
Universit�a di PisaDipartimento di InformaticaTechnical Report : TR-97-18Failures, Finiteness, and Full AbstractionFranck van Breugel

September 09, 1997ADDR: Corso Italia 40,56125 Pisa,Italy. TEL: +39-50-887111. FAX: +39-50-887226

Failures, Finiteness, and Full AbstractionFranck van BreugelUniversit�a di Pisa, Department of Computer ScienceCorso Italia 40, 56125 Pisa, Italyfranck@di.unipi.itAbstractFor a simple CCS-like language a trace semantics and a failure semantics are presented. The failuresemantics is shown to be fully abstract with respect to the trace semantics if and only if the set ofinternal actions is in�nite. IntroductionIn this paper we focus on the full abstraction problem. Already in the early seventies this issue was raisedby Milner [Mil73, page 168]. For a discussion of its importance we refer the reader to the introduction ofStoughton's monograph [Sto88].In the early eighties, Brookes, Hoare, and Roscoe [BHR84] introduced failures to provide a semanticsfor CSP [Hoa85]. These failures give rise to a fully abstract semantics for CSP as was shown by Bergstra,Klop, and Olderog [BKO88, Corollary 7.3.1] and Main [Mai87, Section 4.3]. It is well known that failures failto be fully abstract for a variety of concurrent languages based on asynchronous communication (see, e.g.,[BKPR91]). However, our observation that failures are not always fully abstract for a synchronous CCS-likelanguage [Mil80] seems to be new. Whether the failure semantics is fully abstract depends on the cardinalityof the set of internal actions. If this set is �nite then the failure semantics is not fully abstract. Otherwise,it is.For a simple CCS-like language we present a trace semantics. Its de�nition is based on a labelled transitionsystem following Plotkin's structural approach [Plo81]. As one can easily verify, the trace semantics lackscompositionality. The search for a compositional semantics for the language leads us to a failure semantics.Also this semantics is de�ned by means of the labelled transition system. Because the failure semantics isshown to be compositional and to make more distinctions than the trace semantics, the failure semanticis called correct with respect to the trace semantics. We call the failure semantics complete if it does notmake too many distinctions. That is, if the statements s1 and s2 are distinguished by the failure semantics,then we should be able to construct a larger statement from s1, denoted by C [s1], such that if we extend s2similarly|this extension is denoted by C [s2]|then the two extensions C [s1] and C [s2] are not identi�ed bythe trace semantics. We prove that the failure semantics is complete with respect to the trace semantics ifand only if the set of internal actions is in�nite. In the completeness proof it is essential that one can choosean internal action that is di�erent from a �nite set of actions that play a signi�cant role. The assumptionthat the set of internal actions is in�nite allows us to �nd such a fresh action (cf., e.g., [BG87, De�nition 5.3]).Combining the above we can conclude that the failure semantics is fully abstract, i.e. correct and complete,with respect to the trace semantics if and only if we have in�nitely many internal actions.Similar full abstraction studies have been carried out by, e.g., De Bakker and De Vink [BV96, Chapter 17],Bergstra, Klop, and Olderog [BKO88], Horita [Hor93], Main [Mai87], and Rutten [Rut88]. This paper buildson their work. 1

The rest of this paper is organized as follows. In Section 1, we introduce the language. For this languagea labelled transition system is given in Section 2. Based on this labelled transition system, a trace semanticsand a failure semantics are developed in Section 3 and 4. In Section 5, the failure semantics is shown to becorrect with respect to the trace semantics. The completeness of the failure semantics is studied in Section 6.In this section, some new results are presented. We generalize some results by De Bakker and De Vink [BV96,Section 17.3]. Our Theorem 6.5 strengthens [BV96, Lemma 17.21] and Corollary 6.9 proves the conjectureof [BV96, page 504]. Some conclusions are drawn in the �nal section.AcknowledgementsI am thankful to the members of the Amsterdam Concurrency Group, in particular Jaco de Bakker and JanRutten, for their comments on [Bre94]. I am grateful to Mike Mislove for the stimulating discussions whichled to the proof of Corollary 6.9, the main result of this paper. My thanks also to Furio Honsell for hisinsightful questions when I presented this material to him. Maurizio Gabbrielli provided some comments ona preliminary version of this paper and Rocco De Nicola made me aware of some related work, for which I amthankful. My thanks also to the referees for pointing out an error and for their comments which improvedthe presentation. 1 LanguageIn this section, we introduce the syntax of a very simple CCS-like language. We presuppose a set (i 2) IActof internal actions with a distinguished action � . We assume that these internal actions are observable.The action � we use to model synchronization. This � will be visible in the semantics. Furthermore, wepresuppose a nonempty set (c 2) SAct of synchronization actions. The synchronization actions are assumednot to be observable. We also presuppose a (bijective) function �� : SAct ! SAct with for all c 2 SAct,��c = c. It yields for every synchronization action c its synchronization partner �c. The set (a 2)Act of actionsis given by Act = IAct [SAct . Finally, we presuppose a nonempty set (x 2) SVar of statement variables.These statement variables add recursion to the language.Definition 1.1 The set (s 2) Stat of statements is de�ned bys ::= nil j a:s j s+ s j s k s j x:Roughly, the meaning of the statement constructions is as follows. The statement nil cannot do anythingbut terminate. The pre�xing a:s �rst performs the action a and then behaves like s. The nondeterministicchoice s1+ s2 behaves either as s1 or as s2. The parallel composition s1 k s2 represents s1 and s2 performingconcurrently, possibly synchronizing. To each statement variable a declaration (see De�nition 1.2) assigns a(guarded) statement. A statement variable behaves like the statement associated to it by the declaration.We restrict ourselves to guarded recursion1. That is, to each statement variable the declaration assigns aguarded statement.Definition 1.2 The set (g 2)GStat of guarded statements is de�ned byg ::= nil j a:s j g + g j g k g:The set (d 2)Decl of declarations is de�ned byDecl = SVar ! GStat :1Unguarded recursion gives rise to unboundednondeterminacy. It is well known that unboundednondeterminacycomplicatesthe search for a fully abstract semantics (see, e.g., [AP86]). If we were to consider unguarded recursion, then Theorem 6.5would not hold any more. 2

