UNIVERSITA DI PIsA

DIPARTIMENTO DI INFORMATICA

TECHNICAL REPORT : TR-97-16

A Labelled Transition System for
pi_epsilon-Calculus

Franck van Breugel

September 09, 1997

ADDR: Corso Italia 40,56125 Pisa,ltaly. TEL: +39-50-887111. FAX: 439-50-887226

A Labelled Transition System for w-Calculus

Franck van Breugel

Universita di Pisa, Department of Computer Science
Corso Italia 40, 56125 Pisa, Italy

franck@di.unipi.it

Abstract

A labelled transition system is presented for Milner’s mwe-calculus. This system is related to the reduction
system for the calculus presented by Bellin and Scott. Also a reduction system and a labelled transition
system for wcl-calculus are given and their correspondence is studied. This calculus is a subcalculus of
we-calculus in the way Sangiorgi’s wl-calculus is a subcalculus of ordinary w-calculus.

Introduction

In the early nineties, Abramsky [Abr94] presented a translation from proofs in linear logic into w-calculus,
and outlined the results relating the computational behaviour of the proofs under cut-elimination to that of
the processes under reductions. When Milner heard of Abramsky’s result, he worked out his own translation.
This led to the development of a synchronous version of w-calculus [Mil93], which we call 7.-calculus'. In
[BS94], Bellin and Scott analyzed Abramsky’s translation in detail for Milner’s 7 -calculus.

In 7w.-calculus we encounter enabling, extended scope extrusion, and self communication. These three
features are not present in ordinary w-calculus. We discuss them in the following three paragraphs.

In #-calculus, the process «.P specifies that the action « has to precede all actions in P. For the 7.~
calculus process « P this condition has been weakened as follows. The action « only has to precede those
actions in P which it enables, i.e. those actions a free name of which is bound by «. For example, in the
process w(x)yz P, where # # y, z, the action w(z) does not enable yz. As a consequence, the action gz
may precede w(x). Hence, if we put the process w(z) gz P in parallel with y(z) @, then a communication at
y can occur resulting in the process w(x) P in parallel with . This is modelled by the reduction

w(@)yz P y(z)Q — w(x) P | Q. (1)
Like in w-calculus, in 7.-calculus we encounter scope extrusions. For example, if £ # y then
(ve)yz P ly(z)Q — (ve) (P [Q). (2)

Usually, only scopes of the form (vx) are extruded. In m.-calculus also extended scopes like (vw) w(z) z(y)—a
formal definition of these extended scopes is given in Definition 6—are extruded. For example,

(vw)w(e)z(y) 2y P | 2(y) Q — (vw)w(z) x(y) (P | Q) (3)

provided that z # w, z, y, and w, & do not occur free in Q.
In w.-calculus, a process can communicate with itself. In its simplest form, self communication amounts
to

zyz(z) P — Py (4)

1Since we do not want to contrast the calculus with asynchronous r-calculus [HT91, Bou92] and enablement is one of its
key features, we call it 7we-calculus.

Self communication can also take place in extended scopes. For example, if w # , y, z then

w(@) (vy) y(z) wzP — (vy) y(2) (P[7e]). ()

The process communicates with itself at w within the extended scope (vy) y(z).

For mwe-calculus, Bellin and Scott [BS94] presented a reduction system [Mil92]. We briefly review this
system in Section 2. The rules defining this system are simple and natural. However, the system does
not support reasoning in a purely structural way. In Section 3, we give a labelled transition system for the
calculus following Plotkin’s structural approach [Plo81]. The rules defining the labelled transition system are
non-trivial. In Section 4, the correctness of this system is shown by proving the correspondence between the
reduction system and the labelled transition system. Both the reduction system and the labelled transition
system are useful (cf. [San92, page 26]) and once their relation has been established they support each other.

In [San96a], Sangiorgi studied a subcalculus of #-calculus, called wI-calculus, which only uses internal
mobility. In Section 5, we present a reduction system and a labelled transition system for w.I-calculus, a
subcalculus of m-calculus with only internal mobility. Furthermore, we investigate the relation between the
two systems.

Some related work is discussed in Section 6. In the final section, some conclusions are drawn. We assume
that the reader is familiar with #-calculus and wl-calculus. For an introduction to @-calculus we refer the
reader to Milner’s tutorial [Mil91]. In Sangiorgi’s [San96a], wI-calculus is studied in great detail.

Acknowledgements

I am thankful to Prakash Panangaden for numerous discussions. These were essential for my understanding
of m.-calculus and the development of the labelled transition system. Furthermore, I am grateful to Davide
Sangiorgi for his constructive comments. My thanks also to Gianluigi Ferrari, Vincent van Qostrom, Marco
Pistore, and Philip Scott for discussion.

1 Basic w.-calculus

We assume an infinite set of names. We use x, y, 1, 3/, ... to range over these names.

DEFINITION 1 The set of processes is defined by
P:=0|nP|P|Q
where the set of particles is given by

mo=ay | a(y) | (ve)
4

Only the constructs Zy P and z(y) P are not part of ordinary w-calculus. Just a small fragment of 7.-calculus
is presented here. We are confident that the results of the present paper can be extended straightforwardly
if we add operators like summation and replication.

