
A Theory of Metric Labelled Transition SystemsFranck van Breugel�McGill UniversitySchool of Computer Science3480 University Street, Montreal H3A 2A7, CanadaAbstractLabelled transition systems are useful for giving semantics to programming languages. Kok and Ruttenhave developed some theory to prove semantic models de�ned by means of labelled transition systemsto be equal to other semantic models. Metric labelled transition systems are labelled transition systemswith the con�gurations and actions endowed with metrics. The additional metric structure allows us togeneralize the theory developed by Kok and Rutten.IntroductionThe classical result due to Banach [Ban22] that a contractive function froma nonempty completemetric spaceto itself has a unique �xed point plays an important role in the theory of metric semantics for programminglanguages. Metric spaces and Banach's theorem were �rst employed by Nivat [Niv79] to give semantics torecursive program schemes. Inspired by the work of Nivat, De Bakker and Zucker [BZ82] gave semanticsto concurrent languages by means of metric spaces. The metric spaces they used were de�ned as solutionsof recursive domain equations. By means of Banach's theorem America and Rutten [AR89] proved that aparticular class of domain equations has unique solutions. Banach's theorem has also been used to provesemantic models to be equal. Kok and Rutten [KR90] applied a proof principle which we baptize the unique�xed point proof principle. By means of this proof principle elements of a metric space can be proved to beequal. First, one introduces a function from the metric space to itself. Second, one shows that the function isa contraction. And �nally, one shows that the elements to be proved equal are �xed point of the contraction.To apply this proof principle to prove semantic models to be equal, the models should be element of ametric space. Furthermore, a contractive function from the metric space to itself with the semantic modelsas �xed point is needed. Kok and Rutten developed some theory to prove operational semantic modelsde�ned by means of labelled transition systems a la Plotkin [Plo81] equal to other semantic models|inparticular denotational semantic models|by uniqueness of �xed point. For numerous applications of theirtheory we refer the reader to De Bakker and De Vink's textbook [BV95]. Their results are only applicableto operational semantic models induced by �nitely branching labelled transition systems. Although mostprogramming languages can be modelled operationally by means of a �nitely branching labelled transitionsystem, there are languages which cannot. For example, the real-time language ACPr� introduced by Baetenand Bergstra in [BB91] gives rise to in�nite branching.In this paper we generalize the theory developed by Kok and Rutten. In the generalized setting we areable to deal with the above mentioned real-time language. To generalize the results we supply the labelledtransition systems with some additional metric structure. These enriched labelled transition systems wecall metric labelled transition systems. The additional metric structure enables us to generalize �nitelybranching to compactly branching. All results proved by Kok and Rutten for �nitely branching labelledtransition systems are generalized for compactly branching metric labelled transition systems. This amountsto a theory of metric labelled transition systems.�Supported by the Netherlands Organization for Scienti�c Research.1