We assume some �xed declaration d as given, and all considerations in any argument refer to this declaration.The language we have introduced above is a minimal one. Apart from the statement variables, allthe constructions of the language are used in the contexts constructed in the proof of Theorem 6.5 (cf.De�nition 6.3 and Lemma 6.4). The statement variables, which allow us to specify recursion, are crucialfor the results of Subsection 6.2. In [BV96, BKO88, Rut88] sequential composition instead of pre�xing isused. Also restriction and renaming are present in the language studied in [BKO88]. We are con�dent thatthe main results of the present paper also hold if we replace pre�xing by sequential composition and addrestriction and renaming. 2 Labelled transition systemThe trace semantics and the failure semantics are both based on the labelled transition system presentedbelow. It is shown that the system is �nitely branching. We will exploit this fact in Section 6.1.The con�gurations of the labelled transition system are statements and the labels are actions. Thetransition relation is presented inDefinition 2.1 The transition relation ! is de�ned by the following axiom and rules.(1) a:s a�! s(2) s1 a�! s01s1 + s2 a�! s01 s2 a�! s02s1 + s2 a�! s02(3) s1 a�! s01s1 k s2 a�! s01 k s2 s2 a�! s02s1 k s2 a�! s1 k s02(4) s1 c�! s01 s2 �c�! s02s1 k s2 ��! s01 k s02(5) d (x) a�! sx a�! sEvery con�guration has only �nitely many outgoing transitions as is shown inProposition 2.2 The labelled transition system is �nitely branching.Proof By structural induction, one can show that all guarded statements have only �nitely many outgoingtransitions. Subsequently, one can prove, again by structural induction, that all statements have �nitelymany outgoing transitions. 23 Trace semanticsFrom the labelled transition system given in the previous section we extract the trace semantics. It is shownthat this semantics is not compositional.In the trace semantics we do not record the transitions labelled by synchronization actions, which may beviewed as unsuccessful attempts at synchronization, unless a statement can only make transitions labelled3

by synchronization actions. In that case, we say that the statement deadlocks. We consider successfullyterminating computationss1 i1��! s2 i2��! � � � in�1���! sn 6!; 2nonterminating computationss1 i1��! s2 i2��! � � � ;and deadlocking computationss1 i1��! s2 i2��! � � � in�1���! sn deadlocks:Note that all computations are maximal, i.e. they cannot be extended. These three types of computationsare modelled by �nite sequences of internal actions, in�nite sequences of internal actions, and �nite sequencesof internal actions followed by a �, respectively.Definition 3.1 The set (T 2)Tof trace sets is de�ned byT= P (IAct� [IAct! [IAct� � f�g):The trace semantics assigns to each statement a trace set as follows.Definition 3.2 The trace semantics T : Stat !T is de�ned byT (s) = f i1i2 � � � in�1 j s = s1 i1��! s2 i2��! � � � in�1���! sn 6! g[f i1i2 � � � j s = s1 i1��! s2 i2��! � � �g[f i1i2 � � � in�1� j s = s1 i1��! s2 i2��! � � � in�1���! sn deadlocks g;where sn deadlocks if sn ! and sn in��! sn+1 for no in and sn+1.It is important to notice that like in, e.g., [BV96] (and in contrast to, e.g., [Mai87]) in the trace semanticssynchronization (�) and deadlock (�) are observable and unsuccessful attempts at synchronization (synchro-nization actions) are not. Note also that the trace semantics does not rule out unfair computations. Thissemantics is not compositional as is demonstrated inProposition 3.3 T is not compositional.Proof Towards a contraction, assume that T is compositional. Then� 2 T (c:nil k �c:nil)= T (c:nil) k T (�c:nil) [T is compositional]= T (c:c:nil) k T (�c:nil) [T (c:nil) = f�g = T (c:c:nil)]= T (c:c:nil k �c:nil) [T is compositional] 22In this paper we use the convention (n 2) IN = f1;2; : : :g. 4

