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Abstract
An operational and a denotational semantics are presented for a simple imperative language. The
main feature of the language is second order communication: sending and receiving of statements rather
than values. The operational semantics is based on a transition system. A complete 1-bounded ultramet-
ric space is used in the denotational semantics. In establishing the connection between the two semantics
fruitful use is made of Banach’s fixed point theorem, Rutten’s processes as terms technique, and Van
Breugel’s metric transition systems.

Introduction

In recent years the study of higher order programming notions has become a central topic in the field of
semantics. Seminal in this development have been two schools of research, viz that of typed A-calculus in the
area of functional programming (see, e.g., Barendregt’s survey [Bar92]), and that of higher order processes
in the theory of concurrency (see, e.g., the theses by Sangiorgi [San92] and Thomson [Tho90]). The aim of
the present paper is to provide another perspective on this problem area by studying higher order notions
embedded in the traditional setting of imperative languages.

The higher order notion we study is second order communication'

. Recall that ordinary—what is also
called first order—communication as, e.g., in Milner’s CCS [Mil80] is expressed by the two actions ¢!e and
¢?v, for ¢ a channel, e some expression, and v a variable, occurring in two parallel components.? Synchronised
execution of these actions results in the transmission of the current value of e to v. A second order variant
of this is the pair of communication constructs ¢!s and ¢ 7 x, for ¢ a channel, s some statement, and z a
statement variable. Now the statement s, a higher order value, is passed at the moment of synchronised
execution. Similar higher order notions one encounters in, e.g., Boudol’s y-calculus [Bou89], Sangiorgi’s
HO= [San92]—a higher order variant of Milner, Parrow, and Walker’s 7-calculus [MPW92]—and Thomson’s
CHOCS [Tho90].

Though this higher order notion is, we hope, conceptually quite simple, a not so simple arsenal of semantic
tools 1s necessary to model this notion operationally and denotationally, and to obtain a full picture of the
relationship between the operational and denotational semantics.

*Supported by the Netherlands Organization for Scientific Research.
1For a discussion why it is called second order we refer the reader to Section 7.4 of Milner’s [Mil91].
?In [Mil80] the notation e and cv is used.



The definition of the operational semantics follows the customary pattern in that it is derived from
some transition system, as advocated by Plotkin [Plo81]. In the configurations of the transition system we
encounter syntactic stores, a second order variant of ordinary syntactic states. A syntactic state assigns
to each variable its value. A syntactic store assigns to each statement variable a statement. Synchronous
execution of ¢!s and ¢ 7z amounts to passing s and storing it in . The latter is operationally modelled by
assigning s to x in the syntactic store. The transition system is finitely branching: each configuration has
only finitely many outgoing transitions. We exploit this fact in relating the operational and denotational
semantics.

The denotational semantics employs a complete 1-bounded ultrametric space. This space is defined as the
solution of a recursive equation. In the equation we use semantic stores. A semantic store assigns to each
statement variable the denotation of a statement. Denotationally the synchronous execution of ¢!s and ¢7 2
is modelled by passing the denotation of s and storing it in « in the semantic store. For a large variety of
languages denotational semantics based on ultrametric spaces have been developed (numerous examples are
provided by De Bakker and De Vink in [BV95]). Higher order notions have been modelled denotationally
by, e.g., Hennessy [Hen94], Jagadeesan and Panangaden [JP90], and Thomson [Tho90].

To link the operational and denotational semantics we introduce an intermediate semantics. Like the
operational semantics the intermediate semantics is defined by means of a transition system. In the con-
figurations of the transition system we use the (denotational) semantic stores rather than the (operational)
syntactic stores. As we will see this induces the appearance of denotations of statements in the configura-
tions. This phenomenon is known as processes as terms (see Rutten’s [Rut92]). The presence of denotations
of statements in the configurations causes that the transition system is not finitely branching—a property
which 1s usually exploited in relating different semantics. By providing a metric on the configurations we
obtain a metric transition system (see Van Breugel’s thesis [Bre94]). This metric transition system is com-
pactly branching: each configuration has a compact set of outgoing transitions. This fact is used in relating
the operational and denotational semantics via the intermediate semantics.

Banach’s fized point theorem [Ban22] plays a crucial role in the present paper. It is used to define the
metric space employed in the denotational semantics, various operators on this space, and the intermediate
semantics. Furthermore, the operational, intermediate, and denotational semantics are related by means of
Banach’s theorem.

In Section 1 we introduce a simple imperative language the second order communication is couched
in. The operational and denotational semantics are presented in Section 2 and 3 and are related in Sec-
tion 4. In the concluding section we discuss some related issues including bisimulation and full abstractness.
Appendix A contains some notions from metric topology and Banach’s theorem.

Acknowledgements

The authors have benefitted from discussions with Marcello Bonsangue, Michele Boreale, Uffe Engberg, Furio
Homnsell, Marina Lenisa, Vincent van Qostrom, Prakash Panangaden, Jan Rutten, and Davide Sangiorgi.

1 Language definition

We present a simple imperative language with second order communication as main construction. Besides
second order communication the language contains assignment statements, sequential composition, condi-
tional statements, parallel composition, and statement calls. The syntax of the language is given in BNF.
The basic components are

e aset (v €) Var® of variables,
e aset (e €) Exp of expressions,

o aset (b €) BEzp of Boolean expressions,

3Throughout this paper we use the notation (z €) X for the introduction of a set or space X with typical elements z, z’,
Ty oee



e aset (¢ €) Chan of channels, and
o aset of (z €) SVar of statement variables.
We assume a simple syntax for the sets of expressions and Boolean expressions.
Definition 1.1 The set (s €) Stat of statements is defined by
su=v:=e|s;s|ifbthenselses fi|s]s|cls|c?a|x

For this language we present an operational and a denotational semantics in the following two sections.

2 Operational semantics

The operational semantics is defined by means of a transition system. In the configurations of the transition
system we encounter

e statements,
e the empty statement E indicating successful termination,
e syntactic states?,

e syntactic stores?, and

e syntactic communications®.

Definition 2.1 The set (5 €) Staty is defined by
Su=E|s.
A syntactic state is used to store and retrieve the values of the variables. It assigns to each variable its
value. Let (o €) Val be a set of values.
Definition 2.2 The set (o €) SynState of syntactic states is defined by
SynState = Var — Val.

