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Abstract

Both preorders and ordinary ultrametric spaces are instances of generalized ul-
trametric spaces. Every generalized ultrametric space can be isometrically embedded
in a (complete) function space by means of an ultrametric version of the categorical
Yoneda Lemma. This simple fact gives naturally rise to: 1. a topology for general-
ized ultrametric spaces which for arbitrary preorders corresponds to the Alexandroff
topology and for ordinary ultrametric spaces reduces to the e-ball topology; 2. a
topology for algebraic complete generalized ultrametric spaces generalizing both the
Scott topology for arbitrary algebraic complete partial orders and the e-ball topology
for complete ultrametric spaces.

1 Introduction

Partial orders and metric spaces play a central role in the semantics of programming lan-
guages (cf., e.g., the recent textbooks [Win93| and [BV95]). Parts of their theory have
been developed because of semantic necessity (see, e.g., [SP82] and [AR89]). General-
ized ultrametric spaces provide a common framework for the study of both preorders
and ordinary ultrametric spaces. A generalized ultrametric space consists of a set X to-
gether with a distance function X(—,—) : X x X — [0,1] satisfying X(z,z) = 0 and
X(z,2) <max{X(z,y), X(y,2)} for all z,y and z in X. The family of generalized ultra-
metric spaces contains all ordinary ultrametric spaces as well as all preordered spaces.
Generalized metric spaces were introduced by Lawvere [Law73] as an illustration of
the thesis that fundamental structures are categories. The present work is inspired by
Lawvere’s enriched-categorical view of generalized metric spaces [Law73| as well as the
more topological view of Smyth on quasi metric spaces [Smy87, Smy91|. It is based on
the work [Rut95], in which some of the basic theory of generalized ultrametric spaces has
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been developed, and is part of [BBR95], in which also completion and powerdomains for
generalized ultrametric spaces are studied by using the Yoneda embedding.

We propose two topologies on generalized ultrametric spaces. The first topology is a
generalized Alexandroff topology: for preorders this topology coincides with the Alexan-
droff topology while for ultrametric spaces it corresponds to the e-ball topology. The second
topology is a generalized Scott topology: for algebraic complete partial orders this topol-
ogy corresponds to the Scott topology while for complete ultrametric spaces it coincides
with the e-ball topology. Both topologies are defined in two ways: by giving the open sets
and by a closure operator. For both topologies the two alternative definitions are shown
to coincide.

Our definition of the generalized Alexandroff topology in terms of open sets is similar to
the ones given by Smyth [Smy87, Smy91] and Flagg and Kopperman [FK95]. A definition
of a generalized Scott topology in terms of open sets similar to ours is briefly mentioned by
Smyth in [Smy87|. The definitions of the topologies in terms of closure operators are new.
The key observation—first made by Lawvere [Law73, Law86|—is that, intuitively, one may
identify elements x of a generalized ultrametric space X with a description of the distances
between any element y in X and z. Formally, this description is a function mapping every y
in X to the distance X (y, x). These functions can be interpreted as ‘fuzzy’ predicates on X:
the value a function ¢ assigns to an element y in X is thought of as a measure for ‘the extent
to which y is an element of ¢’. This observation corresponds to a generalized ultrametric
version of the categorical Yoneda Lemma [Yon54]. The corresponding Yoneda embedding
isometrically embeds a generalized ultrametric space X into the generalized ultrametric
space of fuzzy predicates on X. By comparing the fuzzy predicates on X with the subsets of
X we obtain the closure operator defining the generalized Alexandroff topology. Similarly,
an algebraic complete generalized ultrametric space X can be embedded isometrically and
continuously into the generalized ultrametric space of fuzzy predicates on its base B. By
comparing the fuzzy predicates on B with the subsets of X we obtain the closure operator
defining the generalized Scott topology.

The results presented here on generalized ultrametric spaces apply as well to generalized
metric spaces (where one would have X (z,2) < X(z,y)+ X (y,z) for all z,y and z in X).
We considered generalized ultrametric space because the distance induced by a preorder
is indeed a generalized ultrametric. Moreover, because of the strong triangle inequality,
ultrametric space are from a computational point of view better behaved than metric
spaces and seem to arise naturally in the semantics of programming languages (cf. [Rut95]).

