applied in semantics. We mention three applications.

1. An operational and a denotational semantics for a fragment of the real-time language ACPrp have
been proved to be equal by uniqueness of fixed point exploiting the theory in [Bre91].

2. The theory has also been used to relate an operational and a denotational semantics for a higher-order
language in [BB93].

3. Metric labelled transition systems have turned out to be very convenient to define abstraction operators
as has been shown in [Bre95].

We are interested to see whether a similar theory can be developed if we replace the metric spaces of a
metric labelled transition system by algebraic complete generalized metric spaces. To develop a theory of
generalized metric labelled transition systems we have to restrict ourselves to nonexpansive and continuous
semantics (for generalized metric spaces nonexpansiveness does not imply continuity as has been shown in,
e.g., [Rut95]) rather than nonexpansive semantics, and instead of using the hyperspace of nonempty and
compact sets endowed with the Hausdorff metric we have to employ the generalized convex powerdomain as

defined in [BBR95].
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