
Alexandro� and Scott Topologies forGeneralized Ultrametric SpacesM.M. Bonsangue,� F. van Breugel,y and J.J.M.M. RuttenzAbstractBoth preorders and ordinary ultrametric spaces are instances of generalized ul-trametric spaces. Every generalized ultrametric space can be isometrically embeddedin a (complete) function space by means of an ultrametric version of the categoricalYoneda Lemma. This simple fact gives naturally rise to: 1. a topology for general-ized ultrametric spaces which for arbitrary preorders corresponds to the Alexandro�topology and for ordinary ultrametric spaces reduces to the �-ball topology; 2. atopology for algebraic complete generalized ultrametric spaces generalizing both theScott topology for arbitrary algebraic complete partial orders and the �-ball topologyfor complete ultrametric spaces.1 IntroductionPartial orders and metric spaces play a central role in the semantics of programming lan-guages (cf., e.g., the recent textbooks [Win93] and [BV95]). Parts of their theory havebeen developed because of semantic necessity (see, e.g., [SP82] and [AR89]). General-ized ultrametric spaces provide a common framework for the study of both preordersand ordinary ultrametric spaces. A generalized ultrametric space consists of a set X to-gether with a distance function X(�;�) : X � X ! [0; 1] satisfying X(x; x) = 0 andX(x; z) � maxfX(x; y); X(y; z)g for all x; y and z in X. The family of generalized ultra-metric spaces contains all ordinary ultrametric spaces as well as all preordered spaces.Generalized metric spaces were introduced by Lawvere [Law73] as an illustration ofthe thesis that fundamental structures are categories. The present work is inspired byLawvere's enriched-categorical view of generalized metric spaces [Law73] as well as themore topological view of Smyth on quasi metric spaces [Smy87, Smy91]. It is based onthe work [Rut95], in which some of the basic theory of generalized ultrametric spaces has�Department of Computer Science, Vrije Universiteit Amsterdam, De Boelelaan 1081a, 1081 HV Ams-terdam, The Netherlands, email: marcello@cs.vu.nl.ySchool of Computer Science, McGill University, 3480 University Street, Montreal H3A 2A7, Canada,email: franck@cs.mcgill.ca. Supported by the Netherlands Organization for Scienti�c Research.zCWI, P.O. Box 94079, 1090 AB Amsterdam, The Netherlands, email: jan.rutten@cwi.nl.1



been developed, and is part of [BBR95], in which also completion and powerdomains forgeneralized ultrametric spaces are studied by using the Yoneda embedding.We propose two topologies on generalized ultrametric spaces. The �rst topology is ageneralized Alexandro� topology: for preorders this topology coincides with the Alexan-dro� topology while for ultrametric spaces it corresponds to the �-ball topology. The secondtopology is a generalized Scott topology: for algebraic complete partial orders this topol-ogy corresponds to the Scott topology while for complete ultrametric spaces it coincideswith the �-ball topology. Both topologies are de�ned in two ways: by giving the open setsand by a closure operator. For both topologies the two alternative de�nitions are shownto coincide.Our de�nition of the generalized Alexandro� topology in terms of open sets is similar tothe ones given by Smyth [Smy87, Smy91] and Flagg and Kopperman [FK95]. A de�nitionof a generalized Scott topology in terms of open sets similar to ours is brie
y mentioned bySmyth in [Smy87]. The de�nitions of the topologies in terms of closure operators are new.The key observation|�rst made by Lawvere [Law73, Law86]|is that, intuitively, one mayidentify elements x of a generalized ultrametric space X with a description of the distancesbetween any element y in X and x. Formally, this description is a function mapping every yinX to the distance X(y; x). These functions can be interpreted as `fuzzy' predicates onX:the value a function � assigns to an element y inX is thought of as a measure for `the extentto which y is an element of �'. This observation corresponds to a generalized ultrametricversion of the categorical Yoneda Lemma [Yon54]. The corresponding Yoneda embeddingisometrically embeds a generalized ultrametric space X into the generalized ultrametricspace of fuzzy predicates onX. By comparing the fuzzy predicates onX with the subsets ofX we obtain the closure operator de�ning the generalized Alexandro� topology. Similarly,an algebraic complete generalized ultrametric space X can be embedded isometrically andcontinuously into the generalized ultrametric space of fuzzy predicates on its base B. Bycomparing the fuzzy predicates on B with the subsets of X we obtain the closure operatorde�ning the generalized Scott topology.The results presented here on generalized ultrametric spaces apply as well to generalizedmetric spaces (where one would have X(x; z) � X(x; y) +X(y; x) for all x; y and z in X).We considered generalized ultrametric space because the distance induced by a preorderis indeed a generalized ultrametric. Moreover, because of the strong triangle inequality,ultrametric space are|from a computational point of view|better behaved than metricspaces and seem to arise naturally in the semantics of programming languages (cf. [Rut95]).The paper is organized as follows. Sections 2 and 4 give the basic de�nitions and factson generalized ultrametric spaces. The Yoneda Lemma and the generalized Alexandro�topology are discussed in Section 3, while the generalized Scott topology is presented inSection 5. Finally Section 6 discusses related work.Acknowledgments: The authors are grateful to Jaco de Bakker, Paul Gastin, Pietrodi Giannantonio, Bart Jacobs, Maurice Nivat, Bill Rounds, Erik de Vink and Kim Wagnerfor suggestions, comments and discussions. We wish to thank Bob Flagg and PhilippeS�underhauf for their careful reading of an earlier version of the paper: Lemma 5.5 is dueto them as well as an improvement of Propositions 5.7, 5.8 and 5.9.2