Storing the value « for the variable v in the syntactic state ¢ gives rise to the syntactic state o {o/v}

defined by
o ifv=w
o {afv}(w) = { o(w) ifv#w
We use a syntactic store to administrate which statements the statement variables are assigned to.
Definition 2.3 The set (6 €) SynStore of syntactic stores is defined by
SynStore = SVar — Stat.

Assigning the statement s to the statement variable z in the syntactic store 6 gives rise to the syntactic

store 0 {s/a} defined by

s ={ b g

A syntactic communication ¢!s is used to model the willingness to send the statement s along the channel
¢. To model the willingness to receive a statement along the channel ¢ and store it in the statement variable
x we use the syntactic communication ¢ 7 x.

Definition 2.4 The set (7 €) SynCom of syntactic communications is defined by
mu=cls|c?a.

In the configurations of the transition system a statement is accompanied by a syntactic action: a

syntactic state and a syntactic store, or a syntactic communication®.

4In Section 3 we introduce semantic states, semantic stores, and semantic communications to define the denotational
semantics.
5In this case there is no need to keep the syntactic state and the syntactic store (see rule (6) of Definition 2.6).



Definition 2.5 The set (p €) SynAct of syntactic actions is defined by
pu=(0,0)]|m.

We assume that the evaluation of an expression and a Boolean expression always terminates and delivers
a value and true or false, respectively. This is expressed by means of the functions

& : Exp — SynState — Val
and
B : BEzp — SynState — {lrue, false}.

With & [e](o) we denote the value of the expression e in the syntactic state o. The value of the Boolean
expression b in the syntactic state o is denoted by B [b](o).
The transition relation is defined by means of a collection of axioms and rules.

Definition 2.6 The transition relation —; is defined as the smallest subset of
(Staty x SynAct) x (Staty x SynAct)
satisfying the following axioms and rules.
(1) [v:i=e, 0,0] =1 [E, o {a/v}, 6], where o = E [e] (o)

So if§1:E
515859 if§1 7£E

[51, p] —1 [51, /']

9
@) [515 52, pl —1 [51 58 52, £']

, where 51 ;5 50 = {

[Sla 7, 9] —1 [gla p]
[¢f b then s, else s5 fi, 0, 0] —1 [51, p]

(3) L if B[b](o) = true

[SZa 7, 9] 1 [§2a p]
[¢f b then s, else s5 fi, o, 0] —1 [52, p]

(4) it B[b](e) = false

[51 p] —1 [51 p/] E if 51 =E and 55 = E
: 7’ _ _ 59 if§1:Eand§2;&E
(5) [51 || 52, P] —1 [51 ||E Sa, p/], where 81 ||E S9 = 5 o 5 # © and 5k

o 131, =1 [ s 5. 9] i llss if 51 £ e and 5, £ v

[51,0’, 9] 1 [51,6!5] [52a 7, 9] 1 [§2aC?x]

(6) [s1|] s2, ¢, 0] —1 [51 ||g 52, &, 0 {s/x}]
[s2 || 51, 0, 0] =1 [52 []s 51, 0, 0 {s/x}]

(7) [els, 0,0] —1 [F, ¢!ls]

(8) [c?x,0,0] =1 [E, c7x]
(9) [z, 0,0] —1 [0 (x), o, 0]
A transition
[s, 0, 0] —1 [5, ¢, 6]

denotes that the statement s in the (current) syntactic state ¢ and syntactic store # can perform a compu-
tation step resulting in the statement s and the (possibly updated) syntactic state ¢’ and syntactic store ¢'.
A transition

[Sla 7, 9] —1 [gla C!S]

denotes that the statement s; in the syntactic state o and syntactic store # 1s willing to send the statement
s along the channel ¢. Since communication is synchronous, the statement s can only been sent if there is a



statement s, in parallel with s; in the same syntactic state and syntactic store willing to receive a statement
along the channel ¢ (and storing it in some statement variable x) denoted by

[SZa 7, 9] —1 [§2a 67$]

The transition system is finitely branching: every configuration has only finitely many outgoing transi-
tions, i.e., for all s € Staty and p € SynAct, the set

FB([s, pl) = {5, 115, p] =1 [5, P}

is finite. This property is one of the ingredients of the proof relating the operational and denotational
semantics (see Property 4.18 and 4.20). An alternative formulation® is presented in

Property 2.7 The function FB : Statg x SynAct — P (Statg x SynAct) defined by
FB(Ls, /) = {15, 71| 5, ) —1 [, ']}
is an element of Statg x SynAct — Py (Statg x SynAct).
Proof By structural induction on s. a

In the operational semantics we collect successive transitions, i.e. sequences of configurations connected
by transitions. We do not consider configurations modelling (unsuccessful) communication attempts, i.e.
configurations of the form [s, ¢! s] or [5, ¢ 7 x]. We extract the syntactic states and syntactic stores from
the configurations. In this way we obtain sequences of pairs, each pair consisting of a syntactic state and a
syntactic store. We distinguish three types of sequences:

o finite sequences modelling successfully terminating computations (the final configuration is of the form

£, o, 0]),

o finite sequences followed by a § modelling deadlocking computations (the final configuration is of the
form [s, o, #] and can only make unsuccessful communication attempts), and

e infinite sequences modelling nonterminating computations.

Definition 2.8 The set (w €) (SynState x SynStore)s° is defined by
(SynState x SynStore)s°
= (SynState x SynStore)* U (SynState x SynStore)* - {6} U (SynState x SynStore)*.

Given a statement s and an (initial) syntactic state o and syntactic store @, the operational semantics O
gives us the set O [s](c, ) of sequences modelling all possible computations of s started in ¢ and 6.

Definition 2.9 The operational semantics

O : Stat — (SynState x SynStore) — P ((SynState x SynStore)s®)
is defined by

O [5](e,0)

= {(0'1,91)(0'2,92) . .(0'”,9”)
{(0'1,91)(0'2,92) . .(0'”,9”)
{(0'1,91)(0'2,92) N

where [s, o, 8] deadlocks if [s, o, 6] —1 [5, o/, 6'] for no 5 € Stalg, o' € SynState, and 6" € SynStore.

S, ]_>1 [Slaalagl] -1 1 [Ea Uﬂagn]}u

[s, 0, 0

[s, o, 6] —1 [s1, 01, 61] —1 - —1 [8n, On, O] deadlocks }U
[s, 0, 0

[

bl

>

o

, 0,00 —1 [51, 00, 01] =1 -},

The operational semantics 1s not compositional with respect to parallel composition as is shown in the
following examples (cf. [Mil93]). The operational semantics is compositional with respect to all the other
operators.