1 Metric labelled transition systemsA metric labelled transition system is a labelled transition system with some additional structure. Thestructure is added by endowing the sets of con�gurations and actions with 1-bounded complete metrics.De�nition 1.1 A metric labelled transition system is a triple (C;A;!) consisting of� a 1-bounded metric space of con�gurations C,� a 1-bounded complete metric space of actions A, and� a transition relation !� C �A �C.Instead of (c; a; c0) 2 ! we write c a�! c0. Most of the time we only present the transition relationof a metric labelled transition system. Frequently we depict (the transition relation of) a metric labelledtransition system by a directed graph. The nodes are labelled with con�gurations and the edges are labelledwith actions.Example 1.2 The labelled transition system(f0; 0:5; 1g; [0;1]; f (0; a;0:5) j a 2 [0; 1] g[ f (0; a; 1) j a 2 [0; 1] g[ f(1; 1; 1)g)is presented by8>><>>: 0 a�! 0:5 for a 2 [0; 1]0 a�! 1 for a 2 [0; 1]1 1�! 1and depicted by0:5 ... 0EDGF 0 __________�� BC@A 1 __________OO GF ED0____ ____ ��@A BC1____ ____ OO... 1 EDBC 1@AOOBy endowing the set of con�gurations and the set of actions both with the Euclidean metric we obtain ametric labelled transition system.If c a�! c0 then we say that there exists a transition from c to c0 labelled with a. If there exists atransition from c then we call c a nonterminal con�guration and write c!. Otherwise we call c a terminalcon�guration and write c 6!.Example 1.3 In Example 1.2 the con�gurations 0 and 1 are nonterminal and the con�guration 0:5 isterminal.A labelled transition system is called �nitely branching if every con�guration has only �nitely manyoutgoing transitions. Because we have a metric on the sets of con�gurations and actions (and hence on theCartesian product of these sets), �nitely branching can be generalized to compactly branching: for eachcon�guration, its set of outgoing transitions is compact.De�nition 1.4 A metric labelled transition system (C;A;!) is called compactly branching if, for all c 2 C,the setCB (c) = f (a; c0) j c a�! c0 gis compact. 2



If we endow the con�gurations and the actions of a �nitely branching labelled transition system both withan arbitrary 1-bounded (complete) metric, then we obtain a compactly branching metric labelled transitionsystem. A compactly branching metric labelled transition system is in general not �nitely branching.Example 1.5 The metric labelled transition system introduced in Example 1.2 is not �nitely branching butis compactly branching. If we endow the actions with the discrete metric then the obtained metric labelledtransition system is no longer compactly branching.For a compactly branching metric labelled transition system we introduce the condition of transitioningbeing nonexpansive. To formulate this condition we provide the compact sets of outgoing transitions ofthe con�gurations, elements of Pc (A�C), with a metric. The action-con�guration pairs are endowed withthe metric obtained from the metric on the actions and the metric on the con�gurations multiplied by a 12 ,denoted by A� 12 �C. As we will see below the introduction of the 12 � gives rise to a less restrictive condition.The (compact) sets of these pairs are endowed with the Hausdor� metric [Hau14].De�nition 1.6 A compactly branching metric labelled transition system (C;A;!) is called nonexpansiveif the functionCB : C ! Pc (A � 12 �C)de�ned byCB (c) = f (a; c0) j c a�! c0 gis nonexpansive.Example 1.7 The compactly branching metric labelled transition system of Example 1.2 is not nonexpan-sive, becaused (CB (0:5); CB (1))= d (;; f(1; 1)g)= 16� 0:5= d (0:5; 1):By adding the transition0:5 1�! 0:5we obtain the compactly branching metric labelled transition system0:5GF@A1 BC OO ... 0EDGF 0 __________�� BC@A 1 __________OO GF ED0____ ____ ��@A BC1____ ____ OO... 1 EDBC 1@AOOwhich is nonexpansive.The 12 � in the above de�nition does not change the compactness condition. By leaving out the 12 � weobtain a more restrictive nonexpansiveness condition.Example 1.8 The labelled transition system8<: 0:25 0�! 00:75 0�! 1 3