2 Generalized ultrametric spacesA generalized ultrametric space (gum, for short) is a setX together with a distance functionX(�;�) : X �X ! [0; 1], which satis�es, for all x, y, and z in X,1. X(x; x) = 0, and2. X(x; z) � maxfX(x; y); X(y; z)g.An example of a gum is the set of real numbers [0; 1] with distance function [0; 1](�;�) :[0; 1]� [0; 1]! [0; 1] de�ned, for r and s in [0; 1], by[0; 1](r; s) = ( 0 if r � ss if r < s.The gum [0; 1] has the following fundamental property.Proposition 2.1 For all r; s; t 2 [0; 1], maxfs; tg � r if and only if s � [0; 1](t; r). 2The above proposition expresses that the category with elements in [0; 1] as objects andthe relation � de�ning the morphisms between objects is cartesian closed. This categoryis also monoidal closed. Many properties of gum's derive from this categorical structureon [0; 1] (cf. [Law73, Rut95, BBR95]).A gum generally does not satisfy3. if X(x; y) = 0 and X(y; x) = 0 then x = y,4. X(x; y) = X(y; x),which are the additional conditions that hold for an ordinary ultrametric space. Thereforeit is sometimes called a pseudo-quasi ultrametric space. A quasi ultrametric space is a gumwhich furthermore satis�es axiom 3. A gum satisfying also axiom 4. is called a pseudoultrametric space.A map f : X ! Y between gum's X and Y is non-expansive if for all x and x0 in X,Y (f(x); f(x0)) � X(x; x0):The map f is called isometric if the above inequality is in fact an equality. We denote byY X the set of all non-expansive maps from X to Y with distance, for f and g in Y X ,Y X(f; g) = supfY (f(x); g(x)) j x 2 Xg:The product X � Y of two gum's X and Y is de�ned as the Cartesian product of theirunderlying sets, together with distance, for hx; yi and hx0; y0i in X � Y ,X � Y (hx; yi; hx0; y0i) = max fX(x; x0); Y (y; y0)g:3



From the above de�nition it follows that for every gum X, its distance function X(�;�) isa non-expansive mapping from the gum Xop �X to the gum [0; 1], where Xop is the gumopposite to X de�ned as the set X together with the distance Xop(x; x0) = X(x0; x).A preorder is a set P together with a binary relation � on P which is re
exive andtransitive. A preorder P can be viewed as a gum, by de�ningP (p; q) = ( 0 if p � q1 if p 6� q.Note that if P is a partial order then this de�nes a quasi ultrametric and that the non-expansive mappings between preorders are precisely the monotone maps. By a slight abuseof language, any gum stemming from a preorder in this way will itself be called a preorder.Conversely, any gum X gives rise to a preorder hX;�Xi, where �X , called the underlyingordering of X, is given, for x and y in X, byx �X y if and only if X(x; y) = 0:For instance, the ordering that underlies [0; 1] is the reverse of the usual ordering: for rand s in [0; 1],r �[0;1] s if and only if s � r:Any (pseudo or quasi) ultrametric space is a fortiori a gum. Conversely, any gumX inducesa pseudo ultrametric space by taking the symmetrization of X ([Rut95]).3 A generalized Alexandro� topologyFor a gum X, let X̂ denote the function spaceX̂ = [0; 1]Xop:An element � in X̂ can be interpreted as a `fuzzy' predicate (or `fuzzy' subset) on X(cf. [Law86]): the value that � assigns to an element x in X is thought of as a measure for`the extent to which x is an element of �'. The smaller this number is, the more x shouldbe viewed as an element of �. Every gum can be isometrically embedded into the set ofits `fuzzy' predicates.Lemma 3.1 (Yoneda Lemma) Let X be a gum and x in X. The functionX(�; x) : Xop ! [0; 1]mapping y in Xop to X(y; x) is non-expansive and hence an element of X̂. Furthermore,X̂(X(�; x); �) = �(x)for any function � in X̂. 4



Proof: For x in X, X(�; x) is non-expansive since, for y and z in X,[0; 1](X(y; x); X(z; x)) � X(z; y) = Xop(y; z)follows from X(z; x) � maxfX(z; y); X(y; x)g by Proposition 2.1. Now let � in X̂. On theone hand,�(x) = [0; 1](X(x; x); �(x))� supf[0; 1](X(y; x); �(y)) j y 2 Xg= X̂(X(�; x); �):On the other hand, non-expansiveness of � gives, for any y in X,[0; 1](�(x); �(y)) � Xop(x; y) = X(y; x)which is equivalent to [0; 1](X(y; x); �(y)) � �(x) by Proposition 2.1. 2The following corollary is immediate.Corollary 3.2 For a gum X, the Yoneda embedding y : X ! X̂, de�ned, for x in X, byy(x) = X(�; x)is isometric, that is, X(x; x0) = X̂(y(x);y(x0)) for all x and x0 in X. 2Given a fuzzy predicate � in X̂, by taking only its `real' elements, i.e. the elements x ofX for which �(x) = 0, we obtain its extensionRA� = fx 2 X j �(x) = 0g;where the subscript A stands for Alexandro�. Notice that for any � in X̂,RA� = fx 2 X j �(x) = 0g= fx 2 X j X̂(y(x); �) = 0g [the Yoneda Lemma 3.1]= fx 2 X j y(x) �X̂ �g:Hence by Corollary 3.2, for any y in X,RAy(y) = fx 2 X j y(x) �X̂ y(y)g = fx 2 X j x �X yg = y # :Any subset V � X de�nes a predicate �A(V ) : Xop ! [0; 1] which is referred to as thecharacter of the subset V . It is de�ned, for x in X, by�A(V )(x) = inffX(x; v) j v 2 V g;i.e., the distance from x to the set V . Notice that �A(V )(x) = inffy(v)(x) j v 2 V g forany x in X.These two constructions de�ne mappings RA : X̂ ! P(X) and �A : P(X) ! X̂, whichcan be nicely related by considering X̂ with the underlying preorder �X̂ , and P(X) orderedby subset inclusion (cf. [Law86]): 5