This calculus has two binders, the particles z(y) and (vz). We define the bound names and free names
of particles and processes in the usual way.

[7 [bn(x) [fn(n) |

Ty 0 {z,y}

z(y) || {y} 1z}
)1 A=} 0

(P [)] (] |
0 0 0
7P || bn(x)Ubn(P) fﬂ() (fn(P)\b
P1Q |[bn(P)Ubn(Q) fn (P)Ufn (Q

The names of particles and processes are given by

n(w) = bn(mr)Ufn(w)
n(P)=bn(P)Ufn(P)

(7))

)

2 Reduction system

The reduction system is defined 1n two steps. First, we identify several processes by introducing a structural
congruence over processes. Second, we define the computation steps of processes in terms of a reduction
relation. Our presentation is based on [Mil91, Section 2] and [BS94, Section 2].

DEFINITION 2 The structural congruence = is defined as the smallest congruence relation over processes
satisfying

1. if P and @ are alpha-convertible then P = @

2. PlQ=Q|P
3.(PIQ)IR=PI(QIR)
4.0|P=r

5. if n(m) Nbn(me) =0 and n(ms) Nbn(m) =0 then 7y 79 P = wamy P

6. if bn (7) Nfn(Q) = 0 then 7 (P | Q)= (x P) | Q
_

For ordinary m-calculus 1., 2., 3., and 4., and 5. and 6. restricted to particles of the form (v) are used (see
[Mil91, page 7 and 8]). In [Eng96, page 81], Engelfriet considers the following variation of 5.

if # € n(w) then (va).w.P=rx.(ve).P
DEFINITION 3 The reduction relation — is defined as the smallest relation over processes satisfying

Lox(y) PlzzQ— Plp] | Q

5 P — P
7P —7mP
5 P — P
CPIQ—PQ
4 P=qQ Q— Q Q =P

o
|

For ordinary m-calculus one only needs 1., 2. restricted to particles of the form (v#), 3., and 4. (see [Mil91,
page 8]).

In Appendix A we give proofs of the reductions presented in the introduction. We conclude this section
with some properties of the structural congruence. These will be exploited when we link the reduction system
and the labelled transition system.

ProPoOsSITION 4 If P =@ then fn(P) =1 (Q).
Proor Induction on the proof of P = Q). a
PROPOSITION 5 If P = @ then P[] = Q[*/].
Proor Induction on the proof of P = Q). a
In Proposition 7 we show that 5. and 6. of Definition 1 also hold for scopes.
DEFINITION 6 The set of connected input sequences is given by
Gor=w(y) | w(z)
The set of scopes 1s defined by

or n= 1y | (ve) | (vy) g,

A connected input sequence ¢g* is of the form

z1(w2) a(x3) ... xn_1(n).

These are related to Sangiorgi’s dependency chains [San96a, Definition 6.5]. In ordinary m-calculus one
usually only considers scopes of the form (vz). The role of these extended scopes will be discussed in the
next section. The bound and free names of scopes are defined straightforwardly.

| L || bn (¢) | fn (¢) |
2(y) v} {a}
2(z)d || {z}Ubn(d) | {z}
| o || bn (o) | fn (o) |
ty bn (4) fn (¢;)
(v) {o} 0
(vy)uy [{ytubn(y) | 0

PrOPOSITION 7
1. Ifn(e)nbn(x) =0 and n(x) Nbn (o) =0 thenor P =70 P.
2. Ifbn(o)N(Q)=0 then o (P |Q)=(cP) | Q.

Proor Structural induction on o. O

3 Labelled transition system

The labelled transition system presented in this section is new. Its presentation is based on [MPW92
page 46] and [ACS96, page 150]. The system uses the late scheme of name instantiation. It can be adapted
straightforwardly to deal with the early scheme (cf. [MPW93]).

The labelled transition system not only describes the computation steps of processes but also their
communications possibilities. This information is recorded by means of actions.

DEFINITION 8 The set of actions is given by
an=zy|z(y) | 7| oy 2y

where z & bn (o). J

In ordinary 7-calculus the action (ry)#y is usually written as Z(y). The actions oy, 2y, with o, # (vy),
one does not encounter in the usual labelled transition system. These extended scopes are used to model
extended scope extrusions (cf. (3) in the introduction).

The bound and free names of actions are defined as follows.

| o || bn () |fn(a)|

(

0 {z,y}
z(y) {y) {z}

[} [}

oy Ty || bn(oy) {}

In the next definition the transition relation is presented. We have omitted the symmetric versions of the
rules 9., 10., and 11.

DEFINITION 9 The transition relation — is defined as the smallest labelled relation over processes satisfying

pr 2. Q')
1. ——F—— Pand P/, and @ and @’ are alpha-convertible
P—qQ
Ty
9. FTyP — p

3. z(y) P ﬂ P

4.P;Pl n(a)Nbn(m) =0 and n(7) Nbn(a) =0

P rp

|
S

_ w
zZy by

p L p p 2 p
5.)7 y#z o y#z
(y) 2y , w(y) ey Zw
2(y) P —— P w(yyP—— P’
P P 5
6 e y#z v y#z
(vy) 2y , (vy) ey 7w
(vy) P —— P vy) P ——— P’
e(z)
O ey
P L Py
i , 0, Tz ,
8. P — P y#£ax,z P — P yén(o, zz)
x(y) P — P[] w(y) P — o (P'[4])
P2 p
9. = bn(a)Nf(Q)=10
PlQ— P'|Q
e(z) ry o
0 L—F Q@—@
PlQ— Pl Q
z(y) , oy TY ,
1, L=—="F Q@—=—0 i)nf(P) =0

Pl1Q— o, (P'|Q)

Some remarks:

* The rules 1., 4. with 7 of the form (vz), the first part of 6., 9., 10., and 11. with o, of the form (vy)
are as usual.