depicted by 0:25}} 0 {{{{{{ 0:75 !!0CCC CCC0 1with the set of con�gurations endowed with the Euclidean metric, is (compactly branching and) nonexpansive,since d (CB (0:25); CB (0:75))= d (f(0; 0)g; f(0; 1)g)= 0:5= d (0:25; 0:75):If we leave out the 12 � we have thatd (CB (0:25); CB (0:75))= 16� 0:5= d (0:25; 0:75):A �nitely branching labelled transition system with the con�gurations endowed with an arbitrary 1-bounded metric and the actions endowed with the discrete metric is (compactly branching and) nonexpansive.Consequently we have generalized �nitely branching to compactly branching and nonexpansive.2 Operational semanticsThe operational semantics induced by a metric labelled transition system is a function assigning to eachcon�guration a (nonempty) set of (�nite and in�nite) action sequences. This assignment is driven by thetransition relation of the metric labelled transition system.De�nition 2.1 An operational semantics induced by a metric labelled transition system (C;A;!) is afunction O : C ! Pn (A1) de�ned byO (c) = f a1a2 � � �an j c = c1 a1��! c2 a2��! � � � an��! cn+1 6! g[f a1a2 � � � j c = c1 a1��! c2 a2��! � � � g:In the above de�nition we usec = c1 a1��! c2 a2��! � � � an��! cn+1 6!as an abbreviation forc = c1 ^ 81 � m � n : cm am���! cm+1 ^ cn+1 6!and c = c1 a1��! c2 a2��! � � �as an abbreviation forc = c1 ^ 8m � 1 : cm am���! cm+1:A sequence a1a2 � � �an is an element of the operational semantics of the con�guration c if there exists atransition sequence from c to some terminal con�guration labelled with a1a2 � � �an. If there exists an in�nitetransition sequence from c labelled with a1a2 � � � then the in�nite sequence a1a2 � � � is an element of theoperational semantics of c. Consequently the operational semantics of a terminal con�guration is a singletonset consisting of the empty sequence ". Note that each con�guration is mapped to a nonempty set.4



Example 2.2 The metric labelled transition system of Example 1.2 induces the operational semantics Ode�ned byO (0) = [0; 1] � f1!g [ [0; 1]O (0:5) = f"gO (1) = f1!gTo prove an operational semantics to be equal to another semantics by means of the unique �xed pointproof principle, the operational semantics should be an element of a metric space. To turn the spaceC ! Pn (A1) into a metric space we �rst endow the set of �nite and in�nite action sequences A1 with thefollowing metric.De�nition 2.3 The metric dA1 : A1 � A1 ! [0; 1] is de�ned bydA1 (�1; �2) =8>><>>: 0 if �1 = �2sup (f 2�n+1 � dA (�1 (n); �2 (n)) j 1 � n � j�1j g [ f2�j�1jg) if j�1j < j�2jsup (f 2�n+1 � dA (�1 (n); �2 (n)) j 1 � n � j�2j g [ f2�j�2jg) if j�1j > j�2jsup f 2�n+1 � dA (�1 (n); �2 (n)) j 1 � n � j�1j g otherwisewhere j�ij denotes the length of the sequence �i and �i (n) denotes the n-th element of �i.In case we endow the action set A with the discrete metric we obtain the usual Baire-like metric [Bai09]:dA1 (�1; �2) = � 0 if �1 = �22�n otherwisewhere n is the length of the longest common pre�x of �1 and �2.Second, we endow the (nonempty) sets of action sequences with the Hausdor� metric induced by theabove introduced 1-bounded metric on action sequences. In this way we obtain a pseudometric space ratherthan a metric space. The restriction to (nonempty and) compact sets of action sequences gives rise to ametric space. Finally, the functions from con�gurations to (nonempty and compact) sets of action sequencesare endowed with the supremum of the pointwise distances. We restrict our attention to operational semanticmodels being element of this metric space.De�nition 2.4 An operational semantics O : C ! Pn (A1) is called compact if O 2 C ! Pnc (A1).Example 2.5 The operational semantics presented in Example 2.2 is compact if the action set [0; 1] isendowed with the Euclidean metric. If we endow the action set [0; 1] with the discrete metric then theoperational semantics is not compact any more.Not every metric labelled transition system induces a compact operational semantics. If we restrict our-selves to compactly branching and nonexpansive metric labelled transition systems then we obtain compactoperational semantic models. Without the additional nonexpansive condition we do in general not obtaincompact operational semantic models.Example 2.6 The compactly branching metric labelled transition system8<: 0 0�! 