UNIVERSITA DI PIsA

DIPARTIMENTO DI INFORMATICA

TECHNICAL REPORT : TR-97-18

Failures, Finiteness, and Full Abstraction

Franck van Breugel

September 09, 1997

ADDR: Corso Italia 40,56125 Pisa,ltaly. TEL: +39-50-887111. FAX: 439-50-887226

Failures, Finiteness, and Full Abstraction

Franck van Breugel

Universita di Pisa, Department of Computer Science
Corso Italia 40, 56125 Pisa, Italy

franck@di.unipi.it

Abstract

For a simple CCS-like language a trace semantics and a failure semantics are presented. The failure
semantics is shown to be fully abstract with respect to the trace semantics ¢f and only if the set of
internal actions is infinite.

Introduction

In this paper we focus on the full abstraction problem. Already in the early seventies this issue was raised
by Milner [Mil73, page 168]. For a discussion of its importance we refer the reader to the introduction of
Stoughton’s monograph [Sto88].

In the early eighties, Brookes, Hoare, and Roscoe [BHR84] introduced failures to provide a semantics
for CSP [Hoa85]. These failures give rise to a fully abstract semantics for CSP as was shown by Bergstra,
Klop, and Olderog [BKO88, Corollary 7.3.1] and Main [Mai87, Section 4.3]. Tt is well known that failures fail
to be fully abstract for a variety of concurrent languages based on asynchronous communication (see, e.g.,
[BKPRI1]). However, our observation that failures are not always fully abstract for a synchronous CCS-like
language [Mil80] seems to be new. Whether the failure semantics is fully abstract depends on the cardinality
of the set of internal actions. If this set is finite then the failure semantics is not fully abstract. Otherwise,
it 1s.

For a simple CCS-like language we present a {race semantics. Its definition is based on a labelled transition
system following Plotkin’s structural approach [Plo81]. As one can easily verify, the trace semantics lacks
compositionality. The search for a compositional semantics for the language leads us to a failure semantics.
Also this semantics is defined by means of the labelled transition system. Because the failure semantics is
shown to be compositional and to make more distinctions than the trace semantics, the failure semantic
is called correct with respect to the trace semantics. We call the failure semantics complete if it does not
make too many distinctions. That is, if the statements s; and ss are distinguished by the failure semantics,
then we should be able to construct a larger statement from sy, denoted by C'[s1], such that if we extend s
similarly—this extension is denoted by C'[s2]—then the two extensions C'[s1] and C [s2] are not identified by
the trace semantics. We prove that the failure semantics is complete with respect to the trace semantics if
and only if the set of internal actions is infinite. In the completeness proof it is essential that one can choose
an internal action that is different from a finite set of actions that play a significant role. The assumption
that the set of internal actions is infinite allows us to find such a fresh action (cf., e.g., [BG87, Definition 5.3]).
Combining the above we can conclude that the failure semantics 1s fully abstract, i.e. correct and complete,
with respect to the trace semantics if and only if we have infinitely many internal actions.

Similar full abstraction studies have been carried out by, e.g., De Bakker and De Vink [BV96, Chapter 17],
Bergstra, Klop, and Olderog [BKO88], Horita [Hor93], Main [Mai87], and Rutten [Rut88]. This paper builds
on their work.

The rest of this paper is organized as follows. In Section 1, we introduce the language. For this language
a labelled transition system is given in Section 2. Based on this labelled transition system, a trace semantics
and a failure semantics are developed in Section 3 and 4. In Section b, the failure semantics is shown to be
correct with respect to the trace semantics. The completeness of the failure semantics is studied in Section 6.
In this section, some new results are presented. We generalize some results by De Bakker and De Vink [BV96,
Section 17.3]. Our Theorem 6.5 strengthens [BV96, Lemma 17.21] and Corollary 6.9 proves the conjecture
of [BV96, page 504]. Some conclusions are drawn in the final section.

Acknowledgements

I am thankful to the members of the Amsterdam Concurrency Group, in particular Jaco de Bakker and Jan
Rutten, for their comments on [Bre94]. T am grateful to Mike Mislove for the stimulating discussions which
led to the proof of Corollary 6.9, the main result of this paper. My thanks also to Furio Honsell for his
insightful questions when I presented this material to him. Maurizio Gabbrielli provided some comments on
a preliminary version of this paper and Rocco De Nicola made me aware of some related work, for which I am
thankful. My thanks also to the referees for pointing out an error and for their comments which improved
the presentation.

1 Language

In this section, we introduce the syntax of a very simple CCS-like language. We presuppose a set (i €) TAct
of internal actions with a distinguished action 7. We assume that these internal actions are observable.
The action 7 we use to model synchronization. This 7 will be visible in the semantics. Furthermore, we
presuppose a nonempty set (¢ €) SAct of synchronization actions. The synchronization actions are assumed
not to be observable. We also presuppose a (bijective) function - : SAct — SAct with for all ¢ € SAct,
¢ = c¢. It yields for every synchronization action ¢ its synchronization partner ¢. The set (a €) Aet of actions
is given by Act = TAct U SAct. Finally, we presuppose a nonempty set (z €) SVar of statement variables.
These statement variables add recursion to the language.