The axioms 2. and 3. are as expected.
The rule 4. models enabling and corresponds to Definition 2.5.

* The rules 5. and 6. describe scope opening (cf. [MPW92, page 48]). Like in ordinary m-calculus, the
side condition y # z prevents z from becoming bound (cf. Definition 8). The rule 11. handles scope
closing. Note that the scope oy, reappears in the conclusion. The side condition bn (o) Nfn(P) =0
prevents us from deriving the incorrect transition

(v2) 2(y) #y 0 | 2(y) 2y 0 — (vz) 2(y) (0] 7y 0).

This transition is incorrect since the free name z in z(y) Zy 0 is only accidentally the same as the bound
name z in (vz) z(y) £y 0. In the third example of Appendix B the interplay between scope opening and
scope closing 1s illustrated.

* The rules 7. and 8. describe self communication. Because of the side condition y # z, we cannot prove
the obviously incorrect transition

z(y)yz0 o

This side condition ensures that the free name # and the bound name y, which can be alpha-converted
to x, are not identified. The side condition y # z rules out the transition

z(y) 2y zy 0 L Fw0.

This transition 1s incorrect because the bound name y, which can be alpha-converted to w, becomes
free (cf. Proposition 10). The side condition y € n (o, £z) prevents us from proving the transition

2(y) (vy)y(z) Tz yw0 ~ (vy) y(z) zwO.

This transition is incorrect since the y in gw is bound by (vy) in #(y) (vy) y(z) £z w0 whereas the
corresponding z in Zw is bound by y(z) in (vy)y(z) Zw 0.

* The following variation of 1. (cf. [San92, page 30]) suffices to prove the results of Section 4.
pr2Q
P

P and P’ are alpha-convertible

We have chosen for 1. since it is convenient for proving Proposition 11.

In Appendix B we give proofs of the 7-transitions corresponding to the reductions presented in the intro-
duction. Like in the previous section, we conclude with some properties which are used when we relate the
two systems.

ProposiTion 10 If P 2. P! then fn (o) Cfn(P) and fu(P') Cfn(P)Ubn (a).

Proor Induction on the proof of P P a

The above result also holds for ordinary w-calculus (see [MPW92, Lemma 1]).

ProprosiTION 11 If there exists a proof of P = Q not containing bn (o) and o @ and o' Q' are alpha-

i

convertible? then P — @Q’.

Proor Induction on the depth of the proof of P N @ exploiting the following fact. Assume there exists
o[y

a proof of P 2, @) not containing z. If y & bn (&) then there is a proof of P[] —— Q[#/y] of the same
al"y)
depth. Otherwise, there is a proof of P[#/y] LN Q of the same depth. a

This result is similar to [MPW92, Lemma 2].

4 Correspondence between the systems

The reduction system of Section 2 and the labelled transition system of Section 3 are related in this section.
More precisely, reductions and 7-transitions are linked. In Theorem 12 it is shown that every r-transition
is matched by a reduction. Conversely, for every reduction there exists a corresponding r-transition, as is
proved in Theorem 15. The proofs of these results are given in Appendix C.

THEOREM 12
1. IfP =L P’ then P = iy P'.

v(y)
2. If P " P’ then P = x(y) P'.

Ty TY
3. If P—— P' then P =0, 2y P'.
4 IfP— P then P — P’
ProOF See Appendix C. m]

The proof of Theorem 15 relies on the following lemma. This lemma is the main technical result of the
paper.

LEMMA 13 Let P = Q.
1 IFP -2 P then Q —— (' for some (' such that P' = (.
2. IfQ - (' then P —— P’ for some P’ such that P' = (.
ProOF See Appendix C. m]

The definitions of late, early, ground, and open bisimulation for 7-calculus [MPW92, San96b] can be adapted
straightforwardly to our setting (see Appendix D).

COROLLARY 14 = s a late, early, ground, and open bistmulation.

PrOOF See Appendix D. a

27Q and 7 Q’ are alpha-convertible if Q and Q' are.

We conclude this section with
THEOREM 15

1. If P=xzy P then P Zopr for some P" such that P" = P’'.
z(y)
2. If P=w(y) P’ then P—— P" for some P" such that P" = P’.
Ty TY
3. If P =0, 2y P' then P ——— P" for some P" such that P"" = P'.

4. If P — P’ then P ~ pr for some P" such that P" = P’'.

ProOF See Appendix C. m]

5 Basic 7 I-calculus

In this section we restrict our attention to a subcalculus of w.-calculus which only gives rise to internal
mobility (see [San96al) called w.I-calculus. The reduction system of Section 2 is easily adapted. Like for
ordinary w-calculus, the labelled transition system for the subcalculus is much simpler than the one for the
full calculus given in Section 3. The relation between the two systems is similar to the one presented in
Section 4.