4 Failure semanticsAlso the failure semantics is de�ned in terms of the labelled transition system of Section 2. In contrast tothe trace semantics, this semantics is compositional. It is furthermore shown how the trace semantics canbe derived from the failure semantics.To construct a compositional semantics for the language we make more distinctions than we did inthe trace semantics. We do this by also recording the transitions labelled by synchronization actions andby administrating which synchronization actions a deadlocking statement refuses to do|rather than justsignaling deadlock as we did in the trace semantics. This leads to considering successfully terminatingcomputationss1 a1��! s2 a2��! � � � an�1����! sn 6!;nonterminating computationss1 a1��! s2 a2��! � � � ;and deadlocking computationss1 a1��! s2 a2��! � � � an�1����! sn deadlocks and refuses to do the set X of synchronization actions.We use �nite sequences of actions, in�nite sequences of actions, and �nite sequences of actions followed bya refusal set X of synchronizations actions to model these three types of computations.Definition 4.1 The set (F 2)F of failure sets is de�ned byF = P (Act� [Act! [Act� � P (SAct)):These failure sets are assigned to the statements as follows.Definition 4.2 The failure semantics F : Stat ! F is de�ned byF (s) = f a1a2 � � �an�1 j s = s1 a1��! s2 a2��! � � � an�1����! sn 6! g[f a1a2 � � � j s = s1 a1��! s2 a2��! � � �g[f a1a2 � � �an�1X j s = s1 a1��! s2 a2��! � � � an�1����! sn deadlocks and refuses X g;where sn refuses X if for all c 2 X, sn c�! sn+1 for no sn+1.Note that in the above introduced failure semantics synchronization (�) is observable, like, e.g., in [BV96].This should be contrasted with, e.g., testing semantics [Hen88] where synchronization is usually not visible.Next we show that this failure semantics is compositional. For that purpose we �rst give characterizationsof the pre�xing operator, the nondeterministic choice, and the parallel composition. These characterizationswill also be exploited in the proof of Lemma 6.7. In the characterization of the parallel composition we makeuse of schedulers. These schedulers are closely related to oracles which are used by, e.g., Park [Par81,Section 6] to describe the fair merge. A scheduler � tells us whether the i-th transition of a parallelcomposition sL k sR� is taken by the left statement sL in which case � (i) = L,� is taken by the right statement sR in which case � (i) = R,� or arises as the result of the statements sL and sR synchronizing by means of the actions c and �c inwhich case � (i) = c. 5

The contribution of the left statement sL to the i-th transition labelled by a of the parallel compositionsL k sR is given by �L (a; i) and the contribution of the right statement sR is denoted by �R (a; i), where�L (a; i) = 8<: a if � (i) = L� if � (i) = Rc if � (i) = c and a = �and �R (a; i) = 8<: � if � (i) = La if � (i) = R�c if � (i) = c and a = � .A similar characterization of the merge has been given by, e.g., Meyer [Mey86, Section 2.2].Lemma 4.31. a1 : : : an 2 F (a:s) if and only if a1 = a and a2 : : :an 2 F (s).2. a1a2 : : : 2 F (a:s) if and only if a1 = a and a2a3 : : : 2 F (s).3. X 2 F (a:s) if and only if a 2 SAct and a 62 X.4. a1 : : : anX 2 F (a:s) if and only if a1 = a and a2 : : :anX 2 F (s).5. a1 : : : an�1 2 F (s1 + s2) if and only if a1 : : : an�1 2 F (s1) or a1 : : : an�1 2 F (s2).6. a1a2 : : : 2 F (s1 + s2) if and only if a1a2 : : : 2 F (s1) or a1a2 : : : 2 F (s2).7. X 2 F (s1 + s2) if and only if X 2 F (s1) and X 2 F (s2).8. a1 : : : anX 2 F (s1 + s2) if and only if a1 : : : anX 2 F (s1) or a1 : : :anX 2 F (s2).9. a1 : : : an�1 2 F (s1 k s2) if and only if there exists a function � : f1; : : : ; n� 1g ! (fL;Rg [SAct) suchthat �L (a1; 1) : : :�L (an�1; n� 1) 2 F (s1) and �R (a1; 1) : : :�R (an�1; n� 1) 2 F (s2).10. a1a2 : : : 2 F (s1 k s2) if and only if there exists a function � : IN ! (fL;Rg [SAct) such that�L (a1; 1)�L (a2; 2) : : : is a pre�x of an element in F (s1) and �R (a1; 1)�R (a2; 2) : : : is a pre�x of anelement in F (s2).11. a1 : : : an�1X 2 F (s1 k s2) if and only if there exists a function � : f1; : : : ; n � 1g ! (fL;Rg [SAct)and XL, XR 2 P (SAct) such that� �L (a1; 1) : : :�L (an�1; n� 1)XL 2 F (s1),� �R (a1; 1) : : :�R (an�1; n� 1)XR 2 F (s2),� c 62 XL and �c 62 XR for no c 2 SAct, and� X � XL \XR.Proof We only show the tenth case. The other cases are simpler or can be proved similarly.Assume a1a2 : : : 2 F (s1 k s2). From the rules de�ning the transition relation we can deduce that there existstatements sLi and sRi , for i 2 IN, such that sL1 = s1, sR1 = s2, and for all i 2 IN,sLi k sRi ai��! sLi+1 k sRi+1satisfying one (and only one) of the following three conditions.6