00 1n��! 1n for n 2 INdepicted by 0 BCED 0GF��zz 1 vvvvvvvvvvvvvv �� 12 ������� ��13������1 12 13 � � �with the set of con�gurations and the set of actions both endowed with the Euclidean metric, does not inducea compact operational semantics. Note that the function CB is not nonexpansive.5



Next we prove that a compactly branching and nonexpansive metric labelled transition system inducesa compact operational semantics. To prove this we �rst prove two additional propositions. In the �rstproposition we demonstrate that the nonterminal and terminal con�gurations of a compactly branching andnonexpansive metric labelled transition system have distance 1 to each other.Proposition 2.7 The nonterminal and terminal con�gurations of a compactly branching and nonexpansivemetric labelled transition system have distance 1 to each other.Proof For a nonterminal con�guration c, CB (c) 6= ; and for a terminal con�guration c0, CB (c0) = ;. Sincethe metric labelled transition system is nonexpansive,1 = d (CB (c); CB (c0)) � d (c; c0): 2In the second proposition we show that, for a compactly branching and nonexpansive metric labelledtransition system, for all con�gurations c and natural numbers n, the set of transition sequences startingfrom the con�guration c and truncated at length n is compact.Proposition 2.8 Let (C;A;!) be a compactly branching and nonexpansive metric labelled transition sys-tem. For all c 2 C and n 2 IN, the setCBn (c) = f (a1; c2; a2; : : : ; an; cn+1) j c = c1 a1��! c2 a2��! � � � an��! cn+1 gis compact 1.Proof This proposition is proved by induction on n. For n = 0 the proposition is vacuously true. Letn > 0. Let c 2 C. Because the metric labelled transition system is compactly branching, for all cn 2 C, theset CB (cn) is compact. Consequently, for all c2; : : : ; cn 2 C and a1; a2; : : : ; an�1 2 A, the setf (a1; c2; a2; : : : ; an; cn+1) j cn an��! cn+1 gis also compact. Since the metric labelled transition system is nonexpansive, the function correspondingto the above set is nonexpansive in (a1; c2; a2; : : : ; an�1; cn). By induction, the set CBn�1 (c) is compact.Because the nonexpansive image of a compact set is compact,nf (a1; c2; a2; : : : ; an; cn+1) j cn an��! cn+1 g ��� (a1; c2; a2; : : : ; an�1; cn) 2 CBn�1 (c)ois a compact set of compact sets. From Michael's theorem (Theorem 2.5 of [Mic51]), the compactness of theset [nf (a1; c2; a2; : : : ; an; cn+1) j cn an��! cn+1 g ��� (a1; c2; a2; : : : ; an�1; cn) 2 CBn�1 (c)oi.e. CBn (c), can be concluded. 2Now we are ready to prove the main result of this paper.Theorem 2.9 The operational semantics induced by a compactly branching and nonexpansive metric labelledtransition system is compact.Proof Let (C;A;!) be a compactly branching and nonexpansive metric labelled transition system. Weprove that the induced operational semantics O is compact, i.e., for all c 2 C, the set O (c) is compact.1To be precise, CBn (c) is a compact subset of A� 12 � (C � A� 12 � (� � �A� 12 �C)). We leave it to the reader to �ll in thesedetails in the proof. 6