The paper is organized as follows. Sections 2 and 4 give the basic definitions and facts
on generalized ultrametric spaces. The Yoneda Lemma and the generalized Alexandroff
topology are discussed in Section 3, while the generalized Scott topology is presented in
Section 5. Finally Section 6 discusses related work.
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to them as well as an improvement of Propositions 5.7, 5.8 and 5.9.



2 Generalized ultrametric spaces

A generalized ultrametric space (gum, for short) is a set X together with a distance function
X(—,—): X x X — [0,1], which satisfies, for all z, y, and z in X,

1. X(z,z) =0, and
2. X(z,2) <max{X(z,y), X(y,2)}.

An example of a gum is the set of real numbers [0, 1] with distance function [0, 1](—, —) :
[0,1] x [0,1] — [0, 1] defined, for r and s in [0, 1], by

0 ifr>s
s ifr<s.

0,1](r,s) = {
The gum [0, 1] has the following fundamental property.
Proposition 2.1 For all r,s,t € |0,1], max{s,t} > r if and only if s > [0, 1](¢, 7). O

The above proposition expresses that the category with elements in [0, 1] as objects and
the relation > defining the morphisms between objects is cartesian closed. This category

is also monoidal closed. Many properties of gum’s derive from this categorical structure
n [0,1] (cf. [Law73, Rut95, BBR95]).
A gum generally does not satisfy

3. if X(z,y) =0 and X(y,z) = 0 then =z =y,
4. X(z,y) = X(y,x),

which are the additional conditions that hold for an ordinary ultrametric space. Therefore
it is sometimes called a pseudo-quasi ultrametric space. A quasi ultrametric space is a gum
which furthermore satisfies axiom 3. A gum satisfying also axiom 4. is called a pseudo
ultrametric space.

A map f: X — Y between gum’s X and Y is non-expansive if for all x and =’ in X,

Y(f(2), f(2')) < X(z, ).

The map f is called isometric if the above inequality is in fact an equality. We denote by
Y X the set of all non-expansive maps from X to Y with distance, for f and g in Y,

YX(f,9) =sup{Y(f(2),9(z)) | z € X}.

The product X x Y of two gum’s X and Y is defined as the Cartesian product of their
underlying sets, together with distance, for (z,y) and (2/,3') in X x Y,

X xY((z,y), (¢',y) = max {X(z,2"), Y(y,9)}.



From the above definition it follows that for every gum X, its distance function X (—, —) is
a non-expansive mapping from the gum X° x X to the gum [0, 1], where X is the gum
opposite to X defined as the set X together with the distance X (z,2') = X (2/, x).

A preorder is a set P together with a binary relation < on P which is reflexive and
transitive. A preorder P can be viewed as a gum, by defining

_J 0 ifp<g

Note that if P is a partial order then this defines a quasi ultrametric and that the non-
expansive mappings between preorders are precisely the monotone maps. By a slight abuse
of language, any gum stemming from a preorder in this way will itself be called a preorder.
Conversely, any gum X gives rise to a preorder (X, <), where <y, called the underlying
ordering of X, is given, for z and y in X, by

x <x y if and only if X(z,y) = 0.

For instance, the ordering that underlies [0, 1] is the reverse of the usual ordering: for r
and s in [0, 1],

r <p,11 s if and only if s <.

Any (pseudo or quasi) ultrametric space is a fortiori a gum. Conversely, any gum X induces
a pseudo ultrametric space by taking the symmetrization of X ([Rut95]).

3 A generalized Alexandroff topology

For a gum X, let X denote the function space
£ = 0,1,

An element ¢ in X can be interpreted as a ‘fuzzy’ predicate (or ‘fuzzy’ subset) on X
(cf. [Law86]): the value that ¢ assigns to an element x in X is thought of as a measure for
‘the extent to which z is an element of ¢’. The smaller this number is, the more x should
be viewed as an element of ¢. Every gum can be isometrically embedded into the set of
its ‘fuzzy’ predicates.