DEFINITION 1.1 The set (s €) Stat of statements is defined by

su=mnil|as|s+s|s|s|e.
4

Roughly, the meaning of the statement constructions is as follows. The statement nil cannot do anything
but terminate. The prefixing a.s first performs the action a and then behaves like s. The nondeterministic
choice s1 + s behaves either as s or as s3. The parallel composition s; || s2 represents s; and s2 performing
concurrently, possibly synchronizing. To each statement variable a declaration (see Definition 1.2) assigns a
(guarded) statement. A statement variable behaves like the statement associated to it by the declaration.
We restrict ourselves to guarded recursion!. That is, to each statement variable the declaration assigns a
guarded statement.

DEFINITION 1.2 The set (¢ €) GStat of guarded statements is defined by
gu=mnillas|lg+glgllyg.
The set (d €) Decl of declarations is defined by

Decl = SVar — GStat.
|

1Unguarded recursion gives rise to unbounded nondeterminacy. It is well known that unbounded nondeterminacy complicates
the search for a fully abstract semantics (see, e.g., [AP86]). If we were to consider unguarded recursion, then Theorem 6.5
would not hold any more.

We assume some fixed declaration d as given, and all considerations in any argument refer to this declaration.

The language we have introduced above is a minimal one. Apart from the statement variables, all
the constructions of the language are used in the contexts constructed in the proof of Theorem 6.5 (cf.
Definition 6.3 and Lemma 6.4). The statement variables, which allow us to specify recursion, are crucial
for the results of Subsection 6.2. In [BV96, BKO88, Rut88] sequential composition instead of prefixing is
used. Also restriction and renaming are present in the language studied in [BKO88]. We are confident that
the main results of the present paper also hold if we replace prefixing by sequential composition and add
restriction and renaming.

2 Labelled transition system

The trace semantics and the failure semantics are both based on the labelled transition system presented
below. It is shown that the system is finitely branching. We will exploit this fact in Section 6.1.

The configurations of the labelled transition system are statements and the labels are actions. The
transition relation is presented in

DEFINITION 2.1 The transition relation — is defined by the following axiom and rules.

(1) as 2

(2) s 53 — 8
51—|—szi>5’1 51—|—szi>5’2
(3) s1 -) 59 - sh
a1l s2 = 51 || 52 a1l 52— 5[] 5
(4) 51 N) 59 - sh

.
s1 || s2 — 1 [5

(5) d(x) S

Every configuration has only finitely many outgoing transitions as is shown in

PROPOSITION 2.2 The labelled transition system is finitely branching.

ProoF By structural induction, one can show that all guarded statements have only finitely many outgoing
transitions. Subsequently, one can prove, again by structural induction, that all statements have finitely
many outgoing transitions. ad

3 Trace semantics

From the labelled transition system given in the previous section we extract the trace semantics. It is shown
that this semantics is not compositional.

In the trace semantics we do not record the transitions labelled by synchronization actions, which may be
viewed as unsuccessful attempts at synchronization, unless a statement can only make transitions labelled

by synchronization actions. In that case, we say that the statement deadlocks. We consider successfully
terminating computations

i1 io Tn_1 9
§1 —> 83 — - — Sp 7L>’

nonterminating computations

i1 iz
51— 83—,

and deadlocking computations

i1 ig Tn—1
§] — §9 — -+ — s, deadlocks.

Note that all computations are maximal, i.e. they cannot be extended. These three types of computations
are modelled by finite sequences of internal actions, infinite sequences of internal actions, and finite sequences
of internal actions followed by a §, respectively.

DEFINITION 3.1 The set (T €) T of trace sets is defined by

T =P (JAct™ U TAct* U TAct™ - {6}).

The trace semantics assigns to each statement a trace set as follows.

DEFINITION 3.2 The trace semantics T : Stat — T is defined by

o . i1 io Tn_1
T(s)={i1é2 - ip_1 |s=8 — 83— - —— s, /U

L. i1 ia

{i1dy - | s =81 — 859 — -+ U
o . i1 ig fpn—1

{i1@g - ip_16 | s =81 — 89 — -+ —— 5, deadlocks },

. Zn .
where s, deadlocks if s,, — and s, — s,41 for no ¢, and sp41. 2

It is important to notice that like in, e.g., [BV96] (and in contrast to, e.g., [Mai87]) in the trace semantics
synchronization (7) and deadlock (§) are observable and unsuccessful attempts at synchronization (synchro-
nization actions) are not. Note also that the trace semantics does not rule out unfair computations. This
semantics is not compositional as is demonstrated in

ProrosiTION 3.3 T is not compositional.

