
Universit�a di PisaDipartimento di InformaticaTechnical Report : TR-97-16A Labelled Transition System forpi epsilon-CalculusFranck van Breugel

September 09, 1997ADDR: Corso Italia 40,56125 Pisa,Italy. TEL: +39-50-887111. FAX: +39-50-887226

A Labelled Transition System for ��-CalculusFranck van BreugelUniversit�a di Pisa, Department of Computer ScienceCorso Italia 40, 56125 Pisa, Italyfranck@di.unipi.itAbstractA labelled transition system is presented for Milner's ��-calculus. This system is related to the reductionsystem for the calculus presented by Bellin and Scott. Also a reduction system and a labelled transitionsystem for ��I-calculus are given and their correspondence is studied. This calculus is a subcalculus of��-calculus in the way Sangiorgi's �I-calculus is a subcalculus of ordinary �-calculus.IntroductionIn the early nineties, Abramsky [Abr94] presented a translation from proofs in linear logic into �-calculus,and outlined the results relating the computational behaviour of the proofs under cut-elimination to that ofthe processes under reductions. When Milner heard of Abramsky's result, he worked out his own translation.This led to the development of a synchronous version of �-calculus [Mil93], which we call ��-calculus1. In[BS94], Bellin and Scott analyzed Abramsky's translation in detail for Milner's ��-calculus.In ��-calculus we encounter enabling, extended scope extrusion, and self communication. These threefeatures are not present in ordinary �-calculus. We discuss them in the following three paragraphs.In �-calculus, the process �:P speci�es that the action � has to precede all actions in P . For the ��-calculus process �P this condition has been weakened as follows. The action � only has to precede thoseactions in P which it enables, i.e. those actions a free name of which is bound by �. For example, in theprocess w(x) �yz P , where x 6= y, z, the action w(x) does not enable �yz. As a consequence, the action �yzmay precede w(x). Hence, if we put the process w(x) �yz P in parallel with y(z)Q, then a communication aty can occur resulting in the process w(x)P in parallel with Q. This is modelled by the reductionw(x) �yz P j y(z)Q ! w(x)P j Q: (1)Like in �-calculus, in ��-calculus we encounter scope extrusions. For example, if x 6= y then(�x) �yxP j y(x)Q! (�x) (P j Q): (2)Usually, only scopes of the form (�x) are extruded. In ��-calculus also extended scopes like (�w)w(x)x(y)|aformal de�nition of these extended scopes is given in De�nition 6|are extruded. For example,(�w)w(x)x(y) �zy P j z(y)Q ! (�w)w(x)x(y) (P j Q) (3)provided that z 6= w, x, y, and w, x do not occur free in Q.In ��-calculus, a process can communicate with itself. In its simplest form, self communication amountsto �xy x(z)P ! P [y=z]: (4)1Since we do not want to contrast the calculus with asynchronous �-calculus [HT91, Bou92] and �nablement is one of itskey features, we call it ��-calculus. 1

Self communication can also take place in extended scopes. For example, if w 6= x, y, z thenw(x) (�y) y(z) �wzP ! (�y) y(z) (P [z=x]): (5)The process communicates with itself at w within the extended scope (�y) y(z).For ��-calculus, Bellin and Scott [BS94] presented a reduction system [Mil92]. We briey review thissystem in Section 2. The rules de�ning this system are simple and natural. However, the system doesnot support reasoning in a purely structural way. In Section 3, we give a labelled transition system for thecalculus following Plotkin's structural approach [Plo81]. The rules de�ning the labelled transition system arenon-trivial. In Section 4, the correctness of this system is shown by proving the correspondence between thereduction system and the labelled transition system. Both the reduction system and the labelled transitionsystem are useful (cf. [San92, page 26]) and once their relation has been established they support each other.In [San96a], Sangiorgi studied a subcalculus of �-calculus, called �I-calculus, which only uses internalmobility. In Section 5, we present a reduction system and a labelled transition system for ��I-calculus, asubcalculus of ��-calculus with only internal mobility. Furthermore, we investigate the relation between thetwo systems.Some related work is discussed in Section 6. In the �nal section, some conclusions are drawn. We assumethat the reader is familiar with �-calculus and �I-calculus. For an introduction to �-calculus we refer thereader to Milner's tutorial [Mil91]. In Sangiorgi's [San96a], �I-calculus is studied in great detail.AcknowledgementsI am thankful to Prakash Panangaden for numerous discussions. These were essential for my understandingof ��-calculus and the development of the labelled transition system. Furthermore, I am grateful to DavideSangiorgi for his constructive comments. My thanks also to Gianluigi Ferrari, Vincent van Oostrom, MarcoPistore, and Philip Scott for discussion.1 Basic ��-calculusWe assume an in�nite set of names. We use x, y, x1, y0, : : : to range over these names.Definition 1 The set of processes is de�ned byP ::= 0 j � P j P j Qwhere the set of particles is given by� ::= �xy j x(y) j (�x)Only the constructs �xy P and x(y)P are not part of ordinary �-calculus. Just a small fragment of ��-calculusis presented here. We are con�dent that the results of the present paper can be extended straightforwardlyif we add operators like summation and replication.This calculus has two binders, the particles x(y) and (�x). We de�ne the bound names and free namesof particles and processes in the usual way.� bn (�) fn (�)�xy ; fx; ygx(y) fyg fxg(�x) fxg ; 2

