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The de�nition of the operational semantics follows the customary pattern in that it is derived fromsome transition system, as advocated by Plotkin [Plo81]. In the con�gurations of the transition system weencounter syntactic stores, a second order variant of ordinary syntactic states. A syntactic state assignsto each variable its value. A syntactic store assigns to each statement variable a statement. Synchronousexecution of c ! s and c ? x amounts to passing s and storing it in x. The latter is operationally modelled byassigning s to x in the syntactic store. The transition system is �nitely branching: each con�guration hasonly �nitely many outgoing transitions. We exploit this fact in relating the operational and denotationalsemantics.The denotational semantics employs a complete 1-bounded ultrametric space. This space is de�ned as thesolution of a recursive equation. In the equation we use semantic stores. A semantic store assigns to eachstatement variable the denotation of a statement. Denotationally the synchronous execution of c ! s and c?xis modelled by passing the denotation of s and storing it in x in the semantic store. For a large variety oflanguages denotational semantics based on ultrametric spaces have been developed (numerous examples areprovided by De Bakker and De Vink in [BV95]). Higher order notions have been modelled denotationallyby, e.g., Hennessy [Hen94], Jagadeesan and Panangaden [JP90], and Thomson [Tho90].To link the operational and denotational semantics we introduce an intermediate semantics. Like theoperational semantics the intermediate semantics is de�ned by means of a transition system. In the con-�gurations of the transition system we use the (denotational) semantic stores rather than the (operational)syntactic stores. As we will see this induces the appearance of denotations of statements in the con�gura-tions. This phenomenon is known as processes as terms (see Rutten's [Rut92]). The presence of denotationsof statements in the con�gurations causes that the transition system is not �nitely branching|a propertywhich is usually exploited in relating di�erent semantics. By providing a metric on the con�gurations weobtain a metric transition system (see Van Breugel's thesis [Bre94]). This metric transition system is com-pactly branching: each con�guration has a compact set of outgoing transitions. This fact is used in relatingthe operational and denotational semantics via the intermediate semantics.Banach's �xed point theorem [Ban22] plays a crucial role in the present paper. It is used to de�ne themetric space employed in the denotational semantics, various operators on this space, and the intermediatesemantics. Furthermore, the operational, intermediate, and denotational semantics are related by means ofBanach's theorem.In Section 1 we introduce a simple imperative language the second order communication is couchedin. The operational and denotational semantics are presented in Section 2 and 3 and are related in Sec-tion 4. In the concluding section we discuss some related issues including bisimulation and full abstractness.Appendix A contains some notions from metric topology and Banach's theorem.AcknowledgementsThe authors have bene�tted from discussions with Marcello Bonsangue, Michele Boreale, U�e Engberg, FurioHonsell, Marina Lenisa, Vincent van Oostrom, Prakash Panangaden, Jan Rutten, and Davide Sangiorgi.1 Language de�nitionWe present a simple imperative language with second order communication as main construction. Besidessecond order communication the language contains assignment statements, sequential composition, condi-tional statements, parallel composition, and statement calls. The syntax of the language is given in BNF.The basic components are� a set (v 2)Var3 of variables,� a set (e 2)Exp of expressions,� a set (b 2)BExp of Boolean expressions,3Throughout this paper we use the notation (x 2)X for the introduction of a set or space X with typical elements x, x0,x1, : : : 2



� a set (c 2)Chan of channels, and� a set of (x 2) SVar of statement variables.We assume a simple syntax for the sets of expressions and Boolean expressions.De�nition 1.1 The set (s 2) Stat of statements is de�ned bys ::= v := e j s ; s j if b then s else s fi j s k s j c ! s j c ? x j x:For this language we present an operational and a denotational semantics in the following two sections.2 Operational semanticsThe operational semantics is de�ned by means of a transition system. In the con�gurations of the transitionsystem we encounter� statements,� the empty statement e indicating successful termination,� syntactic states4,� syntactic stores4, and� syntactic communications4.De�nition 2.1 The set (�s 2) State is de�ned by�s ::= e j s:A syntactic state is used to store and retrieve the values of the variables. It assigns to each variable itsvalue. Let (� 2)Val be a set of values.De�nition 2.2 The set (� 2) SynState of syntactic states is de�ned bySynState = Var ! Val :Storing the value � for the variable v in the syntactic state � gives rise to the syntactic state � f�=vgde�ned by� f�=vg (w) = � � if v = w� (w) if v 6= wWe use a syntactic store to administrate which statements the statement variables are assigned to.De�nition 2.3 The set (� 2) SynStore of syntactic stores is de�ned bySynStore = SVar ! Stat :Assigning the statement s to the statement variable x in the syntactic store � gives rise to the syntacticstore � fs=xg de�ned by� fs=xg (y) = � s if x = y� (y) if x 6= yA syntactic communication c !s is used to model the willingness to send the statement s along the channelc. To model the willingness to receive a statement along the channel c and store it in the statement variablex we use the syntactic communication c ? x.De�nition 2.4 The set (� 2) SynCom of syntactic communications is de�ned by� ::= c ! s j c ? x:In the con�gurations of the transition system a statement is accompanied by a syntactic action: asyntactic state and a syntactic store, or a syntactic communication5.4In Section 3 we introduce semantic states, semantic stores, and semantic communications to de�ne the denotationalsemantics.5In this case there is no need to keep the syntactic state and the syntactic store (see rule (6) of De�nition 2.6).3