1. sLi ai��! sLi+1 and sRi = sRi+1.2. sRi ai��! sRi+1 and sLi = sLi+1.3. sLi c�! sLi+1, sRi �c�! sRi+1, for some c 2 SAct , and ai = � .Depending on which condition is satis�ed we de�ne � (i) as follows.1. � (i) = L.2. � (i) = R.3. � (i) = c.One can easily verify that �L (a1; 1)�L (a2; 2) : : : is a pre�x of an element inF (s1) and that �R (a1; 1)�R (a2; 2) : : :is a pre�x of an element in F (s2).Let � : IN ! (fL;Rg [SAct) be such that �L (a1; 1)�L (a2; 2) : : : is a pre�x of an element in F (s1) and that�R (a1; 1)�R (a2; 2) : : : is a pre�x of an element in F (s2). Then there exist statements sLi and sRi , for i 2 IN,such that sL1 = s1, sR1 = s2, and for all i 2 IN,sLi ai��! sLi+1 and sRi = sRi+1 if � (i) = LsLi = sLi+1 and sRi ai��! sRi+1 if � (i) = RsLi c�! sLi+1; sRi �c�! sRi+1; and ai = � if � (i) = c.From the rules de�ning the transition relation we can deduce that for all i 2 IN,sLi k sRi ai��! sLi+1 k sRi+1:Consequently, a1a2 : : : 2 F (s1 k s2). 2The third condition of the last case tells us that the refusal sets XL and XR rule out synchronization.The fourth condition states that a parallel composition refuses those synchronization actions which bothcomponents refuse to do.From the above characterizations we can derive that the failure semantics is compositional.Corollary 4.4 F is compositional.Proof From Lemma 4.3 one can extract the de�nitions of the semantic operators. For example, thesemantic pre�xing operator a:� : F ! F is given bya:F = f aa1a2 : : :an�1 j a1a2 : : : an�1 2 F g[f aa1a2 : : : j a1a2 : : : 2 F g[f aa1a2 : : :an�1X j a1a2 : : : an�1X 2 F g[fX j a 2 SAct and a 62 X g:One can easily verify that F (a:s) = a:F (s). 2Similar semantic operators have been given in [BV96, De�nition 17.14], [BKO88, Section 5.2] [BHR84,Section 4], and [Rut88, De�nition 4.4].We conclude this section by showing that the trace semantics can be derived from the failure semantics.For that purpose we introduce an abstraction operator which assigns to each failure set the correspondingtrace set. 7

Definition 4.5 The function abs : F !T is de�ned byabs (F) = f i1 : : : in�1 j i1 : : : in�1 2 F g[f i1i2 : : : j i1i2 : : : 2 F g[f i1 : : : in�1� j i1 : : : in�1X 2 F g:This abstraction operator links the trace and failure semantics.Proposition 4.6 T = abs � F .Proof Trivial. 2This proposition will be exploited in the proofs of Theorem 5.2 and 6.8.5 CorrectnessThe failure semantics F is shown to be correct with respect to the trace semantics T , i.e. for all statements s1and s2 and for all contexts C [�],if F (s1) = F (s2) then T (C [s1]) = T (C [s2]):A context C [�] is a statement with holes. These holes are represented by the special symbol [�]. By C [s]we denote the statement obtained by replacing all the holes [�] in the context C [�] by the statement s. Thecontexts are introduced inDefinition 5.1 The set (C [�] 2)Cont of contexts is de�ned byC [�] ::= [�] j nil j a:C [�] j C [�] +C [�] j C [�] k C [�] j x:From Corollary 4.4 and Proposition 4.6 we can concludeTheorem 5.2 F is correct with respect to T .Proof For all s1, s2 2 Stat and C [�] 2 Cont ,F (s1) = F (s2)) F (C [s1]) = F (C [s2]) [Corollary 4.4]) T (C [s1]) = T (C [s2]) [Proposition 4.6] 26 CompletenessIs the failure semantics F also complete with respect to the trace semantics T ? This question boils down tochecking whether for all statements s1 and s2,if F (s1) 6= F (s2) then T (C [s1]) 6= T (C [s2]) for some context C [�]. (1)Below we will show that F is complete with respect to T if and only if the set IAct of internal actions isin�nite. First, we demonstrate that if the set IAct is in�nite then F is complete with respect to T . Second,we prove that this is not the case if IAct is a �nite set.8