P bn (P) fn (P)0 ; ;� P bn (�) [bn (P) fn (�) [(fn (P) n bn (�))P j Q bn (P) [bn (Q) fn (P) [fn (Q)The names of particles and processes are given byn (�) = bn (�) [fn (�)n (P) = bn (P) [fn (P) 2 Reduction systemThe reduction system is de�ned in two steps. First, we identify several processes by introducing a structuralcongruence over processes. Second, we de�ne the computation steps of processes in terms of a reductionrelation. Our presentation is based on [Mil91, Section 2] and [BS94, Section 2].Definition 2 The structural congruence � is de�ned as the smallest congruence relation over processessatisfying1. if P and Q are alpha-convertible then P � Q2. P j Q � Q j P3. (P j Q) j R � P j (Q j R)4. 0 j P � P5. if n (�1) \ bn (�2) = ; and n (�2) \ bn (�1) = ; then �1 �2P � �2 �1P6. if bn (�) \ fn (Q) = ; then � (P j Q) � (� P) j QFor ordinary �-calculus 1., 2., 3., and 4., and 5. and 6. restricted to particles of the form (�x) are used (see[Mil91, page 7 and 8]). In [Eng96, page 81], Engelfriet considers the following variation of 5.if x 62 n (�) then (�x):�:P � �:(�x):PDefinition 3 The reduction relation ! is de�ned as the smallest relation over processes satisfying1. x(y)P j �xz Q! P [z=y] j Q2. P ! P 0� P ! � P 03. P ! P 0P j Q! P 0 j Q4. P � Q Q! Q0 Q0 � P 0P ! P 0For ordinary �-calculus one only needs 1., 2. restricted to particles of the form (�x), 3., and 4. (see [Mil91,page 8]).In Appendix A we give proofs of the reductions presented in the introduction. We conclude this sectionwith some properties of the structural congruence. These will be exploited when we link the reduction systemand the labelled transition system. 3

Proposition 4 If P � Q then fn (P) = fn (Q).Proof Induction on the proof of P � Q. 2Proposition 5 If P � Q then P [x=y] � Q[x=y].Proof Induction on the proof of P � Q. 2In Proposition 7 we show that 5. and 6. of De�nition 1 also hold for scopes.Definition 6 The set of connected input sequences is given by�yx ::= x(y) j x(z) �yzThe set of scopes is de�ned by�x ::= �xy j (�x) j (�y) �xyA connected input sequence �xnx1 is of the formx1(x2)x2(x3) : : :xn�1(xn):These are related to Sangiorgi's dependency chains [San96a, De�nition 6.5]. In ordinary �-calculus oneusually only considers scopes of the form (�x). The role of these extended scopes will be discussed in thenext section. The bound and free names of scopes are de�ned straightforwardly.� bn (�) fn (�)x(y) fyg fxgx(z) �yz fzg [bn (�yz) fxg� bn (�) fn (�)�xy bn (�xy) fn (�xy)(�x) fxg ;(�y) �xy fyg [bn (�xy) ;Proposition 71. If n (�) \ bn (�) = ; and n (�) \ bn (�) = ; then � � P � � � P .2. If bn (�) \ fn (Q) = ; then � (P j Q) � (� P) j Q.Proof Structural induction on �. 23 Labelled transition systemThe labelled transition system presented in this section is new. Its presentation is based on [MPW92,page 46] and [ACS96, page 150]. The system uses the late scheme of name instantiation. It can be adaptedstraightforwardly to deal with the early scheme (cf. [MPW93]).The labelled transition system not only describes the computation steps of processes but also theircommunications possibilities. This information is recorded by means of actions.Definition 8 The set of actions is given by� ::= �xy j x(y) j � j �y �xywhere x 62 bn (�y). 4

In ordinary �-calculus the action (�y) �xy is usually written as �x(y). The actions �y �xy, with �y 6= (�y),one does not encounter in the usual labelled transition system. These extended scopes are used to modelextended scope extrusions (cf. (3) in the introduction).The bound and free names of actions are de�ned as follows.� bn (�) fn (�)�xy ; fx; ygx(y) fyg fxg� ; ;�y �xy bn (�y) fxgIn the next de�nition the transition relation is presented. We have omitted the symmetric versions of therules 9., 10., and 11.Definition 9 The transition relation ! is de�ned as the smallest labelled relation over processes satisfying1. P 0 ��! Q0P ��! Q P and P 0, and Q and Q0 are alpha-convertible2. �xy P �xy��! P3. x(y)P x(y)���! P4. P ��! P 0� P ��! � P 0 n (�) \ bn (�) = ; and n (�) \ bn (�) = ;5. P �zy��! P 0x(y)P x(y) �zy�����! P 0 y 6= z P �wy �zw����! P 0x(y)P x(y) �wy �zw�������! P 0 y 6= z6. P �zy��! P 0(�y)P (�y) �zy�����! P 0 y 6= z P �wy �zw����! P 0(�y)P (�y) �wy �zw�������! P 0 y 6= z7. P x(z)���! P 0�xy P ��! P 0[y=z]8. P �xz��! P 0x(y)P ��! P 0[z=y] y 6= x, z P �z �xz����! P 0x(y)P ��! �z (P 0[z=y]) y 62 n (�z �xz)9. P ��! P 0P j Q ��! P 0 j Q bn (�) \ fn (Q) = ;10. P x(z)���! P 0 Q �xy��! Q0P j Q ��! P 0[y=z] j Q011. P x(y)���! P 0 Q �y �xy����! Q0P j Q ��! �y (P 0 j Q0) bn (�y) \ fn (P) = ;5

