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Abstract

Well-known metric spaces for modelling finitely branching and image finite systems are shown to be (the
carrier of) terminal coalgebras.

Introduction

In the area of metric semantics, various metric structures have been proposed to model a wide spectrum
of programming notions (see, e.g., [BV96]). In this paper, we focus on metric structures for modelling
nondeterministic systems which may give rise to both terminating and nonterminating computations. The
systems we have in mind are labelled transition systems [Kel76]. A large variety of programming notions
can be modelled by means of these systems (see, e.g., [Plo81]). The models we consider are linear (cf.
[Pnu85]). In these models, the locations in a computation where a nondeterministic choice is made are not
visible. These linear models are usually contrasted with branching models (cf. [G1a90]). In those models,
the positions in the computation where a nondeterministic choice i1s made are administrated.

Typical examples of linear metric structures proposed in the literature are sets of words (see, e.g., [Niv79])
and sets of pomsets (see, e.g., [BW90]). Other examples can be found in, e.g., [BW91]. Here, we concentrate
on sets of finite and infinite words. The words over a set A of actions, denoted by A®, are provided with
a Baire-like metric [Bai09]. The distance between two words is given in terms of the length of their longest
common prefix. The set P, (A®) of nonempty sets of words is endowed with the induced Hausdorff metric
[Haul4]. This space is not a metric space, but only a pseudometric space. The restriction to the subspaces
Por (A%) of nonempty and compact sets of words and Py, (A%) of nonempty and closed sets of words gives
us a complete metric space [Kurb6, Hah32].

Like in automata theory, one can associate to a labelled transition system (S, A, —, |)—where S is the
(possibly infinite) set of states, A is the (possibly infinite) set of actions, — is the transition relation, and
| tells us in which states a computation may (but not necessarily has to) terminate—and an (initial) state
s € S, the corresponding language

aq as an ay az
{ajas...an|s=s0— 51— — s, | }U{aas...|s=s9p — 51 — - }.

In this way we assign to each system and state of the system a point of the linear space P, (A°®). These
points we call the linear processes. The subspace Py (A*) is well-suited for handling finitely branching
labelled transition systems—a system is finitely branching if every state has only finitely many outgoing
transitions—and the subspace Py, (A%) is used to deal with image finite labelled transition systems—a
system is image finite if every state has only finitely many outgoing transitions labelled by the same action.
Reminiscent to the classical result linking finite automata and regular languages [Kleb6], finitely branching
systems correspond to the points of the space Py (A% )—therefore we call these points the finitely branching



linear processes—and image finite systems correspond to the points of the space Py, (A% )—the points of
this space are called the image finite linear processes. These results are folklore (see, e.g., [Lan69]) and are
based on Konig’s lemma [K6n26].

During the last decade the insight gradually grew that systems like the above mentioned labelled transition
systems can be described as coalgebras. Among these coalgebras (of an endofunctor on a category), the
terminal one plays an important role. Tt provides us with definitions and proofs by coinduction (see, e.g.,
[JRI7]). The branching metric structures introduced in [BZ82, BZ83] were already known to be the carrier
of terminal coalgebras (see [RT92], cf. [Acz88, Bar93]). Here we show that also the above mentioned linear
metric structures are. This result can be exploited by coinductively defining operations on the metric spaces
(e.g., the merge) and by coinductively proving properties of these operations (e.g., the commutativity of the
merge). We do not provide the reader with such an example, because the examples presented in, e.g., [JR97]
can be adapted to our setting straightforwardly. Our observation that the metric spaces of linear processes
are terminal coalgebras shows that these spaces fit into the general coalgebra framework.

Related linear structures have been studied in, e.g., [HP79, TJ93, RT93] in an order- and set-theoretic
setting. In those papers, only finitely branching linear processes are considered. Here we also deal with
image finite ones. In the other papers, the structures involved are supplied with a join operation. Also the
metric spaces Ppp (A%) and P, (A%) have a natural join: the set-theoretic union. Whether all this can
also be carried out in a setting where the (complete) metric spaces are supplied with a (nonexpansive) join
operation and how this relates to the work presented here is left for future research.

The rest of this paper is organized as follows. In Section 1, we introduce the metric spaces Ppi (A%) and
Pnc (A%®). These metric spaces are shown to be the carrier of terminal coalgebras in Section 2. The reader
is assumed to have some basic knowledge of metric spaces and category theory.
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1 The metric spaces P, (A™) and P, (A™)

The well-known complete metric spaces Ppi (A™) and Py (A%) of finitely branching and image finite linear
processes are introduced. Furthermore, some simple operations on complete metric spaces', which we need
to define the functors in the next section, are presented.