The subcalculus 1s obtained by restricting the set of particles. We do not consider free outputs zy but
only bound ones (vy) zy, from now on abbreviated to Z(y).

DEFINITION 16 The set of particles is given by

mu=z(y) | z(y) | (ve)

The particle Z(y) is a binder with

bn (z(y)) = {y}
fn(2(y)) = {z}

The structural congruence = is defined by all rules of Definition 2 but the rule 5. The latter rule can be
derived from the other ones.

ProPoSITION 17 Ifn(m) Nbn(me) = @ and n(m2) Nbn(my) = 0 then 7y 7 P = momy P.
ProOF See Appendix C. m]
The reduction relation is presented in

DEFINITION 18 The reduction relation — is defined as the smallest relation over processes satisfying

Loz(y)P|zy)Q — (vy) (P | Q)

9 P—P
7P —7mP
5 P — P
T PIQ—=P|Q
4 P=qQ Q— Q Q =P

o

_J

The only difference with Definition 3 is the axiom 1. Note that we only encounter alpha-conversion and no
substitution in the reduction system for #.I-calculus.
In the labelled transition system we do not need the extended scopes of Definition 6 we used in Section 3.

DEFINITION 19 The set of actions is given by

az=(y) | x(y) | 7

The transition relation is presented next. We have omitted the symmetric versions of the rules 7. and 8.
DEeFINITION 20 The transition relation — 1s defined as the smallest labelled relation over processes satisfying

[

1. =
P—qQ

P and P’, and @Q and)’ are alpha-convertible

2 sy P p

3. z(y) P ﬂ P

4.P;Pl n(a)Nbn(m) =0 and n(7) Nbn(a) =0

TP xp

z(z) ,
5. T vy
w(y) P — (vy) (P'[Y])

#(2)

6. — vy
w(y) P — (vy) (P[]
. P—=F bn (a) N fn (Q) =0

PlQ—=P|Q

p e(y) P 0 e(y) o

P1Q— (vy)(P'| Q)

Some remarks:

The rules 1., 4., and 7., and the axiom 3. correspond to the rules 1., 4., and 9., and the axiom 3. of
Definition 9.

The axiom 2. and the rules 5., 6., and 8. are the obvious modifications of the axiom 2., and the rules

7., 8., and 10. of Definition 9.

+ Note that we do use substitution in the rules 5. and 6. In the transition corresponding to the reduction

2(y) x(z) 2(w) y(w) 0 — (vy) y(w) y(w) 0 (6)

(a proof of this reduction is given in Appendix A) z in z(w) and y in y(w) are identified:

T

#(y) 2(2) z(w) y(w) 0 — (vy) y(w) y(w) 0.
This identification cannot be brought about by alpha-conversion of Z(y) x(z) z(w) y(w) 0.

We conclude this section with two correspondence theorems.

THEOREM 21

")
LIfP "0 P then P = i(y) P'.

v(y)
2. If P " P’ then P = x(y) P'.

3. IfP—— P then P — P'.
Proor Similar to the proof of Theorem 12. a
THEOREM 22

Z(y)
1. If P=x(y) P’ then P LN P" for some P" such that P" = P’.

2(y)
2. If P=ux(y) P’ then P 7 P" for some P" such that P" = P’.

3. If P— P’ then P Z pr for some P" such that P" = P’'.

Proor Similar to the proof of Theorem 15. a

6 Related work

The only three other papers which discuss the relation between a reduction system and a labelled transition
system we are aware of are Milner’s [Mil92], Honda and Yoshida’s [HY93], and Corradini, Ferrari, and
Pistore’s [CFP97]. All use the rule

P/ “ /
=9 b pradg=g
P—qQ
instead of
pr 2. Q')
1. ——F—— Pand P/, and @ and @’ are alpha-convertible
P—qQ

as we do. In their setting Lemma 13, the main technical result of this paper, becomes trivial. Their rule is
less structural than ours. Furthermore, the rule 1. can easily be distributed over the other axioms and rules
(compare the labelled transition system of Milner et al. [MPW92, page 46] and the one of Sangiorgi [San92,
page 30]). This is not the case for the other rule.

In the conclusion of [MP95], Montanari and Pistore consider relaxing the sequencing power of prefixing.
Instead of a reduction system or a labelled transition system, they use a graph rewriting system. In their
setting, enablement can easily be accommodated (as long as one does not consider replication).

10

Conclusion

From our case study we can conclude that the problem of reconstructing a labelled transition system from
a reduction system is far from easy. Although the reduction system for w.-calculus is rather close to the one
for ordinary w-calculus, we encounter in the labelled transition system for w.-calculus extended scopes and
various new rules.

In [Mil93, page 37], Milner first presented m.-calculus with enablement as its new feature. The fact
that m.-calculus has self communication was already observed by Bellin and Scott [BS94, page 15]. But the
presence of extended scope extrusion in w.-calculus—although maybe not very surprising—only occurred to
us when we developed the labelled transition system.