6 We present this alternative formulation as it can be generalized more conveniently (see Property 4.7).



Example 2.10 We have that
Ofvi=1;v:=2]=0[v:=1;v:=v+1]

but
Of(vi=1:v:=2)|[vi=3]£0[(v:=1;v:=v+1)| v:=3].
Also
Ofc?2] = Ofc!s]
but

Ole?x|lc!s]#O[els| els].

The above example shows us that the operational semantics 1s not compositional because it does not
model

e changes of the syntactic state and syntactic store caused by the environment (a statement in parallel),
and

e communication attempts.

If we extend the axioms for the send and receive statement
(7) [e!s, p] =1 [, ¢ !s]
(8) [¢?x, p] =1 [E, c? 2]

and also model (configurations denoting) communication attempts (and changes of the syntactic state and
syntactic store), then the modified operational semantics O’ still lacks compositionality.

Example 2.11 We have that
Ofer?e;(ea?z+es?2)| =0 [(c1?x;e2?)+ (c1 Tw5e372)]
but
OMler?x;(ca?x+es?x))|[(er!ls;eals)]| 20 [((crTase?z)+ (1 72;e572)) ]| (c1!s;e0!8)].

The modified operational semantics is not compositional, because it does not record the branching points
of the transition system (caused by + and [|).

3 Denotational semantics

We need a space containing more structure than the sets of sequences used in the operational semantics to
give a denotational semantics. In Definition 3.5 we introduce the complete (1-bounded ultrametric) space
IP (see Definition A.1 and A.5). The elements of this space can be viewed as tree like objects. Tt will turn
out that this space is rich enough to model parallel composition (and all other constructs) compositionally.
The denotational semantics assigns to each statement an element of iP.

In the definition of the space IP we encounter the spaces SemState, SemStore, SemCom, and SemAct—
the semantic counterparts of the sets SynState, SynStore, SynCom, and SynAct, respectively. Before defining
these spaces we first turn the sets Var, Val, SVar, Chan, and {E} into spaces by endowing them with the
discrete metric (see Definition A.2).

The only difference between syntactic states and semantic states is that the latter are endowed with a
metric (see Definition A.8) and the former are not.

Definition 3.1 The space (s €) SemState of semantic states is defined by

SemState = Var — Val.



A semantic store assigns to each statement variable the denotation of a statement rather than a statement
as a syntactic store does.

Definition 3.2 The space (¥ €) SemStore of semantic stores is defined by
SemStore = SVar — % - IP.

The role of the % (see Definition A.3) in the above definition is discussed later. Tt will turn out that the
% 1s essential both in the definition of the space IP and the denotational semantics D.
Instead of sending statements as we did operationally, denotationally we send denotations of statements.

Definition 3.3 The space (w €) SemCom of semantic communications is defined by

SemCom = (Chan x % - IP) + (Chan x SVar).

In the above definition we use the operations x and + as introduced in Definition A.3. Instead of (¢, p)
and (¢, z) we write ¢! p and ¢ 7 z, respectively. Forgetting the metric for a moment, we have

SemCom ={clplc€ Chan Ap e P }tU{c?x |c€ Chan Az € SVar}
and
SynCom = {cls|ce€ Chan As € Stat } U{c?x|c € Chan Nz € SVar }.
In Definition 2.5 we defined the set of syntactic actions by
SynAct = (SynState x SynStore) U SynCom.

Its semantic counterpart is presented in the following definition.

Definition 3.4 The space (¢ €) SemAct of semantic actions is defined by

SemAct = (SemState x SemStore) + SemCom.

Note that we use p to range over syntactic actions and g to range over semantic actions. Similarly, o,
#, and m range over syntactic states, syntactic stores, and syntactic communications and ¢, ¥, and @ range
over semantic states, semantic stores, and semantic communications.

As we have seen in the previous section, in order to be compositional the space IP should record

e changes of the semantic state and semantic store caused by the environment,
e communication attempts, and
e branching points.

In the definition of the space IP we use the operations —! (see Definition A.9) and P, (see Definition A.7).

Definition 3.5 The space (p €) IP is defined by the equation

P = (SemState x SemStore —" Py, (SemAct x L - P)) + {£}.

The elements of the space IP can be viewed as tree like objects. We distinguish the following two subspaces

of P.

e {E}: The semantic entity E we use to model successful termination. It can be seen as the empty tree
consisting of one node and no edges.



o (pe) P\ {E}: Let, for ¢, ¢ € SemState and ¥, V' € SemStore,

p(c 79) = {<Qlai)1>a : <Qm,i)m>}
{{er, 1), - {en Pa)}

The semantic entity p can be viewed as the labelled tree

(gﬂ_?) (glyﬂl)
Tz

s

7 7

01 Qm// 01 Qn/

e €4 ¥

P1 Pm ]71 piz

In the above picture the upper level of branching is due to the functional nature of p. It records
the change of the semantic state and semantic store caused by the environment. The lower level of
branching stems from the set structure of p(s,9) and p (¢, ¥). It records the branching points. The
labels at the lower level are semantic actions. This allows us to model communication attempts. For
example, if the environment changes the semantic state to ¢ and the semantic store to ¥, then the
semantic actions g1, ..., g, are possible followed by p1, ..., pm, respectively.

Note that we use the convention that p ranges over IP \ {E} and p ranges over IP.
Let us explain how to solve the above equation. (Patience, the development of the denotational semantics
resumes shortly.) The equation is of the form

P=F(P)

with I being an operation assigning to each (nonempty complete) space another (nonempty complete) space.
A solution of the equation is a (nonempty complete) space being isometric (see Definition A.11 to its F-
image. We shall treat the isometries as identities and thus elide their use. They can be put in without any
difficulties, but will clutter up the presentation. To conclude that the equation has a (unique) solution (up
to isometry) we exploit the theory developed by America and Rutten in [AR89]. As is shown in that paper,
the operation F' can be extended to a functor F' on a suitable category of (nonempty complete) spaces. Since
the equation is of the form

P . pP... =" P

bl

i.e. there are both positive and negative” occurrences of P in the equation, nonexpansive embedding-
projection pairs are used as arrows in the category. The arrows are such that the equation has a (unique)
solution if and only if the functor has a (unique) fixed point. In Theorem 4.4 of [ARB9] it is shown that a
(locally contractive® and) contractive functor has a (unique) fixed point. The proof of this theorem relies on
Banach’s theorem (see Theorem A.13). The functor F satisfies both conditions. If we would have left out
one of the %’s in the above definitions, the obtained functor would neither have been locally contractive nor
contractive any more.