Lemma 3.1 (Yoneda Lemma) Let X be a gum and x in X. The function
X(—,z): X? —10,1]

mapping y in X° to X(y,x) is non-expansive and hence an element of X. Furthermore,
X(X(~,2).9) = ¢(x)

for any function ¢ in X.



Proof: For z in X, X(—, z) is non-expansive since, for y and z in X,
[0, 1](X (y, 2), X(2,2)) < X(2,y) = X7(y, 2)

follows from X (z,z) < max{X(z,y), X(y,x)} by Proposition 2.1. Now let ¢ in X. On the
one hand,

o(x) = [0,1)(X(z,z), p(z))
< sup{[0, 1 (X(y. 2),6(y)) | y € X}
= X(X(—,12),9).

On the other hand, non-expansiveness of ¢ gives, for any y in X,

[0, 1)(¢(x), $y)) < X (z,y) = X(y, )
which is equivalent to [0, 1](X (y, z), #(y)) < ¢(x) by Proposition 2.1. O

The following corollary is immediate.

Corollary 3.2 For a gum X, the Yoneda embeddingy : X — X, defined, for x in X, by
y(x) = X(=,z)

is isometric, that is, X (z,2') = X (y(x),y(z')) for all  and 2’ in X. O

Given a fuzzy predicate ¢ in X, by taking only its ‘real’ elements, i.e. the elements x of
X for which ¢(z) = 0, we obtain its extension

¢ ={x € X | ¢(z) = 0},
where the subscript A stands for Alexandroff. Notice that for any ¢ in X,
L6 = {zeX o) =0}
= {r e X | X(y(z),¢) =0} [the Yoneda Lemma 3.1]
= {re X[yl <y ¢}

Hence by Corollary 3.2, for any y in X,

Iy ={ze X |yl <y} ={reX|a<xy}t=yl.

Any subset V' C X defines a predicate ps(V) : X°? — [0, 1] which is referred to as the
character of the subset V. It is defined, for z in X, by

pa(V)(z) = inf{X(z,v) | v eV},

i.e., the distance from = to the set V. Notice that ps(V)(x) = inf{y(v)(z) | v € V} for
any r in X.

These two constructions define mappings [, : X — P(X) and p4 : P(X) — X, which
can be nicely related by considering X with the underlying preorder <y, and P(X) ordered
by subset inclusion (cf. [Law86]):



Proposition 3.3 Assume X is a gum. Then the mappings [, : (X,<;) — (P(X),C)
and pa : (P(X),C) — (X, <) are monotone. Moreover p4 is left adjoint to [,.

Proof: Monotonicity of [, and pa follows directly from their definitions. We will hence
concentrate on the second part of the proposition by proving for all V' in P(X) and ¢ in
X,

VC [ipa(V) and pa([y9) <x ¢,

which is equivalent to p4 being left adjoint to [, (cf. Theorem 0.3.6 of [GHK™80]). For V'
in P(X) we have

Lipa(V) ={z € X [y(z) <5 pa(V)} 2V,
because for all v € V, y(v) <4 pa(V). Furthermore, for ¢ in X and z in X,
pa(fs9) (@)

inf{X(z,v) | v e X and y(v) <y ¢}
= inf{y(v)(z) | v € X and Vz € X, y(v)(2) > ¢(2)}

> inf{y(v)(z) | v € X and y(v)(z) = é(z)}
> ¢(x),
Consequently, pa([,0) <x ¢ O

The above fundamental adjunction relates character of subsets and extension of predicates
and is often referred to as the comprehension schema [Law73, Ken87]. As with any adjoint
pair between preorders (cf. Theorem 0.3.6 of [GHK'80]), the composition [, o ps is a
closure operator on X. It satisfies, for V C X,

IiopaV) = {z € X |pa(V)(z) =0}
= {ze X[ X(y(x), pa(V)) =
= {zeX[Vze X, [0,1(y(z)(2),pa(V)(2)) = 0}
= {zeX|Vze X, y(x)(z) = pa(V)(2)}
= {reX|Ve>0Vze X, y(z)(z2)<e= (v eV, X(z,v)<e)}
= {zeX|Ve>0Vze X, X(z,2)<e= (weV, X(z,v)<e)} (1)

0} [the Yoneda Lemma 3.1]
)(2
>

By using the above characterization we can prove the following lemma.
Lemma 3.4 For a gum X, the closure operator [, o pa: P(X) — P(X) is topological.