The labelled transition system for m.-calculus might be the basis for the development of a (possibly fully
abstract with respect to some form of bisimulation) denotational semantics for the calculus. Here we can
make fruitful use of the work of Fiore, Moggi, and Sangiorgi [FMS96], Hennessy [Hen96], and Stark [Sta96].

From Corollary 14 we can conclude that the structural congruence = is indeed included in several well-
known behavioural equivalences (this is one of the criteria such a structural congruence should meet [San92,
page 27]).

The labelled transition system for w.I-calculus, the subcalculus with only internal mobility, is much sim-
pler than the one for the full calculus. This provides another indication that external mobility is responsible
for much of the semantic complications (cf. [San96a]).

Although we only consider internal mobility in w.I-calculus, we do use substitution in the labelled tran-
sition system. In wl-calculus only alpha-conversion is needed (see [San96a, Section 2.2]). This suggests that
the absence of substitution in wl-calculus is just a property of the calculus, rather than a consequence of
its restriction to internal mobility. Whether the substitutions used in w I-calculus are of a special kind (the
substituted name is always bound by a generated restriction) needs further study.

Another topic reserved for later treatment is the study of bisimulation. The definitions of barbed, early,
ground, late, and open bisimulation for m-calculus can be adapted straightforwardly to our setting (see
Appendix D). We are interested in the connection with bisimulation for action structures (for m.-calculus)
given by Milner in [Mil93].

References

[Abr94] S. Abramsky. Proofs as Processes. Theoretical Computer Science, 135(1):5-9, December 1994.

[ACS96] R.M. Amadio, I. Castellani, and D. Sangiorgi. On Bisimulation for the Asynchronous w-Calculus.
In U. Montanari and V. Sassone, editors, Proceedings of CONCUR’96, volume 1119 of Lecture
Notes in Computer Science, pages 147-162, Pisa, August 1996. Springer-Verlag.

[Bou92] G. Boudol. Asynchrony and the w-Calculus (note). Report RR-1702, INRIA, Sophia Antipolis,
May 1992.

[BS94] G. Bellin and P. Scott. On the 7-Calculus and Linear Logic. Theoretical Computer Science,
135(1):11-65, December 1994.

[CFP97] F. Corradini, G. Ferrari, and M. Pistore. Eager, Busy-Waiting and Lazy Actions in Timed Com-
putation. In Proceedings of the 4th Workshop on Expressiveness in Concurrency, Electronic Notes
in Theoretical Computer Science, Santa Margherita Ligure, September 1997. Elsevier Science.

[Eng96] J. Engelfriet. A Multiset Semantics for the w-Calculus. Theoretical Computer Science,
153(1/2):65-94, January 1996.

[FMS96] M. Fiore, E. Moggi, and D. Sangiorgi. A Fully Abstract Model for the 7-Calculus. In Proceedings
of the 11th Annual IEEE Symposium on Logic in Computer Science, pages 43-54, New Brunswick,
July 1996. IEEE Computer Society Press.

11

[Hen96]

[HT91]

[HY93]

[Mil80]

[Mil91]

[Mil92]

[Mil93]

[MPY5]

[MPW92]

[MPW93]

[MS92]

[Par81]

[Plo81]

[San92]

[San96a]

[San96b]

[Sta96]

M. Hennessy. A Fully Abstract Denotational Semantics for the w-Calculus. Report 96:04, Uni-
versity of Sussex, Brighton, June 1996.

K. Honda and M. Tokoro. An Object Calculus for Asynchronous Communication. In P. America,
editor, Proceedings of the European Conference on Object-Oriented Programming, volume 512 of
Lecture Notes in Computer Science, pages 133-147, Geneva, July 1991. Springer-Verlag.

K. Honda and N. Yoshida. On Reduction-Based Process Semantics. In R.K. Shyamasundar,
editor, Proceedings of the 13th Conference on Foundations of Software Technology and Theoretical
Computer Science, volume 761 of Lecture Notes in Computer Science, pages 371-387, Bombay,
December 1993. Springer-Verlag.

R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Computer
Science. Springer-Verlag, Berlin, 1980.

R. Milner. The Polyadic 7-Calculus: a tutorial. Report ECS-LFCS-91-180, University of Edin-
burgh, Edinburgh, October 1991.

R. Milner. Functions as Processes. Mathematical Structures in Computer Science, 2(2):119-141,
June 1992.

R. Milner. Action Structures for the m-Calculus. Report ECS-LFCS-93-264, University of Edin-
burgh, Edinburgh, May 1993.

U. Montanari and M. Pistore. Concurrent Semantics for the #-Calculus. In S. Brookes, M. Main,
A. Melton, and M. Mislove, editors, Proceedings of the 11th Annual Conference on Mathematical
Foundations of Programmaing Semantics, volume 1 of Electronic Notes in Theoretical Computer
Science, New Orleans, March/April 1995. Elsevier Science.

R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, I and II. Information and
Computation, 100(1):1-40 and 41-77, September 1992.

R. Milner, J. Parrow, and D. Walker. Modal Logics for Mobile Processes. Theoretical Computer
Science, 114(1):149-171, June 1993.

R. Milner and D. Sangiorgi. Barbed Bisimulation. In W. Kuich, editor, Proceedings of the 19th
International Colloguium on Automata, Languages and Programming, volume 623 of Lecture Notes
. Computer Science, pages 685695, Vienna, July 1992. Springer-Verlag.