In order to define the denotational semantics we have to introduce for each syntactic operator a seman-
tic counterpart. Apart from the semantic sequential composition and parallel composition, the semantic
operators are defined straightforwardly (see Definition 3.7). The semantic sequential composition and par-
allel composition are defined as the unique fixed point (Banach’s theorem) of a contractive function (see
Definition A.12) from the nonempty complete space IP x IP —! IP to itself. We only give the equations
characterizing the semantic operators. For the details we refer the reader to [ABKR89, KR90] where various
related semantic operators are defined in this way.

7An occurrence of P is negative if it is to the left, hereditarily, of an odd number of —1’s.
8This terminology is taken from [RT92]. In [AR89] hom-contractive is used instead.



Definition 3.6 The operator ; is the unique function ; : IP x IP —! IP satisfying

Pl'PZI{pZ 1f]31:E
’ A, ) A {0, P p2) | (0,P)) €Epr(s,0)} ifp1 #E

The operator || is the unique function || : P x [P —! IP satisfying

E ifpy =k and ps = E
,H,_ P2 ifﬁleandﬁQ;éE
prilpz =19 5 if py #E and pr = B
pLlpe+plpr+0 P2+ p2 |0 ifpr #Eand po £E

where

p1 L p2 = A, 9){ (0, p1 I p2) | (0, P1) € p1(s,¥)}

and

p1 | p2 = A, 0).A{(s,9{p/x}),pr || p2) | (e 'p,p1) Epr(s,9)A{cTx,pa) €Ep2(s,T)}

and
P14+ p2 = A6, 9).p1(s,9) Up2 (5, 0).

Having introduced the space IP and the (nontrivial) semantic operators we are ready to give the denota-
tional semantics.

Definition 3.7 The denotational semantics D : Stat — IP is defined by

Dlv:=e] = A, ) {{(s{e/v},V),E)}, where o = & [e](s)
Ds1;s0] =D[s:]:D[s2]
D[if b then s, else s5 fi]
= A\, ). {D [s1](s, 9) %f Bb](s) = true
’ D [s2](s, 9) if Bb](s) = false
Dlsi|ls2] = Ds:] | D [s2]
Dlels] = A, 9){{c!D[s],E)}
Dle?z] = A, 9){{c?x,E)}
D[] = A5, 9) (<, ), 9 (2))}
Of course one has to check that, for all s € Stat, D [s] € IP. This can be verified by structural induction
on s. We only consider the case s = z as it shows us the importance of the positioning of the 1.’s in the

above definitions. Obviously, for all ¢ € SemState and ¥ € SemStore, the set {((s,9),d (2))} is compact.
Let ¢, ¢’ € SemState and 9, ¢ € SemStore. We have that

d ({((s, ), 9 (@)} {((<", ), " (x))})
= d(((s, ), (), (', '), 9" ()))
= max{d((s,9),(<",9"), 5 - d(¥(x),9 (x))}
maX{d((C 79) (C/,ﬁ/)) ( )} [see below]
= d((s,0), (V).

The % in Definition 3.2 is essential, since

dSemStore (79 79/)
=  sup d1 P(ﬁ (z), ¥ (z))

zeSVar
=  sup 5 'dP (0 (2), ¥ (z))

zeSVar

3+ dp (0 (2),9 (2)).

IN
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4 Relating operational and denotational semantics

The operational and denotational semantics differ in various aspects:
e the operational semantics is defined in terms of transitions,
e the denotational semantics is compositional,

e the operational semantics uses syntactic stores whereas the denotational semantics employs semantic
stores,

e the denotational semantics records communication attempts,

the operational semantics models deadlock, and

e the operational semantics makes use of a linear space—sets of sequences—whereas the denotational
semantics utilizes a branching space—tree like objects.

Relating the operational and denotational semantics we use the following three operators.

e The linearize operator LIN. This operator abstracts from the additional structure of the branching
space arriving at a linear space. It removes (unsuccessful) communication attempts and adds deadlock
information.

e The semantify operator sem. This operator assigns to each syntactic store (action) a corresponding
semantic store (action).

e The semantify operator SEM. This operator is an obvious extension of sem from a syntactic linear
space to a semantic linear space.

In the rest of this section we prove

Theorem 4.1 For all s € Stat, o € SynState, and § € SynStore,
SEM (O [s](e,0)) = LIN (D [s])(sem (o, 8)).

To prove the above theorem, the operational semantics O suggests the use of induction on transitions
whereas the denotational semantics D hints at using structural induction. We introduce an intermediate
semantics 7 which is defined in terms of transitions and is compositional. The proof of the above theorem
is divided into two parts. First, (an extension of) the denotational semantics is shown to be equivalent to
the intermediate semantics. This is proved by structural induction. Second, the intermediate semantics is
related to (an extension of) the operational semantics by means of the linearize operator and the semantify
operators. This relation is proved by a co-inductive argument (see Section 7 of [Rut93]).

Like the denotational semantics the intermediate semantics uses the space IP as codomain. This requires
that the transition system employs semantic actions rather than syntactic ones. Clause (9) of Definition 2.6
then obtains the form

[, ¢, 9] =2 [V (2), ¢, V].

As a consequence, denotations of statements appear in the configurations. Besides elements of [P we also
encounter mixed terms like, e.g., p;s. We extend the set Stat of statements and the set P\ {E} (forgetting
about the metric for a moment) with a restricted set of mixed terms in

Definition 4.2 The set (r €) Stat™ is defined by
ro=s|plr;s|rr

Note that we do not consider E nor mixed terms built from E in the set Stat”™ of extended statements.
We comment on this choice later. We add E 1n

10



Definition 4.3 The set (7 €) Staty, is defined by
FU=E|r
The configurations of the transition system consist of an extended statement and a semantic action. We

introduce an axiom such that the configuration [p, ¢, 9], with p(s,9) = {{¢1,P1), ..., {0n,Pn)}, can make
the following transitions:

Y
Ql/ \Q
Ve S
[]31, Ql] [ﬁna Qn]

(cf. the picture following Definition 3.5). The other axioms and rules are straightforward modifications of
the axioms and rules of Definition 2.6.