Proor Towards a contraction, assume that 7 is compositional. Then
r € T(cnil| e.ni)

T (c.nil) || 7 (e.nil) [T is compositional]

T (ceenil) || T (e.nil) [T (c.nil) = {6} = T (c.c.nil)]

7 (

c.enil || e.nil) [T is compositional]

2In this paper we use the convention (n €) IN = {1,2,...}.

4 Failure semantics

Also the failure semantics 1s defined in terms of the labelled transition system of Section 2. In contrast to
the trace semantics, this semantics is compositional. It is furthermore shown how the trace semantics can
be derived from the failure semantics.

To construct a compositional semantics for the language we make more distinctions than we did in
the trace semantics. We do this by also recording the transitions labelled by synchronization actions and
by administrating which synchronization actions a deadlocking statement refuses to do—rather than just
signaling deadlock as we did in the trace semantics. This leads to considering successfully terminating
computations

aq ao Ap—1
§1 = Sy —— 1 ——— 5p 7,

nonterminating computations

ai a2

51— sy — -,

and deadlocking computations

aq ao Gn—1 . . .
$1 — §9 — - - - — s, deadlocks and refuses to do the set X of synchronization actions.

We use finite sequences of actions, infinite sequences of actions, and finite sequences of actions followed by
a refusal set X of synchronizations actions to model these three types of computations.

DEFINITION 4.1 The set (F €)T of failure sets is defined by

F="P(Act” U Act” U Act* - P (SAct)).

_
These failure sets are assigned to the statements as follows.
DEFINITION 4.2 The failure semantics F : Stat — TF is defined by
aq az Gp—1
F(s)y={aas--an_1 |s=8 — 85— —— 5, 7~ JU
a a
{ajay--- |5:51—1>52—2>~~~}U
a a dpn—1
{ajas - an1X | s = s N 59 AR sp, deadlocks and refuses X },
where s, refuses X if for all ¢ € X, s, = Sp41 for no sp41. 2

Note that in the above introduced failure semantics synchronization () is observable, like, e.g., in [BV96].
This should be contrasted with, e.g., testing semantics [Hen88] where synchronization is usually not visible.

Next we show that this failure semantics is compositional. For that purpose we first give characterizations
of the prefixing operator, the nondeterministic choice, and the parallel composition. These characterizations
will also be exploited in the proof of Lemma 6.7. In the characterization of the parallel composition we make
use of schedulers. These schedulers are closely related to oracles which are used by, e.g., Park [Par81,
Section 6] to describe the fair merge. A scheduler o tells us whether the é-th transition of a parallel
composition sy, || sg

* is taken by the left statement s, in which case o (i) =1,
* is taken by the right statement sy in which case o (7) = R,

or arises as the result of the statements s, and sy synchronizing by means of the actions ¢ and ¢ in
which case o (1) = c.

The contribution of the left statement s; to the i-th transition labelled by a of the parallel composition
sy || s is given by o, (a,4) and the contribution of the right statement sy is denoted by oy (a, %), where

a ifo(i)=1rL
oL(a, i) =< ¢ ifo(i)=r
¢ ifo(i)=canda=r

and
e ifo(i)=1L
or(a,i)=< a ifo(i)=r
¢ ifo(i)=canda=r.

A similar characterization of the merge has been given by, e.g., Meyer [Mey86, Section 2.2].
LEMMA 4.3
1. ay...ay, € F(a.s) if and only if a1 = a and az...a, € F(s).
ajas ... € F(a.s) if and only if a1 = a and azaz... € F(s).
X € F(a.s) if and only if a € SAct and a ¢ X.

ay...apnX € Fa.s) if and only ifa; = a and az...apn X € F (s).

ay...an_1 € F(s1+s2) if and only ifay...an_1 € F(s1) or ay...an—1 € F(s2).
ajas ... € F(s1+ s2) if and only if ajas... € F(s1) orajaz... € F(sa2).
X € F(s1+s2) if and only if X € F(s1) and X € F (s2).

N>

ap...anX € F(s1+s2) if and only ifay...anX € F(s1) oray...anX € F(s2).

9. ay...an_1 € F(s1]| s2) if and only if there exists a function o : {1,...,;n— 1} — ({1, R} USAct) such
that oy, (a1, 1) .. .o (an—1,n—1) € F(s1) and op (a1, 1)...0n (an_1,n— 1) € F (s2).

10. ajaz ... € F(s1 || s2) if and only if there exists a function o : IN — ({L,R} U SAct) such that
o (a1, Doy (az,2) ... is a prefiv of an element in F (s1) and og (a1, 1)og(a2,2)... is a prefix of an
element in F (s2).

11, ay...an1 X € F(s1 || s2) if and only if there exists a function o : {1,...,;n — 1} — ({1,R} U SAct)
and X, Xy € P(SAct) such that

*

oy (a1, 1) ..oy (ap—1,n—)X, € F(s1),
or (a1, 1) .. .op(an_1,n— 1) Xg € F(s2),
* ¢ ¢ X, and ¢ & Xy for no c € SAct, and
¥ X C Xy N Xn.