Proof: Tt is an immediate consequence of (1) that [,0p4(0) = 0. Moreover, for V,W C X,

Jaopa(VUW) 2D [yopa(V)U [yopa(W),

because [, o pa is a closure operator. For the reverse inclusion, let z in [, o pa(V U W).
Suppose « & [, 0 pa(V). We will show z in [, o pa(W): consider ¢; >0 and z; in X with
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X(z1,2) < €1. We should find y in W with X(z1,y) < €. Because = ¢ [, o pa(V) there
exist € > 0 and zp in X such that

X(zp,z)<e¢ and (Yy eV, X(z0,y) > €0). (2)

Let € = min{eg, €;}. Because z in [, 0 pa(V UW) and X (x,z) = 0 < ¢, there exists y in
V UW with X(z,y) <e. The assumption that y in V' contradicts (2), because

X(20,y) < max{X(z0,2), X(z,y)} < max{ey, €} = €.
Thus y in W. Furthermore,

X(Z1>y> < maX{X(zl,x),X(:r,y)} < maX{Ela 6} = €1
O

The above lemma implies that the closure operator [, o ps induces a topology on X. In
Proposition 3.6 below, it is proved equivalent to the following generalized e-ball topology:
For z in X and € > 0 define the e-ball centered in x by

B(z)={z¢€ X | X(2,2) <¢€}.
A subset V of a gum X is generalized Alezandroff open (gA-open, for short) if, for z in X,
xeV =3Je>0, B(x)CV.

The set of all gA-open subsets of X is denoted by O,4(X). For instance, for every x in X,
the e-ball B.(x) is a gA-open set. The pair (X, O, 4(X)) can be shown to be a topological
space with {B.(z) | ¢ >0 and € X} as basis (cf. [FK95]).

Every topology O(X) on a set X induces a preorder on X called the specialization
preorder: for any xz and y in X, x <o y if and only if VV € O(X), z €V =y e V.
The specialization preorder on a gum X induced by its generalized Alexandroff topology
coincides with the preorder underlying X:

Proposition 3.5 Let X be a gum. For x andy in X, x <o_, y if and only if v <x y.

Proof: For any gA-open set V, if x € V and X(z,y) = 0 then y € V. From this
observation the implication from right to left is clear. For the converse suppose x <0,4 Y-
Then for every € >0, z € B.(z) implies y € B(z) because e-balls are gA-open sets. Hence
X(z,y) <e. Since € was arbitrary, X (z,y) = 0, that is  <x y. O

In the following proposition we use the fact that for every topology O(X), the induced
topological closure operator ¢/ on X can be characterized as follows: For every V C X,
cl(V) =V uV? where V¢ is the derived set, that is, the set of all accumulation points of
V. For a subset V' of X we write cl4(V") for the closure of V' in the generalized Alexandroff
topology.

Proposition 3.6 For every subset V' of a gum X, cls(V) = [, 0 pa(V).
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Proof: It follows from the characterization (1) of [, o ps and because cl (V) = V U V?
that it is sufficient to prove

VUVt = {2eX |Ve>0Vze X, X(z,2)<e = (FveV, X(z,v)<e)}. (3)

From the definition of accumulation point and the fact that the set of all e-balls is a basis
for the generalized Alexandroff topology, it follows that for every z in X,

eV = VW eO.X), v€o0=WnV\{z})#0
< Ve>0Vze X, z€ B(z) = Bz)nN(V\{z}) #0
— Ve>0Vze X, X(z,2)<e = Jve (V\{zr}), X(z,v)<e

Therefore (3) holds. O

For ordinary ultrametric spaces, gA-open sets are just the usual open sets. For preorders,
a set is gA-open precisely when it is Alexandroff open (upper closed) because if X is a
preorder then for e < 1,

B(z) = {ye X | X(z,y) <e}
{y e X | X(z,y) =0}
{fye X |z <xy}

= 7,

while in case € > 1 then B.(z) = X, which is clearly upper closed.