6.1 IAct is in�niteIn this subsection we assume the set IAct of internal actions to be in�nite. Under this assumption we prove(1) as follows. Let s1 and s2 be statements with F (s1) 6= F (s2). Without loss of any generality we canassume that there exists a w 2 Act� [Act! [Act� � P (SAct) such that w 2 F (s1) and w 62 F (s2). Aswe will see below, we can restrict our attention to �nite sequences of actions possibly followed by a �niterefusal set, that is w 2 Act� [Act� � Pf (SAct). Given such a w, we can construct a context [�] k testi (w)such that T (s1 k test i (w)) 6= T (s2 k testi (w)). The internal action i in the statement test i (w) should befresh, i.e. neither the statement s1 nor the statement s2 should be able to perform this action in its �rst jwjtransitions, where jwj denotes the length of the �nite sequence w. Because the labelled transition system is�nitely branching and the set IAct is in�nite, we can always �nd such a fresh i as we will see below.In the rest of this subsection we �ll in the details of the proof sketched above. The set act (F (s)[n])consists of those actions the statement s can perform in its �rst n transitions.Proposition 6.1 For all s 2 Stat and n 2 IN [f0g, the setact (F (s)[n]) = f ak j s = s1 a1��! s2 a2��! � � � ak��! sk+1 and k � n gis �nite.Proof Induction on n exploiting Proposition 2.2. 2Since the sets act (F (s1)[jwj]) and act (F (s2)[jwj]) are �nite and the set IAct is in�nite, we can always �ndan internal action i which is neither in act (F (s1)[jwj]) nor in act (F (s2)[jwj]). We exploit this fact in theproof of Theorem 6.5.The fact that we only have to consider sequences in Act� [Act� � Pf (SAct) follows fromProposition 6.2 Let s1, s2 2 Stat.1. For all w 2 Act!, if w 2 F (s1) and w 62 F (s2) then there exists a �nite pre�x of w which is not apre�x of any element in F (s2).2. For all wX 2 Act� � P (SAct), if wX 2 F (s1) and wX 62 F (s2) then there exists a �nite subset Y ofX such that wY 2 F (s1) and wY 62 F (s2).Proof By means of K�onig's lemma and Proposition 2.2 one can prove that for all w 2 Act!, if every �nitepre�x of w is a pre�x of an element in F (s2) then w 2 F (s2). From this we can conclude 1.Let wX 2 Act� � P (SAct). Assume that wX 2 F (s1) and wX 62 F (s2). Take Y = X \ act (F (s2)[jwXj]).According to Proposition 6.1, Y is a �nite subset of X. One can easily verify that wY 2 F (s1) andwY 62 F (s2), and hence we can conclude 2. 2The contexts we construct are of the form [�] k testi (w). The statement testi (w) is designed in such a waythat we can derive from T (s k test i (w)) whether w 2 F (s). To detect this we construct the sequenceresulti (w). The details are provided in Lemma 6.4. Recall that the synchronization actions and the refusalssets of the failure semantics are not observable in the trace semantics. A synchronization action c performedby the statement s can be made visible by the test performing its synchronization partner �c, because the twocan synchronize resulting in the observable action � . However, we have to distinguish this synchronizationof the statements s and testi (w) from synchronizations occurring within the statement s (as we will see nosynchronizations occur within the test). This is done by pre- and post�xing the synchronization action �c bya fresh internal action i. The synchronization of the statement s and the test now results in i� i, whereas asynchronization within the statement s can never give rise to i� i since i is fresh. If the statement s refusesfc1; : : : ; cng then its parallel composition with �c1:nil + � � �+ �cn:nil signals deadlock in the trace semantics.In this way we can make also the refusal sets of the failure semantics visible in the trace semantics.9