To define the spaces Ppy (A%°) and Ppe (A) we first endow the set A of finite and infinite words over
the nonempty set A of actions with the following Baire-like metric [Bai09].

DEFINITION 1 The function dge : A% x A% — [0, 1] is defined by

d (w w ) _ 0 if w1 = Wy

A= LTI = 971 otherwise,
where n is the length of the longest common prefix of wy and wa. _
EXERCISE 2 Check that A® is a complete metric space. _

Next, we endow the set P, (A>) of nonempty sets of words with the induced Hausdorff metric [Haul4].
This only gives us a pseudometric space but not a metric space. By restricting ourselves to the subspaces
Por (A%®) of nonempty and compact sets of words and P, (A°) of nonempty and closed sets of words we
do get a metric space. On these subspaces the induced Hausdorfl metric amounts to the following.

1For the metric spaces (X,dx) we encounter in this paper, the set X is assumed to be nonempty and the metric dx is
presupposed to be 1-bounded. To simplify notations, we shall sometimes write X instead of (X,dx).



DEerFINITION 3 The function dp  (4c) : Pk (A%) x Ppr (A*) — [0,1] is defined by
dpnk (ace) (Wi, Wa) = max{wrlne%(l wl;réivlll/2 dgee (w1, wa), wl;neav)v(2 w{%ivlllfl dgee (wa, wl)}

and the function dp,,, (4%) : Pnc (A%) X Ppe (A*) — [0,1] is defined by

dppe(assy (Wi, Wa) = max{ sup inf dae (wy,ws2), sup inf dg~ (ws, wl)}.

wi W, w2EW2 woEW, W1EW)
_
Note that in the compact case, we can replace sup and inf by max and min, respectively.
PROPOSITION 4 (KURATOWSKI AND HAHN) Py (A™®) and Py (A*) are complete metric spaces.
ProOF See [Kurb6, Lemma 3] and [Hah32, § 9.6 and § 18.10]. O

We conclude this section with some simple operations on complete metric spaces. We start with an elementary

EXAMPLE 5 The set 1 = {0} with the obvious metric dj is a complete metric space. |

The operation that leaves the set unchanged and multiplies the metric by a % is considered in

EXERCISE 6 Let (X, dx) be a complete metric space. Verify that (X %dx) is also a complete metric space.
_

Given a nonempty set I and a complete metric space (X, dx), we turn the set 7 — X of functions from I to
X into a complete metric space as follows.

DEFINITION 7 The function dy_.x : (I — X) x (I — X) — [0, 1] is defined by

di—x (f1,f2) = sup dx (f1 (), f2 (2))-
_

EXERCISE 8 Check that I — X is a complete metric space. _

Let I be a nonempty set and, for all i € I, let (X;, dx,) be a complete metric space. By [[;c; Xi we denote
the disjoint union of the X;’s. The elements of this disjoint union are written as (i, z) where z € X; for
1 € I. Instead of HiE{O 1 X; we usually write Xy II X; and we sometimes use 2 - X to denote X 11 X.

DEerFINITION 9 The function dH x, P Hier Xi < Hier Xi — [0,1] is defined by

1€1
_ [ odxi(wr,@2) a0 € X
dH,ele (1, 20) = { 1 otherwise.
_
EXERCISE 10 Prove that J[;.; X; is a complete metric space. _



2 Ppr(A®) and P,.(A*) are terminal coalgebras

A category CMS of complete metric spaces and endofunctors F58 and ZF on this category are introduced.
Both functors are shown to have a unique (up to isomorphism) fixed point which is a terminal coalgebra.
Furthermore, the space Py (A%®) of finitely branching linear processes and the space P,. (A®) of image
finite linear processes are proved to be fixed points of FB and ZF, respectively.

DEFINITION 11 The category CMS has complete metric spaces as objects and nonexpansive functions as
arrows. 4

X; is a coproduct object in CMS.
_

EXERCISE 12 Verify that CMS is indeed a category. Prove that [[;c;

Obviously, [] can be extended to a functor. Also the constant 1 can be turned straightforwardly into a

functor. The extension of the operations % and I — to functors is left as

EXERCISE 13 Extend % and / — to an endofunctor on CMS. _

The functors FB and ZF are composed of the above introduced functors. By Pps (A) and P, (A) we denote
the set of nonempty and finite sets of actions and the set of nonempty sets of actions, respectively.