Definition 4.4 The transition relation —» is defined as the smallest subset of
(Staty x SemAct) x (Staty, x SemAct)
satisfying the following axioms and rules.

(1) [vi=e, ¢, U] =2 [E, s {a/v}, J], where a = £ [e](s)

[51, 6, V] =2 [51, 0] . B
) [1f b then si else s fi, ¢, 9] —5 [51, 0] if B[b](c) = true
[s2,6, U] =2 [52, 0] . B
(3) [:f b then s| else 5o fi, ¢, 9] —2 [52, 0] if BIY(<) = false
(4) [els, ¢, 9] =2 [E, ¢! D[s]]
(5) [e?x, ¢, V] —2[E, c7x]
(6) [z, ¢, V] —2 [V (l‘), s, ]
(7) Ip, ¢, 9] =2 [p, o], if {0,p) € (s, V)
[7“, Q] —2 [7:’ Ql]
®) [ris, o] =2 [Fies, o]
[r1, o] —2 [r1, o]
) [r1ll 72, o) =2 [P1 |e 72, @]
[r2 ]| 71, ] —2 [r2|le 71, €]
[r1, ¢, 9] — [F1, ¢! p] [ro, ¢, ¥] —2 [Fa, ¢ 7 2]
(10) [r1 || r2, s, 9] =2 [F1 |6 72, 5, O{p/x}]

(2]l 71, 6, ] =2 [F2 || 71, <, I{p/x}]

Note that if we would also have considered E in Definition 4.2 then we should have changed, e.g., rule (8)
in order to deal with configurations like [E ; s, ¢, ¥].
From the above introduced transition system we derive an intermediate semantics

T : Staty, — IP
satisfying
I(E)=E

Z(r)=Ms,9) A (e, Z() |r, s, ] =2 [r, o]}
To conclude that, for all 7 € Staty,, Z (F) € IP, we have to check that, for all r € Stat*, ¢ € SynState, and

¥ € SynStore, the set 7 (r)(s,v) is compact. Usually, the compactness is derived from the fact that the
transition system is finitely branching. However, the transition system at hand is not finitely branching.
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Example 4.5 Consider

p= ’\(C’ﬁ)'{ <(§’79)’i)n> |neINU{w}},

where

_ E ifn=1
Pn = { A6, ). (¢, 0), P} i > 1
and p,, 1s the unique element of P satisfying
P = Ms, 0)A{(s, 9), pu) }-
We have, for all n € INU {w},
[p; <, 9] =2 [, <, 9]
Consequently, the set FB ([p, ¢, ¥]) is infinite.

By endowing the configurations of the transition system with a suitable metric, we are able to show
that the obtained metric transition system is compactly branching: every configuration has a compact set of
outgoing transitions and transitioning is nonexpansive, i.e., for all 7y, 72, 7} € Staty,, and g1, g2, 0} € SemAct,

if
[fla Ql] —2 [flla Qll]

then there exist 7, € Staty, and g5 € SemAct such that
[F2, 02] —2 [F5, 03]

and
d ([, a1, [P, ea]) < d([r1, e1], [r2, 02])-

This will turn out to be sufficient to prove that the intermediate semantics assigns to each extended statement
an element of IP. The set of extended statements is turned into a space by the metric introduced in

Definition 4.6 The metric d : Staty, x Staty — [0,1] is defined by
d (fl, 7:2) = 0

if 71 = 75, otherwise

dp (p1,p2) if 71 = p1 and 7o = py
d (71, 7) = d(ry,72) fri=r;sandro=1rs;s
’ max{d (ry, ), d(ri,rh)} ifF1=r || r] and 72 = ra || 7
1 otherwise

The metric on Staty, is designed in such a way that the metric transition system is compactly branching.
The other component of the configurations, the semantic actions, are endowed with the metric introduced
in Definition 3.4.

Now we are ready to prove that the metric transition system—the transition system the configurations
of which are endowed with the just introduced metric—is compactly branching.

Property 4.7 The function CB : Staty, x SemAct — P (Staiy, x SemAct) defined by
CB([r, o) = {[", &I [r, o] =2 [, &'}
is an element of Statyy; x SemAct —' P, ((% - Staty;) x SemAct).
Proof First, we prove that, for all 7 € Staty, and ¢ € SemAct, the set CB([7, ¢]) is compact by structural

induction on 7. We only consider the following two cases.
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1. Let 7 = p and ¢ = (s, ¥). Since

CB([p, s, 9) = {[p, el [ {e,;p) € p(s,9) }

and the set p(¢,9) is compact, also the set CB([p, ¢, ¥]) is compact.
2. Let 7 = r;s. We have that

CB([r;s, o) ={[rns, 11[r, 1€ CB([r o) }-

By induction, the set CB([r, g]) is compact. One can easily verify that the extended operator ;g
is nonexpansive. Because the nonexpansive image of a compact set is compact (a consequence of
Theorem TIIT of [Ale27]), we can conclude that the set CB ([r; s, g]) is compact.

Second, we prove that, for all 71, 7, € Staty and g1, 02 € SemAct,

d(CB([r1, 01]), CB([r2, 02])) < d([r1, o1], [F2, 02])

by structural induction on 7 and 7. We only consider those 71 and 7 satisfying 0 < d (71, 72) < 1, since
for all other #; and 75 the above equation is vacuously true. Only two cases are elaborated on.
1. Let 71 = p1 and 72 = pa, and g1 = (¢, ¥1) and g2 = (s, ¥2).
d(CB([p1, s, V1]),CB ([p2, 5, U2]))
= d({[pr, 1] [ {er, p1) € p1(s,01) }, { [P2, e2] | (02, P2) € p2 (<, 72) })

d(p1(s,91),p2(s,72))
max {d (p1(s,91),p2(s,91)),d (p2(s,91),p2(5,92))} [ultrametricity]
max {d (pl,pz), d ((C, 791), (C, 792))} [p2 is nonexpansive]
d([p1, s, 91], [p2, s, ¥2)).
2. Let 7y =71 ;s and 7y =79 ;5.

d(CB([r1;s, 01]),CB([r2;5, 02]))
d({[r1iss, a1l [r1, el €CB([r1, e1]) },{[P25m s, 05] | [F2, 05] € CB([r2, 02]) })
d (CB ([7“1, Ql]), CB ([7“2, Qz])) [;E is nonexpansive]
d([r1, 01],[r2, @2]) [induction]
d([r1;s, 01],[r2; s, 02])-