De�nition 2.5 The set (� 2) SynAct of syntactic actions is de�ned by� ::= (�; �) j �:We assume that the evaluation of an expression and a Boolean expression always terminates and deliversa value and true or false, respectively. This is expressed by means of the functionsE : Exp ! SynState ! Valand B : BExp ! SynState ! ftrue; falseg:With E [[e]](�) we denote the value of the expression e in the syntactic state �. The value of the Booleanexpression b in the syntactic state � is denoted by B [[b]](�).The transition relation is de�ned by means of a collection of axioms and rules.De�nition 2.6 The transition relation !1 is de�ned as the smallest subset of(State � SynAct) � (State � SynAct )satisfying the following axioms and rules.(1) [v := e; �; �] !1 [e; � f�=vg; �], where � = E [[e]](�)(2) [s1; �] !1 [�s1; �0][s1 ; s2; �] !1 [�s1 ;E s2; �0] , where �s1 ;E �s2 = � �s2 if �s1 = e�s1 ; �s2 if �s1 6= e(3) [s1; �; �] !1 [�s1; �][if b then s1 else s2 fi; �; �] !1 [�s1; �] , if B [[b]](�) = true(4) [s2; �; �] !1 [�s2; �][if b then s1 else s2 fi; �; �] !1 [�s2; �] , if B [[b]](�) = false(5) [s1; �] !1 [�s1; �0][s1 k s2; �] !1 [�s1 kE s2; �0][s2 k s1; �] !1 [s2 kE �s1; �0] , where �s1 kE �s2 = 8>><>>:e if �s1 = e and �s2 = e�s2 if �s1 = e and �s2 6= e�s1 if �s1 6= e and �s2 = e�s1 k �s2 if �s1 6= e and �s2 6= e(6) [s1; �; �] !1 [�s1; c ! s] [s2; �; �] !1 [�s2; c ? x][s1 k s2; �; �] !1 [�s1 kE �s2; �; � fs=xg][s2 k s1; �; �] !1 [�s2 kE �s1; �; � fs=xg](7) [c ! s; �; �] !1 [e; c ! s](8) [c ? x; �; �]!1 [e; c ? x](9) [x; �; �]!1 [� (x); �; �]A transition[s; �; �] !1 [�s; �0; �0]denotes that the statement s in the (current) syntactic state � and syntactic store � can perform a compu-tation step resulting in the statement �s and the (possibly updated) syntactic state �0 and syntactic store �0.A transition[s1; �; �] !1 [�s1; c ! s]denotes that the statement s1 in the syntactic state � and syntactic store � is willing to send the statements along the channel c. Since communication is synchronous, the statement s can only been sent if there is a4



statement s2 in parallel with s1 in the same syntactic state and syntactic store willing to receive a statementalong the channel c (and storing it in some statement variable x) denoted by[s2; �; �] !1 [�s2; c ? x]:The transition system is �nitely branching : every con�guration has only �nitely many outgoing transi-tions, i.e., for all �s 2 State and � 2 SynAct , the setFB ([�s; �]) = f [�s0; �0] j [�s; �] !1 [�s0; �0] gis �nite. This property is one of the ingredients of the proof relating the operational and denotationalsemantics (see Property 4.18 and 4.20). An alternative formulation6 is presented inProperty 2.7 The function FB : State � SynAct ! P (State � SynAct ) de�ned byFB ([�s; �]) = f [�s0; �0] j [�s; �] !1 [�s0; �0] gis an element of State � SynAct ! Pf (State � SynAct).Proof By structural induction on �s. 2In the operational semantics we collect successive transitions, i.e. sequences of con�gurations connectedby transitions. We do not consider con�gurations modelling (unsuccessful) communication attempts, i.e.con�gurations of the form [�s; c ! s] or [�s; c ? x]. We extract the syntactic states and syntactic stores fromthe con�gurations. In this way we obtain sequences of pairs, each pair consisting of a syntactic state and asyntactic store. We distinguish three types of sequences:� �nite sequences modelling successfully terminating computations (the �nal con�guration is of the form[e; �; �]),� �nite sequences followed by a � modelling deadlocking computations (the �nal con�guration is of theform [s; �; �] and can only make unsuccessful communication attempts), and� in�nite sequences modelling nonterminating computations.De�nition 2.8 The set (w 2) (SynState � SynStore)1� is de�ned by(SynState � SynStore)1�= (SynState � SynStore)� [ (SynState � SynStore)� � f�g [ (SynState � SynStore)!:Given a statement s and an (initial) syntactic state � and syntactic store �, the operational semantics Ogives us the set O [[s]](�; �) of sequences modelling all possible computations of s started in � and �.De�nition 2.9 The operational semanticsO : Stat ! (SynState � SynStore) ! P ((SynState � SynStore)1� )is de�ned byO [[s]](�; �)= f (�1; �1)(�2; �2) : : : (�n; �n) j [s; �; �]!1 [s1; �1; �1]!1 � � � !1 [e; �n; �n] g[f (�1; �1)(�2; �2) : : : (�n; �n)� j [s; �; �]!1 [s1; �1; �1]!1 � � � !1 [sn; �n; �n] deadlocks g[f (�1; �1)(�2; �2) : : : j [s; �; �]!1 [s1; �1; �1]!1 � � � g;where [s; �; �] deadlocks if [s; �; �] !1 [�s; �0; �0] for no �s 2 State, �0 2 SynState , and �0 2 SynStore .The operational semantics is not compositional with respect to parallel composition as is shown in thefollowing examples (cf. [Mil93]). The operational semantics is compositional with respect to all the otheroperators.6We present this alternative formulation as it can be generalized more conveniently (see Property 4.7).5



Example 2.10 We have thatO [[v := 1 ; v := 2]] = O [[v := 1 ; v := v + 1]]but O [[(v := 1 ; v := 2) k v := 3]] 6= O [[(v := 1 ; v := v + 1) k v := 3]]:Also O [[c ? x]] = O [[c ! s]]but O [[c ? x k c ! s]] 6= O [[c ! s k c ! s]]:The above example shows us that the operational semantics is not compositional because it does notmodel� changes of the syntactic state and syntactic store caused by the environment (a statement in parallel),and� communication attempts.If we extend the axioms for the send and receive statement(70) [c ! s; �] !1 [e; c ! s](80) [c ? x; �] !1 [e; c ? x]and also model (con�gurations denoting) communication attempts (and changes of the syntactic state andsyntactic store), then the modi�ed operational semantics O0 still lacks compositionality.Example 2.11 We have thatO0 [[c1 ? x ; (c2 ? x+ c3 ? x)]] = O0 [[(c1 ? x ; c2 ? x) + (c1 ? x ; c3 ? x)]]but O0 [[(c1 ? x ; (c2 ? x+ c3 ? x)) k (c1 ! s ; c2 ! s)]] 6= O0 [[((c1 ? x ; c2 ? x) + (c1 ? x ; c3 ? x)) k (c1 ! s ; c2 ! s)]]:The modi�ed operational semantics is not compositional, because it does not record the branching pointsof the transition system (caused by + and k).3 Denotational semanticsWe need a space containing more structure than the sets of sequences used in the operational semantics togive a denotational semantics. In De�nition 3.5 we introduce the complete (1-bounded ultrametric) spaceIP (see De�nition A.1 and A.5). The elements of this space can be viewed as tree like objects. It will turnout that this space is rich enough to model parallel composition (and all other constructs) compositionally.The denotational semantics assigns to each statement an element of IP .In the de�nition of the space IP we encounter the spaces SemState, SemStore, SemCom , and SemAct|the semantic counterparts of the sets SynState , SynStore , SynCom , and SynAct , respectively. Before de�ningthese spaces we �rst turn the sets Var , Val , SVar , Chan , and feg into spaces by endowing them with thediscrete metric (see De�nition A.2).The only di�erence between syntactic states and semantic states is that the latter are endowed with ametric (see De�nition A.8) and the former are not.De�nition 3.1 The space (& 2) SemState of semantic states is de�ned bySemState = Var ! Val : 6