*

ProoF We only show the tenth case. The other cases are simpler or can be proved similarly.

Assume ajas ... € F(s1 || s2). From the rules defining the transition relation we can deduce that there exist
statements s} and s}, for ¢ € IN, such that sf = sy, s = s9, and for all ¢ € IN,

a
si || sit — 52'L+1 Il 5?+1

satisfying one (and only one) of the following three conditions.

a;
L L R __ R
L sy — 57y and s = Si g
R R L L
2. s — sy and s} = Sipq-
c c
3. s — spyy, sf — siyy, for some ¢ € SAct, and a; = 7.

Depending on which condition is satisfied we define o (¢) as follows.

1. o(i) =1L
2. 0(i) =R
3.o(i)=c

One can easily verify that o, (a1, 1)oy, (a2,2)...is a prefix of an element in F (s1) and that oy (a1, 1)og (a2,2) ...
is a prefix of an element in F (s2).

Let o : IN — ({1, R} U SAct) be such that o, (a1, 1)y, (a2,2) ... is a prefix of an element in F (s1) and that
or (a1, 1)og (as,2) ... is a prefix of an element in F (s3). Then there exist statements s; and s, for ¢ € IN,
such that s} = sy, s = 53, and for all ¢ € IN,

a

L ' L R _ R : N
sy — sppq and sf = sf ifo(i) =1L
a;
L __ L R R 3 Yy —
sy = Siy g andsé—>5i+1 ifo(i) =r
c c
L L R R L — 3 Yy —
sy — sy, 58 — sy, anda; =71 ifo (i) =c.

From the rules defining the transition relation we can deduce that for all ¢ € IN,
L r L R
si |l si" — siya |l s

Consequently, ajaz... € F(s1 || s2). a

The third condition of the last case tells us that the refusal sets X; and Xy rule out synchronization.
The fourth condition states that a parallel composition refuses those synchronization actions which both
components refuse to do.

From the above characterizations we can derive that the failure semantics is compositional.

COROLLARY 4.4 F s compositional

Proor From Lemma 4.3 one can extract the definitions of the semantic operators. For example, the
semantic prefixing operator a.- : F — F is given by

a.F'={aaay...an_1 |aias...an_1 € F}U

{aaay . .. | ayas... € F U
{aaray...an_1 X |aras...an1 X € F }U
1X | a € SAct and a ¢ X }.
One can easily verify that F (a.s) = a.F (s). a

Similar semantic operators have been given in [BV96, Definition 17.14], [BKO88, Section 5.2] [BHR&4,
Section 4], and [Rut88, Definition 4.4].

We conclude this section by showing that the trace semantics can be derived from the failure semantics.
For that purpose we introduce an abstraction operator which assigns to each failure set the corresponding
trace set.

DEFINITION 4.5 The function abs : F — T is defined by

abs(F):{il...in_l |len_1EF}U
{igiy... |iyip...€ F}U
{i1 . in_1b |1 in 1 X € F).

_
This abstraction operator links the trace and failure semantics.
PRrROPOSITION 4.6 T = abso F.
Proor Trivial. |

This proposition will be exploited in the proofs of Theorem 5.2 and 6.8.

5 Correctness

The failure semantics F is shown to be correct with respect to the trace semantics 7, i.e. for all statements s;
and s2 and for all contexts C'[],

if F(s1) = F(s2) then 7 (C[s1]) =T (C'[s2]).

A context C'[] is a statement with holes. These holes are represented by the special symbol [-]. By C'[s]
we denote the statement obtained by replacing all the holes [-] in the context C'[-] by the statement s. The
contexts are introduced in

DEFINITION 5.1 The set (C'[] €) Cont of contexts is defined by

ClHls=[ml[aCT[CL+ OO O 2.

From Corollary 4.4 and Proposition 4.6 we can conclude
THEOREM 5.2 F is correct with respect to T .

ProoF For all s1, s € Stat and C'[-] € Cont,

7(51) = 7(52)
= .7:(0 [51]) = .7:(0 [52]) [Corollary 4.4]
= T (C [51]) =7 (C [52]) [Proposition 4.6]

6 Completeness

Is the failure semantics F also complete with respect to the trace semantics 77 This question boils down to
checking whether for all statements s; and ss,

if F(s1) # F (s2) then T (C'[s1]) # T (C'[s2]) for some context C'[-]. (1)

Below we will show that F is complete with respect to 7 if and only if the set IAct of internal actions is
infinite. First, we demonstrate that if the set [Aet is infinite then F is complete with respect to 7. Second,
we prove that this is not the case if IAct 1s a finite set.