Proposition 3.3 Assume X is a gum. Then the mappings RA : hX̂;�X̂i ! hP(X);�iand �A : hP(X);�i ! hX̂;�X̂i are monotone. Moreover �A is left adjoint to RA.Proof: Monotonicity of RA and �A follows directly from their de�nitions. We will henceconcentrate on the second part of the proposition by proving for all V in P(X) and � inX̂, V � RA�A(V ) and �A(RA�) �X̂ �;which is equivalent to �A being left adjoint to RA, (cf. Theorem 0.3.6 of [GHK+80]). For Vin P(X) we haveRA�A(V ) = fx 2 X j y(x) �X̂ �A(V )g � V;because for all v 2 V , y(v) �X̂ �A(V ). Furthermore, for � in X̂ and x in X,�A(RA�)(x) = inffX(x; v) j v 2 X and y(v) �X̂ �g= inffy(v)(x) j v 2 X and 8z 2 X;y(v)(z) � �(z)g� inffy(v)(x) j v 2 X and y(v)(x) � �(x)g� �(x):Consequently, �A(RA�) �X̂ �. 2The above fundamental adjunction relates character of subsets and extension of predicatesand is often referred to as the comprehension schema [Law73, Ken87]. As with any adjointpair between preorders (cf. Theorem 0.3.6 of [GHK+80]), the composition RA � �A is aclosure operator on X. It satis�es, for V � X,RA � �A(V ) = fx 2 X j �A(V )(x) = 0g= fx 2 X j X̂(y(x); �A(V )) = 0g [the Yoneda Lemma 3.1]= fx 2 X j 8z 2 X; [0; 1](y(x)(z); �A(V )(z)) = 0g= fx 2 X j 8z 2 X; y(x)(z) � �A(V )(z)g= fx 2 X j 8� > 0 8z 2 X; y(x)(z)< �) (9v 2 V; X(z; v)< �)g= fx 2 X j 8� > 0 8z 2 X; X(z; x)< �) (9v 2 V; X(z; v)< �)g (1)By using the above characterization we can prove the following lemma.Lemma 3.4 For a gum X, the closure operator RA � �A : P(X)! P(X) is topological.Proof: It is an immediate consequence of (1) that RA��A(;) = ;. Moreover, for V;W � X,RA � �A(V [W ) � RA � �A(V ) [ RA � �A(W );because RA � �A is a closure operator. For the reverse inclusion, let x in RA � �A(V [W ).Suppose x 62 RA � �A(V ). We will show x in RA � �A(W ): consider �1 > 0 and z1 in X with6



X(z1; x) < �1. We should �nd y in W with X(z1; y) < �1. Because x 62 RA � �A(V ) thereexist �0 > 0 and z0 in X such thatX(z0; x) < �0 and (8y 2 V; X(z0; y) � �0): (2)Let � = minf�0; �1g. Because x in RA � �A(V [W ) and X(x; x) = 0 < �, there exists y inV [W with X(x; y)< �. The assumption that y in V contradicts (2), becauseX(z0; y) � maxfX(z0; x); X(x; y)g<maxf�0; �g = �0:Thus y in W . Furthermore,X(z1; y) � maxfX(z1; x); X(x; y)g<maxf�1; �g = �1: 2The above lemma implies that the closure operator RA � �A induces a topology on X. InProposition 3.6 below, it is proved equivalent to the following generalized �-ball topology:For x in X and � > 0 de�ne the �-ball centered in x byB�(x) = fz 2 X j X(x; z) < �g:A subset V of a gum X is generalized Alexandro� open (gA-open, for short) if, for x in X,x 2 V ) 9� > 0; B�(x) � V:The set of all gA-open subsets of X is denoted by OgA(X). For instance, for every x in X,the �-ball B�(x) is a gA-open set. The pair hX;OgA(X)i can be shown to be a topologicalspace with fB�(x) j � > 0 and x 2 Xg as basis (cf. [FK95]).Every topology O(X) on a set X induces a preorder on X called the specializationpreorder: for any x and y in X, x �O y if and only if 8V 2 O(X); x 2 V ) y 2 V .The specialization preorder on a gum X induced by its generalized Alexandro� topologycoincides with the preorder underlying X:Proposition 3.5 Let X be a gum. For x and y in X, x �OgA y if and only if x �X y.Proof: For any gA-open set V , if x 2 V and X(x; y) = 0 then y 2 V . From thisobservation the implication from right to left is clear. For the converse suppose x �OgA y.Then for every � > 0, x 2 B�(x) implies y 2 B�(x) because �-balls are gA-open sets. HenceX(x; y)< �. Since � was arbitrary, X(x; y) = 0, that is x �X y. 2In the following proposition we use the fact that for every topology O(X), the inducedtopological closure operator cl on X can be characterized as follows: For every V � X,cl(V ) = V [ V d, where V d is the derived set , that is, the set of all accumulation points ofV . For a subset V of X we write clA(V ) for the closure of V in the generalized Alexandro�topology.Proposition 3.6 For every subset V of a gum X, clA(V ) = RA � �A(V ):7