A semantic store assigns to each statement variable the denotation of a statement rather than a statementas a syntactic store does.De�nition 3.2 The space (# 2) SemStore of semantic stores is de�ned bySemStore = SVar ! 12 � IP:The role of the 12 � (see De�nition A.3) in the above de�nition is discussed later. It will turn out that the12 � is essential both in the de�nition of the space IP and the denotational semantics D.Instead of sending statements as we did operationally, denotationally we send denotations of statements.De�nition 3.3 The space ($ 2) SemCom of semantic communications is de�ned bySemCom = (Chan � 12 � IP ) + (Chan � SVar):In the above de�nition we use the operations � and + as introduced in De�nition A.3. Instead of (c; �p)and (c; x) we write c ! �p and c ? x, respectively. Forgetting the metric for a moment, we haveSemCom = f c ! �p j c 2 Chan ^ �p 2 IP g [ f c ? x j c 2 Chan ^ x 2 SVar gand SynCom = f c ! s j c 2 Chan ^ s 2 Stat g [ f c ? x j c 2 Chan ^ x 2 SVar g:In De�nition 2.5 we de�ned the set of syntactic actions bySynAct = (SynState � SynStore) [ SynCom:Its semantic counterpart is presented in the following de�nition.De�nition 3.4 The space (% 2) SemAct of semantic actions is de�ned bySemAct = (SemState � SemStore) + SemCom:Note that we use � to range over syntactic actions and % to range over semantic actions. Similarly, �,�, and � range over syntactic states, syntactic stores, and syntactic communications and &, #, and $ rangeover semantic states, semantic stores, and semantic communications.As we have seen in the previous section, in order to be compositional the space IP should record� changes of the semantic state and semantic store caused by the environment,� communication attempts, and� branching points.In the de�nition of the space IP we use the operations!1 (see De�nition A.9) and Pnc (see De�nition A.7).De�nition 3.5 The space (�p 2) IP is de�ned by the equationIP �= (SemState � SemStore !1 Pnc (SemAct � 12 � IP )) + feg:The elements of the space IP can be viewed as tree like objects. We distinguish the following two subspacesof IP .� feg: The semantic entity e we use to model successful termination. It can be seen as the empty treeconsisting of one node and no edges. 7



� (p 2) IP n feg: Let, for &, & 0 2 SemState and #, #0 2 SemStore,p (&; #) = fh%1; �p1i; : : : h%m; �pmigp (& 0; #0) = fh%01; �p01i; : : : h%0n; �p0nigThe semantic entity p can be viewed as the labelled tree�vv (&;#) ���nnnnnnnnnnnn ''(&0;#0) ���PPPPP PPPPP��� %1 ��������� ��%m??? ??? ��� %01 �������� ��%0n??? ??�p1 �pm �p01 �p0nIn the above picture the upper level of branching is due to the functional nature of p. It recordsthe change of the semantic state and semantic store caused by the environment. The lower level ofbranching stems from the set structure of p (&; #) and p (& 0; #0). It records the branching points. Thelabels at the lower level are semantic actions. This allows us to model communication attempts. Forexample, if the environment changes the semantic state to & and the semantic store to #, then thesemantic actions %1, : : : , %m are possible followed by �p1, : : : , �pm, respectively.Note that we use the convention that p ranges over IP n feg and �p ranges over IP .Let us explain how to solve the above equation. (Patience, the development of the denotational semanticsresumes shortly.) The equation is of the formIP �= F (IP )with F being an operation assigning to each (nonempty complete) space another (nonempty complete) space.A solution of the equation is a (nonempty complete) space being isometric (see De�nition A.11 to its F -image. We shall treat the isometries as identities and thus elide their use. They can be put in without anydi�culties, but will clutter up the presentation. To conclude that the equation has a (unique) solution (upto isometry) we exploit the theory developed by America and Rutten in [AR89]. As is shown in that paper,the operation F can be extended to a functor F on a suitable category of (nonempty complete) spaces. Sincethe equation is of the formIP �= : : : IP : : :!1 : : : IP : : : ;i.e. there are both positive and negative7 occurrences of IP in the equation, nonexpansive embedding-projection pairs are used as arrows in the category. The arrows are such that the equation has a (unique)solution if and only if the functor has a (unique) �xed point. In Theorem 4.4 of [AR89] it is shown that a(locally contractive8 and) contractive functor has a (unique) �xed point. The proof of this theorem relies onBanach's theorem (see Theorem A.13). The functor F satis�es both conditions. If we would have left outone of the 12 �'s in the above de�nitions, the obtained functor would neither have been locally contractive norcontractive any more.In order to de�ne the denotational semantics we have to introduce for each syntactic operator a seman-tic counterpart. Apart from the semantic sequential composition and parallel composition, the semanticoperators are de�ned straightforwardly (see De�nition 3.7). The semantic sequential composition and par-allel composition are de�ned as the unique �xed point (Banach's theorem) of a contractive function (seeDe�nition A.12) from the nonempty complete space IP � IP !1 IP to itself. We only give the equationscharacterizing the semantic operators. For the details we refer the reader to [ABKR89, KR90] where variousrelated semantic operators are de�ned in this way.7An occurrence of IP is negative if it is to the left, hereditarily, of an odd number of !1's.8This terminology is taken from [RT92]. In [AR89] hom-contractive is used instead.8