Some remarks:� The rules 1., 4. with � of the form (�x), the �rst part of 6., 9., 10., and 11. with �y of the form (�y)are as usual.� The axioms 2. and 3. are as expected.� The rule 4. models enabling and corresponds to De�nition 2.5.� The rules 5. and 6. describe scope opening (cf. [MPW92, page 48]). Like in ordinary �-calculus, theside condition y 6= z prevents z from becoming bound (cf. De�nition 8). The rule 11. handles scopeclosing. Note that the scope �y reappears in the conclusion. The side condition bn (�y) \ fn (P) = ;prevents us from deriving the incorrect transition(�z) z(y) �xy 0 j x(y) �zy 0 ��! (�z) z(y) (0 j �zy 0):This transition is incorrect since the free name z in x(y) �zy 0 is only accidentally the same as the boundname z in (�z) z(y) �xy 0. In the third example of Appendix B the interplay between scope opening andscope closing is illustrated.� The rules 7. and 8. describe self communication. Because of the side condition y 6= x, we cannot provethe obviously incorrect transitionx(y) �yz 0 ��! 0:This side condition ensures that the free name x and the bound name y, which can be alpha-convertedto x, are not identi�ed. The side condition y 6= z rules out the transitionx(y) �xy �xy 0 ��! �xw 0:This transition is incorrect because the bound name y, which can be alpha-converted to w, becomesfree (cf. Proposition 10). The side condition y 62 n (�z �xz) prevents us from proving the transitionx(y) (�y) y(z) �xz �yw 0 ��! (�y) y(z) �zw 0:This transition is incorrect since the y in �yw is bound by (�y) in x(y) (�y) y(z) �xz �yw 0 whereas thecorresponding z in �zw is bound by y(z) in (�y) y(z) �zw 0.� The following variation of 1. (cf. [San92, page 30]) su�ces to prove the results of Section 4.P 0 ��! QP ��! Q P and P 0 are alpha-convertibleWe have chosen for 1. since it is convenient for proving Proposition 11.In Appendix B we give proofs of the � -transitions corresponding to the reductions presented in the intro-duction. Like in the previous section, we conclude with some properties which are used when we relate thetwo systems.Proposition 10 If P ��! P 0 then fn (�) � fn (P) and fn (P 0) � fn (P) [bn (�).6

Proof Induction on the proof of P ��! P 0. 2The above result also holds for ordinary �-calculus (see [MPW92, Lemma 1]).Proposition 11 If there exists a proof of P ��! Q not containing bn (�0) and �Q and �0Q0 are alpha-convertible2 then P �0��! Q0.Proof Induction on the depth of the proof of P ��! Q exploiting the following fact. Assume there existsa proof of P ��! Q not containing x. If y 62 bn (�) then there is a proof of P [x=y] �[x=y]����! Q[x=y] of the samedepth. Otherwise, there is a proof of P [x=y] �[x=y]����! Q of the same depth. 2This result is similar to [MPW92, Lemma 2].4 Correspondence between the systemsThe reduction system of Section 2 and the labelled transition system of Section 3 are related in this section.More precisely, reductions and � -transitions are linked. In Theorem 12 it is shown that every � -transitionis matched by a reduction. Conversely, for every reduction there exists a corresponding � -transition, as isproved in Theorem 15. The proofs of these results are given in Appendix C.Theorem 121. If P �xy��! P 0 then P � �xy P 0.2. If P x(y)���! P 0 then P � x(y)P 0.3. If P �y �xy����! P 0 then P � �y �xy P 0.4. If P ��! P 0 then P ! P 0.Proof See Appendix C. 2The proof of Theorem 15 relies on the following lemma. This lemma is the main technical result of thepaper.Lemma 13 Let P � Q.1. If P ��! P 0 then Q ��! Q0 for some Q0 such that P 0 � Q0.2. If Q ��! Q0 then P ��! P 0 for some P 0 such that P 0 � Q0.Proof See Appendix C. 2The de�nitions of late, early, ground, and open bisimulation for �-calculus [MPW92, San96b] can be adaptedstraightforwardly to our setting (see Appendix D).Corollary 14 � is a late, early, ground, and open bisimulation.Proof See Appendix D. 22� Q and � Q0 are alpha-convertible if Q and Q0 are. 7

We conclude this section withTheorem 151. If P � �xy P 0 then P �xy��! P 00 for some P 00 such that P 00 � P 0.2. If P � x(y)P 0 then P x(y)���! P 00 for some P 00 such that P 00 � P 0.3. If P � �y �xy P 0 then P �y �xy����! P 00 for some P 00 such that P 00 � P 0.4. If P ! P 0 then P ��! P 00 for some P 00 such that P 00 � P 0.Proof See Appendix C. 25 Basic ��I-calculusIn this section we restrict our attention to a subcalculus of ��-calculus which only gives rise to internalmobility (see [San96a]) called ��I-calculus. The reduction system of Section 2 is easily adapted. Like forordinary �-calculus, the labelled transition system for the subcalculus is much simpler than the one for thefull calculus given in Section 3. The relation between the two systems is similar to the one presented inSection 4.The subcalculus is obtained by restricting the set of particles. We do not consider free outputs �xy butonly bound ones (�y) �xy, from now on abbreviated to �x(y).Definition 16 The set of particles is given by� ::= �x(y) j x(y) j (�x)The particle �x(y) is a binder withbn (�x(y)) = fygfn (�x(y)) = fxgThe structural congruence � is de�ned by all rules of De�nition 2 but the rule 5. The latter rule can bederived from the other ones.Proposition 17 If n (�1) \ bn (�2) = ; and n (�2) \ bn (�1) = ; then �1 �2P � �2 �1P .Proof See Appendix C. 2The reduction relation is presented inDefinition 18 The reduction relation ! is de�ned as the smallest relation over processes satisfying1. x(y)P j �x(y)Q ! (�y) (P j Q)2. P ! P 0� P ! � P 03. P ! P 0P j Q! P 0 j Q4. P � Q Q! Q0 Q0 � P 0P ! P 0 8