4 Cauchy sequences, limits, and completeness

For computational reasons we are interested in complete spaces, in which one can model
infinite behaviors. For this aim, Cauchy sequences for gum’s are introduced. It is explained
how such sequences look like in [0, 1], and how to define in [0, 1] the notion of limit. This
will give rise to a definition of limit for arbitrary gum’s. Furthermore the notions of
completeness, finiteness, and algebraicity are introduced.

A sequence (z,), in a gum X is forward-Cauchy if

Ve >0dNVn >N, X(z,,r,11) <e.
Note that this is equivalent to the more familiar condition:
Ve>03INVn>m>N, X(x,,x,) <e,

because of the strong triangle inequality. Since our metrics need not be symmetric, the
following variation exists: a sequence (z,), is backward-Cauchy if

Ve >0dNVn > N, X(z,1,7,) <e.



If X is an ordinary ultrametric space then forward-Cauchy and backward-Cauchy both
mean Cauchy in the usual sense. And if X is a preorder then forward-Cauchy sequences
are eventually increasing: there exists an N such that foralln > N, z, <x x,.1. Increasing
sequences in a preorder are usually called w-chains. Similarly backward-Cauchy sequences
are eventually decreasing.

Forward-Cauchy sequences in [0, 1], with the generalized ultrametric of Section 2, are
particularly simple: every forward-Cauchy sequence either converges to 0 or is eventually
decreasing; dually, every backward-Cauchy sequence either converges to 0 or is eventually
increasing.

Proposition 4.1 A sequence (1,), in [0,1] is forward-Cauchy if and only if
Ve>0dNYVn >N, r,<eordNVn>N, r, > r,.

Dually, it 1s backward-Cauchy if and only if
Ve>0dNVn >N, r,<eordNVn>N, r, <r,i.

Proof: We prove only the ‘only if” implication of the first statement. Let (), be forward-
Cauchy in [0, 1]. Suppose there exists € > 0 such that

VN dn > N, r, >e€.
We claim that there exists an N such that for all n > N, r, > ¢; for suppose not:
VN dn > N, r, <e.

Because (r,,), is forward-Cauchy, there exists M such that for all m > M, [0, 1](rp,, "me1) <
e. Consider ny > M with 7,, <€, and consider ny > n; with r,, > €. Then

€ < Tp,
= [0,1](rn,,7n,) [definition distance on [0, 1]]
< €
a contradiction. Therefore let N be such that for all n > N, r, >e. Let M > N such

that for all m > M, [0,1](7m, Tms1) < €, which is equivalent to 7,1 < max{e,r,,} (by
Proposition 2.1). Because 7, > ¢, for all m > M this implies 7,41 < 7. O

Because forward- and backward-Cauchy sequences in [0, 1] are that simple, the following
definitions are easy as well: the forward-limit of a forward-Cauchy sequence (r,), in [0, 1]
is given by

limr, = sup inf rg.
— n k>n

Dually, the backward-limit of a backward-Cauchy sequence (r,), in [0,1] is

limr, = inf sup rg.
«— n
k>n



These numbers are what one intuitively would consider as limits of Cauchy sequences.
Forward-limits and backward-limits in [0, 1] are related as follows: Let (r,), be a forward-
Cauchy sequence in [0, 1]. Then for all  in [0, 1],

0,1](limr,r) = 1m0, 1](r,, 7). (4)

Forward-limits in an arbitrary gum X can now be defined in terms of backward-limits in
[0,1]: an element zx is a forward-limit of a forward-Cauchy sequence (x,), in X,

x =limz, if and only if Vy € X, X(z,y) = lim X (z,,y).

This is well defined because if (z,), is forward-Cauchy in X, then (X (z,,¥)), is backward-
Cauchy in [0,1], for any y in X. Note that our earlier definition of the forward-limit of
forward-Cauchy sequences in [0, 1] is consistent with this definition for arbitrary gum’s:
this follows from (4).