Proof: It follows from the characterization (1) of RA � �A and because clA(V ) = V [ V dthat it is su�cient to proveV [ V d = fx 2 X j 8� > 0 8z 2 X; X(z; x) < � ) (9v 2 V; X(z; v)< �)g: (3)From the de�nition of accumulation point and the fact that the set of all �-balls is a basisfor the generalized Alexandro� topology, it follows that for every x in X,x 2 V d () 8W 2 OgA(X); x 2 o ) W \ (V n fxg) 6= ;() 8� > 0 8z 2 X; x 2 B�(z) ) B�(z) \ (V n fxg) 6= ;() 8� > 0 8z 2 X; X(z; x)< � ) 9v 2 (V n fxg); X(z; v)< �:Therefore (3) holds. 2For ordinary ultrametric spaces, gA-open sets are just the usual open sets. For preorders,a set is gA-open precisely when it is Alexandro� open (upper closed) because if X is apreorder then for � � 1,B�(x) = fy 2 X j X(x; y)< �g= fy 2 X j X(x; y) = 0g= fy 2 X j x �X yg= x";while in case � > 1 then B�(x) = X, which is clearly upper closed.4 Cauchy sequences, limits, and completenessFor computational reasons we are interested in complete spaces, in which one can modelin�nite behaviors. For this aim, Cauchy sequences for gum's are introduced. It is explainedhow such sequences look like in [0; 1], and how to de�ne in [0; 1] the notion of limit. Thiswill give rise to a de�nition of limit for arbitrary gum's. Furthermore the notions ofcompleteness, �niteness, and algebraicity are introduced.A sequence (xn)n in a gum X is forward-Cauchy if8� > 0 9N 8n � N; X(xn; xn+1) � �:Note that this is equivalent to the more familiar condition:8� > 0 9N 8n � m � N; X(xm; xn) � �;because of the strong triangle inequality. Since our metrics need not be symmetric, thefollowing variation exists: a sequence (xn)n is backward-Cauchy if8� > 0 9N 8n � N; X(xn+1; xn) � �: 8



If X is an ordinary ultrametric space then forward-Cauchy and backward-Cauchy bothmean Cauchy in the usual sense. And if X is a preorder then forward-Cauchy sequencesare eventually increasing: there exists anN such that for all n � N , xn �X xn+1. Increasingsequences in a preorder are usually called !-chains. Similarly backward-Cauchy sequencesare eventually decreasing.Forward-Cauchy sequences in [0; 1], with the generalized ultrametric of Section 2, areparticularly simple: every forward-Cauchy sequence either converges to 0 or is eventuallydecreasing; dually, every backward-Cauchy sequence either converges to 0 or is eventuallyincreasing.Proposition 4.1 A sequence (rn)n in [0; 1] is forward-Cauchy if and only if8� > 0 9N 8n � N; rn � � or 9N 8n � N; rn � rn+1:Dually, it is backward-Cauchy if and only if8� > 0 9N 8n � N; rn � � or 9N 8n � N; rn � rn+1:Proof: We prove only the `only if' implication of the �rst statement. Let (rn)n be forward-Cauchy in [0; 1]. Suppose there exists � > 0 such that8N 9n � N; rn > �:We claim that there exists an N such that for all n � N , rn > �; for suppose not:8N 9n � N; rn � �:Because (rn)n is forward-Cauchy, there existsM such that for allm �M , [0; 1](rm; rm+1) ��. Consider n1 �M with rn1 � �, and consider n2 � n1 with rn2 > �. Then� < rn2= [0; 1](rn1; rn2) [de�nition distance on [0; 1]]� �;a contradiction. Therefore let N be such that for all n � N , rn > �. Let M � N suchthat for all m � M , [0; 1](rm; rm+1) � �, which is equivalent to rm+1 � maxf�; rmg (byProposition 2.1). Because rm > �, for all m �M , this implies rm+1 � rm. 2Because forward- and backward-Cauchy sequences in [0; 1] are that simple, the followingde�nitions are easy as well: the forward-limit of a forward-Cauchy sequence (rn)n in [0; 1]is given bylim! rn = supn infk�n rk:Dually, the backward-limit of a backward-Cauchy sequence (rn)n in [0; 1] islim rn = infn supk�n rk: 9