INIA

INIA

O

If we would leave out the % then we would obtain a more restrictive condition which the metric transition
system does not satisfy (consider, e.g., the extended statements p; and ps of Example 4.5).
The intermediate semantics 7 is defined as the unique fixed point of the function @ introduced in

Property 4.8 The metric transition system (Staty x SemAct, —») induces the function
@ : (Staty, —* IP) — (Staty, —' P)
defined by

P()(B) =E
@ (¢)(r) = A5, 9)-{{e, ¢ (7)) [ [r, ¢, W] =2 [r, o] }
Proof We prove that

1. for all ¢ € Staty, —! IP, r € Stat*, ¢ € SemState, and ¥ € SemStore, the set @ (¢)(r)(s, ) is nonempty
and compact,

2. for all ¢ € Staty, —! IP and r € Stat™, the function @ (¢)(r) is nonexpansive, and
3. for all ¢ € Staty, —! IP, the function @ (¢) is nonexpansive.
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In this proof we frequently use that

@ (¢)(r)(s,9) = {{e,¢ (") | [, el € CB([r, s, V]) }.

We start with 1. Since the set CB([r, ¢, ¥]) is nonempty (as can easily be verified), we can conclude that the
set @ (¢)(r)(s,¥) is also nonempty. According to Property 4.7, the set CB ([r, ¢, ¥]) is compact. Because ¢
is nonexpansive and the nonexpansive image of a compact set is compact, the set @ (¢)(r)(s,?) is compact.

We continue with 2. For all ¢1, ¢o € SemState and v, ¥4 € SemStore,

d(@(6)(r)(s1,91), P (¢)(r)(s2, V2))

d({{e1,¢ (1)) | [r1, e1] € CB([r, 1, 1)) } { (02,0 (72)) | [F2, 02] € CB([r, 52, ¥2]) })
d( ([7“ ¢, U ]) CB([?“, $2, 792])) [¢ is nonexpansive]
d(
d(

IA A

[7° 6, ¥ ] [7“ G, U ]) [Property 4.7]

(Cl’ ) (CQ’ﬁ ))
We conclude with 3. For all r1, r5 € Stat™, ¢ € SemState, and ¥ € SemStore,

d (@ (9)(r1)(s, 9), @ (9)(r2)(s, V)

< d([r1, s, 9], [r2, 5, ¥]) [as in the proof of 2.]
= d(?“l, 7“2).

O

In the above property we restricted ourselves to nonexpansive functions from the space Staly to IP.
Without this restriction the property is not valid (consider, e.g., p of Example 4.5 and ¢ satisfying, for all
n € N, ¢(pn) = pn and qj)(ﬁw) = E)

The function @ is a mapping from the nonempty complete space Staty, —' IP to itself. The fact that
@ is a contraction can be easily proved. According to Banach’s theorem, @ has a unique fixed point: the
intermediate semantics.

Definition 4.9 The intermediate semantics T : Staty, —1 IP is defined by
T = fiz (D).

The intermediate semantics Z is shown to be equivalent to the extended denotational semantics D*. This
denotational semantics is a natural extension of the denotational semantics D.

Definition 4.10 The extended denotational semantics D* : Staty, — IP is defined by

D* ( ) = E
D~ (s) =D[s]
D~ (p) =p
D*(r;s) =D"(r);D"(s)
D™ (r1 || r2) = D" (r1) || D* (r2)

The semantic models 7 and D* are shown to be equivalent by uniqueness of fixed point, viz we show that
D* is a fixed point of @. This proof technique is due to Kok and Rutten [KR90].

Property 4.11 ¢ (D*) = D*.

Proof First, we should check that D* is nonexpansive, which can be verified by structural induction.
Second, we should show that D* is a fixed point of @, which can also be proved by structural induction. 0O

By uniqueness of fixed point we can conclude

Lemma 4.12 7 = D*.
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Proof Immediate consequence of Definition 4.9, Property 4.11, and Banach’s theorem. a

Next we will relate the intermediate semantics and (an extension of) the operational semantics. For that
purpose we introduce the already mentioned linearize operator and semantify operators.

The linearize operator abstracts from the additional structure of the branching space IP arriving at the
linear space

SemState x SemStore —* Py ((SemState x SemStore)s)

where the space (SemState x SemStore)7® is an instance of

Definition 4.13 Let (z €) X be anonempty complete space. The space (w €) X§° is defined by the equation
Xo={e}+ {61+ X x %Xgo
The elements of the space X§° are
o finite sequences over X,
e finite sequences over X followed by 6, and

¢ infinite sequences over X.

Instead of (x1,(za,...,(#n,€)...)), (21,(x2,...,(2n,8)...)), and (xy,(x2,...)) we write zi@a...2n,
X1T3...T0, and xiawy .. ., respectively.

If we endow SynState x SynStore with the discrete metric the above definition gives us the set introduced
in Definition 2.8 endowed with a Baire-like [Bai09] metric as presented in, e.g., [Niv79].

The linearize operator LIN

e removes (unsuccessful) communication attempts,

e adds deadlock information,

e removes the changes caused by the environment, and
e collapses the branching structure.

As the semantic sequential composition and parallel composition, LIN is defined as the unique fixed point
of a contractive function from a nonempty complete space to itself.

Definition 4.14 The function LIN is the unique function
LIN : IP —"' (SemState x SemStore) —* Py, ((SemState x SemStore)3)
satisfying

LIN (E)(s,?) = {<}

_ J {8} if p(s,9) C SemCom x IP
LIN (p)(s,9) = {{(</, I w [ (&9, 5) € p(s,0) Aw € LIN (5)(c', ) } otherwise

The condition p(s,9) C SemCom x IP is the semantic counterpart of the syntactic deadlocking condi-
tion introduced in Definition 2.9. More precisely, from Theorem 4.1 we can derive that, for all s € Stat,
o € SynState, and § € SynStore,

[s, o, 0] deadlocks if and only if D [s](sem(c, 8)) C SemCom x IP.