D. Park. Concurrency and Automata on Infinite Sequences. In P. Deussen, editor, Proceedings of
th GI-Conference on Theoretical Computer Science, volume 104 of Lecture Notes in Computer
Science, pages 167-183, Karlsruhe, March 1981. Springer-Verlag.

G.D. Plotkin. A Structural Approach to Operational Semantics. Report DAIMI FN-19, Aarhus
University, Aarhus, September 1981.

D. Sangiorgi. FEzpressing Mobility in Process Algebras: first-order and higher-order paradigms.
PhD thesis, University of Edinburgh, Edinburgh, 1992.

D. Sangiorgi. w-Calculus, Internal Mobility, and Agent-Passing Calculi. Theoretical Computer
Science, 167(1/2):235-274, October 1996.

D. Sangiorgi. A Theory of Bisimulation for #-Calculus. Acta Informatica, 33(1):69-97, February
1996.

I. Stark. A Fully Abstract Domain Model for the #-Calculus. In Proceedings of the 11th Annual
IEEE Symposium on Logic in Computer Science, pages 36-42, New Brunswick, July 1996. IEEE
Computer Society Press.

12

A Some reductions

Proofs of the reductions presented in the introduction and Section 5 are given.

1. Let # # y, z. Since
w(x)yz P y(z) Q@ = yzw(x) P |y(z) Q [Definition 2.5]
and
yzw(x)P|y(z)Q — w(x) P | Q [Definition 3.1]
we can conclude that
w(z)yz P y(z) Q@ — w(z) P | Q [Definition 3.4]
2. Let 2 # y. Because
(ve)yx P | y(x)Q = (ve) (yz P | y(x) Q) [Definition 2.6]
and
(va)(yx P |y(x) Q) — (va) (P | Q) [Definition 3.1 and 3.2]
we have that
(ve)yx P | y(x)Q — (va) (P | Q) [Definition 3.4]
3. Let z # w, x, y, and assume w, « ¢ fn (@). Then
(vw)w(x)e(y)zy P | z2(y) Q = (vw) w(x) z(y) (Zy P | z2(y) Q) [Definition 2.6]
and
(vw)w(zx)e(y) (Zy P | 2(y) Q) — (vw) w(z) 2(y) (P | Q) [Definition 3.1 and 3.2]
Hence,
(vw)w(x)e(y)zy P | 2(y) @ — (vw) w(z) z(y) (P | Q) [Definition 3.4]
4. Since
zyx(z) P

= Zy(0]x(z) P) [Definition 2.4]
zy0 | #(z) P [Definition 2.6]

and

zy0|z(z) P — 0| P[¥:] [Definition 3.1]
and

0| P[y/-] = Plyz] [Definition 2.4]
we can conclude that

zyx(z) P — P[Y:] [Definition 3.4]

13

5. Let w # x, y, z. Assume ¢/, 2’/ & n(w(zx) (vy) y(z) wzP) and ¢ # z’. Then
) (vy) y(2)

w(z) (vy) Y (¢') w2’ P[#'):][v'y] [Definition 2.1]
P[][yl/y] [Deﬁnition 2.5]
/P[ZI/Z][yl/y] [Definition 2.5]
yl/y]) [Deﬁnition 2.4
yl/y]) [Definition 2.6
| 0) [Definition 2.2
x)P[ZI/Z][yI/y | wz'0) [Definition 2.6
Definition 2.1]
Definition 2.2]

w

<
g
[N
o)

]
]
]
]

Furthermore,
(vy) y(z) (wz0 | w(z) P) — (vy) y(z) (0 | P[*/z]) [Definition 3.1 and 3.2]
and

(vy) y(2) (0 | P[ee]) = (vy) y(2) (P[#]) [Definition 2.4]

w(z) (vy) y(z) wzP — (vy) y(z) (P[*/z]) [Definition 3.4]

6. Since
2(y) x(z) z(w) y(w) 0
= Z(y)x(z)z(w) (0] y(w)0) [Definition 2.4]
= Z(y)x(z)(z(w)0 | y(w)0) [Definition 2.6]
= Z(y) (z(z) z2(w) 0 | y(w)0) [Definition 2.6]
= Z(y) (y(w)0 | #(2) 2(w)0) [Definition 2.2]
= Z(y)y(w)0 | z(z) 2(w)0 [Definition 2.6]
= Z(y)y(w)0 | 2(y) y(w) 0 [Definition 2.1]

and
2(y) y(w) 0 | 2(y) y(w) 0 — (vy) (y(w) 0 [y(w)0) [Definition 18.1]

and

(vy) (y(w) 0 | y(w) 0)
(vy) y(w) (0 | y(w)0) [Definition 2.6]
(vy) y(w) y(w) 0 [Definition 2.4]

we can conclude that

2(y) x(z) z(w) y(w) 0 — (vy) y(w) y(w) 0 [Definition 18.4]

14

B Some labelled transitions

Proofs of the r-transitions corresponding to the reductions presented in the introduction are given.