The only di�erence with De�nition 3 is the axiom 1. Note that we only encounter alpha-conversion and nosubstitution in the reduction system for ��I-calculus.In the labelled transition system we do not need the extended scopes of De�nition 6 we used in Section 3.Definition 19 The set of actions is given by� ::= �x(y) j x(y) j �The transition relation is presented next. We have omitted the symmetric versions of the rules 7. and 8.Definition 20 The transition relation ! is de�ned as the smallest labelled relation over processes satisfying1. P 0 ��! Q0P ��! Q P and P 0, and Q and Q0 are alpha-convertible2. �x(y)P �x(y)���! P3. x(y)P x(y)���! P4. P ��! P 0� P ��! � P 0 n (�) \ bn (�) = ; and n (�) \ bn (�) = ;5. P x(z)���! P 0�x(y)P ��! (�y) (P 0[y=z]) x 6= y6. P �x(z)���! P 0x(y)P ��! (�y) (P 0[y=z]) x 6= y7. P ��! P 0P j Q ��! P 0 j Q bn (�) \ fn (Q) = ;8. P �x(y)���! P 0 Q x(y)���! Q0P j Q ��! (�y) (P 0 j Q0)Some remarks:� The rules 1., 4., and 7., and the axiom 3. correspond to the rules 1., 4., and 9., and the axiom 3. ofDe�nition 9.� The axiom 2. and the rules 5., 6., and 8. are the obvious modi�cations of the axiom 2., and the rules7., 8., and 10. of De�nition 9.� Note that we do use substitution in the rules 5. and 6. In the transition corresponding to the reduction�x(y)x(z) z(w) �y(w) 0! (�y) y(w) �y(w) 0 (6)9

(a proof of this reduction is given in Appendix A) z in z(w) and y in �y(w) are identi�ed:�x(y)x(z) z(w) �y(w) 0 ��! (�y) y(w) �y(w) 0:This identi�cation cannot be brought about by alpha-conversion of �x(y)x(z) z(w) �y(w) 0.We conclude this section with two correspondence theorems.Theorem 211. If P �x(y)���! P 0 then P � �x(y)P 0.2. If P x(y)���! P 0 then P � x(y)P 0.3. If P ��! P 0 then P ! P 0.Proof Similar to the proof of Theorem 12. 2Theorem 221. If P � �x(y)P 0 then P �x(y)���! P 00 for some P 00 such that P 00 � P 0.2. If P � x(y)P 0 then P x(y)���! P 00 for some P 00 such that P 00 � P 0.3. If P ! P 0 then P ��! P 00 for some P 00 such that P 00 � P 0.Proof Similar to the proof of Theorem 15. 26 Related workThe only three other papers which discuss the relation between a reduction system and a labelled transitionsystem we are aware of are Milner's [Mil92], Honda and Yoshida's [HY93], and Corradini, Ferrari, andPistore's [CFP97]. All use the rule1.' P 0 ��! Q0P ��! Q P � P 0 and Q � Q0instead of1. P 0 ��! Q0P ��! Q P and P 0, and Q and Q0 are alpha-convertibleas we do. In their setting Lemma 13, the main technical result of this paper, becomes trivial. Their rule isless structural than ours. Furthermore, the rule 1. can easily be distributed over the other axioms and rules(compare the labelled transition system of Milner et al. [MPW92, page 46] and the one of Sangiorgi [San92,page 30]). This is not the case for the other rule.In the conclusion of [MP95], Montanari and Pistore consider relaxing the sequencing power of pre�xing.Instead of a reduction system or a labelled transition system, they use a graph rewriting system. In theirsetting, enablement can easily be accommodated (as long as one does not consider replication).10