De�nition 3.6 The operator ; is the unique function ; : IP � IP !1 IP satisfying�p1 ; �p2 = � �p2 if �p1 = e�(&; #):f h%; �p01 ; �p2i j h%; �p01i 2 �p1 (&; #) g if �p1 6= eThe operator k is the unique function k : IP � IP !1 IP satisfying�p1 k �p2 =8>><>>: e if �p1 = e and �p2 = e�p2 if �p1 = e and �p2 6= e�p1 if �p1 6= e and �p2 = e�p1 bb �p2 + �p2 bb �p1 + �p1 b �p2 + �p2 b �p1 if �p1 6= e and �p2 6= ewherep1 bb p2 = �(&; #):f h%; �p1 k p2i j h%; �p1i 2 p1 (&; #) gand p1 b p2 = �(&; #):f h(&; #f�p=xg); �p1 k �p2i j hc ! �p; �p1i 2 p1 (&; #) ^ hc ? x; �p2i 2 p2 (&; #) gand p1 + p2 = �(&; #):p1 (&; #) [ p2 (&; #):Having introduced the space IP and the (nontrivial) semantic operators we are ready to give the denota-tional semantics.De�nition 3.7 The denotational semantics D : Stat ! IP is de�ned byD [[v := e]] = �(&; #):fh(&f�=vg; #); eig, where � = E [[e]](&)D [[s1 ; s2]] = D [[s1]] ;D [[s2]]D [[if b then s1 else s2 fi]]= �(&; #):�D [[s1]](&; #) if B [[b]](&) = trueD [[s2]](&; #) if B [[b]](&) = falseD [[s1 k s2]] = D [[s1]] k D [[s2]]D [[c ! s]] = �(&; #):fhc !D [[s]]; eigD [[c ? x]] = �(&; #):fhc ? x; eigD [[x]] = �(&; #):fh(&; #); # (x)igOf course one has to check that, for all s 2 Stat , D [[s]] 2 IP . This can be veri�ed by structural inductionon s. We only consider the case s = x as it shows us the importance of the positioning of the 12 �'s in theabove de�nitions. Obviously, for all & 2 SemState and # 2 SemStore, the set f((&; #); # (x))g is compact.Let &, & 0 2 SemState and #, #0 2 SemStore. We have thatd (f((&; #); # (x))g; f((& 0; #0); #0 (x))g)= d (((&; #); # (x)); ((& 0; #0); #0 (x)))= maxfd ((&; #); (& 0; #0)); 12 � d (# (x); #0 (x))g� maxfd ((&; #); (& 0; #0)); d (#; #0)g [see below]= d ((&; #); (& 0; #0)):The 12 � in De�nition 3.2 is essential, sincedSemStore (#; #0)= supx2SVar d12 �IP (# (x); #0 (x))= supx2SVar 12 � dIP (# (x); #0 (x))� 12 � dIP (# (x); #0 (x)): 9



4 Relating operational and denotational semanticsThe operational and denotational semantics di�er in various aspects:� the operational semantics is de�ned in terms of transitions,� the denotational semantics is compositional,� the operational semantics uses syntactic stores whereas the denotational semantics employs semanticstores,� the denotational semantics records communication attempts,� the operational semantics models deadlock, and� the operational semantics makes use of a linear space|sets of sequences|whereas the denotationalsemantics utilizes a branching space|tree like objects.Relating the operational and denotational semantics we use the following three operators.� The linearize operator LIN . This operator abstracts from the additional structure of the branchingspace arriving at a linear space. It removes (unsuccessful) communication attempts and adds deadlockinformation.� The semantify operator sem. This operator assigns to each syntactic store (action) a correspondingsemantic store (action).� The semantify operator SEM . This operator is an obvious extension of sem from a syntactic linearspace to a semantic linear space.In the rest of this section we proveTheorem 4.1 For all s 2 Stat, � 2 SynState, and � 2 SynStore,SEM (O [[s]](�; �)) = LIN (D [[s]])(sem (�; �)):To prove the above theorem, the operational semantics O suggests the use of induction on transitionswhereas the denotational semantics D hints at using structural induction. We introduce an intermediatesemantics I which is de�ned in terms of transitions and is compositional. The proof of the above theoremis divided into two parts. First, (an extension of) the denotational semantics is shown to be equivalent tothe intermediate semantics. This is proved by structural induction. Second, the intermediate semantics isrelated to (an extension of) the operational semantics by means of the linearize operator and the semantifyoperators. This relation is proved by a co-inductive argument (see Section 7 of [Rut93]).Like the denotational semantics the intermediate semantics uses the space IP as codomain. This requiresthat the transition system employs semantic actions rather than syntactic ones. Clause (9) of De�nition 2.6then obtains the form[x; &; #]!2 [# (x); &; #]:As a consequence, denotations of statements appear in the con�gurations. Besides elements of IP we alsoencounter mixed terms like, e.g., p ; s. We extend the set Stat of statements and the set IP n feg (forgettingabout the metric for a moment) with a restricted set of mixed terms inDe�nition 4.2 The set (r 2) Stat� is de�ned byr ::= s j p j r ; s j r k r:Note that we do not consider e nor mixed terms built from e in the set Stat� of extended statements.We comment on this choice later. We add e in 10



De�nition 4.3 The set (�r 2) Stat�e is de�ned by�r ::= e j r:The con�gurations of the transition system consist of an extended statement and a semantic action. Weintroduce an axiom such that the con�guration [p; &; #], with p (&; #) = fh%1; �p1i; : : : ; h%n; �pnig, can makethe following transitions:[p; &; #]yy %1 ���tttttttt %%%nKKK KKK[�p1; %1] [�pn; %n](cf. the picture following De�nition 3.5). The other axioms and rules are straightforward modi�cations ofthe axioms and rules of De�nition 2.6.De�nition 4.4 The transition relation !2 is de�ned as the smallest subset of(Stat�e � SemAct)� (Stat�e � SemAct)satisfying the following axioms and rules.(1) [v := e; &; #]!2 [e; & f�=vg; #], where � = E [[e]](&)(2) [s1; &; #]!2 [�s1; %][if b then s1 else s2 fi; &; #]!2 [�s1; %] , if B [[b]](&) = true(3) [s2; &; #]!2 [�s2; %][if b then s1 else s2 fi; &; #]!2 [�s2; %] , if B [[b]](&) = false(4) [c ! s; &; #]!2 [e; c !D [[s]]](5) [c ? x; &; #]!2 [e; c ? x](6) [x; &; #]!2 [# (x); &; #](7) [p; &; #]!2 [�p; %] , if h%; �pi 2 p (&; #)(8) [r; %] !2 [�r; %0][r ; s; %] !2 [�r ;E s; %0](9) [r1; %] !2 [�r1; %0][r1 k r2; %] !2 [�r1 kE r2; %0][r2 k r1; %] !2 [r2 kE �r1; %0](10) [r1; &; #]!2 [�r1; c ! p] [r2; &; #]!2 [�r2; c ? x][r1 k r2; &; #]!2 [�r1 kE �r2; &; #fp=xg][r2 k r1; &; #]!2 [�r2 kE �r1; &; #fp=xg]Note that if we would also have considered e in De�nition 4.2 then we should have changed, e.g., rule (8)in order to deal with con�gurations like [e ; s; &; #].From the above introduced transition system we derive an intermediate semanticsI : Stat�e ! IPsatisfyingI (e) = eI (r) = �(&; #):f h%; I (�r)i j [r; &; #]!2 [�r; %] gTo conclude that, for all �r 2 Stat�e, I (�r) 2 IP , we have to check that, for all r 2 Stat�, & 2 SynState , and# 2 SynStore , the set I (r)(&; #) is compact. Usually, the compactness is derived from the fact that thetransition system is �nitely branching. However, the transition system at hand is not �nitely branching.11