6.1 [Act is infinite

In this subsection we assume the set TAct of internal actions to be infinite. Under this assumption we prove
(1) as follows. Let s; and so be statements with F (s1) # F (s2). Without loss of any generality we can
assume that there exists a w € Act™ U Act” U Act”™ - P (SAct) such that w € F(s1) and w & F (s2). As
we will see below, we can restrict our attention to finite sequences of actions possibly followed by a finite
refusal set, that is w € Act™ U Aet™ - Py (SAct). Given such a w, we can construct a context [-] || test; (w)
such that 7 (s || test; (w)) # 7 (s2 || test; (w)). The internal action ¢ in the statement test; (w) should be
fresh, i.e. neither the statement sy nor the statement ss should be able to perform this action in its first |w]
transitions, where |w| denotes the length of the finite sequence w. Because the labelled transition system is
finitely branching and the set TAct is infinite, we can always find such a fresh i as we will see below.

In the rest of this subsection we fill in the details of the proof sketched above. The set act (F (s)[n])
consists of those actions the statement s can perform in its first n transitions.

PROPOSITION 6.1 For all s € Stat and n € INU {0}, the set

act (F(s)[n]) = {ap | s = 81 —— 89— - —— 11 and k < n}
s finite.
ProoF Induction on n exploiting Proposition 2.2. a

Since the sets act (F (s1)[|w]]) and act (F (s2)[|w]]) are finite and the set TAct is infinite, we can always find
an internal action ¢ which is neither in act (F (s1)[|w]|]) nor in act (F (s2)[|w]|]). We exploit this fact in the
proof of Theorem 6.5.

The fact that we only have to consider sequences in Act* U Act™ - Py (SAct) follows from

PROPOSITION 6.2 Let s1, s9 € Stat.

1. For all w € Act”, if w € F(s1) and w & F (s2) then there exists a finite prefiz of w which is not a
prefiz of any element in F (s2).

2. For allwX € Act™ - P (SAct), if wX € F(s1) and wX € F (s2) then there exists a finite subset Y of
X such that wY € F (s1) and wY & F (s2).

ProoF By means of Konig’s lemma and Proposition 2.2 one can prove that for all w € Act”, if every finite
prefix of w is a prefix of an element in F (s3) then w € F (s3). From this we can conclude 1.

Let wX € Act™ - P (SAct). Assume that wX € F (51) and wX &€ F (s2). Take Y = X N act (F (s2)[|wX]]).
According to Proposition 6.1, Y is a finite subset of X. One can easily verify that wY € F(s;) and
wY ¢ F (s2), and hence we can conclude 2. O

The contexts we construct are of the form [-] || test; (w). The statement test; (w) is designed in such a way
that we can derive from 7 (s || test; (w)) whether w € F(s). To detect this we construct the sequence
result; (w). The details are provided in Lemma 6.4. Recall that the synchronization actions and the refusals
sets of the failure semantics are not observable in the trace semantics. A synchronization action ¢ performed
by the statement s can be made visible by the test performing its synchronization partner ¢, because the two
can synchronize resulting in the observable action 7. However, we have to distinguish this synchronization
of the statements s and fest; (w) from synchronizations occurring within the statement s (as we will see no
synchronizations occur within the test). This is done by pre- and postfixing the synchronization action ¢ by
a fresh internal action 7. The synchronization of the statement s and the test now results in ¢7¢, whereas a
synchronization within the statement s can never give rise to ¢7¢ since ¢ is fresh. If the statement s refuses
{e1,...,¢n} then its parallel composition with ¢;.nil + - - -+ ¢,.nil signals deadlock in the trace semantics.
In this way we can make also the refusal sets of the failure semantics visible in the trace semantics.

DEFINITION 6.3 Let i € [Act. The function® test; : (Act® U Act™ - Py (SAct)) — Stat is defined by

test; (e) = nil
R fX=0
test; (X) _{cl.nil—|—~~~—|—cn.nilifX:{cl,...,cn}

fest; (aw) = test; (w) ifa e [Act
esti{aw) = i.a.i.test; (w) if a € SAct.

The function result; : (Act™ U Act™ - Py (SAct)) — ([Act™ U IAct™ - {6}) is defined by

result; () = ¢
result; (X) =6
result; (aw) = {a result; (w) if a € TAct
! iTi result; (w) if a € SAct.
_

Note that the above construction of the test only works for finite action sequences possibly followed by a
finite refusal set.

The key property of test; and result; is stated in the next lemma. This lemma is crucial in the proof of
Theorem 6.5.

LEMMA 6.4 For all s € Stat, w € Act™ U Act™ - Py (SAct), and i € IAct, with i & act (F (s)[|w]]) and i # 7,
1. w e F(s) if and only if result; (w) € T (s || test; (w)), and
2. w is a prefix of an element in F (s) if and only if result; (w) is a prefix of an element in T (s || test; (w)).

ProoF Induction on the length of w. ad

The assumption ¢ & act (F (s)[|w]]) is essential in the above lemma. For example, let s = i.7.nil and
w = ¢. Then we have that test; (w) = i.c.i.nil and result; (w) = iri. Clearly, ité is a prefix of an element
in 7 (i.m.nil || i.c.i.nil), but ¢ is not a prefix of any element in F (i.7.nil). Also the assumption ¢ # 7 is
necessary. For example, assume s = c.r.nil and w = 7e. Then we have that test; (w) = r.e.r.nil and
result; (w) = rrr7. Obviously, we have that 7777 € 7 (c.r.nil || m.e.7.nil), but T¢ & F (e.1.nil).