ConclusionFrom our case study we can conclude that the problem of reconstructing a labelled transition system froma reduction system is far from easy. Although the reduction system for ��-calculus is rather close to the onefor ordinary �-calculus, we encounter in the labelled transition system for ��-calculus extended scopes andvarious new rules.In [Mil93, page 37], Milner �rst presented ��-calculus with enablement as its new feature. The factthat ��-calculus has self communication was already observed by Bellin and Scott [BS94, page 15]. But thepresence of extended scope extrusion in ��-calculus|although maybe not very surprising|only occurred tous when we developed the labelled transition system.The labelled transition system for ��-calculus might be the basis for the development of a (possibly fullyabstract with respect to some form of bisimulation) denotational semantics for the calculus. Here we canmake fruitful use of the work of Fiore, Moggi, and Sangiorgi [FMS96], Hennessy [Hen96], and Stark [Sta96].From Corollary 14 we can conclude that the structural congruence � is indeed included in several well-known behavioural equivalences (this is one of the criteria such a structural congruence should meet [San92,page 27]).The labelled transition system for ��I-calculus, the subcalculus with only internal mobility, is much sim-pler than the one for the full calculus. This provides another indication that external mobility is responsiblefor much of the semantic complications (cf. [San96a]).Although we only consider internal mobility in ��I-calculus, we do use substitution in the labelled tran-sition system. In �I-calculus only alpha-conversion is needed (see [San96a, Section 2.2]). This suggests thatthe absence of substitution in �I-calculus is just a property of the calculus, rather than a consequence ofits restriction to internal mobility. Whether the substitutions used in ��I-calculus are of a special kind (thesubstituted name is always bound by a generated restriction) needs further study.Another topic reserved for later treatment is the study of bisimulation. The de�nitions of barbed, early,ground, late, and open bisimulation for �-calculus can be adapted straightforwardly to our setting (seeAppendix D). We are interested in the connection with bisimulation for action structures (for ��-calculus)given by Milner in [Mil93]. References[Abr94] S. Abramsky. Proofs as Processes. Theoretical Computer Science, 135(1):5{9, December 1994.[ACS96] R.M. Amadio, I. Castellani, and D. Sangiorgi. On Bisimulation for the Asynchronous �-Calculus.In U. Montanari and V. Sassone, editors, Proceedings of CONCUR'96, volume 1119 of LectureNotes in Computer Science, pages 147{162, Pisa, August 1996. Springer-Verlag.[Bou92] G. Boudol. Asynchrony and the �-Calculus (note). Report RR-1702, INRIA, Sophia Antipolis,May 1992.[BS94] G. Bellin and P. Scott. On the �-Calculus and Linear Logic. Theoretical Computer Science,135(1):11{65, December 1994.[CFP97] F. Corradini, G. Ferrari, and M. Pistore. Eager, Busy-Waiting and Lazy Actions in Timed Com-putation. In Proceedings of the 4th Workshop on Expressiveness in Concurrency, Electronic Notesin Theoretical Computer Science, Santa Margherita Ligure, September 1997. Elsevier Science.[Eng96] J. Engelfriet. A Multiset Semantics for the �-Calculus. Theoretical Computer Science,153(1/2):65{94, January 1996.[FMS96] M. Fiore, E. Moggi, and D. Sangiorgi. A Fully Abstract Model for the �-Calculus. In Proceedingsof the 11th Annual IEEE Symposium on Logic in Computer Science, pages 43{54, New Brunswick,July 1996. IEEE Computer Society Press.11

[Hen96] M. Hennessy. A Fully Abstract Denotational Semantics for the �-Calculus. Report 96:04, Uni-versity of Sussex, Brighton, June 1996.[HT91] K. Honda and M. Tokoro. An Object Calculus for Asynchronous Communication. In P. America,editor, Proceedings of the European Conference on Object-Oriented Programming, volume 512 ofLecture Notes in Computer Science, pages 133{147, Geneva, July 1991. Springer-Verlag.[HY93] K. Honda and N. Yoshida. On Reduction-Based Process Semantics. In R.K. Shyamasundar,editor, Proceedings of the 13th Conference on Foundations of Software Technology and TheoreticalComputer Science, volume 761 of Lecture Notes in Computer Science, pages 371{387, Bombay,December 1993. Springer-Verlag.[Mil80] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in ComputerScience. Springer-Verlag, Berlin, 1980.[Mil91] R. Milner. The Polyadic �-Calculus: a tutorial. Report ECS-LFCS-91-180, University of Edin-burgh, Edinburgh, October 1991.[Mil92] R. Milner. Functions as Processes. Mathematical Structures in Computer Science, 2(2):119{141,June 1992.[Mil93] R. Milner. Action Structures for the �-Calculus. Report ECS-LFCS-93-264, University of Edin-burgh, Edinburgh, May 1993.[MP95] U. Montanari and M. Pistore. Concurrent Semantics for the �-Calculus. In S. Brookes, M. Main,A. Melton, and M. Mislove, editors, Proceedings of the 11th Annual Conference on MathematicalFoundations of Programming Semantics, volume 1 of Electronic Notes in Theoretical ComputerScience, New Orleans, March/April 1995. Elsevier Science.[MPW92] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, I and II. Information andComputation, 100(1):1{40 and 41{77, September 1992.[MPW93] R. Milner, J. Parrow, and D. Walker. Modal Logics for Mobile Processes. Theoretical ComputerScience, 114(1):149{171, June 1993.[MS92] R. Milner and D. Sangiorgi. Barbed Bisimulation. In W. Kuich, editor, Proceedings of the 19thInternational Colloquium on Automata, Languages and Programming, volume 623 of Lecture Notesin Computer Science, pages 685{695, Vienna, July 1992. Springer-Verlag.[Par81] D. Park. Concurrency and Automata on In�nite Sequences. In P. Deussen, editor, Proceedings of5th GI-Conference on Theoretical Computer Science, volume 104 of Lecture Notes in ComputerScience, pages 167{183, Karlsruhe, March 1981. Springer-Verlag.[Plo81] G.D. Plotkin. A Structural Approach to Operational Semantics. Report DAIMI FN-19, AarhusUniversity, Aarhus, September 1981.[San92] D. Sangiorgi. Expressing Mobility in Process Algebras: �rst-order and higher-order paradigms.PhD thesis, University of Edinburgh, Edinburgh, 1992.[San96a] D. Sangiorgi. �-Calculus, Internal Mobility, and Agent-Passing Calculi. Theoretical ComputerScience, 167(1/2):235{274, October 1996.[San96b] D. Sangiorgi. A Theory of Bisimulation for �-Calculus. Acta Informatica, 33(1):69{97, February1996.[Sta96] I. Stark. A Fully Abstract Domain Model for the �-Calculus. In Proceedings of the 11th AnnualIEEE Symposium on Logic in Computer Science, pages 36{42, New Brunswick, July 1996. IEEEComputer Society Press. 12