These numbers are what one intuitively would consider as limits of Cauchy sequences.Forward-limits and backward-limits in [0; 1] are related as follows: Let (rn)n be a forward-Cauchy sequence in [0; 1]. Then for all r in [0; 1],[0; 1](lim! rn; r) = lim [0; 1](rn; r): (4)Forward-limits in an arbitrary gum X can now be de�ned in terms of backward-limits in[0; 1]: an element x is a forward-limit of a forward-Cauchy sequence (xn)n in X,x = lim! xn if and only if 8y 2 X; X(x; y) = lim X(xn; y):This is well de�ned because if (xn)n is forward-Cauchy in X, then (X(xn; y))n is backward-Cauchy in [0; 1], for any y in X. Note that our earlier de�nition of the forward-limit offorward-Cauchy sequences in [0; 1] is consistent with this de�nition for arbitrary gum's:this follows from (4).For ordinary ultrametric spaces, the above de�nes the usual notion of limit:x = lim! xn if and only if 8� > 0 9N 8n � N; X(xn; x)< �:If X is a preorder and (xn)n is an !-chain in X thenx = lim! xn if and only if 8y 2 X; x �X y , 8n; xn �X y;i.e., x = F xn, the least upper-bound of the !-chain (xn)n.One could also consider backward-limits for arbitrary gum's. Since these will not playa role in the rest of this paper, these are omitted. For simplicity, we shall use Cauchyinstead of forward-Cauchy. Similarly, we shall write lim xn for lim! xn.Cauchy sequences may have more than one limit. All limits have distance 0, however.As a consequence, limits are unique in quasi ultrametric spaces.A gum X is complete if every Cauchy sequence in X has a limit. For instance, [0; 1] iscomplete. It follows that a preorder is complete if and only if all its !-chains have a leastupper-bound. Complete partial orders are called cpo. For ordinary ultrametric spaces thisde�nition of completeness is the usual one. There is the following fact (cf. Theorem 6.5of [Rut95]).Proposition 4.2 Let X and Y be gum's. If Y is complete then Y X is complete. Moreover,limits are pointwise: let (fn)n be a Cauchy sequence in Y X and f an element in Y X . Thenlim fn = f if and only if for all x in X, lim fn(x) = f(x). 2The above proposition implies that for every gum X the function space X̂ is complete.Therefore by using the Yoneda embedding of Corollary 3.2, we have that every gum canbe isometrically embedded in a complete gum. This fact is used in [BBR95] to de�ne thecompletion of a gum X.A mapping f : X ! Y between gum's X and Y is continuous if it preserves limits: ifx = lim xn in X then f(x) = lim f(xn) in Y . For ordinary ultrametric spaces, this is theusual de�nition. For preorders it means preservation of least upper-bounds.10



For every gum X, the distance function X(�;�) : Xop � X ! [0; 1] is (backward)continuous in its �rst argument by the de�nition of limit. In general, however, it is notcontinuous in its second argument. An element a in a gum X is �nite if the functionX(a;�) : X ! [0; 1], mapping every x in X to X(a; x), is continuous. If X is a preorderthis means that for any !-chain (xn)n in X,X(a;Gxn) = limX(a; xn);or, equivalently, a �X F xn if and only if 9n; a �X xn, which is the usual de�nitionof �niteness for ordered spaces. If X is an ordinary ultrametric space then X(a;�) iscontinuous for any a in X, hence all elements are �nite. The following lemma gives anexample of �nite elements in the function space X̂:Lemma 4.3 For any gum X and x in X, y(x) is �nite in X̂.Proof: We have to show that X̂(y(x);�) : X̂ ! [0; 1] is continuous: for any Cauchysequence (�n)n in X̂,X̂(y(x); lim�n) = (lim�n)(x) [the Yoneda Lemma 3.1]= lim�n(x) [Proposition 4.2]= lim X̂(y(x); �n) [the Yoneda Lemma 3.1]: 2A basis for X is a subset B � X consisting of �nite elements such that every element xin X is the limit x = lim an of a Cauchy sequence (an)n of elements in B. A gum X isalgebraic if there exists a collection B of �nite elements of X which is a basis for X.5 A generalized Scott topologyA topology for a complete space X can then be considered satisfactory if limits in Xare topological limits. This is not the case for the generalized Alexandro� topology: forinstance, for complete partial ordersOgA(X) coincides with the standard Alexandro� topol-ogy, for which the coincidence of the least upper-bounds of !-chains and their topologicallimits does not hold. Therefore the Scott topology is usually considered to be preferable:it is the coarsest topology re�ning the Alexandro� topology, in which least upper boundsof !-chains are topological limits (cf. [GHK+80] and [Smy92]). Also for gum's, a suitablere�nement of the generalized Alexandro� topology exists. A key step towards its de�ni-tion is the following restriction of the Yoneda embedding to a continuous and isometricfunction.Theorem 5.1 Let X be a complete gum. If B � X is a basis for X then the functionyB : X ! B̂ de�ned, for x in X, byyB (x) = �b 2 B : X(b; x)is isometric and continuous. 11



Proof: According to Corollary 3.2, y is isometric. Consequently, yB is non-expansive.Because, for all Cauchy sequences (xn)n in X,limn yB(xn) = limn �b 2 B : X(b; xn)= �b 2 B : limn X(b; xn) [Proposition 4.2]= �b 2 B : X(b; limn xn) [b is �nite in X]= yB (limn xn);yB is continuous. It is also isometric because, for x and y in X, since B is a basis thereexist Cauchy sequences (an)n and (bm)m in B such that x = limn an and y = limm bm.HenceB̂(yB(x);yB(y)) = B̂(yB(limn an);yB(limm bm))= B̂(limn yB(an); limm yB(bm)) [yB is continuous]= lim n B̂(yB(an); limm yB(bm)) [de�nition of limit]= lim n limm B̂(yB(an);yB(bm)) [yB(an) is �nite in B̂ (Lemma 4.3)]= lim n limm B(an; bm) [yB is isometric (Corollary 3.2)]= lim n limm X(an; bm) [B � X]= lim nX(an; y) [an is �nite in X]= X(x; y) [de�nition of limit] 2The converse of the above theorem holds as well [BBR95, Theorem 5.6]. For an algebraiccomplete gum X with basis B we can now consider the collection B̂ of fuzzy subsets ofB rather than the collection X̂ as we have done in Section 3. These fuzzy subsets can becompared with subsets of X by the extension function RS : B̂ ! P(X) and the characterfunction �S : P(X)! B̂ de�ned, for � in B̂ and V � X, byRS� = fx 2 X j yB(x) �B̂ �g and �S(V ) = �b 2 B: inffX(b; v) j v 2 V g:As in Proposition 3.3 the maps RS : hB̂;�B̂i ! hP(X);�i and �S : hP(X);�i ! hB̂;�B̂iare monotone and �S is left adjoint to RS. Thus, RS � �S : P(X) ! P(X) is a closureoperator which can, in a way similar to (1), be characterized, for an algebraic completegum X with basis B, as follows: for V � X,RS � �S(V ) = fx 2 X j 8� > 0 8a 2 B; X(a; x)< �) (9y 2 V; X(a; y)< �)g: (5)Also this closure operator is topological:Lemma 5.2 For an algebraic complete gum X, the closure operator RS��S : P(X)! P(X)is topological. 12