Example 4.5 Considerp = �(&; #):f h(&; #); �pni j n 2 IN [ f!g g;where�pn = � e if n = 1�(&; #):fh(&; #); �pn�1ig if n > 1and �p! is the unique element of IP satisfying�p! = �(&; #):fh(&; #); �p!ig:We have, for all n 2 IN [ f!g,[p; &; #]!2 [�pn; &; #]:Consequently, the set FB ([p; &; #]) is in�nite.By endowing the con�gurations of the transition system with a suitable metric, we are able to showthat the obtained metric transition system is compactly branching : every con�guration has a compact set ofoutgoing transitions and transitioning is nonexpansive, i.e., for all �r1, �r2, �r01 2 Stat�e, and %1, %2, %01 2 SemAct,if [�r1; %1]!2 [�r01; %01]then there exist �r02 2 Stat�e and %02 2 SemAct such that[�r2; %2]!2 [�r02; %02]and d ([�r01; %01]; [�r02; %02]) � d ([�r1; %1]; [�r2; %2]):This will turn out to be su�cient to prove that the intermediate semantics assigns to each extended statementan element of IP . The set of extended statements is turned into a space by the metric introduced inDe�nition 4.6 The metric d : Stat�e � Stat�e ! [0; 1] is de�ned byd (�r1; �r2) = 0if �r1 = �r2, otherwised (�r1; �r2) = 8>><>>: dIP (p1; p2) if �r1 = p1 and �r2 = p2d (r1; r2) if �r1 = r1 ; s and �r2 = r2 ; smaxfd (r1; r2); d (r01; r02)g if �r1 = r1 k r01 and �r2 = r2 k r021 otherwiseThe metric on Stat�e is designed in such a way that the metric transition system is compactly branching.The other component of the con�gurations, the semantic actions, are endowed with the metric introducedin De�nition 3.4.Now we are ready to prove that the metric transition system|the transition system the con�gurationsof which are endowed with the just introduced metric|is compactly branching.Property 4.7 The function CB : Stat�e � SemAct ! P (Stat�e � SemAct) de�ned byCB ([�r; %]) = f [�r0; %0] j [�r; %] !2 [�r0; %0] gis an element of Stat�e � SemAct !1 Pc ((12 � Stat�e)� SemAct).Proof First, we prove that, for all �r 2 Stat�e and % 2 SemAct , the set CB ([�r; %]) is compact by structuralinduction on �r. We only consider the following two cases.12



1. Let �r = p and % = (&; #). SinceCB ([p; &; #]) = f [�p; %] j h%; �pi 2 p (&; #) gand the set p (&; #) is compact, also the set CB ([p; &; #]) is compact.2. Let �r = r ; s. We have thatCB ([r ; s; %]) = f [�r ;E s; %0] j [�r; %0] 2 CB ([r; %]) g:By induction, the set CB ([r; %]) is compact. One can easily verify that the extended operator ;Eis nonexpansive. Because the nonexpansive image of a compact set is compact (a consequence ofTheorem III of [Ale27]), we can conclude that the set CB ([r ; s; %]) is compact.Second, we prove that, for all �r1, �r2 2 Stat�e and %1, %2 2 SemAct ,d (CB ([�r1; %1]); CB ([�r2; %2])) � d ([�r1; %1]; [�r2; %2])by structural induction on �r1 and �r2. We only consider those �r1 and �r2 satisfying 0 < d (�r1; �r2) < 1, sincefor all other �r1 and �r2 the above equation is vacuously true. Only two cases are elaborated on.1. Let �r1 = p1 and �r2 = p2, and %1 = (&; #1) and %2 = (&; #2).d (CB ([p1; &; #1]); CB ([p2; &; #2]))= d (f [�p1; %1] j h%1; �p1i 2 p1 (&; #1) g; f [�p2; %2] j h%2; �p2i 2 p2 (&; #2) g)= d (p1 (&; #1); p2 (&; #2))� maxfd (p1 (&; #1); p2 (&; #1)); d (p2 (&; #1); p2 (&; #2))g [ultrametricity]� maxfd (p1; p2); d ((&; #1); (&; #2))g [p2 is nonexpansive]= d ([p1; &; #1]; [p2; &; #2]):2. Let �r1 = r1 ; s and �r2 = r2 ; s.d (CB ([r1 ; s; %1]); CB ([r2 ; s; %2]))= d (f [�r1 ;E s; %01] j [�r1; %01] 2 CB ([r1; %1]) g; f [�r2 ;E s; %02] j [�r2; %02] 2 CB ([r2; %2]) g)� d (CB ([r1; %1]); CB ([r2; %2])) [;E is nonexpansive]� d ([r1; %1]; [r2; %2]) [induction]= d ([r1 ; s; %1]; [r2 ; s; %2]): 2If we would leave out the 12 � then we would obtain a more restrictive condition which the metric transitionsystem does not satisfy (consider, e.g., the extended statements �p1 and �p2 of Example 4.5).The intermediate semantics I is de�ned as the unique �xed point of the function � introduced inProperty 4.8 The metric transition system (Stat�e � SemAct;!2) induces the function� : (Stat�e !1 IP )! (Stat�e !1 IP )de�ned by� (�)(e) = e� (�)(r) = �(&; #):f h%; � (�r)i j [r; &; #]!2 [�r; %] gProof We prove that1. for all � 2 Stat�e !1 IP , r 2 Stat�, & 2 SemState, and # 2 SemStore , the set � (�)(r)(&; #) is nonemptyand compact,2. for all � 2 Stat�e !1 IP and r 2 Stat�, the function � (�)(r) is nonexpansive, and3. for all � 2 Stat�e !1 IP , the function � (�) is nonexpansive.13