Definition 6.3 Let i 2 IAct . The function3 test i : (Act� [Act� � Pf (SAct))! Stat is de�ned bytest i (�) = niltest i (X) = �nil if X = ;�c1:nil + � � �+ �cn:nil if X = fc1; : : : ; cngtest i (aw) = � test i (w) if a 2 IActi:�a:i:testi (w) if a 2 SAct .The function resulti : (Act� [Act� � Pf (SAct))! (IAct� [IAct� � f�g) is de�ned byresulti (�) = �resulti (X) = �resulti (aw) = �a resulti (w) if a 2 IActi� i result i (w) if a 2 SAct .Note that the above construction of the test only works for �nite action sequences possibly followed by a�nite refusal set.The key property of test i and resulti is stated in the next lemma. This lemma is crucial in the proof ofTheorem 6.5.Lemma 6.4 For all s 2 Stat, w 2 Act� [Act� � Pf (SAct), and i 2 IAct, with i 62 act (F (s)[jwj]) and i 6= � ,1. w 2 F (s) if and only if resulti (w) 2 T (s k test i (w)), and2. w is a pre�x of an element in F (s) if and only if resulti (w) is a pre�x of an element in T (s k testi (w)).Proof Induction on the length of w. 2The assumption i 62 act (F (s)[jwj]) is essential in the above lemma. For example, let s = i:�:nil andw = c. Then we have that testi (w) = i:�c:i:nil and resulti (w) = i� i. Clearly, i� i is a pre�x of an elementin T (i:�:nil k i:�c:i:nil), but c is not a pre�x of any element in F (i:�:nil). Also the assumption i 6= � isnecessary. For example, assume s = c:�:nil and w = �c. Then we have that test� (w) = �:�c:�:nil andresult� (w) = ���� . Obviously, we have that ���� 2 T (c:�:nil k �:�c:�:nil), but �c 62 F (c:�:nil).Combining the above results we can proveTheorem 6.5 F is complete with respect to T .Proof We have to prove (1). Let s1, s2 2 Stat such that F (s1) 6= F (s2). Without loss of generality wecan assume that there exists a w 2 Act� [Act! [Act� � P (SAct) such that w 2 F (s1) and w 62 F (s2). Wedistinguish the following three cases.w 2 Act� Let i 2 IAct, with i 62 act (F (s1)[jwj]) [act (F (s2)[jwj]) and i 6= � . We can always �nd suchan i since the set IAct is assumed to be in�nite and the set act (F (s1)[jwj]) [act (F (s2)[jwj])is �nite according to Proposition 6.1. We take C [�] = [�] k testi (w). From Lemma 6.4.1 we canconclude that resulti (w) 2 T (C [s1]) but resulti (w) =2 T (C [s2]).w 2 Act! According to Proposition 6.2.1 there exists a �nite pre�x v of w which is not a pre�x of anyelement in F (s2). Let i 2 IAct such that i 62 act (F (s1)[jvj])[act (F (s2)[jvj]) and i 6= � . In thiscase we take C [�] = [�] k test i (v). From Lemma 6.4.2 we can deduce that resulti (v) is a pre�x ofan element in T (C [s1]) but resulti (v) is not a pre�x of any element in T (C [s2]).3Note that testi is not really a function. Since any ordering of the synchronization actions c1, : : : , cn will serve our purposes,we just choose one. 10

w = vX According to Proposition 6.2.2 there exists a �nite subset Y of X such that vY 2 F (s1) andvY 62 F (s2). Let i 2 IAct such that i 62 act (F (s1)[jvY j]) [act (F (s2)[jvY j]) and i 6= � . In thiscase we take C [�] = [�] k test i (vY). FromLemma6.4.1 we can derive that resulti (vY) 2 T (C [s1])but resulti (vY) =2 T (C [s2]). 2The above proof is based on the proofs of [BV96, Lemma 17.21], [BKO88, Theorem 7.2.1], the one presentedin [Bre94], and [Rut88, Theorem 6.13]. It generalizes [BV96, Lemma 17.21]. The condition that the set ofstatement variables is �nite has been dropped.6.2 IAct is �niteIn this subsection we assume that the set of internal actions is �nite. Let IAct = f�; i1; : : : ; in�1g. Underthis assumption we show that (1) does not hold. Let x 2 SVar . For the rest of this subsection we �x adeclaration d satisfyingd (x) = �:x+ i1:x+ � � �+ in�1:x:Furthermore, we takes1 = x and s2 = x+ c:x:The transition graphs of these two statements are depicted below.xBC@A�;i1;:::;in�1GF // x+ c:x�� �;i1;:::;in�1 ;cxBC@A�;i1;:::;in�1GF //The only di�erence between the two statements is that s2 can start with a transition labelled by c and s1cannot. Hence, the statements are not identi�ed by the failure semantics. Note that, since the statements xand x+ c:x are both not deadlocking, the failure sets associated to them do not contain refusal sets. As wewill see below (cf. Lemma 6.7), refusal sets do not play a role in the incompleteness result presented in thissubsection.Proposition 6.6 F (x) 6= F (x+ c:x).Proof We have that c�! 2 F (x+ c:x) but c�! 62 F (x). 2This di�erence between the statements in the failure semantics cannot be brought about in the trace semanticsby putting the statements in parallel with �c:nil. Also a parallel composition with i:�c:i:nil, where i is someinternal action, does not distinguish the two in the trace semantics. As we will see, the trace semanticsidenti�es the statements in every context, disproving (1). To show this we �rst compare the failure semanticsof s1 and s2 in every context.Lemma 6.7 For all C [�] 2 Cont, if w 2 F (C [x+ c:x]) and w 62 F (C [x]) then w = w1cw2 or w = w1�w2for some w1 2 Act� and w2 2 Act! such that for all u 2 IAct!, w1u 2 F (C [x]).Proof We prove this lemma by structural induction on C [�]. We only consider the context C [�] k s.4 Theother contexts can be handled similarly. We distinguish the following three cases.4Here we exploit the folklore result that only contexts with one hole need to be considered.11