A Some reductionsProofs of the reductions presented in the introduction and Section 5 are given.1. Let x 6= y, z. Sincew(x) �yz P j y(z)Q � �yz w(x)P j y(z)Q [De�nition 2.5]and �yz w(x)P j y(z)Q ! w(x)P j Q [De�nition 3.1]we can conclude thatw(x) �yz P j y(z)Q ! w(x)P j Q [De�nition 3.4]2. Let x 6= y. Because(�x) �yxP j y(x)Q � (�x) (�yxP j y(x)Q) [De�nition 2.6]and (�x) (�yxP j y(x)Q) ! (�x) (P j Q) [De�nition 3.1 and 3.2]we have that(�x) �yxP j y(x)Q! (�x) (P j Q) [De�nition 3.4]3. Let z 6= w, x, y, and assume w, x 62 fn (Q). Then(�w)w(x)x(y) �zy P j z(y)Q � (�w)w(x)x(y) (�zy P j z(y)Q) [De�nition 2.6]and (�w)w(x)x(y) (�zy P j z(y)Q) ! (�w)w(x)x(y) (P j Q) [De�nition 3.1 and 3.2]Hence,(�w)w(x)x(y) �zy P j z(y)Q ! (�w)w(x)x(y) (P j Q) [De�nition 3.4]4. Since �xy x(z)P� �xy (0 j x(z)P) [De�nition 2.4]� �xy 0 j x(z)P [De�nition 2.6]and �xy 0 j x(z)P ! 0 j P [y=z] [De�nition 3.1]and 0 j P [y=z] � P [y=z] [De�nition 2.4]we can conclude that�xy x(z)P ! P [y=z] [De�nition 3.4] 13

5. Let w 6= x, y, z. Assume y0, z0 62 n (w(x) (�y) y(z) �wzP) and y0 6= z0. Thenw(x) (�y) y(z) �wz P� w(x) (�y0) y0(z0) �wz0P [z0=z][y0=y] [De�nition 2.1]� (�y0)w(x) y0(z0) �wz0P [z0=z][y0=y] [De�nition 2.5]� (�y0) y0(z0)w(x) �wz0P [z0=z][y0=y] [De�nition 2.5]� (�y0) y0(z0)w(x) �wz0 (0 j P [z0=z][y0=y]) [De�nition 2.4]� (�y0) y0(z0)w(x) (�wz0 0 j P [z0=z][y0=y]) [De�nition 2.6]� (�y0) y0(z0)w(x) (P [z0=z][y0=y] j �wz0 0) [De�nition 2.2]� (�y0) y0(z0) (w(x)P [z0=z][y0=y] j �wz0 0) [De�nition 2.6]� (�y) y(z) (w(x)P j �wz 0) [De�nition 2.1]� (�y) y(z) (�wz 0 j w(x)P) [De�nition 2.2]Furthermore,(�y) y(z) (�wz 0 j w(x)P)! (�y) y(z) (0 j P [z=x]) [De�nition 3.1 and 3.2]and (�y) y(z) (0 j P [z=x]) � (�y) y(z) (P [z=x]) [De�nition 2.4]Hence,w(x) (�y) y(z) �wzP ! (�y) y(z) (P [z=x]) [De�nition 3.4]6. Since �x(y)x(z) z(w) �y(w) 0� �x(y)x(z) z(w) (0 j �y(w) 0) [De�nition 2.4]� �x(y)x(z) (z(w) 0 j �y(w) 0) [De�nition 2.6]� �x(y) (x(z) z(w) 0 j �y(w) 0) [De�nition 2.6]� �x(y) (�y(w) 0 j x(z) z(w) 0) [De�nition 2.2]� �x(y) �y(w) 0 j x(z) z(w) 0 [De�nition 2.6]� �x(y) �y(w) 0 j x(y) y(w) 0 [De�nition 2.1]and �x(y) �y(w) 0 j x(y) y(w) 0! (�y) (�y(w) 0 j y(w) 0) [De�nition 18.1]and (�y) (�y(w) 0 j y(w) 0)� (�y) �y(w) (0 j y(w) 0) [De�nition 2.6]� (�y) �y(w) y(w) 0 [De�nition 2.4]we can conclude that�x(y)x(z) z(w) �y(w) 0! (�y) �y(w) y(w) 0 [De�nition 18.4]14

B Some labelled transitionsProofs of the � -transitions corresponding to the reductions presented in the introduction are given.1. Let x 6= y, z. Then�yz P �yz��! Pw(x) �yz P �yz��! w(x)P y(z)Q y(z)���! Qw(x) �yz P j y(z)Q ��! w(x)P j Q2. Let x 6= y. Then�yxP �yx��! P(�x) �yxP (�x) �yx�����! P y(x)Q y(x)���! Q(�x) �yxP j y(x)Q ��! (�x) (P j Q)3. Let z 6= w, x, y, and assume w, x 62 n (Q) Then�zy P �zy��! Px(y) �zy P x(y) �zy�����! Pw(x)x(y) �zy P w(x)x(y) �zy��������! P(�w)w(x)x(y) �zy P (�w)w(x)x(y) �zy�����������! P z(y)Q z(y)���! Q(�w)w(x)x(y) �zy P j z(y)Q ��! (�w)w(x)x(y) (P j Q)4. We have thatx(z)P x(z)���! P�xy x(z)P ��! P [y=z]5. Let w 6= x, y, z. Then�wz P �wz��! Py(z) �wz P y(z) �wz�����! P(�y) y(z) �wz P (�y)y(z) �wz��������! Pw(x) (�y) y(z) �wz P ��! (�y) y(z) (P [z=y])C Some proofsThe proofs omitted in Section 4 and 5 are given.Proof of Theorem 12 This theorem is proved by induction on the proofs. For example, assume the proofis of the form ...P �z �xz����! P 0x(y)P ��! �z (P 0[z=y]) y 62 n (�z �xz) 15