Proof: This lemma is proved along the same lines as Lemma 3.4, but one needs thefollowing additional observation: If B � X is a basis for X then for any z0 and z1 in B,�0; �1 > 0, and x in X, such thatX(z0; x) < �0 and X(z1; x)< �1;there exists b in B such that X(z0; b) < �0, X(z1; b) < �1, and X(b; x) <minf�0; �1g. Thisfact can be proved as follows. Because X is an algebraic complete gum with B as basis,there exists a Cauchy sequence (bn)n in B with x = lim bn. Since z0 in B, it is �nite in X.Hence, X(z0; x) = X(z0; lim bn) < �0 implies the existence of N0 such that for all n � N0,X(z0; bn)<�0: Similarly, there exists N1 such that for all n � N1,X(z1; bn)<�1: Furthermore,there exists, by de�nition of limit, N2 such that for all n � N2, X(bn; x)<minf�0; �1g. Bytaking M = maxfN0; N1; N2g, and putting b = bM , we have found the element in X wewere looking for. 2Thus the closure operator above induces a topology on X which we will call the generalizedScott topology. Indeed, in the special case that X is an algebraic complete partial orderwith basis B, for every V � X,RS � �S(V ) = fx 2 X j 8a 2 B; a �X x) (9v 2 V; a �X v)g;which we recognize as the closure operator induced by the Scott topology on X.Next an alternative de�nition of the generalized Scott topology is given by specifyingthe open sets (this time starting with a complete gum X). In Theorem 5.6 below, it willbe shown that the closure operator induced by this second de�nition coincides with RS � �Swhenever X is algebraic.A subset V of a complete gum X is generalized Scott open (gS-open, for short) if forall Cauchy sequences (xn)n in X,lim xn 2 V ) 9N 9� > 0 8n � N; B�(xn) � V:The set of all gS-open subsets of X is denoted by OgS(X). Below it will be shown thatthis de�nes a topology indeed. Note that every gS-open set V � X is gA-open becauseevery point x of a gum X is the limit of the constant Cauchy sequence (x)n. Thereforethis topology re�nes the generalized Alexandro� topology. Furthermore it will be shown tocoincide with the �-ball topology in case X is a complete ultrametric space; and to coincidewith the Scott topology in case X is a cpo. The following proposition gives an example ofgS-open sets.Proposition 5.3 For every complete gum X, an element a in X is �nite if and only iffor every � > 0, the set B�(a) is gS-open.Proof: Let a in X be �nite and �> 0. Then the �-ball B�(a) is a gS-open set: let (xn)n bea Cauchy sequence in X and assume lim xn in B�(a). Because a is �nite, X(a; lim xn) =limX(a; xn) < �, by which there exists 
 > 0 such that limX(a; xn) < � � 
. Take � < 
.13



Then there exists N such that X(a; xn)< (�� 
) + �, for all n � N . Then B�(xn) � B�(a)for all n � N , because if y in B�(xn) for some n � N we have, by the strong triangularinequality and by our choice of �,X(a; y) � max fX(a; xn); X(xn; y)g<max f((�� 
) + �); �g = (�� 
) + � < �;that is, y in B�(a). Conversely, assume B�(a) is a gS-open set for every � > 0. We onlyneed to prove, for every Cauchy sequence (xn)n in X, thatlimX(a; xn) � X(a; lim xn) (6)because the reverse inequality holds whether a is �nite or not (being the the distancefunction X(�;�) : Xop � X ! [0; 1] non-expansive). If limX(a; xn) = 0 then (6) istrivially true. Therefore suppose limX(a; xn) > 0 and, towards a contradiction, assumeX(a; lim xn)<limX(a; xn). Then there exists �>0 such that X(a; lim xn)<�<limX(a; xn).MoreoverX(a; lim xn)< � ) lim xn 2 B�(a)) 9N 9� > 0 8n � N; B�(xn) � B�(a) [B�(a) is gS-open]) 9N 8n � N;X(a; xn)< �() limX(a; xn)< �:But this contradicts � < limX(a; xn). Thus X(a; lim xn) � limX(a; xn). 2The collection of all gS-open sets forms indeed a topology:Proposition 5.4 For every complete gum X, OgS(X) is a topology on X. If X is alsoalgebraic with basis B, then the set fB�(a) j a 2 B and � > 0g forms a basis for thegeneralized Scott topology OgS(X).Proof: One can easily verify that OgS(X) is closed under �nite intersections and arbitraryunions. We will only prove that, for an algebraic complete gum X with base B, everygS-open set V � X is the union of �-balls of �nite elements. Let x in V . Since X isalgebraic there is a Cauchy sequence (an)n in B with x = lim an. Because V is gS-open,there exists �x> 0 and Nx � 0 such that B�x(an) � V for all n � Nx and with x in B�x(an)for Nx big enough. Therefore V � Sx2V B�x(aNx). Since the other inclusion trivially holdswe have that the collection of all �-balls of �nite elements forms a basis for the generalizedScott topology. 2Any ordinary complete ultrametric space X is an algebraic complete gum in which allelements are �nite. Therefore, by the previous proposition, the basic open sets of thegeneralized Scott topology are all the �-balls B�(x), with x in X. Hence for ordinarycomplete ultrametric spaces the generalized Scott topology coincides with the standard�-ball topology. 14