1. Towards a contradiction, assume w = a1 : : :an. Since w 2 F (C [x + c:x] k s), by Lemma 4.3.9 thereexists a function � : f1; : : :ng ! (fL;Rg[SAct) such that wL = �L (a1; 1) : : :�L (an; n) 2 F (C [x+ c:x])and �R (a1; 1) : : :�R (an; n) 2 F (s). Because w 62 F (C [x] k s), again by Lemma 4.3.9, wL 62 F (C [x]).By induction, wL = wL1cwL2 or wL = wL1�wL2 for some wL1 2 Act� and wL2 2 Act!, and hence wL 2 Act!,a contradiction.2. Assume w = a1a2 : : :. Because w 2 F (C [x + c:x] k s), by Lemma 4.3.10 there exists a function� : IN ! (fL;Rg [SAct) such that wL = �L (a1; 1)�L (a2; 2) : : : is a pre�x of vL 2 F (C [x + c:x])and wR = �R (a1; 1)�R (a2; 2) : : : is a pre�x of an element in F (s). Since w 62 F (C [x] k s), again byLemma 4.3.10, vL 62 F (C [x]). By induction we have one of the following two cases.2.1. Let vL = vL1cvL2 for some vL1 2 Act� and vL2 2 Act! with for all u 2 IAct!, vL1u 2 F (C [x]).Towards a contradiction, assume that wL is a pre�x of vL1 . Then wL is a pre�x of an element inF (C [x]) and by Lemma 4.3.10, we have that w 2 F (C [x] k s), a contradiction. Consequently,wL = vL1cvL for some vL 2 Act�[Act!. Assume we have that vL1 = �L (a1; 1) : : :�L (aj�1; j� 1) andvL = �L (aj+1; j + 1)�L (aj+1; j + 2) : : :. We distinguish two cases.2.1.1. Assume � (j) = c. Then aj = � . Hence, w = v1�v where v1 = a1 : : :aj�1 and v = aj+1aj+2 : : :.2.1.2. Assume � (j) = L. Then aj = c. Hence, w = v1cv where v1 = a1 : : :aj�1 and v = aj+1aj+2 : : :.Let u = i1i2 : : : 2 IAct!. We de�ne�0 (h) = � � (h) if 1 � h < jL if h � jSince �0R (a1; 1) : : :�0R (aj�1; j � 1)�0R (aj ; j)�0R (aj+1; j + 1) : : := �R (a1; 1) : : :�R (aj�1; j � 1)is a pre�x of wR which is a pre�x of an element in F (s) and�0L (a1; 1) : : :�0L (aj�1; j � 1)�0L (aj; j)�0L (aj+1; j + 1) : : := �L (a1; 1) : : :�L (aj�1; j � 1)i1i2 : : := vL1uis an element in F (C [x]), by Lemma 4.3.10,a1 : : : aj�1i1i2 : : : = v1u 2 F (C [x] k s):2.2. Let vL = vL1�vL2 for some vL1 2 Act� and vL2 2 Act! such that for all u 2 IAct!, vL1u 2 F (C [x]).Similar to case 2.1.2.3. Assume w = a1 : : :anX. Similar to case 1. 2Note that the scheduler �0 in the above proof is unfair. From the above lemma we can concludeTheorem 6.8 For all C [�] 2 Cont, T (C [x]) = T (C [x+ c:x]).Proof Let C [�] 2 Cont . Clearly, F (x) � F (x + c:x). Because all semantic operators are monotone,F (C [x]) � F (C [x + c:x]). Since abs is monotone, T (C [x]) � T (C [x + c:x]) by Proposition 4.6. Toconclude that T (C [x]) = T (C [x + c:x]) it su�ces to show that if w 2 F (C [x + c:x]) and w 62 F (C [x])then w 62 IAct� [IAct! [IAct� � P (SAct). According to Lemma 6.7 we only have to consider the followingtwo cases.1. Assume w = w1cw2 for some w1 2 Act� and w2 2 Act!. Then w 62 IAct� [IAct! [IAct� � P (SAct).2. Assume w = w1�w2 for some w1 2 Act� and w2 2 Act!. Towards a contradiction, assume thatw 2 IAct� [IAct! [IAct� � P (SAct). Then w1 2 IAct� and w2 2 IAct! . According to Lemma 6.7,w1�w2 2 F (C [x]), a contradiction. 212