THEOREM 14 The endofunctors

FB=1112( ]_[ (I —1-) (1)

IEPnf (A)

and

IF=1112( ]_[ (I — =) (2)

IePn (A)
on CMS have a unique (up to isomorphism) fixed point which is a terminal coalgebra.

Proor From [AR8B9, Theorem 5.4] we can derive that the functors—our functor [ being the obvious
generalization of their 4+ —are locally contractive (see [RT92, Definition 4.2]). Hence, we can conclude from
[RT92, Corollary 4.9] that the functors have a unique (up to isomorphism) fixed point which is a terminal
coalgebra. ad

From the results of [Bar93] we can deduce that the corresponding endofunctors on Set—these are obtained
by simply forgetting about the metric—also have a terminal coalgebra. We conjecture that similar results
can also be obtained in the order-theoretic setting.

Let (X, f) be an FB-coalgebra, i.e. X is a complete metric space and f: X — FB(X) is a nonexpansive
function. We can view X as a state space. From f we can derive a transition relation and a termination
predicate as follows. Consider a state z € X. We distinguish three cases.

* Let f(x) = (0,0). Then we cannot make a transition from the state z, but we may terminate in .

* Let f(x) = (1,1,¢). The set I consists of the (initial) actions the outgoing transitions of the state x
are indexed by. The function ¢ : [ — %X gives us for each initial action a its continuation ¢ (a): the
state reached from x by the transition labelled by a. Furthermore, the state z is not a terminating
one.

* Let f(x) = (2,1, c). The only difference with the previous case is that we may terminate in the state x.



Note that the obtained system is finitely branching. Furthermore, the system is nondeterministic, 1.e. no
state has multiple outgoing transitions with the same label. Like in automata theory, one can easily construct
for a nondeterministic system a corresponding deterministic one. Similarly, ZF-coalgebras can be viewed
as 1mage finite systems. The way these systems are described is reminiscent to the interpretation of state
machines in [Han97].

THEOREM 15 Pp; (A%) and Py (A™) are a fixed point of (1) and (2), respectively.

In the rest of this section we prove that P, (A°°) is a fixed point of (1). The fact that Pp, (A™) is a fixed
point of (2) can be shown similarly. Combining Theorem 14 and 15, we can conclude that Pp; (A%°) and
P (A%°) are terminal coalgebras—the result announced in the abstract.

To conclude that Pni (A%) is a fixed point of (1) we have to show that P, (A™) is isomorphic to
FB(Pur (A%)) in CMS. For that purpose we introduce the functions e and p,

€

Pk (A%) FB(Pur (A%))

P
show that these functions are arrows of CMS, and prove that they form an isomorphism in the category.
DEFINITION 16 The function e : Ppg (A®) — FB (Pni (A%)) is defined by

(0,0} it W = {e}
eW)=<¢ (I, I,e) ifegW
(2,1,¢) otherwise,

where
I={a€ A|aweW for some w e A }

and the function ¢ : I — %Pnk (A®°) is given by
cla)={we A® |aw e W }.

The function p : FB (Pui (A%)) — Pai (A%) is defined by
p(0,0) = {e}

p{l,I,¢)={awe A® |[ae T and w € c(a) }
p(2,],¢) ={aw e A® |a €T and w € ¢(a) } U{e}.

EXERCISE 17 Check that the functions e and p are well-defined. _
Next, we verify that the functions e and p are nonexpansive.
ProPoOsITION 18 The functions e and p are arrows of CMS.

ProoF We only show that p is nonexpansive. The nonexpansiveness of e can be proved similarly. We only
consider the following case. The other cases can be dealt with similarly or are trivial.

dp_ (as) (P (1,1, c1),p (1,1, ¢2))
- dpnk(Aw)({awEAoo |acland wee(a)},{awe A” [a€ ] and w € cz(a)})
T e dp,, (a=)({aw € A% |w € ey (a) }, {aw € A™ |w € ¢z (a) })
ag

= sy §d e e @) 2 (0)

= d((1,1,e1),(1,1,¢q)).



Showing that ep = lp . (a=) and pe = lzp Py (4)) 1s left as

EXERCISE 19 Verify that e and p form an isomorphism in CMS'. _
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