For a cpo X, a set V � X is gS-open precisely when it is Scott open, that is, V isupper closed and moreover satis�es, for any !-chain (xn)n in X,G xn 2 V ) 9N; xN 2 V:Indeed, if V � X is gS-open then it is upper closed because the generalized Scott topologyre�nes the generalized Alexandro� topology. Moreover, if F xn in V for an !-chain (xn)nin X then there exists � > 0 and N such that B�(xn) � V for all n � N . Since xn inB�(xn) for all �, V is an ordinary Scott open set. Conversely, assume V is Scott open andlet lim xn in V . Because V is Scott open and limits are least upper bounds there existsN such that xn in V for all n � N . By taking � = 1=2 we obtain that V is also gS-openbecause for every x in X, B1=2(x) = x".A subset V of a complete gum X is generalized Scott closed (gS-closed, for short) if itscomplement X nV is gS-open. This is equivalent to the following condition: for all Cauchysequences (xn)n in X,(8N 8� > 0 9n � N 9y 2 V; X(xn; y)< �) ) lim xn 2 V:Notice that if V is a gS-closed set and (xn)n is a Cauchy sequence in V (satisfying hencethe above condition), then all its limits should belong to V . The following lemma, due toFlagg and S�underauf, gives an example of gS-closed sets.Lemma 5.5 For every complete gum X, x in X and � � 0 the set �Bop� (x) = fy 2 X jX(y; x) � �g is gS-closed.Proof: Let (xn)n be a Cauchy sequence in X such that8N 8� > 0 9n � N 9y 2 �Bop� (x); X(xn; y)< �:Then 8N 8� > 0 9n � N; X(xn; y) � maxf�; �g: (7)We need to show that lim xn in �Bop� (x); that is, X(lim xn; x) � �. Suppose � > 0. Since(xn)n is a Cauchy sequence we can choose N0 so that 8m � n � N0 ; X(xn; xm) < �. Forevery n � N0, by (7), there exists m � n such that X(xm; x) � maxf�; �g. Hence, for alln � N0, X(xn; x) � maxfX(xn; xm); X(xm; x)g � maxf�;maxf�; �gg � maxf�; �g, fromwhich followsX(lim xn; x) = lim X(xn; x) = infN supn�NX(xn; x) � supn�N0X(xn; x) � maxf�; �g:Since � was arbitrary, X(limn xn; x) � �. 2For a subset V of X we write clS(V ) for the closure of V in the generalized Scott topology,that is, clS(V ) is the smallest gS-closed set containing V . From the de�nition of limits wehave that for any Cauchy sequence (xn)n in V , lim xn in clS(V ). The latter implies thatif X is a gum with base B then B is dense in X, that is clS(B) = X. Indeed, B � Ximplies clS(B) � clS(X) = X. For the converse we use the fact that every element of X isthe limit of a Cauchy sequence in B. 15



Theorem 5.6 Let X be an algebraic complete gum X with base B. For all subsets V � X,clS(V ) = RS � �S(V ):Proof: This theorem can be proved along the same lines as Proposition 3.6. It followsfrom the characterization (5) of RS � �S and the fact that the �-balls of �nite elements forma basis for the generalized Scott topology. 2The specialization preorder on a complete gum X induced by its generalized Scott topologycoincides with the preorder underlying X:Proposition 5.7 Let X be a complete gum X. For x and y in X, x �OgS y if and only ifx �X y.Proof: For any gS-open set V , if x 2 V and X(x; y) = 0, then y 2 V . From thisobservation, the implication from right to left is clear. For the converse, suppose X(x; y) 6=0. Then x in X n fz j X(z; y) � 0g but y 62 X n fz j X(z; y) � 0g. Since, by Lemma 5.5,the set X n fz j X(z; y) � 0g is gS-open it follows that x 6�OgS y. 2Note that the specialization preorder is a partial order|or, equivalently the gS-topologyis T0|if and only if X is an algebraic complete quasi ultrametric space.This section is concluded with two observations relating limits and topological conver-gence. In the sequel we denote by N (x) the principal �lter induced by x in X, that is,N (x) = fV 2 O(X) j x 2 V g. Similarly, for any sequence (xn)n in X we denote byN ((xn)n) the �lterN ((xn)n) = fV 2 O(X) j 9N 8n � N; xn 2 V g:As usual, we say that N ((xn)n) converges to x in X, denoted by (xn)n !O x, if N (x) �N ((xn)n). Note that it is straightforward from the de�nition of convergence, that a se-quence (xn)n in an algebraic complete gum X converges (with respect to the gS-topologyon X) to an element x in X, if and only if8� > 0 8a 2 B; X(a; x)< � ) (9N 8n � N; X(a; xn)< �):In the next proposition we show that in a complete gum every Cauchy sequence is topolog-ically convergent to its limit. However, not every convergent sequence is Cauchy: Providethe set X = f1; 2; : : : ; !g with the distance functionX(x; y) = 8><>: 0 if x = y1n if x = ! and y = n1 otherwiseThen X is an algebraic complete quasi ultrametric space with X itself as base since thereare no non-trivial Cauchy sequence. The sequence (n)n converges to ! but is not Cauchy.Proposition 5.8 Let X be a complete gum and (xn)n a Cauchy sequence in X. Then forany y in X, xn !OgS y if and only if y �OgS lim xn.16