In this proof we frequently use that� (�)(r)(&; #) = f h%; � (�r)i j [�r; %] 2 CB ([r; &; #]) g:We start with 1. Since the set CB ([r; &; #]) is nonempty (as can easily be veri�ed), we can conclude that theset � (�)(r)(&; #) is also nonempty. According to Property 4.7, the set CB ([r; &; #]) is compact. Because �is nonexpansive and the nonexpansive image of a compact set is compact, the set � (�)(r)(&; #) is compact.We continue with 2. For all &1, &2 2 SemState and #1, #2 2 SemStore,d (� (�)(r)(&1; #1); � (�)(r)(&2; #2))= d (f h%1; � (�r1)i j [�r1; %1] 2 CB ([r; &1; #1]) g; f h%2; � (�r2)i j [�r2; %2] 2 CB ([r; &2; #2]) g)� d (CB ([r; &1; #1]); CB ([r; &2; #2])) [� is nonexpansive]� d ([r; &1; #1]; [r; &2; #2]) [Property 4.7]= d ((&1; #1); (&2; #2)):We conclude with 3. For all r1, r2 2 Stat�, & 2 SemState , and # 2 SemStore,d (� (�)(r1)(&; #); � (�)(r2)(&; #))� d ([r1; &; #]; [r2; &; #]) [as in the proof of 2.]= d (r1; r2): 2In the above property we restricted ourselves to nonexpansive functions from the space Stat�e to IP .Without this restriction the property is not valid (consider, e.g., p of Example 4.5 and � satisfying, for alln 2 IN, � (�pn) = �pn and � (�p!) = e).The function � is a mapping from the nonempty complete space Stat�e !1 IP to itself. The fact that� is a contraction can be easily proved. According to Banach's theorem, � has a unique �xed point: theintermediate semantics.De�nition 4.9 The intermediate semantics I : Stat�e !1 IP is de�ned byI = �x (�):The intermediate semantics I is shown to be equivalent to the extended denotational semantics D�. Thisdenotational semantics is a natural extension of the denotational semantics D.De�nition 4.10 The extended denotational semantics D� : Stat�e ! IP is de�ned byD� (e) = eD� (s) = D [[s]]D� (p) = pD� (r ; s) = D� (r) ;D� (s)D� (r1 k r2) = D� (r1) k D� (r2)The semantic models I and D� are shown to be equivalent by uniqueness of �xed point, viz we show thatD� is a �xed point of �. This proof technique is due to Kok and Rutten [KR90].Property 4.11 � (D�) = D�.Proof First, we should check that D� is nonexpansive, which can be veri�ed by structural induction.Second, we should show that D� is a �xed point of �, which can also be proved by structural induction. 2By uniqueness of �xed point we can concludeLemma 4.12 I = D�. 14



Proof Immediate consequence of De�nition 4.9, Property 4.11, and Banach's theorem. 2Next we will relate the intermediate semantics and (an extension of) the operational semantics. For thatpurpose we introduce the already mentioned linearize operator and semantify operators.The linearize operator abstracts from the additional structure of the branching space IP arriving at thelinear spaceSemState � SemStore !1 Pnc ((SemState � SemStore)1� )where the space (SemState � SemStore)1� is an instance ofDe�nition 4.13 Let (x 2)X be a nonempty complete space. The space (w 2)X1� is de�ned by the equationX1� �= f"g+ f�g+X � 12 �X1� :The elements of the space X1� are� �nite sequences over X,� �nite sequences over X followed by �, and� in�nite sequences over X.Instead of (x1; (x2; : : : ; (xn; ") : : :)), (x1; (x2; : : : ; (xn; �) : : :)), and (x1; (x2; : : :)) we write x1x2 : : :xn,x1x2 : : :xn�, and x1x2 : : :, respectively.If we endow SynState�SynStore with the discrete metric the above de�nition gives us the set introducedin De�nition 2.8 endowed with a Baire-like [Bai09] metric as presented in, e.g., [Niv79].The linearize operator LIN� removes (unsuccessful) communication attempts,� adds deadlock information,� removes the changes caused by the environment, and� collapses the branching structure.As the semantic sequential composition and parallel composition, LIN is de�ned as the unique �xed pointof a contractive function from a nonempty complete space to itself.De�nition 4.14 The function LIN is the unique functionLIN : IP !1 (SemState � SemStore) !1 Pnc ((SemState � SemStore)1� )satisfyingLIN (e)(&; #) = f"gLIN (p)(&; #) = �f�g if p (&; #) � SemCom � IPf (& 0; #0)w j h(& 0; #0); �pi 2 p (&; #)^w 2 LIN (�p)(& 0; #0) g otherwiseThe condition p (&; #) � SemCom � IP is the semantic counterpart of the syntactic deadlocking condi-tion introduced in De�nition 2.9. More precisely, from Theorem 4.1 we can derive that, for all s 2 Stat ,� 2 SynState , and � 2 SynStore,[s; �; �] deadlocks if and only if D [[s]](sem(�; �)) � SemCom � IP:The semantify operator sem assigns to each syntactic action a corresponding semantic action. Thisoperator is de�ned in terms of the denotational semantics D. The semantify operator SEM is the obviousextension of sem from the syntactic linear space Pnc ((SynState � SynStore)1� ) to the semantic linear spacePnc ((SemState � SemStore)1� ). 15



De�nition 4.15 The function sem : SynAct ! SemAct is de�ned bysem (�; �) = (�; �x:D [[� (x)]])sem (c ! s) = c !D [[s]]sem (c ? x) = c ? xThe function Sem is the unique functionSem : (SynState � SynStore)1� !1 (SemState � SemStore)1�satisfyingSem (") = "Sem (�) = �Sem ((�; �)w) = sem (�; �) Sem (w)The function SEM : Pnc ((SynState � SynStore)1� )!1 Pnc ((SemState � SemStore)1� ) is de�ned bySEM (W ) = f Sem (w) j w 2W g:The operational semantics is extended inDe�nition 4.16 The extended operational semanticsO� : State � SynState � SynStore ! P ((SynState � SynStore)1� )is de�ned byO� ([e; �; �]) = f"gO� ([s; �; �]) = O [[s]](�; �)The intermediate semantics I and the extended operational semantics O� are related by means of thelinearize operator LIN and the semantify operators sem and SEM . We show that, for all �s 2 State,� 2 SynState , and � 2 SynStore,LIN (I (�s))(sem (�; �)) = SEM (O� ([�s; �; �])):It will be convenient to write H ([�s; �; �]) for the left-hand side.De�nition 4.17 The functionH : State � SynState � SynStore ! Pnc ((SemState � SemStore)1� )is de�ned byH ([�s; �; �]) = LIN (I (�s))(sem (�; �)):The equivalence of H and SEM � O� is proved by uniqueness of �xed point. We show that H andSEM � O� are both a �xed point of 	 .Property 4.18 The transition system (State � SynAct ;!1) induces the function	 : (State � SynState � SynStore ! Pnc ((SemState � SemStore)1� ))! (State � SynState � SynStore ! Pnc ((SemState � SemStore)1� ))de�ned by	 ( )([e; �; �]) = f"g	 ( )([s; �; �]) = �f�g if [s; �; �] deadlocksf sem (�0; �0)w j [s; �; �]!1 [�s; �0; �0] ^w 2  ([�s; �0; �0]) g otherwiseProof Similar to the proof of Property 4.8 using Property 2.7. 216