Let c 2 C. Let (�n)n be a sequence in O (c). We show that there exists a subsequence (�s(n))n of (�n)nconverging to some � 2 O (c).The subsequence (�s(n))n will be constructed from a collection of subsequences (�sm(n))n satisfying(8m 2 IN : Q(m)) _ (9k 2 IN : 81 � m < k : Q(m) ^R(k)) (1)whereQ(m) () 8n 2 IN : �sm(n) = a1;sm(n)a2;sm(n) � � �am;sm(n)�m;sm(n)^c = c1;sm(n) a1;sm(n)������! c2;sm(n) a2;sm(n)������! � � � am;sm(n)�������! cm+1;sm(n) ! ^�m;sm(n) 2 O (cm+1;sm(n))^81 � j � m : limh aj;sm(h) = aj^81 � j � m+ 1 : limh cj;sm(h) = cj^c = c1 a1��! c2 a2��! � � � am���! cm+1 !and R(m) () 8n 2 IN : �sm(n) = a1;sm(n)a2;sm(n) � � �am;sm(n)^c = c1;sm(n) a1;sm(n)������! c2;sm(n) a2;sm(n)������! � � � am;sm(n)�������! cm+1;sm(n) 6! ^81 � j � m : limh aj;sm(h) = aj^81 � j � m+ 1 : limh cj;sm(h) = cj^c = c1 a1��! c2 a2��! � � � am���! cm+1 6! :The existence of the subsequences (�sm(n))n is veri�ed by proving, for all i 2 IN,P (i) () (81 � m � i : Q(m)) _ (91 � k � i : 81 � m < k : Q(m) ^R(k))by induction on i.To prove P (0) it su�ces to show Q(0) _R(0). Obviously the sequence (�n)n satis�es Q(0) _R(0).Let i > 0. To prove P (i� 1)) P (i) it su�ces to show Q(i� 1)) Q(i) _R(i). If Q(i� 1) then8n 2 IN : ((�si�1(n) = a1;si�1(n)a2;si�1(n) � � �ai;si�1(n)�i;si�1(n)^c = c1;si�1(n) a1;si�1(n)�������! c2;si�1(n) a2;si�1(n)�������! � � � ai;si�1(n)�������! ci+1;si�1(n) ! ^�i;si�1(n) 2 O (ci+1;si�1(n)))_(�si�1(n) = a1;si�1(n)a2;si�1(n) � � �ai;si�1(n)^c = c1;si�1(n) a1;si�1(n)�������! c2;si�1(n) a2;si�1(n)�������! � � � ai;si�1(n)�������! ci+1;si�1(n) 6!))^81 � j � i � 1 : limh aj;si�1(h) = aj^81 � j � i : limh cj;si�1(h) = cj^c = c1 a1��! c2 a2��! � � � ai�1����! ci ! :Since the sequence(a1;si�1(n); c2;si�1(n); a2;si�1(n); : : : ; ai;si�1(n); ci+1;si�1(n))i;is a sequence in CBi (c) and by Proposition 2.8 the set CBi (c) is compact, the sequence has a subsequence(a1;s0i�1(n); c2;s0i�1(n); a2;s0i�1(n); : : : ; ai;s0i�1(n); ci+1;s0i�1(n))i7



which converges to (a1; c2; a2; : : : ; ai; ci+1) in CBi (c) for some ai 2 A and ci+1 2 C, i.e.c = c1 a1��! c2 a2��! � � � ai��! ci+1:If ci+1 ! (or ci+1 6!) then there exists a subsequence(a1;si(n); c2;si(n); a2;si(n); : : : ; ak;si(n); ci+1;si(n))iof the sequence(a1;s0i�1(n); c2;s0i�1(n); a2;s0i�1(n); : : : ; ai;s0i�1(n); ci+1;s0i�1(n))isatisfying ci+1;si(n) ! (or ci;si(n) 6!), since the nonterminal and terminal con�gurations have distance 1 toeach other according to Proposition 2.7. Consequently Q(i) (or R(i)).From the subsequences (�sm(n))n satisfying (1) we construct the subsequence (�s(n))n distinguishing thefollowing two cases.1. If 8m 2 IN : Q(m) then we de�ne s (n) = sn (n). In this case, the sequence (�s(n))n converges to� = a1a2 � � � in O (c).2. If 9k 2 IN : 81 � m < k : Q(m) ^ R(k) then we de�ne s = sk. The sequence (�s(n))n converges to� = a1a2 � � �ak in O (c). 2Given a �nitely branching labelled transition system (C;A;!), we endow the action set A with thediscrete metric (consequently, the metric on A1 is the usual Baire-like metric) and the con�guration set Cwith an arbitrary 1-bounded metric. We obtain a compactly branching and nonexpansive metric labelledtransition system. According to the above theorem the corresponding operational semantics is compact.Hence, the folklore result that a �nitely branching labelled transition system induces a compact operationalsemantics is a consequence of the above theorem.The operational semantics induced by a compactly branching and nonexpansive metric labelled transitionsystem has another property besides being compact: it is nonexpansive. The nonexpansiveness of a compactoperational semantics is crucial when we want to apply the unique �xed point proof principle (the detailswill be supplied in Section 3).Theorem 2.10 The compact operational semantics induced by a compactly branching and nonexpansivemetric labelled transition system is nonexpansive.Proof Let (C;A;!) be a compactly branching and nonexpansive metric labelled transition system. LetO be the induced compact operational semantics. To prove the nonexpansiveness of O, a sequence (On)nof nonexpansive functions converging to O is introduced. Because the set of nonexpansive functions C !1Pnc (A1) is closed (a consequence of the completeness of A and Lemma 3 of Kuratowski's [Kur56]), we canconclude that O is nonexpansive. The function On : C ! Pn (A1) is de�ned byOn (c) = f a1a2 � � �ak�1 j c = c1 a1��! c2 a2��! � � � ak�1����! ck 6! ^k � n+ 1 g[f a1a2 � � �an�1 j c = c1 a1��! c2 a2��! � � � an�1����! cn !g:We have left to prove that, for all n, On 2 C !1 Pnc (A1). We prove this by induction on n. Obviously,O0 2 C !1 Pnc (A1). Assume n > 0. Let c 2 C. By de�nition,On (c) = ( f"g if c 6!f a� j c a�! c0 ^ � 2 On�1 (c0) g otherwise8