Proof: Clearly xn !OgS lim xn and since gS-open sets are upper closed sets, y �OgS lim xnimplies xn !OgS y. For the converse assume xn !OgS y and suppose y 6�OgS lim xn. Thenthere is a � > 0 such that X(y; limxn) 6� �. So y 2 X n fz j X(z; lim xn) � �g, which isa gS-open set by Lemma 5.5. Since xn !OgS y, we can choose N0 so that for all n � N0,xn 2 X n fz j X(z; lim xn) � �g. But0 = X(lim xn; lim xn) = lim nX(xn; limxn);so there is an N1 such that X(xn; lim xn) � � for all n � N1. Taking n � maxfN0; N1ggives a contradiction. Therefore y �OgS lim xn. 2Recall that a function f : X ! Y between two complete gum's is (metrically) continuous iff(lim xn) = lim f(xn) for every Cauchy sequence (xn)n in X. It is topologically continuousif the inverse image of a gS-open subset of Y is gS-open in X. The two notions are relatedas follows.Proposition 5.9 A non-expansive function f : X ! Y between complete gum's is metri-cally continuous if and only if it is topologically continuous.Proof: Let f : X ! Y be a non-expansive and metrically continuous function and letV � Y be gS-open. We need to prove f�1(V ) in OgS(X) in order to conclude that f istopologically continuous. Indeed, for any Cauchy sequence (xn)n in X we havelim xn 2 f�1(V ) () f(limxn) 2 V() lim f(xn) 2 V [f metrically continuous]) 9N 9� > 0 8n � N; B�(f(xn)) � V [f non-expansive and(f(xn))n Cauchy sequence and V gS-open]) 9N 9� > 0 8n � N; B�(xn) � f�1(V ) [f non-expansive]:For the converse assume f : X ! Y is topologically continuous and let (xn)n be a Cauchysequence in X. Because f is topologically continuous and, by Proposition 5.8, xn !OgSlim xn, then f(xn) !OgS f(lim xn). But then, by Proposition 5.8 again, f(lim xn) �OgSlim f(xn). Since f is non-expansive,X(lim f(xn); f(limxn)) = lim nX(f(xn); f(limxn))� lim nX(xn; lim xn)= X(lim xn; lim xn) = 0:Thus lim f(xn) �OgS f(x). By de�nition of limits we can then conclude that f(lim xn) isa limit of (f(xn))n. 2
17



6 Related workLawvere's work on generalized metric spaces as enriched categories ([Law73]) togetherwith the more topological perspective of Smith ([Smy87]) have been our main source ofinspiration for the present paper, which continues the work of Rutten ([Rut95]) and ispart of the work of Bonsangue, van Breugel and Rutten ([BBR95]). Recently, we havebeen in
uenced also by the work of Flagg and Kopperman [FK95] and Wagner [Wag94].Generalized ultrametric spaces are a special instance of Lawvere's V-categories. The non-symmetric ultrametric for [0; 1] is also described and studied in his paper. The notion offorward Cauchy for a non-symmetric metric space is from [Smy87] as well as the notion oflimit. A purely enriched-categorical de�nition of forward Cauchy sequences and of limitscan be found in Wagner's [Wag94, Wag95]. The notion of �niteness and algebraicity for ageneralized ultrametric spaces are from [Rut95]. Clearly we are working in the traditionof domain theory and metric spaces, for which Plotkin's [Plo83] and Engelking's [Eng89]have been our respective main source of information.The comprehension schema as comparison between fuzzy predicates and subsets hasbeen studied by Lawvere ([Law73]) and also by Kent ([Ken87]). The generalized Alexan-dro� topology by using specifying the open sets, has been studied by Flagg and Kopperman([FK95]) in the context of V-domains. The de�nition of the generalized Scott topology viathe Yoneda embedding is new while its de�nition by specifying the basis is brie
y mentionedin the conclusion of [Smy87]. According the terminology of the latter paper, our generalizedScott topology is the �nest strongly appropriate topology for an algebraic complete quasiultrametric space X whenever X is taken together with the standard quasi-uniformity.Recently, Flagg and S�underhauf [FS95] have proved a quasi metric version of Hofmann'sTheorem on the soberi�cation of the generalized Alexandro� topology. It has as a corol-lary the fact that the generalized Scott topology on an algebraic complete quasi ultrametricspace is sober. A generalized Scott topology is given also in [Wag95]. However, his notionof topology does not coincides with the standard set theoretical one: for example it doesnot coincides with the ordinary �-ball topology in case of ordinary metric spaces.Another important topological approach to quasi metric space, which need to be men-tioned is that of, again, Smyth ([Smy91]) and Flagg and Kopperman ([FK95]). They con-sider quasi metric spaces equipped with the generalized Alexandro� topology. In order toreconcile metric spaces with complete partial orders they assign to partial orders a distancefunction which in general is not two-valued. Their approach to topology is much simplerthan ours since much of the standard topological theorems for ordinary metric spaces canbe adapted. The price to be paid for such simplicity is that this approach works only fora restricted class of spaces: they have to be spectral. Hence a full reconciliation betweenmetric spaces and partial orders is not possible because only algebraic cpo's which are socalled 2=3 SFP are spectral in their Scott topology. Also the work of S�underhauf on quasiuniformities ([S�un94]) is along the same lines.Other papers on reconciling complete partial orders with metric spaces are [WS81,CD85, Doi88, Mat94]. Di�erent de�nitions of Cauchy sequence for non-symmetric metricspaces can be found in [RSV82]. 18
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