The semantify operator sem assigns to each syntactic action a corresponding semantic action. This
operator is defined in terms of the denotational semantics D. The semantify operator SEM is the obvious
extension of sem from the syntactic linear space P, ((SynState x SynStore)s®) to the semantic linear space

Pne ((SemState x SemStore)§®).
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Definition 4.15 The function sem : SynAct — SemAct is defined by
sem (o,0) = (o, A& D0 (2)])
sem (cls) =c!D[s]
sem(c?e)=c?ux

The function Sem is the unique function

Sem : (SynState x SynStore);> —' (SemState x SemStore)s°

satisfying
Sem (¢) =¢
Sem (8) =6
Sem ((o,0) w) = sem (o, 0) Sem (w)

The function SEM : P, ((SynState x SynStore);®) —' P, ((SemState x SemStore)s®) is defined by
SEM (W) ={Sem(w) |weW}.
The operational semantics is extended in

Definition 4.16 The extended operational semantics
O : Staty, x SynState x SynStore — P ((SynState x SynStore)s”)
is defined by

O ([g, 0, 0]) = {c}
O* ([s, 0, 0]) = O[s](s,0)

The intermediate semantics 7 and the extended operational semantics OF are related by means of the
linearize operator LIN and the semantify operators sem and SEM. We show that, for all 5 € Statg,
o € SynState, and § € SynStore,

LIN (Z (5))(sem (0,0)) = SEM (O* ([5, o, 0])).
It will be convenient to write H ([3, o, 6]) for the left-hand side.
Definition 4.17 The function

H : Statg x SynState x SynStore — Py, ((SemState x SemStore)s®)
is defined by

H (s, 0, 0)) = LIN (Z (5))(sem (,0).

The equivalence of ‘H and SEM o OF is proved by uniqueness of fixed point. We show that H and
SEM o O* are both a fixed point of ¥.

Property 4.18 The transition system (Statg x SynAect, —1) induces the function

W (Staty x SynState x SynStore — Py, ((SemState x SemStore)s”))
— (Staty x SynState x SynStore — Py, ((SemState x SemStore)s®))

defined by

v ()([E, 0, 0]) = {c}

_J {8t if [s, o, 6] deadlocks
W(d’)([S, o, 9]) = {{sem (U/,H/)w | [5’ o, 9] — [5’ 0_/’ 9/] Aw € 1/}([5’ 0_/’ 9/])}Otherwise

Proof Similar to the proof of Property 4.8 using Property 2.7. a
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The space Statg x SynState x SynStore — Py, ((SemState x SemStore)s®) is nonempty and complete.
We leave 1t to the reader to verify that ¥ is contractive.
We show that H is a fixed point of ¥ in

Property 4.19 ¥ (H) = H.
Proof First, we relate the transition relations —; and —
1. For all 5, s € Statg, and p, p' € SynAct, if
[5, ] =1 [5', ']
then there exists a 7 € Staty, such that
[5, sem (p)] =2 [r, sem (p')]
and 7 (5) =7 (7).
2. For all 5 € Statg, 7 € Staty, p € SynAct, and o € SemAct, if
[s, sem (p)] =2 [r, ']
then there exist s’ € Statg and p’ € SynAct such that
[5, ] =1 [5', ']
sem (p')=¢', and Z () =Z (§).
Both 1. and 2. can be proved by structural induction on § (cf. Lemma 4.15 of [BB93]).
Second, we show that, for all 5 € Statg, o € SynState, and 8 € SynStore,

U (H)([s, o, 0]) = H([5, o, 6]).

We only consider the case that s # E and [s, o, 6] does not deadlock. The other two cases are much simpler
and left to the reader.

= U{sem (', 0w | [5, 0, 00— [, ¢, 0]AnweH(5, d, 0]}

= (Jisem (o', 0)w|[s, 0,00 =[5, o', I Aw € LIN (Z ())(sem (o', 0)) }
= J{.9) v ][5, sem (o, 0)] =2 [, 5, 9] Av € LIN (Z(7))(s,9) } [1. and 2. ]
= (UL 0) v [ {(s,9),p) € Z(5)(sem (0,0)) Av € LIN (p)(s,9) }

= LIN(Z ())(sem( 0))

= H([s, 0 0])

Also SEM o O* is a fixed point of ¥.

Property 4.20 ¥ (SEM o O*) = SEM o O*.

Proof First, we have to check that, for all 5§ € Staty, o € SynState, and 0 € SynStore, the set O* ([3, o, 0])
is nonempty and compact. This can be proved using Property 2.7 (cf., e.g., the proof of Theorem 4.2.7 of
[Bre94]).

Second, we show that, for all 5 € Statg, o € SynState, and 8 € SynStore,

W (SEM 0 O)([5, o, 6]) = (SEM o 0*)([5, o, 0]).
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Again we only consider the case that 5 # E and [s, ¢, 6] does not deadlock.

W (SEM o O*)([5, o, 6])
= {sem (o', 0Yw|[5, 0,00 —1[5, 0, 0] Awe (SEM o O*)([5, o, 0']) }
= SEM ({(c",0")v ][5 0,0] =1 [, 0, 0]AveO (5, ¢ 0]}
(SEM o O7)([5, o, 0]).

O
By uniqueness of fixed point we can conclude
Lemma 4.21 SEM o O* = 'H.
Proof Immediate consequence of Property 4.19 and 4.20 and Banach’s theorem. a
Combining Lemma 4.12 and 4.21 we arrive at
Proof of Theorem 4.1
SEM (0 [s1(0.0))
= (SEM o O%)([s, o, 6])
= H([s, 0,0])) [Lemma 4.21]
= LIN(Z(s))(sem (0,0))
= LIN (D" (s))(sem (c,0)) [Lemma 4.12]
= LIN (D[s])(sem(c,8)).
O

Conclusion

In the preceding four sections we introduced a simple imperative language with second order communication,
presented an operational and a denotational semantics, and linked the two semantics. Next we discuss some
related issues.

Bisimulation, a notion due to Milner and Park [Mil80, Par81, Mil94], plays an important role in theory
of concurrency. Various notions of higher order bisimulation have been introduced (see, e.g., [AGR92, MS92,
Tho90]). By means of the theory developed by Rutten and Turi in [RT92]° we can define second order
bisimulations on the statements in terms of the transition relation —; and on the extended statements in
terms of the transition relation —». The latter gives rise to second order bisimulations on the elements of
the space IP. We can show that the space IP is strongly extensional: second order bisimilarity coincides with
equality.

The denotational semantics D is not fully abstract—the full abstractness problem for programming lan-
guages was first raised by Milner [Mil77]—with respect to the operational semantics (3. The intermediate
semantics 7 models second order bisimilarity (in terms of —2) in a fully abstract way.