1. Let « # y, z. Then

ge P p
w(z)yz P i w(z) P y(2)Q & Q
w(x)yz Pl y(z2) Q@ — w(x) P | Q

2. Let 2 #£y. Then

geP . p

(Vx)ya:PMP y(l‘)QﬂQ
(va)ye Ply(x) Q@ — (va) (P | Q)

3. Let z # w, x, y, and assume w, & n () Then

7y

zy P — P
B w(y)zy

z(y)zZy P s
B w(z)z(y) 7y

w(z)x(y)zyp ———
B (vw)w(z)=(y) 2y 2(y)
(vw)w(x)x(y)zyP ———— P 2y Q@ —— Q

(vw) w(x) x(y) 2y P | 2(y) @ — (vw) w(z) z(y) (P | Q)
4. We have that
z(2)

z(z)P—— P

mya() P P[]

5. Let w# =, y, z. Then

wz P — P
B y(z)wz
y(z)wz _

(wzP — (wy)y(z) (P[])

C Some proofs
The proofs omitted in Section 4 and 5 are given.

Proor oF THEOREM 12 This theorem is proved by induction on the proofs. For example, assume the proof
is of the form

o, Tz
P— P

)P o (P

yé&n(o, zz)

15

By induction, P = ¢, zz P’. Hence,

y)zz (0| P') [Definition 2.4]
Definition 2.6]
Definition 2.2]
Definition 2.6]
Definition 2.2]

5
o
1 1 1 | R [TN
>

)
)
)
)

Furthermore,

0, (220 | z(y) P') — 0. (0| P'[#y]) [Definition 3.1 and 3.2]
and

o, (0| P'[#h]) = 0. (P'[*fy]) [Definition 2.4]
Hence, we can conclude that

2(y)P— o, (P/[Z/y]) [Definition 3.4]
O

Proor oF LEMMA 13 We prove this lemma by induction on the proofs of P B P Q N Q',and P = Q.

We only consider proofs of P P and Q = Q' of minimal complexity. The complexity of a proof is
determined by those nodes in the proof where the rule 1. is applied. The more the rule 1. is applied towards
the root of the proof, the smaller its complexity is. Only a few of many cases are elaborated on.

* Assume P =). Consider the proof

p R)
———— P and P/, and R and R’ are alpha-convertible
P— R

Because P and P’ are alpha-convertible, P = P’. Since P = (), we have that P’ =). By induction,

Q 2 Q' for some @’ such that R = @’. Because R and R’ are alpha-convertible, we have that
R =R Hence, R=0Q'.

* Consider the axiom (P | Q) | R= P | (Q | R) and the proof

P/|Q/LS/
PlQ-=s
(PlQ)IR— SR

P Q" and P | @, and S and S are alpha-convertible
bn(a)Nfn(R) =10

Then

P/|Q/LS/
(P Q) R—S|R
(PIQ)IR-=5|R

bn(a)Nfn(R) =10
(P|Q)|Rand (P'| Q)| R,and S| R and S’ | R are alpha-convertible

and the complexity of this proof is smaller.

Consider the proofs

P=Q and R— R
PIR=QI|R PIR=P|R

bn(a)Nfn(P)=0

According to Proposition 4, fn (P) = fn (Q). Hence,

R—R and P=Q
b Nt =0 —_—
Ar—qw M PIR=QIR

Consider the proofs

P=0 and e(z) p
Ty P =1yQ TyP — P

By induction,

w(2)

Q/

Q — QU

for some @’ such that P’ = @'. According to Proposition b, P'[¥/:] = Q'[¥/7].

Assume bn (7) Nfn (Q) = @. Consider the axiom 7 (P | Q) = (7 P) | @ and the proof

Q— Q'
P|Q—P|Q
T(P|Q) — (P|Q)

bn(a)Nfn(P)=0
n(a)Nbn(m) =0 and n(7) Nbn(a) =0

17

Then

Q—¢
(TP)|Q — (xP)|Q
From Proposition 10 we can deduce that bn (7) Nfn(Q’) = §. Hence, 7 (P | Q) = (7 P) | Q.
* Consider the axiom (P | Q) | R= P | (Q | R) and the proof

bn(a)Nfn(x P)=10

p Y pr o2 o
PlQ = P Q)
(P1Q)|R— (P' | (QF]) | R

z(z)
Let w be such that it does not appear in the proof of @ —— @' and w & fn(R). According to

Proposition 11,

Q —— Q'[%/]
PP QIR—=Q[|R

P(Q|R) — P'[(Q] | R)e]

bn (z(w))Nin(R) =0

and

PH(Q[:] | R)[p]
= PIQPAIR) [wgi(R)Un(Q)]
(P Q'[v/:]) | R [Definition 2.3]

PrROOF OoF THEOREM 15

1. Obviously, zy P’ . P Since P = zy P’, we can conclude from Lemma 13 that P . P for some
P"” such that P = P’.

2. Similar to 1.
3. Similar to 1.

4. We prove this case by induction on the proof of P — P’. For example, consider the proof

P=qQ Q— Q Q =P
P — P

By induction, @ _ Q" for some Q" such that Q" = Q’. According to Lemma 13, P . P for some
P"” such that P” = Q”. Consequently, P = P’.