Clearly, the set On (c) is nonempty.Next, we show that the set On (c) is compact. By induction, On�1 delivers compact sets. One can easilyverify that, for all a 2 A and c0 2 C, the setf a� j � 2 On�1 (c0) gis compact. By induction, On�1 is nonexpansive. As a consequence, the function corresponding to the aboveset is nonexpansive in a and c0. Because the metric labelled transition system is compactly branching andthe nonexpansive image of a compact set is compact,nf a� j � 2 On�1 (c0) g ��� c a�! c0ois a compact set of compact sets. According to Michael's theorem, the set[nf a� j � 2 On�1 (c0) g ��� c a�! c0o;i.e. On (c) is compact. Also f"g is a compact set. Hence, the set On (c) is compact.Finally, the nonexpansiveness of On is shown. We have to show that, for all c1, c2 2 C,d (On (c1);On (c2)) � d (c1; c2):If both c1 and c2 are terminal con�gurations then the above is vacuously true. Because the nonterminal andterminal con�gurations have distance 1 to each other (Proposition 2.7), the above is also true if one of thecon�gurations is a nonterminal con�guration and the other one is a terminal con�guration. That leaves usonly the case that both c1 and c2 are nonterminal con�gurations. In that case,d (On (c1);On (c2))= d (f a1�1 j c1 a1��! c01 ^ �1 2 On�1 (c01) g; f a2�2 j c2 a2��! c02 ^ �2 2 On�1 (c02) g)= d�[nf a1�1 j �1 2 On�1 (c01) g ��� c1 a1��! c01o;[nf a2�2 j �2 2 On�1 (c02) g ��� c2 a2��! c02o�� d�nf a1�1 j �1 2 On�1 (c01) g ��� c1 a1��! c01o;nf a2�2 j �2 2 On�1 (c02) g ��� c2 a2��! c02o�[S is nonexpansive]� d (f (a1;On�1 (c01)) j c1 a1��! c01 g; f (a2;On�1 (c02)) j c2 a2��! c02 g)� d (f (a1; c01) j c1 a1��! c01 g; f (a2; c02) j c2 a2��! c02 g) [by induction, On�1 is nonexpansive]� d (c1; c2) [the metric labelled transition system is nonexpansive] 23 Semantics transformationsIn the previous section we have shown that the operational semantics induced by a compactly branchingand nonexpansive metric labelled transition system is an element of a metric space. To apply the unique�xed point proof principle we have to introduce a contractive function from the metric space to itself withthe operational semantics as �xed point. We call this function a semantics transformation: a functiontransforming a semantics into another semantics. Like an operational semantics, a semantics transformationis induced by a metric labelled transition system.De�nition 3.1 A semantics transformation induced by a metric labelled transition system (C;A;!) is afunctionT : (C ! Pn (A1))! (C ! Pn (A1)) 9



de�ned byT (S)(c) = ( f"g if c 6!f a� j c a�! c0 ^ � 2 S (c) g otherwiseThe semantics transformation T transforms the semantics S into the semantics T (S). This semanticsT (S) assigns to a terminal con�guration the singleton set consisting of the empty sequence ". To a non-terminal con�guration c, the semantics T (S) assigns the set of sequences a� obtained from the label aof a transition (of the metric labelled transition system inducing the semantics transformation) from thenonterminal con�guration c to some con�guration c0, and a sequence � of S (c0).Proposition 3.2 The operational semantics O induced by a metric labelled transition system is a �xed pointof the semantics transformation T induced by the metric labelled transition system, i.e.O = T (O):Proof Let O and T be the operational semantics