Combining the above results we arrive at a proof of the conjecture of [BV96, page 504].Corollary 6.9 F is not complete with respect to T .Proof Immediate consequence of Proposition 6.6 and Theorem 6.8. 2ConclusionFrom Theorem 5.2 and 6.5 and Corollary 6.9 we can conclude that the failure semantics is correct andcomplete, and hence fully abstract, with respect to the trace semantics if and only if the set of internalactions is in�nite|the result announced in the abstract. This is an example of a result which shows thatthe choice of a �nite or an in�nite set of actions does have (theoretical) implications. Note that we do notclaim that this result tells us whether one should choose for �nitely or in�nitely many actions. Both choiceshave their merits and demerits (see [Con96]).The problem of �nding the fully abstract semantics for the language with �nitely many internal actionsis still open. We only know that it should make more distinctions than the trace semantics but less than thefailure semantics, and that it should identify statements like s1 and s2 given in Subsection 6.2.By changing the trace semantics|for example, by observing also the unmatched synchronization actions|the failure semantics is fully abstract with respect to this modi�ed trace semantics, no matter whether theset of internal actions is �nite or in�nite (see [Hor93, Chapter 4]).Instead of specifying recursion by means of declarations (cf. De�nition 1.2), one can also introduce it byadding the construct �x:g, where g is a guarded statement (see De�nition 1.2), to the clause de�ning the setof statements in De�nition 1.1. In this modi�ed setting we can also consider contexts of the form �x:C [�].Although we are con�dent that the main results presented in this paper still hold, several of their proofshave to be changed considerably. For example, to prove Corollary 4.4 we have to add to the set F of failuresets some additional structure (e.g., a partial order or a metric) to express F (�x:g) as a �xed point of F (g).In [MO95], Mislove and Oles address the question of extending a fully abstract semantics for a languagewithout recursion to the language with recursion. To obtain their results they assume the strongly orderfully abstractness hypothesis. They cannot prove their results without this hypothesis, nor do they have acounterexample showing that the results do not hold without it. We believe that our study provides such acounterexample. Assume IAct = f�; ig. From Corollary 6.9 we can conclude that the failure semantics is notfully abstract with respect to the trace semantics. However, if we leave out recursion, the failure semanticsis fully abstract. This fact can be shown along the lines of the proof of Theorem 6.5. Instead of contextsof the form [�] k testi (w) we use [�] k testim (w), where m is the maximal length of a sequence in the failuresemantics of the two statements to be distinguished.References[AP86] K.R. Apt and G.D. Plotkin. Countable Nondeterminism and Random Assignment. Journal ofthe ACM, 33(4):724{767, October 1986.[BG87] J.C.M. Baeten and R.J. van Glabbeek. Merge and Termination in Process Algebra. In K.V. Nori,editor, Proceedings of the 7th Conference on Foundations of Software Technology and TheoreticalComputer Science, volume 287 of Lecture Notes in Computer Science, pages 153{172, Pune,December 1987. Springer-Verlag.[BHR84] S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A Theory of Communicating Sequential Pro-cesses. Journal of the ACM, 31(3):560{599, July 1984.[BKO88] J.A. Bergstra, J.W. Klop, and E.-R. Olderog. Readies and Failures in the Algebra of Communi-cating Processes. SIAM Journal on Computing, 17(6):1134{1177, December 1988.13

[BKPR91] F.S. de Boer, J.N. Kok, C. Palamidessi, and J.J.M.M. Rutten. The Failure of Failures in aParadigm for Asynchronous Communication. In J.C.M. Baeten and J.F. Groote, editors, Pro-ceedings of CONCUR'91, volume 527 of Lecture Notes in Computer Science, pages 111{126,Amsterdam, August 1991. Springer-Verlag.[Bre94] F. van Breugel. A Non Fully Abstract Model for a Language with Synchronization. Unpublishedlecture notes, September 1994.[BV96] J.W. de Bakker and E.P. de Vink. Control Flow Semantics. Foundations of Computing Series.The MIT Press, Cambridge, 1996.[Con96] Finite/In�nite Action Sets. Discussion on the concurrency forum, October 1996. Available attheory.lcs.mit.edu as /pub/people/meyer/concurrency.new.[Hen88] M. Hennessy. Algebraic Theory of Processes. Foundations of Computing Series. The MIT Press,Cambridge, 1988.[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Series in Computer Science. Prentice HallInternational, London, 1985.[Hor93] E. Horita. Fully Abstract Models for Concurrent Languages. PhD thesis, Vrije Universiteit,Amsterdam, September 1993.[Mai87] M.G. Main. Trace, Failure and Testing Equivalences for Communicating Processes. InternationalJournal of Parallel Programming, 16(5):383{400, 1987.[Mey86] J.-J.Ch. Meyer. Merging Regular Processes by means of Fixed-Point Theory. Theoretical Com-puter Science, 45(2):193{260, 1986.[Mil73] R. Milner. Processes: a Mathematical Model of Computing Agents. In H.E. Rose and J.C.Shepherdson, editors, Proceedings of the Logic Colloquium, volume 80 of Studies in Logic and theFoundations of Mathematics, pages 157{173, Bristol, July 1973. North-Holland.[Mil80] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in ComputerScience. Springer-Verlag, Berlin, 1980.[MO95] M.W. Mislove and F.J. Oles. Full Abstraction and Recursion. Theoretical Computer Science,151(1):207{256, November 1995.[Par81] D. Park. Concurrency and Automata on In�nite Sequences. In P. Deussen, editor, Proceedings of5th GI-Conference on Theoretical Computer Science, volume 104 of Lecture Notes in ComputerScience, pages 167{183, Karlsruhe, March 1981. Springer-Verlag.[Plo81] G.D. Plotkin. A Structural Approach to Operational Semantics. Report DAIMI FN-19, AarhusUniversity, Aarhus, September 1981.[Rut88] J.J.M.M. Rutten. Correctness and Full Abstraction of Metric Semantics for Concurrency. InJ.W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors, Proceedings of the School/Workshopon Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency,volume 354 of Lecture Notes in Computer Science, pages 628{659, Noordwijkerhout, May/June1988. Springer-Verlag.[Sto88] A. Stoughton. Fully Abstract Models of Programming Languages. Research Notes in TheoreticalComputer Science. Pitman, London, 1988.14