A simplification with respect to the usual languages of this kind is that we assume one global state and
store, rather than a distribution of local states and stores over the various parallel components. The design
of a mechanism for local states and stores can be found in the work on the semantics of Philips’ parallel
object oriented language POOL [ABKR86, ABKR89, Rut90].

In a setting with local states and stores arbitrary combinations of sequential and parallel compositions
might give rise to statements which are of very little significance. These combinations can be ruled out by
replacing the language construct parallel composition by process creation. It has been shown by Aalbersberg
and America [AA88] that the expressive power of parallel composition and process creation are incomparable.
For metric semantic models for process creation we refer the reader to America and De Bakker’s [AB88].

®Recently Lenisa [Len95] has extended this theory along the lines of Pitts’ [Pit94] and applied it in our setting.
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In a distributed setting it would be meaningful to transmit a closure, a pair consisting of a statement and
a local store, rather than just a statement as we do here. This seems to be related to the explicit substitution
in the Ap- and Ao-calculus of Curien et al. [Cur88, ACCL91].

In our setting ¢ 7 # is not a binder (binding z) as it is in, e.g., ECCS [EN86], CHOCS [Tho90], and the
m-calculus [MPW92]. Consider the following statement:

elsyselsalle?a|c?e; e

Which statement is stored for the statement variable # upon execution is dependent on the order the
communications take place. This is a consequence of considering one global state and store. If we would
consider local states and stores ¢ ?  would become a binder.

In the definition of the space IP and the denotational semantics D we exploited the fact that we restricted
ourselves to ultrametric spaces—rather than using metric spaces. It seems that the ultrametricity is essential
for giving metric semantics to higher order notions like second order communication.
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A Ultrametric spaces

We present some notions from metric topology and Banach’s fixed point theorem. For further details on
(metric) topology we refer the reader to Engelking’s standard work [Eng89].
We start with the definition of a basic notion: a 1-bounded ultrametric space.

Definition A.1 A (I-bounded ultrametric) space is a pair (X, dx) consisting of

e aset X and

e a function dx : X x X — [0, 1], called (ultra-} metric, satisfying, for all z, y, z € X,

* dx (z,y) = 0if and only if z = y,
* dx (z,y) = dx (y,%), and
¢ dx (2,2) < max {dx (2,), dx (3, 2)}.

To simplify notations we shall usually write X instead of (X, dx) and denote the metric of a space X by

dx.

An example of a metric is presented in
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Definition A.2 Let X be a set. The discrete metric dx : X x X — [0,1] is defined by

0 ife=y
dX(x’y):{l ifety

From spaces one can build new spaces by means of operations like the shrinking operation %, the
Cartesian product x and the disjoint union +.

Definition A.3 Let X and Y be spaces.

e The metric (5 - d)x : X x X — [0, 1] is defined by

(3 d)x (z,y) = 3 dx (z.y).

e The metric dxxy : (X x V) x (X xY) — [0,1] is defined by

dxxy ((v,w), (x,y)) = max{dx (v, z),dy (w,y) }.
e The metric dx4y : (X +Y) x (X +Y) — [0, 1] is defined by

dx (v,w) ifveXandweX
dxty (v,w) =< dy (v,w) fveYandweY
1 otherwise

Below we will encounter some other operations on spaces.
The completeness of a space is essential in Banach’s theorem. Before we introduce this notion we first
present the definitions of converging and Cauchy sequence.

Definition A.4 Let X be a space. Let (z,), be a sequence in X and z an element of X.
e The sequence (x,), is said to converge to the element  if
Ve>0:3IN €eIN:Vn> N :dx (xg,2) <e.
e The sequence (z,)y is called Cauchy if
Ve>0:IN €eIN:Vm,n> N 1 dx (xm,2n) < €.
As can be easily seen, every convergent sequence i1s Cauchy.
Definition A.5 A space is called complete if every Cauchy sequences in the space is convergent.

As one can easily verify, the operations %, x, and + preserve completeness.

Compactness, a generalization of finiteness, is introduced in

Definition A.6 A subset of a space is called compact if every sequences in the set has a converging subse-
quence.

The set Py, (X) of nonempty and compact subsets of the space X is turned into a space by endowing it
with the Hausdorff metric (see Chapter VIII, § 6 of [Haul4]) introduced in

Definition A.7 Let X be a space. The Hausdorff metric dp,,,(x) : Pnc (X) X Pne (X) — [0,1] is defined
by

dpp. (x) (A, B) = max{sup {inf{dx (a,b) |bE B} |ac A},
sup{inf{dx (b,a)|a€ A} |be B}}.
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The operation P, preserves completeness (Lemma 3 of [Kur56]). The space P, (X) of compact subsets
of the space X is defined by

Pe(X) =Puc (X) +{0}.

The set X — Y of functions from the space X to the space Y is turned into a space by endowing it with
the metric introduced in

Definition A.8 Let X and Y be spaces. The metric dx_y : (X —Y) x (X —Y) — [0, 1] is defined by
dx—y (f,9) =sup {dy (f (z),9(2)) | x € X}.
Frequently we restrict ourselves to the subspace of nonexpansive functions.
Definition A.9 Let X and Y be spaces. A function f: X — Y is called nonexpansive if, for all z, y € X,
dy (f (2), f(y)) < dx (x,y).

We denote the space of nonexpansive functions from the space X to the space Y by X —! Y. The
operations — and —! preserve completeness as can easily be verified.
Next we will introduce an equivalence notion of spaces.

Definition A.10 Let X and Y be spaces. A function f: X — Y is called isometric if, for all z, y € X,
dy (f (z), f (y)) = dx (z,y).
Note that an isometric function is injective.

Definition A.11 The spaces X and Y are called isometric, denoted by X =Y, if there exists an isometric
function from X to Y which is surjective.

Besides the completeness of the space, the contractiveness of the function is another essential ingredient
of Banach’s theorem.

Definition A.12 Let X and Y be spaces. A function f : X — Y is called contractive if there exists an ¢,
with 0 < e < 1, such that, for all z, y € X,

dy (f (z), f (y)) < €-dx (z,y).
We conclude with Banach’s fixed point theorem.

Theorem A.13 (Banach) Let X be a nonemply complete space. If the funclion f: X — X is conlraclive
then it has a unique fized point fizx (f).

Proof See Theorem I1.6 of [Ban22]. O
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