and the semantics transformation induced by the metriclabelled transition system (C;A;!). Let c 2 C. Obviously T (O)(c) = O (c) if c 6!. Otherwise, for all� 2 Pn (A1),� 2 T (O)(c)() 9a 2 A : 9�0 2 Pn (A1) : 9c0 2 C : � = a�0 ^ c a�! c0 ^ �0 2 O (c0)() � 2 O (c): 2According to the above proposition a semantics transformation has a �xed point. This �xed point is notnecessarily unique.Example 3.3 Consider the semantics transformation T induced by the metric labelled transition system ofExample 2.6. According to Proposition 3.2, the corresponding operational semantics O given byO (0) = f 0m 1n j m;n 2 IN g [ f0!gO ( 1n ) = f"g for n 2 INis a �xed point of T. Also the semantics S de�ned byS (0) = f 0m 1n j m;n 2 IN gS ( 1n ) = f"g for n 2 INis a �xed point of T.We restrict ourselves to semantic transformations transforming compact and nonexpansive semantics intocompact and nonexpansive semantics.De�nition 3.4 A semantics transformationT : (C ! Pn (A1))! (C ! Pn (A1))is called compactness and nonexpansiveness preserving ifT 2 (C !1 Pnc (A1))! (C !1 Pnc (A1)):Not every metric labelled transition system induces a compactness and nonexpansiveness preservingsemantics transformation. 10



Example 3.5 Consider the metric labelled transition system0 1n��! 1n for n 2 INdepicted by 0zz 1 vvvvvvvvvvvvvv �� 12 ������� ��13������1 12 13 � � �with the set of con�gurations and the set of actions endowed with the Euclidean metric. Although thesemantics S, de�ned by, for all c,S (c) = f"gis compact, the semantics T (S) is not compact.Not even a compactly branching metric labelled transition system induces a compactness and nonexpan-siveness preserving semantics transformation.Example 3.6 The metric labelled transition system of Example 2.6 is compactly branching. The semanticsS, de�ned by, for all c,S (c) = f"gis compact and nonexpansive. The semantics T (S) is compact but not nonexpansive.But a compactly branching and nonexpansive metric labelled transition system gives rise to a compactnessand nonexpansiveness preserving semantics transformation.Theorem 3.7 The semantics transformation induced by a compactly branching and nonexpansive metriclabelled transition system is compactness and nonexpansiveness preserving.Proof Similar to the induction step of the proof of Theorem 2.10. 2A compactness and nonexpansiveness preserving semantics transformation is a function from a metricspace to itself. According to Proposition 3.2 and Theorem 2.9 and 2.10, the corresponding operationalsemantics is a �xed point of the semantics transformation. To be able to apply the unique �xed point proofprinciple we have left to prove that the semantics transformation is contractive.Proposition 3.8 A compactness and nonexpansiveness preserving semantics transformation is contrac-tive.Proof Let T : (C !1 Pnc (A1)) ! (C !1 Pnc (A1)) be a compactness and nonexpansiveness preservingsemantics transformation. Let S1, S2 2 C !1 Pnc (A1) and c 2 C. We show thatd (T (S1)(c);T (S2)(c)) � 12 � d (S1;S2):We distinguish two cases.1. If c 6!, thend (T (S1)(c);T (S2)(c))= d (f"g; f"g)� 12 � d (S1;S2): 11



2. If c!, thend (T (S1)(c);T (S2)(c))= d�[nf a�1 j �1 2 S1 (c0) g j c a�! c0o;[nf a�2 j �2 2 S2 (c0) g j c a�! c0o�� d�nf a�1 j �1 2 S1 (c0) g j c a�! c0o;nf a�2 j �2 2 S2 (c0) g j c a�! c0o�[S is nonexpansive]� sup f d (f a�1 j �1 2 S1 (c0) g; f a�2 j �2 2 S2 (c0) g) j c a�! c0 g= sup f 12 � d (S1 (c0);S2 (c0)) j c a�! c0 g� 12 � d (S1;S2): 2Combining the above results we arrive atTheorem 3.9 The operational semantics O induced by a compactly branching and nonexpansive metriclabelled transition system is the unique �xed point of the semantics transformation T induced by the metriclabelled transition system, i.e.O = �x (T):The above theorem generalizes the result of Kok and Rutten that the operational semantics inducedby a �nitely