The space State � SynState � SynStore ! Pnc ((SemState � SemStore)1� ) is nonempty and complete.We leave it to the reader to verify that 	 is contractive.We show that H is a �xed point of 	 inProperty 4.19 	 (H) = H.Proof First, we relate the transition relations !1 and !21. For all �s, �s0 2 State, and �, �0 2 SynAct , if[�s; �] !1 [�s0; �0]then there exists a �r 2 Stat�e such that[�s; sem (�)]!2 [�r; sem (�0)]and I (�s0) = I (�r).2. For all �s 2 State, �r 2 Stat�e, � 2 SynAct , and %0 2 SemAct , if[�s; sem (�)]!2 [�r; %0]then there exist �s0 2 State and �0 2 SynAct such that[�s; �] !1 [�s0; �0]sem (�0) = %0, and I (�r) = I (�s0).Both 1. and 2. can be proved by structural induction on �s (cf. Lemma 4.15 of [BB93]).Second, we show that, for all �s 2 State, � 2 SynState , and � 2 SynStore ,	 (H)([�s; �; �]) = H ([�s; �; �]):We only consider the case that �s 6= e and [�s; �; �] does not deadlock. The other two cases are much simplerand left to the reader.	 (H)([�s; �; �])= [ f sem (�0; �0)w j [�s; �; �]!1 [�s0; �0; �0]^w 2 H ([�s0; �0; �0]) g= [ f sem (�0; �0)w j [�s; �; �]!1 [�s0; �0; �0]^w 2 LIN (I (�s0))(sem (�0; �0)) g= [ f (&; #) v j [�s; sem (�; �)] !2 [�r; &; #]^ v 2 LIN (I (�r))(&; #) g [1. and 2. ]= [ f (&; #) v j h(&; #); pi 2 I (�s)(sem (�; �)) ^ v 2 LIN (p)(&; #) g= LIN (I (�s))(sem (�; �))= H ([�s; �; �]): 2Also SEM � O� is a �xed point of 	 .Property 4.20 	 (SEM � O�) = SEM � O�.Proof First, we have to check that, for all �s 2 State, � 2 SynState , and � 2 SynStore , the set O� ([�s; �; �])is nonempty and compact. This can be proved using Property 2.7 (cf., e.g., the proof of Theorem 4.2.7 of[Bre94]).Second, we show that, for all �s 2 State, � 2 SynState , and � 2 SynStore ,	 (SEM � O�)([�s; �; �]) = (SEM � O�) ([�s; �; �]):17



Again we only consider the case that �s 6= e and [�s; &; �] does not deadlock.	 (SEM � O�)([�s; �; �])= f sem (�0; �0)w j [�s; �; �]!1 [�s0; �0; �0]^w 2 (SEM � O�) ([�s0; �0; �0]) g= SEM (f (�0; �0) v j [�s; �; �] !1 [�s0; �0; �0] ^ v 2 O� ([�s0; �0; �0]) g)= (SEM � O�) ([�s; �; �]): 2By uniqueness of �xed point we can concludeLemma 4.21 SEM � O� = H.Proof Immediate consequence of Property 4.19 and 4.20 and Banach's theorem. 2Combining Lemma 4.12 and 4.21 we arrive atProof of Theorem 4.1SEM (O [[s]](�; �))= (SEM � O�) ([s; �; �])= H ([s; �; �])) [Lemma 4.21]= LIN (I (s))(sem (�; �))= LIN (D� (s))(sem (�; �)) [Lemma 4.12]= LIN (D [[s]])(sem (�; �)): 2ConclusionIn the preceding four sections we introduced a simple imperative language with second order communication,presented an operational and a denotational semantics, and linked the two semantics. Next we discuss somerelated issues.Bisimulation, a notion due to Milner and Park [Mil80, Par81, Mil94], plays an important role in theoryof concurrency. Various notions of higher order bisimulation have been introduced (see, e.g., [AGR92, MS92,Tho90]). By means of the theory developed by Rutten and Turi in [RT92]9 we can de�ne second orderbisimulations on the statements in terms of the transition relation !1 and on the extended statements interms of the transition relation !2. The latter gives rise to second order bisimulations on the elements ofthe space IP . We can show that the space IP is strongly extensional: second order bisimilarity coincides withequality.The denotational semantics D is not fully abstract|the full abstractness problem for programming lan-guages was �rst raised by Milner [Mil77]|with respect to the operational semantics O. The intermediatesemantics I models second order bisimilarity (in terms of !2) in a fully abstract way.A simpli�cation with respect to the usual languages of this kind is that we assume one global state andstore, rather than a distribution of local states and stores over the various parallel components. The designof a mechanism for local states and stores can be found in the work on the semantics of Philips' parallelobject oriented language POOL [ABKR86, ABKR89, Rut90].In a setting with local states and stores arbitrary combinations of sequential and parallel compositionsmight give rise to statements which are of very little signi�cance. These combinations can be ruled out byreplacing the language construct parallel composition by process creation. It has been shown by Aalbersbergand America [AA88] that the expressive power of parallel composition and process creation are incomparable.For metric semantic models for process creation we refer the reader to America and De Bakker's [AB88].9Recently Lenisa [Len95] has extended this theory along the lines of Pitts' [Pit94] and applied it in our setting.18