Combining the above results we can prove

THEOREM 6.5 F is complete with respect to T .

ProoF We have to prove (1). Let s1, so € Stat such that F (s1) # F (s2). Without loss of generality we
can assume that there exists a w € Act* U Act” U Act™ - P (SAct) such that w € F (s51) and w € F (s2). We
distinguish the following three cases.

w € Act® Let i € TAct, with i & act (F (s1)[|w]]) U act (F (s2)[|w]]) and i # 7. We can always find such
an ¢ since the set TAct is assumed to be infinite and the set act (F (s1)[|w]]) U act (F (s2)[|w]])
is finite according to Proposition 6.1. We take C'[] = [] || test; (w). From Lemma 6.4.1 we can
conclude that result; (w) € T(C'[s1]) but result; (w) & T (C'[s2]).

w € Act* According to Proposition 6.2.1 there exists a finite prefix v of w which is not a prefix of any
element in F (s2). Let ¢ € TAct such that ¢ & act (F (s1)[|v]]) U act (F (s2)[|v|]) and i # 7. In this
case we take C'[-] =[] || test; (v). From Lemma 6.4.2 we can deduce that result; (v) is a prefix of
an element in 7 (C'[s1]) but result; (v) is not a prefix of any element in 7 (C'[s2]).

3Note that test; is not really a function. Since any ordering of the synchronization actions c1, ..., cn will serve our purposes,
we just choose one.

10

w = vX According to Proposition 6.2.2 there exists a finite subset YV of X such that v¥Y € F(s1) and
vY & F(s2). Let i € IAet such that i & act (F (s1)[|0Y]]) U act (F (s2)[[vY]]) and ¢ # 7. In this
case we take C'[-] = [] || test; (vY). From Lemma6.4.1 we can derive that result; (vY) € 7(C'[s1])
but result; (vY) ¢ T (C'[s2]).

O

The above proof is based on the proofs of [BV96, Lemma 17.21], [BKO88, Theorem 7.2.1], the one presented
in [Bre94], and [Rut88, Theorem 6.13]. Tt generalizes [BV96, Lemma 17.21]. The condition that the set of
statement variables is finite has been dropped.

6.2 [Act is finite

In this subsection we assume that the set of internal actions is finite. Let IAct = {7,41,...,7,-1}. Under
this assumption we show that (1) does not hold. Let # € SVar. For the rest of this subsection we fix a
declaration d satisfying

dz)=r1e 4.0+ +ip_1.2.
Furthermore, we take
sy =x and s5 = x + c.x.
The transition graphs of these two statements are depicted below.

r+c.x

@ lTVZh“vZn—lyc
X
Ty, tn—1

Ty, tn—1

The only difference between the two statements is that s, can start with a transition labelled by ¢ and s
cannot. Hence, the statements are not identified by the failure semantics. Note that, since the statements x
and x + c.z are both not deadlocking, the failure sets associated to them do not contain refusal sets. As we
will see below (cf. Lemma 6.7), refusal sets do not play a role in the incompleteness result presented in this
subsection.

PROPOSITION 6.6 F (x) # F (z + c.z).

ProoF We have that er® € F (# + c.x) but ¢7* & F (z). O

This difference between the statements in the failure semantics cannot be brought about in the trace semantics
by putting the statements in parallel with ¢.nil. Also a parallel composition with i.c.2.nil, where 7 is some
internal action, does not distinguish the two in the trace semantics. As we will see, the trace semantics
identifies the statements in every context, disproving (1). To show this we first compare the failure semantics
of s1 and s, in every context.

LEMMA 6.7 For all C'[-] € Cont, if w € F(Clx+ c.z]) and w ¢ F(C[z]) then w = wicwy or w = wiTws
Jor some wy € Act™ and wa € Act” such that for allu € T[Act”, wiu € F (C [x]).

PrROOF We prove this lemma by structural induction on C'[-]. We only consider the context C'[] || s.* The
other contexts can be handled similarly. We distinguish the following three cases.

4Here we exploit the folklore result that only contexts with one hole need to be considered.

11

1. Towards a contradiction, assume w = ay ...a,. Since w € F (C'[x + c.z] || s), by Lemma 4.3.9 there

3.

exists a function o : {1,...n} — ({1, R} U SAct) such that w, = o (a1,1)...0.(an,n) € F(C[x+c.z])
and oy (a1,1)...08 (an,n) € F(s). Because w & F (C[z] || s), again by Lemma 4.3.9, w, ¢ F (C[#]).
By induction, w;, = wicwh or w, = wirTw} for some w} € Act™ and wi € Act®, and hence wy, € Act”,
a contradiction.