branching labelled transition system is the unique �xed point of the semantics transformationinduced by the labelled transition system.We conclude this section with an example motivating our restriction to (compact and) nonexpansivesemantics.Example 3.10 The metric labelled transition systemc a�! c0 for c; c0 2 [0; 1] and a 2 [0; 1]with the con�gurations and the actions endowed with the Euclidean metric, is compactly branching andnonexpansive. Given the compact semantics S de�ned byS (c) = � f1ng if c = 1n for some n 2 INf"g otherwisethe semantics T (S) is not compact.ConclusionAlready in the early sixties the problem what structure to add to an abstract machine|like a labelledtransition system|to obtain a topological machine was formulated by Ginsburg [Gin62]. Shreider [Shr64]introduced a particular topological machine|a compact automaton|to study dynamic programming. Ageneral and detailed study of topological machines was developed by Brauer [Bra70]. Our metric labelledtransition systems are a special instance of his topological machines. Another instance are Kent's metricaltransition systems [Ken87]. A metrical transition system is a labelled transition system with the con�gura-tions endowed with a (generalized) ultrametric (the labels are not provided with any additional structure).Neither Brauer nor Kent uses the topological machines to give (operational) semantics as we have done inthis paper.This paper only describes part of a theory of metric labelled transition systems developed in the author'sthesis [Bre94b]. We have shown how to generalize �nitely branching to compactly branching and nonexpan-sive. Similarly image �nite can be generalized to image compact and binonexpansive. The semantic modelswe have considered in this paper are linear: they assign to each con�guration a set of sequences. By meansof (metric) labelled transition systems one can also de�ne branching operational semantic models. These12



semantic models assign to each con�guration a tree-like object. The details are provided in [Bre94b]. Foran overview we refer the reader to [Bre94a].If we replace nonexpansiveness by continuity (in De�nition 1.6) all results still hold. In that case the in-duced operational semantic models are continuous (and not nonexpansive in general). In several applicationsof the theory the nonexpansiveness of the operational semantics is crucial (e.g. in application 2. below).The presented theory has been applied in semantics. We mention three applications.1. An operational and a denotational semantics for a fragment of the real-time language ACPr� havebeen proved to be equal by uniqueness of �xed point exploiting the theory in [Bre91].2. The theory has also been used to relate an operational and a denotational semantics for a higher-orderlanguage in [BB93].3. Metric labelled transition systems have turned out to be very convenient to de�ne abstraction operatorsas has been shown in [Bre95].We are interested to see whether a similar theory can be developed if we replace the metric spaces of ametric labelled transition system by algebraic complete generalized metric spaces. To develop a theory ofgeneralized metric labelled transition systems we have to restrict ourselves to nonexpansive and continuoussemantics (for generalized metric spaces nonexpansiveness does not imply continuity as has been shown in,e.g., [Rut95]) rather than nonexpansive semantics, and instead of using the hyperspace of nonempty andcompact sets endowed with the Hausdor� metric we have to employ the generalized convex powerdomain asde�ned in [BBR95].AcknowledgementsThe author would like to thank Jaco de Bakker, Jan Rutten, and Erik de Vink for their comments on apreliminary version of this paper.References[AR89] P. America and J.J.M.M. Rutten. Solving Re
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