In a distributed setting it would be meaningful to transmit a closure, a pair consisting of a statement anda local store, rather than just a statement as we do here. This seems to be related to the explicit substitutionin the ��- and ��-calculus of Curien et al. [Cur88, ACCL91].In our setting c ? x is not a binder (binding x) as it is in, e.g., ECCS [EN86], CHOCS [Tho90], and the�-calculus [MPW92]. Consider the following statement:c ! s1 ; c ! s2 k c ? x k c ? x ; x:Which statement is stored for the statement variable x upon execution is dependent on the order thecommunications take place. This is a consequence of considering one global state and store. If we wouldconsider local states and stores c ? x would become a binder.In the de�nition of the space IP and the denotational semantics D we exploited the fact that we restrictedourselves to ultrametric spaces|rather than using metric spaces. It seems that the ultrametricity is essentialfor giving metric semantics to higher order notions like second order communication.References[AA88] IJ.J. Aalbersberg and P. America, 1988. Personal communication.[AB88] P. America and J.W. de Bakker. Designing Equivalent Models for Process Creation. TheoreticalComputer Science, 60(2):109{176, September 1988.[ABKR86] P. America, J.W. de Bakker, J.N. Kok, and J.J.M.M. Rutten. Operational Semantics of a ParallelObject-Oriented Language. In Proceedings of the 13th Annual ACM Symposium on Principlesof Programming Languages, pages 194{208, St. Petersburg Beach, January 1986. ACM.[ABKR89] P. America, J.W. de Bakker, J.N. Kok, and J.J.M.M. Rutten. Denotational Semantics of aParallel Object-Oriented Language. Information and Computation, 83(2):152{205, November1989.[ACCL91] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. L�evy. Explicit Substitutions. Journal of FunctionalProgramming, 1(4):375{416, 1991.[AGR92] E. Astesiano, A. Giovini, and G. Reggio. Observational Structures and their Logics. TheoreticalComputer Science, 96(1):249{283, April 1992.[Ale27] P. Alexandro�. �Uber stetige Abbildungen kompakter R�aume. Mathematische Annalen, 96:555{571, 1927.[AR89] P. America and J.J.M.M. Rutten. Solving Re
exive Domain Equations in a Category of CompleteMetric Spaces. Journal of Computer and System Sciences, 39(3):343{375, December 1989.[Bai09] R. Baire. Sur la Repr�esentation des Fonctions Discontinues. Acta Mathematica, 32(1):97{176,1909.[Ban22] S. Banach. Sur les Op�erations dans les Ensembles Abstraits et leurs Applications aux EquationsInt�egrales. Fundamenta Mathematicae, 3:133{181, 1922.[Bar92] H.P. Barendregt. Lambda Calculi with Types. In S. Abramsky, Dov M. Gabbay, and T.S.E.Maibaum, editors, Handbook of Logic in Computer Science, volume 2, Background: Computa-tional Structures, chapter 2, pages 117{309. Clarendon Press, Oxford, 1992.[BB93] J.W. de Bakker and F. van Breugel. Topological Models for Higher Order Control Flow. InS. Brookes, M. Main, A. Melton, M. Mislove, and D. Schmidt, editors, Proceedings of the 9thInternational Conference on Mathematical Foundations of Programming Semantics, volume 802of Lecture Notes in Computer Science, pages 122{142, New Orleans, April 1993. Springer-Verlag.19
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De�nition A.2 Let X be a set. The discrete metric dX : X �X ! [0; 1] is de�ned bydX (x; y) = � 0 if x = y1 if x 6= yFrom spaces one can build new spaces by means of operations like the shrinking operation 12 �, theCartesian product � and the disjoint union +.De�nition A.3 Let X and Y be spaces.� The metric (12 � d)X : X �X ! [0; 1] is de�ned by(12 � d)X (x; y) = 12 � dX (x; y):� The metric dX�Y : (X � Y )� (X � Y ) ! [0; 1] is de�ned bydX�Y ((v; w); (x; y)) = maxf dX (v; x); dY (w; y) g:� The metric dX+Y : (X + Y )� (X + Y ) ! [0; 1] is de�ned bydX+Y (v; w) = 8<: dX (v; w) if v 2 X and w 2 XdY (v; w) if v 2 Y and w 2 Y1 otherwiseBelow we will encounter some other operations on spaces.The completeness of a space is essential in Banach's theorem. Before we introduce this notion we �rstpresent the de�nitions of converging and Cauchy sequence.De�nition A.4 Let X be a space. Let (xn)n be a sequence in X and x an element of X.� The sequence (xn)n is said to converge to the element x if8� > 0 : 9N 2 IN : 8n � N : dX (xn; x) � �:� The sequence (xn)n is called Cauchy if8� > 0 : 9N 2 IN : 8m;n � N : dX (xm; xn) � �:As can be easily seen, every convergent sequence is Cauchy.De�nition A.5 A space is called complete if every Cauchy sequences in the space is convergent.As one can easily verify, the operations 12 �, �, and + preserve completeness.Compactness, a generalization of �niteness, is introduced inDe�nition A.6 A subset of a space is called compact if every sequences in the set has a converging subse-quence.The set Pnc (X) of nonempty and compact subsets of the space X is turned into a space by endowing itwith the Hausdor� metric (see Chapter VIII, x 6 of [Hau14]) introduced inDe�nition A.7 Let X be a space. The Hausdor� metric dPnc (X) : Pnc (X) � Pnc (X) ! [0; 1] is de�nedby dPnc (X) (A;B) = maxf sup f inf f dX (a; b) j b 2 B g j a 2 A g;sup f inf f dX (b; a) j a 2 A g j b 2 B g g:22



The operation Pnc preserves completeness (Lemma 3 of [Kur56]). The space Pc (X) of compact subsetsof the space X is de�ned byPc (X) = Pnc (X) + f;g:The set X ! Y of functions from the space X to the space Y is turned into a space by endowing it withthe metric introduced inDe�nition A.8 Let X and Y be spaces. The metric dX!Y : (X ! Y ) � (X ! Y ) ! [0; 1] is de�ned bydX!Y (f; g) = sup fdY (f (x); g (x)) j x 2 Xg:Frequently we restrict ourselves to the subspace of nonexpansive functions.De�nition A.9 Let X and Y be spaces. A function f : X ! Y is called nonexpansive if, for all x, y 2 X,dY (f (x); f (y)) � dX (x; y):We denote the space of nonexpansive functions from the space X to the space Y by X !1 Y . Theoperations ! and !1 preserve completeness as can easily be veri�ed.Next we will introduce an equivalence notion of spaces.De�nition A.10 Let X and Y be spaces. A function f : X ! Y is called isometric if, for all x, y 2 X,dY (f (x); f (y)) = dX (x; y):Note that an isometric function is injective.De�nition A.11 The spaces X and Y are called isometric, denoted by X �= Y , if there exists an isometricfunction from X to Y which is surjective.Besides the completeness of the space, the contractiveness of the function is another essential ingredientof Banach's theorem.De�nition A.12 Let X and Y be spaces. A function f : X ! Y is called contractive if there exists an �,with 0 � � < 1, such that, for all x, y 2 X,dY (f (x); f (y)) � � � dX (x; y):We conclude with Banach's �xed point theorem.Theorem A.13 (Banach) Let X be a nonempty complete space. If the function f : X ! X is contractivethen it has a unique �xed point �x (f).Proof See Theorem II.6 of [Ban22]. 2
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