. Assume w = ajaz.... Because w € F(C[z + c.z] || s), by Lemma 4.3.10 there exists a function

o : IN — ({r,r} U SAct) such that w, = oy (a1,1)oy (a2,2)... is a prefix of v, € F(C[zx + c.z])
and wg = g (a1, 1)og (az2,2) ... is a prefix of an element in F (s). Since w ¢ F (C'[z] || s), again by
Lemma 4.3.10, v, ¢ F (C [#]). By induction we have one of the following two cases.
2.1. Let v, = vtevh for some v € Act™ and v € Act” with for all w € TAct”, viu € F(C[z]).
Towards a contradiction, assume that w, is a prefix of v7. Then w, is a prefix of an element in
F (C[z]) and by Lemma 4.3.10, we have that w € F(C[z] || s), a contradiction. Consequently,
wy, = vicv" for some v" € Act™ U Act”. Assume we have that v} = oy, (a1,1)...00 (aj_1,7— 1) and
v = oy (aj41,5+ Do (@541,7+ 2) We distinguish two cases.
2.1.1. Assume o (j) = ¢. Then a; = 7. Hence, w = vy7v where v1 = aq...q;_1 and v = @j 41042
2.1.2. Assume o (j) = L. Then a; = ¢. Hence, w = vicv where v1 = ay1...a;_1 and v = ;410542
Let w =149 ... € [Act”. We define
p o(h) f1<h<j
v (h):{ L() ifh>j
Since
on(ar,1)...op(aj_1,5 — Doy (aj, fon (aj41,7 + 1) ...
= or(a,l)...on(aj_1,j—1)
is a prefix of wy which is a prefix of an element in F (s) and
ol (ar,1)...0o0 (aj—1,5 — Dol (aj, j)or (aj11, 5+ 1) ...

= O'L(Cll,l)...O'L(Clj_l,j—1)i1i2...

= ju
is an element in F (C'[z]), by Lemma 4.3.10,
ai...aj_1i1is ... = viu € F(Clz]| s).

2.2. Let vy, = vi7v} for some v] € Act™ and v € Act” such that for all u € TAct”, viu € F (C[z]).
Similar to case 2.1.2.

Assume w = a7 ...a, X. Similar to case 1.

Note that the scheduler ¢’ in the above proof is unfair. From the above lemma we can conclude

THEOREM 6.8 For all C'[-] € Cont, T (Clz]) =7 (C'[z + c.z]).

Proor Let C'[] € Cont. Clearly, F(z) C F(x 4 c.z). Because all semantic operators are monotone,
F(Clz]) € F(Clx + cx]). Since abs is monotone, T (C'[#]) C 7 (C'[x + c.z]) by Proposition 4.6. To
conclude that 7 (C'[x]) = 7 (C'[x + c.x]) it suffices to show that if w € F(C'[x + c.z]) and w ¢ F (C [z])
then w ¢ TAct™ U TAct” U IAct® - P (SAct). According to Lemma 6.7 we only have to consider the following
two cases.

1.
2.

Assume w = wycws for some wy € Act™ and wy € Act”. Then w & TAct™ U TAct” U [Act™ - P (SAct).

Assume w = wiTws for some w; € Act® and wy € Act®”. Towards a contradiction, assume that
w € TAct* UTAct” U IAct™ - P (SAct). Then wy € TAct® and ws € TAct”. According to Lemma 6.7,
wyTwy € F(C[#]), a contradiction.

O

12

Combining the above results we arrive at a proof of the conjecture of [BV96, page 504].
COROLLARY 6.9 F s not complete with respect to T .

Proor Immediate consequence of Proposition 6.6 and Theorem 6.8. a

Conclusion

From Theorem 5.2 and 6.5 and Corollary 6.9 we can conclude that the failure semantics is correct and
complete, and hence fully abstract, with respect to the trace semantics if and only if the set of internal
actions is infinite—the result announced in the abstract. This is an example of a result which shows that
the choice of a finite or an infinite set of actions does have (theoretical) implications. Note that we do not
claim that this result tells us whether one should choose for finitely or infinitely many actions. Both choices
have their merits and demerits (see [Con96]).

The problem of finding the fully abstract semantics for the language with finitely many internal actions
is still open. We only know that it should make more distinctions than the trace semantics but less than the
failure semantics, and that it should identify statements like s; and s given in Subsection 6.2.

By changing the trace semantics—for example, by observing also the unmatched synchronization actions—
the failure semantics is fully abstract with respect to this modified trace semantics, no matter whether the
set of internal actions is finite or infinite (see [Hor93, Chapter 4]).

Instead of specifying recursion by means of declarations (cf. Definition 1.2), one can also introduce it by
adding the construct pz.g, where g is a guarded statement (see Definition 1.2), to the clause defining the set
of statements in Definition 1.1. In this modified setting we can also consider contexts of the form puz.C'[-].
Although we are confident that the main results presented in this paper still hold, several of their proofs
have to be changed considerably. For example, to prove Corollary 4.4 we have to add to the set T of failure
sets some additional structure (e.g., a partial order or a metric) to express F (pux.g) as a fixed point of F (g).