18

PROOF OF PROPOSITION 17 One can prove that P = Px | Px for some Px and Px such that fn(Px) C X

and fn (Pg) C X by structural induction on P.3 Hence,

7Tl7TzP

T T (an (r1) | Pm) [induction]

b
= T (Pon(r) [T2 Pry) [(Ponry) € bn(m) Sn(m)]

= 7 an(ﬂ'l) | TZan(ﬂ.l)
= m (T Pon(m) | Poryy) [(71 Pon(ry)) S 0(m1)]
= T9 MM (an (71) | Pm) [fn (Pm) C bn (71'1)]

= mom P [induction]

bn (1)

D Some bisimulations

[fn (e P———=) Cfn(m2)Ubn(w1) Cn(xz)Ubn (771)]

The definitions of barbed, early, ground, late, and open bisimulation for 7-calculus are adapted to our setting.
It is also shown that the structural congruence = is an example of all these notions. Further study of these

equivalences is left for future research.

D.1 Barbed bisimulation

Barbed bisimulation has been introduced by Milner and Sangiorgi in [MS92]. We adapt this notion to our

setting as follows. The free subject names of processes are given by

fsn (0) =0

fsn(zy P) = {x}Ufsn(P)

fon (2(s) P) = {o} 0 (B (P)\ {5})
fsn ((ve) P) = fsn (P) \ {z}
fsn(P| Q) =fsn(P)Ufsn(Q)

DEFINITION 23 A relation R over processes is a barbed bisimulation if PR @) implies

x If P — P’ then there exists a)’ such that Q — Q' and P' R),
x If Q — @' then there exists a P’ such that P — P’ and P’ R @', and

* fon (P) = fsn (@).

PROPOSITION 24 = is a barbed bisimulation.

ProoF Let P = . If P — P’ then @ — P’ by Definition 3.4. Furthermore, one can easily check that

P = @Q implies fsn (P) = fsn (@) by induction on the proof of P = Q).

3By X we denote the set-theoretic complement of X .

19

O

D.2 Early bisimulation
The definition of early bisimulation given by Milner et al. [MPW92] applies also to our setting.

DEFINITION 25 A relation R over processes is an early bisimulation if PR () implies

% if P —— P’ and bn ()N (n(P)Un(Q)) =0 and @ = z(y) then for all z there exists a @’ such that
Q@ — Q" and P[] R Q"[*],

% if P = P’ and bn ()N (n(P)Un(Q)) =0 and o # z(y) then there exists a @’ such that @ N Q'
and P’ R @',

* 1f Q Bl @ and bn (o) N (n(P)Un(Q)) = 0 and o = z(y) then for all z there exists a P’ such that
P - P and P[] R Q'[4], and

* if Q = Q' and bn(a) N (n(P)Un(Q)) =0 and o # z(y) then there exists a P’ such that P 2 p

and P’ R Q.
_
PROPOSITION 26 = is an early bistmulation.
Proor Immediate consequence of Lemma 13 and Proposition 5. a

D.3 Ground bisimulation

Ordinary bisimulation, a notion due to Milner [Mil80] and Park [Par81], becomes ground bisimulation in the
setting of m-calculus.

DEFINITION 27 A relation R over processes is a ground bisimulation if PR) implies
« if P —— P’ and bn ()N (n(P)Un(Q)) = 0 then there exists a) such that Q B Q' and P'R Q' and

* if Q = @ and bn (a) N (n(P)Un (Q)) = 0 then there exists a P’ such that P 2P and P'R Q.
_

PROPOSITION 28 = is a ground bisimulation.

Proor Immediate consequence of Lemma 13. a

D.4 Late bisimulation

Late bisimulation for ordinary w-calculus as presented by Milner, Parrow, and Walker [MPW92] also applies
to our setting.

DEFINITION 29 A relation R over processes is a late bisimulation if PR) implies

« if P —— P’ and bn ()N (n(P)Un(Q)) =0 and o = z(y) then there exists a @’ such that @ = Q'
and for all z, P'[#] R Q'[#y]

« if P —— P’ and bn ()N (n(P)Un(Q)) =0 and o # z(y) then there exists a @’ such that @ = Q'
and P’ R @',

* 1f Q = @ and bn(a) N (n(P)Un(Q)) = 0 and o = z(y) then there exists a P’ such that P 2 p
and for all z, P'[#/y] R Q'[#y], and

20

* 1f Q = @ and bn(a) N (n(P)Un(Q)) = 0 and o # z(y) then there exists a P’ such that P 2 p

and P’ R Q.
_
ProrosiTION 30 = is a late bistmulation.
Proor Immediate consequence of Lemma 13 and Proposition 5. a

D.5 Open bisimulation

Sangiorgi’s open bisimulation [San96b] boils down to the following.

DEFINITION 31 A relation R over processes is an open bisimulation if PR () implies that for all substitu-
tions g,

x 1f Pg . P’ and bn ()N (n(P)Un(Q)Un(s)) = 0 then there exists a Q' such that Q¢ Bl Q' and

P'R @ and
* 1f Qg = @ and bn (o) N (n(P)Un(Q)Un(s)) = 0 then there exists a P’ such that Pg 2 P and
PPRQ.
_
PROPOSITION 32 = is an open bisimulation.
ProoF Immediate consequence of Lemma 13 and (an obvious generalization of) Proposition 5. a

21