For ordinary ultrametric spaces, the above defines the usual notion of limit:

T = 11_1@17‘,1 if and only if Ve >0 3dN Vn > N, X(z,,z) <e.

If X is a preorder and (z,), is an w-chain in X then
r = limz, ifand only if Vy € X, z <xy <& Vn, z, <x v,

i.e., r = ||x,, the least upper-bound of the w-chain (z,),.

One could also consider backward-limits for arbitrary gum’s. Since these will not play
a role in the rest of this paper, these are omitted. For simplicity, we shall use Cauchy
instead of forward-Cauchy. Similarly, we shall write lim z,, for lim .

Cauchy sequences may have more than one limit. All limits have distance 0, however.
As a consequence, limits are unique in quasi ultrametric spaces.

A gum X is complete if every Cauchy sequence in X has a limit. For instance, [0, 1] is
complete. It follows that a preorder is complete if and only if all its w-chains have a least
upper-bound. Complete partial orders are called cpo. For ordinary ultrametric spaces this
definition of completeness is the usual one. There is the following fact (cf. Theorem 6.5
of [Rut95]).

Proposition 4.2 Let X andY be gum’s. IfY is complete then Y is complete. Moreover,
limits are pointwise: let (f,)n be a Cauchy sequence in' Y~ and f an element in Y. Then
lim f,, = f if and only if for all x in X, lim f,(x) = f(x). O

The above proposition implies that for every gum X the function space X is complete.
Therefore by using the Yoneda embedding of Corollary 3.2, we have that every gum can
be isometrically embedded in a complete gum. This fact is used in [BBR95| to define the
completion of a gum X.

A mapping f: X — Y between gum’s X and Y is continuous if it preserves limits: if
x =limz, in X then f(z) =lim f(z,) in Y. For ordinary ultrametric spaces, this is the
usual definition. For preorders it means preservation of least upper-bounds.
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For every gum X, the distance function X(—,—) : X x X — [0,1] is (backward)
continuous in its first argument by the definition of limit. In general, however, it is not
continuous in its second argument. An element a in a gum X is finite if the function
X(a,—): X — [0,1], mapping every z in X to X(a,x), is continuous. If X is a preorder
this means that for any w-chain (z,), in X,

X (a, |_|a:n) = lim X (a, x,),

or, equivalently, a <x ||z, if and only if dn, a <x z,, which is the usual definition
of finiteness for ordered spaces. If X is an ordinary ultrametric space then X(a,—) is
continuous for any a in X, hence all elements are finite. The following lemma gives an
example of finite elements in the function space X:

Lemma 4.3 For any gum X and z in X, y(z) is finite in X.

Proof: We have to show that X(y(:r), -): X = [0,1] is continuous: for any Cauchy
sequence (¢, ), in X,

X(y(x), lim¢,) = (lim¢,)(x) [the Yoneda Lemma 3.1]
= lim¢,(z) [Proposition 4.2]
= lim X(y(T), ¢n) [the Yoneda Lemma 3.1].
(]

A basis for X is a subset B C X consisting of finite elements such that every element x
in X is the limit = lima, of a Cauchy sequence (a,), of elements in B. A gum X is
algebraic if there exists a collection B of finite elements of X which is a basis for X.

5 A generalized Scott topology

A topology for a complete space X can then be considered satisfactory if limits in X
are topological limits. This is not the case for the generalized Alexandroff topology: for
instance, for complete partial orders O, 4(X) coincides with the standard Alexandroff topol-
ogy, for which the coincidence of the least upper-bounds of w-chains and their topological
limits does not hold. Therefore the Scott topology is usually considered to be preferable:
it is the coarsest topology refining the Alexandroff topology, in which least upper bounds
of w-chains are topological limits (cf. [GHK'80] and [Smy92]). Also for gum’s, a suitable
refinement of the generalized Alexandroff topology exists. A key step towards its defini-
tion is the following restriction of the Yoneda embedding to a continuous and isometric
function.