In [MO95], Mislove and Oles address the question of extending a fully abstract semantics for a language
without recursion to the language with recursion. To obtain their results they assume the strongly order
fully abstractness hypothesis. They cannot prove their results without this hypothesis, nor do they have a
counterexample showing that the results do not hold without it. We believe that our study provides such a
counterexample. Assume [Act = {7,i}. From Corollary 6.9 we can conclude that the failure semantics is not
fully abstract with respect to the trace semantics. However, if we leave out recursion, the failure semantics
is fully abstract. This fact can be shown along the lines of the proof of Theorem 6.5. Instead of contexts
of the form [-] || test; (w) we use [-]|| test;m (w), where m is the maximal length of a sequence in the failure
semantics of the two statements to be distinguished.

References

[AP86] K.R. Apt and G.D. Plotkin. Countable Nondeterminism and Random Assignment. Journal of
the ACM, 33(4):724-767, October 1986.

[BG8T] J.C.M. Baeten and R.J. van Glabbeek. Merge and Termination in Process Algebra. In K. V. Nori,
editor, Proceedings of the 7th Conference on Foundations of Software Technology and Theoretical
Computer Science, volume 287 of Lecture Notes in Computer Science, pages 153-172, Pune,
December 1987. Springer-Verlag.

[BHR84] S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A Theory of Communicating Sequential Pro-
cesses. Journal of the ACM, 31(3):560-599, July 1984.

[BKO88] J.A. Bergstra, J.W. Klop, and E.-R. Olderog. Readies and Failures in the Algebra of Communi-
cating Processes. SIAM Journal on Computing, 17(6):1134-1177, December 1988.

13

[BKPRI1] F.S. de Boer, J.N. Kok, C. Palamidessi, and J.J.M.M. Rutten. The Failure of Failures in a

[Bre94]

[BV96]

[Con96]

[Hen88]

[Hoa85]

[Hor93]

[Mai87]

[Mey86]

[Mil73]

[Mil80]

[MO95]

[Par81]

[Plo81]

[Rut88]

[Sto88]

Paradigm for Asynchronous Communication. In J.C.M. Baeten and J.F. Groote, editors, Pro-
ceedings of CONCUR’91, volume 527 of Lecture Notes in Computer Science, pages 111-126,
Amsterdam, August 1991. Springer-Verlag.

F. van Breugel. A Non Fully Abstract Model for a Language with Synchronization. Unpublished
lecture notes, September 1994.

J.W. de Bakker and E.P. de Vink. Control Flow Semantics. Foundations of Computing Series.
The MIT Press, Cambridge, 1996.

Finite/Infinite Action Sets. Discussion on the concurrency forum, October 1996. Available at
theory.lcs.mit.edu as /pub/people/meyer/concurrency.new.

M. Hennessy. Algebraic Theory of Processes. Foundations of Computing Series. The MIT Press,
Cambridge, 1988.

C.A.R. Hoare. Communicating Sequential Processes. Series in Computer Science. Prentice Hall
International, London, 1985.

E. Horita. Fully Abstract Models for Concurrent Languages. PhD thesis, Vrije Universiteit,
Amsterdam, September 1993.

M.G. Main. Trace, Failure and Testing Equivalences for Communicating Processes. International

Journal of Parallel Programming, 16(5):383-400, 1987.

J.-J.Ch. Meyer. Merging Regular Processes by means of Fixed-Point Theory. Theoretical Com-
puter Science, 45(2):193-260, 1986.

R. Milner. Processes: a Mathematical Model of Computing Agents. In H.E. Rose and J.C.
Shepherdson, editors, Proceedings of the Logic Colloguium, volume 80 of Studies in Logic and the
Foundations of Mathematics, pages 157-173, Bristol, July 1973. North-Holland.

R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Computer
Science. Springer-Verlag, Berlin, 1980.

M.W. Mislove and F.J. Oles. Full Abstraction and Recursion. Theoretical Computer Science,
151(1):207-256, November 1995.

D. Park. Concurrency and Automata on Infinite Sequences. In P. Deussen, editor, Proceedings of
th GI-Conference on Theoretical Computer Science, volume 104 of Lecture Notes in Computer
Science, pages 167-183, Karlsruhe, March 1981. Springer-Verlag.

G.D. Plotkin. A Structural Approach to Operational Semantics. Report DAIMI FN-19, Aarhus
University, Aarhus, September 1981.

J.J.M.M. Rutten. Correctness and Full Abstraction of Metric Semantics for Concurrency. In
J.W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors, Proceedings of the School/Workshop
on Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency,
volume 354 of Lecture Notes in Computler Science, pages 628—659, Noordwijkerhout, May/June
1988. Springer-Verlag.

A. Stoughton. Fully Abstract Models of Programming Languages. Research Notes in Theoretical
Computer Science. Pitman, London, 1988.

14