By induction, P � �z �xz P 0. Hence,x(y)P� x(y)�z �xz P 0� �z x(y) �xz P 0 [Proposition 7.1]� �z x(y) �xz (0 j P 0) [De�nition 2.4]� �z x(y) (�xz 0 j P 0) [De�nition 2.6]� �z x(y) (P 0 j �xz 0) [De�nition 2.2]� �z (x(y)P 0 j �xz 0) [De�nition 2.6]� �z (�xz 0 j x(y)P 0) [De�nition 2.2]Furthermore,�z (�xz 0 j x(y)P 0)! �z (0 j P 0[z=y]) [De�nition 3.1 and 3.2]and �z (0 j P 0[z=y]) � �z (P 0[z=y]) [De�nition 2.4]Hence, we can conclude thatx(y)P ! �z (P 0[z=y]) [De�nition 3.4] 2Proof of Lemma 13 We prove this lemma by induction on the proofs of P ��! P 0, Q ��! Q0, and P � Q.We only consider proofs of P ��! P 0 and Q ��! Q0 of minimal complexity. The complexity of a proof isdetermined by those nodes in the proof where the rule 1. is applied. The more the rule 1. is applied towardsthe root of the proof, the smaller its complexity is. Only a few of many cases are elaborated on.� Assume P � Q. Consider the proof...P 0 ��! R0P ��! R P and P 0, and R and R0 are alpha-convertibleBecause P and P 0 are alpha-convertible, P � P 0. Since P � Q, we have that P 0 � Q. By induction,Q ��! Q0 for some Q0 such that R0 � Q0. Because R and R0 are alpha-convertible, we have thatR � R0. Hence, R � Q0.� Consider the axiom (P j Q) j R � P j (Q j R) and the proof...P 0 j Q0 ��! S0P j Q ��! S(P j Q) j R ��! S j R P 0 j Q0 and P j Q, and S and S0 are alpha-convertiblebn (�) \ fn (R) = ;16

Then ...P 0 j Q0 ��! S0(P 0 j Q0) j R ��! S0 j R(P j Q) j R ��! S j R bn (�) \ fn (R) = ;(P j Q) j R and (P 0 j Q0) j R, and S j R and S0 j R are alpha-convertibleand the complexity of this proof is smaller.� Consider the proofs...P � QP j R � Q j R and ...R ��! R0P j R ��! P j R0 bn (�) \ fn (P) = ;According to Proposition 4, fn (P) = fn (Q). Hence,...R ��! R0Q j R ��! Q j R0 bn (�) \ fn (Q) = ; and ...P � QP j R0 � Q j R0� Consider the proofs...P � Q�xy P � �xyQ and ...P x(z)���! P 0�xy P ��! P 0[y=z]By induction, ...Q x(z)���! Q0�xyQ ��! Q0[y=z]for some Q0 such that P 0 � Q0. According to Proposition 5, P 0[y=z] � Q0[y=z].� Assume bn (�) \ fn (Q) = ;. Consider the axiom � (P j Q) � (� P) j Q and the proof...Q ��! Q0P j Q ��! P j Q0� (P j Q) ��! � (P j Q0) bn (�) \ fn (P) = ;n (�) \ bn (�) = ; and n (�) \ bn (�) = ;17

Then ...Q ��! Q0(� P) j Q ��! (� P) j Q0 bn (�) \ fn (� P) = ;From Proposition 10 we can deduce that bn (�) \ fn (Q0) = ;. Hence, � (P j Q0) � (� P) j Q0.� Consider the axiom (P j Q) j R � P j (Q j R) and the proof... ...P �xy��! P 0 Q x(z)���! Q0P j Q ��! P 0 j (Q0[y=z])(P j Q) j R ��! (P 0 j (Q0[y=z])) j RLet w be such that it does not appear in the proof of Q x(z)���! Q0 and w 62 fn (R). According toProposition 11, Q x(w)���! Q0[w=z]P �xy��! P 0 Q j R x(w)���! Q0[w=z] j RP j (Q j R) ��! P 0 j (Q0[w=z] j R)[y=w] bn (x(w)) \ fn (R) = ;and P 0 j (Q0[w=z] j R)[y=w]� P 0 j (Q0[y=z] j R) [w 62 fn (R) [n (Q0)]� (P 0 j Q0[y=z]) j R [De�nition 2.3] 2Proof of Theorem 151. Obviously, �xy P 0 �xy��! P 0. Since P � �xy P 0, we can conclude from Lemma 13 that P �xy��! P 00 for someP 00 such that P 00 � P 0.2. Similar to 1.3. Similar to 1.4. We prove this case by induction on the proof of P ! P 0. For example, consider the proof...P � Q Q! Q0 Q0 � P 0P ! P 0By induction, Q ��! Q00 for some Q00 such that Q00 � Q0. According to Lemma 13, P ��! P 00 for someP 00 such that P 00 � Q00. Consequently, P 00 � P 0.18