Theorem 5.1 Let X be a complete gum. If B C X is a basis for X then the function
yi: X — B defined, for x mn X, by

yi(z) =o€ B.X(b,x)

18 1sometric and continuous.
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Proof: According to Corollary 3.2, y is isometric. Consequently, yg is non-expansive.
Because, for all Cauchy sequences (z,,), in X,

limyp(z,) = limAbe B.X(b,x,)
= M€ B.limX(b,z,) [Proposition 4.2]
= M e B.X(blimz,) [bis finite in X|

= yp(limz,),

yp is continuous. It is also isometric because, for z and y in X, since B is a basis there
exist Cauchy sequences (a,), and (by,)m in B such that x = lim, a,, and y = lim,, b,,.
Hence

B(YB(@;YB(Z/)) = B(YB(h}}lan) (1 b,

)
= B(li%n ve(a,), hm y5(bm)) |ys is continuous]
m))

= linnl B(yB(an) hm yi(b [definition of limit]

= linnl ligln B(yB( n),¥8(bm)) [ys(ayn) is finite in B (Lemma 4.3)]
= 1(i_nn1 ligln B(an,bm) [ys is isometric (Corollary 3.2)]

= EIEI%HX(%, bm) |[BC X]|

= lim X(a,,y) [a, is finite in X]
= X(z,y) |[definition of limit]
(]
The converse of the above theorem holds as well [BBR95, Theorem 5.6]. For an algebraic
complete gum X with basis B we can now consider the collection B of fuzzy subsets of

B rather than the collection X as we have done in Section 3. These fuzzy subsets can be

compared with subsets of X' by the extension function [y : B — P(X) and the character
function pg : P(X) — B defined, for ¢ in B and V' C X, by

Jsp ={x € X |yg(z) <p ¢} and ps(V)= b€ B.inf{X(b,v)|veV}

As in Proposition 3.3 the maps [; : (B, <) — (P(X),C) and pg : (P(X),C) — (B, <j)
are monotone and pg is left adjoint to [;. Thus, [5 o ps : P(X) — P(X) is a closure
operator which can, in a way similar to (1), be characterized, for an algebraic complete
gum X with basis B, as follows: for V C X,

Jsops(V) = {re€eX |Ve>0Vae B, X(a,z)<e= (FyeV, X(a,y)<e)}. (5)
Also this closure operator is topological:

Lemma 5.2 For an algebraic complete gum X, the closure operator [sopg : P(X) — P(X)
18 topological.
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Proof: This lemma is proved along the same lines as Lemma 3.4, but one needs the
following additional observation: If B C X is a basis for X then for any 2, and z; in B,
€, €1 > 0, and x in X, such that

X(z9,2) < € and X(z1,) < €1,

there exists b in B such that X (zo,b) < €y, X(21,b) < €1, and X (b,z) < min{eg, ¢, }. This
fact can be proved as follows. Because X is an algebraic complete gum with B as basis,
there exists a Cauchy sequence (b,), in B with z = limb,. Since z, in B, it is finite in X.
Hence, X (29, 7) = X(20,limb,) < ¢y implies the existence of Ny such that for all n > Ny,
X (zp, by )<e€g. Similarly, there exists Ny such that for all n > Ny, X (z1, b,)<e;. Furthermore,
there exists, by definition of limit, Ny such that for all n > Ny, X (b,, ) < min{eg, €;}. By
taking M = max{Ny, N1, Nb}, and putting b = by, we have found the element in X we
were looking for. O

Thus the closure operator above induces a topology on X which we will call the generalized
Scott topology. Indeed, in the special case that X is an algebraic complete partial order
with basis B, for every V C X,

Jsops(V) = {zeX|VaeB, a<yxz=(FveV, a<yxv)},

which we recognize as the closure operator induced by the Scott topology on X.

Next an alternative definition of the generalized Scott topology is given by specifying
the open sets (this time starting with a complete gum X). In Theorem 5.6 below, it will
be shown that the closure operator induced by this second definition coincides with [5 o pg
whenever X is algebraic.

A subset V' of a complete gum X is generalized Scott open (gS-open, for short) if for
all Cauchy sequences (x,), in X,

limz, € V=9dN Jde>0Vn >N, Bz, CV.