2Proof of Proposition 17 One can prove that P � PX j P �X for some PX and P �X such that fn (PX) � Xand fn (P �X) � �X by structural induction on P .3 Hence,�1 �2P� �1 �2 (Pbn (�1) j Pbn (�1)) [induction]� �1 (Pbn (�1) j �2Pbn (�1)) [fn (Pbn (�1)) � bn (�1) � n (�1)]� �1Pbn (�1) j �2Pbn (�1) [fn (�2 Pbn (�1)) � fn (�2) [bn (�1) � n (�2) [bn (�1)]� �2 (�1 Pbn (�1) j Pbn (�1)) [fn (�1 Pbn(�1)) � n (�1)]� �2 �1 (Pbn (�1) j Pbn (�1)) [fn (Pbn (�1)) � bn (�1)]� �2 �1P [induction] 2D Some bisimulationsThe de�nitions of barbed, early, ground, late, and open bisimulation for �-calculus are adapted to our setting.It is also shown that the structural congruence � is an example of all these notions. Further study of theseequivalences is left for future research.D.1 Barbed bisimulationBarbed bisimulation has been introduced by Milner and Sangiorgi in [MS92]. We adapt this notion to oursetting as follows. The free subject names of processes are given byfsn (0) = ;fsn (�xy P) = fxg [fsn (P)fsn (x(y)P) = fxg [(fsn (P) n fyg)fsn ((�x)P) = fsn (P) n fxgfsn (P j Q) = fsn (P) [fsn (Q)Definition 23 A relation R over processes is a barbed bisimulation if P RQ implies� if P ! P 0 then there exists a Q0 such that Q! Q0 and P 0R Q0,� if Q! Q0 then there exists a P 0 such that P ! P 0 and P 0RQ0, and� fsn (P) = fsn (Q).Proposition 24 � is a barbed bisimulation.Proof Let P � Q. If P ! P 0 then Q ! P 0 by De�nition 3.4. Furthermore, one can easily check thatP � Q implies fsn (P) = fsn (Q) by induction on the proof of P � Q. 23By �X we denote the set-theoretic complement of X. 19

D.2 Early bisimulationThe de�nition of early bisimulation given by Milner et al. [MPW92] applies also to our setting.Definition 25 A relation R over processes is an early bisimulation if P R Q implies� if P ��! P 0 and bn (�) \ (n (P) [n (Q)) = ; and � = x(y) then for all z there exists a Q0 such thatQ ��! Q0 and P 0[z=y]RQ0[z=y],� if P ��! P 0 and bn (�) \ (n (P) [n (Q)) = ; and � 6= x(y) then there exists a Q0 such that Q ��! Q0and P 0 RQ0,� if Q ��! Q0 and bn (�) \ (n (P) [n (Q)) = ; and � = x(y) then for all z there exists a P 0 such thatP ��! P 0 and P 0[z=y]R Q0[z=y], and� if Q ��! Q0 and bn (�) \ (n (P) [n (Q)) = ; and � 6= x(y) then there exists a P 0 such that P ��! P 0and P 0 RQ0.Proposition 26 � is an early bisimulation.Proof Immediate consequence of Lemma 13 and Proposition 5. 2D.3 Ground bisimulationOrdinary bisimulation, a notion due to Milner [Mil80] and Park [Par81], becomes ground bisimulation in thesetting of �-calculus.Definition 27 A relation R over processes is a ground bisimulation if P R Q implies� if P ��! P 0 and bn (�)\ (n (P)[n (Q)) = ; then there exists a Q0 such that Q ��! Q0 and P 0RQ0 and� if Q ��! Q0 and bn (�) \ (n (P) [n (Q)) = ; then there exists a P 0 such that P ��! P 0 and P 0RQ0.Proposition 28 � is a ground bisimulation.Proof Immediate consequence of Lemma 13. 2D.4 Late bisimulationLate bisimulation for ordinary �-calculus as presented by Milner, Parrow, and Walker [MPW92] also appliesto our setting.Definition 29 A relation R over processes is a late bisimulation if P RQ implies� if P ��! P 0 and bn (�) \ (n (P) [n (Q)) = ; and � = x(y) then there exists a Q0 such that Q ��! Q0and for all z, P 0[z=y]R Q0[z=y]� if P ��! P 0 and bn (�) \ (n (P) [n (Q)) = ; and � 6= x(y) then there exists a Q0 such that Q ��! Q0and P 0 RQ0,� if Q ��! Q0 and bn (�) \ (n (P) [n (Q)) = ; and � = x(y) then there exists a P 0 such that P ��! P 0and for all z, P 0[z=y]R Q0[z=y], and 20

� if Q ��! Q0 and bn (�) \ (n (P) [n (Q)) = ; and � 6= x(y) then there exists a P 0 such that P ��! P 0and P 0 RQ0.Proposition 30 � is a late bisimulation.Proof Immediate consequence of Lemma 13 and Proposition 5. 2D.5 Open bisimulationSangiorgi's open bisimulation [San96b] boils down to the following.Definition 31 A relation R over processes is an open bisimulation if P R Q implies that for all substitu-tions &,� if P& ��! P 0 and bn (�) \ (n (P) [n (Q) [n (&)) = ; then there exists a Q0 such that Q& ��! Q0 andP 0RQ0 and� if Q& ��! Q0 and bn (�) \ (n (P) [n (Q) [n (&)) = ; then there exists a P 0 such that P& ��! P 0 andP 0RQ0.Proposition 32 � is an open bisimulation.Proof Immediate consequence of Lemma 13 and (an obvious generalization of) Proposition 5. 2

21