The set of all gS-open subsets of X is denoted by O,5(X). Below it will be shown that
this defines a topology indeed. Note that every gS-open set V' C X is gA-open because
every point x of a gum X is the limit of the constant Cauchy sequence (z),. Therefore
this topology refines the generalized Alexandroff topology. Furthermore it will be shown to
coincide with the e-ball topology in case X is a complete ultrametric space; and to coincide
with the Scott topology in case X is a cpo. The following proposition gives an example of
gS-open sets.

Proposition 5.3 For every complete gum X, an element a in X is finite if and only if
for every € > 0, the set B.(a) is gS-open.

Proof: Let a in X be finite and ¢ > 0. Then the e-ball B.(a) is a gS-open set: let (z,), be
a Cauchy sequence in X and assume limz, in B.(a). Because a is finite, X (a,limz,) =
lim X (a, z,) < €, by which there exists v > 0 such that lim X (a,z,) < e — . Take § <.
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Then there exists N such that X (a,z,) < (e =)+, for all n > N. Then Bs(z,) C B(a)
for all n > N, because if y in Bs(x,) for some n > N we have, by the strong triangular
inequality and by our choice of 6,

X(a,y) < max{X(a,,), X(2n, y)} <max{((e=7) +06),6} = (e =) +6<¢

that is, y in B.(a). Conversely, assume B.(a) is a gS-open set for every € > 0. We only
need to prove, for every Cauchy sequence (z,), in X, that

lim X (a,z,) < X(a,limz,) (6)

because the reverse inequality holds whether a is finite or not (being the the distance
function X(—, ) : X x X — [0,1] non-expansive). If lim X(a,z,) = 0 then (6) is
trivially true. Therefore suppose lim X (a,x,) > 0 and, towards a contradiction, assume
X(a,lim z,,)<lim X (a, z,). Then there exists e>0 such that X (a,limz,)<e<lim X (a, z,).
Moreover

X(a,limz,)<e = limz, € B/(a)
= dN36>0VYn >N, Bs(x,) C Bea) [Be(a) is gS-open]
= ANVYn> N, X(a,z,)<e€
— lim X(a,z,) <e.

But this contradicts € < lim X (a, z,). Thus X(a,limz,) > lim X(a, z,,). O
The collection of all gS-open sets forms indeed a topology:

Proposition 5.4 For every complete gum X, O,5(X) is a topology on X. If X is also
algebraic with basis B, then the set {B.(a) | a € B and e > 0} forms a basis for the
generalized Scott topology Oys(X).

Proof: One can easily verify that O,5(X) is closed under finite intersections and arbitrary
unions. We will only prove that, for an algebraic complete gum X with base B, every
gS-open set V' C X is the union of e-balls of finite elements. Let x in V. Since X is
algebraic there is a Cauchy sequence (a,), in B with z = lima,. Because V' is gS-open,
there exists €, >0 and N, > 0 such that B, (a,) C V for all n > N, and with z in B, (a,)
for N, big enough. Therefore V' C U,cy Be, (an,). Since the other inclusion trivially holds
we have that the collection of all e-balls of finite elements forms a basis for the generalized
Scott topology. O

Any ordinary complete ultrametric space X is an algebraic complete gum in which all
elements are finite. Therefore, by the previous proposition, the basic open sets of the
generalized Scott topology are all the e-balls B.(z), with z in X. Hence for ordinary
complete ultrametric spaces the generalized Scott topology coincides with the standard
e-ball topology.
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For a cpo X, a set V C X is gS-open precisely when it is Scott open, that is, V is
upper closed and moreover satisfies, for any w-chain (z,), in X,

| |z, €V = 3N, zyeV.

Indeed, if V' C X is gS-open then it is upper closed because the generalized Scott topology
refines the generalized Alexandroff topology. Moreover, if | |z, in V for an w-chain (z,),
in X then there exists € > 0 and N such that B.(x,) C V for all n > N. Since z, in
B(z,) for all ¢, V' is an ordinary Scott open set. Conversely, assume V' is Scott open and
let limz, in V. Because V is Scott open and limits are least upper bounds there exists
N such that z, in V for all n > N. By taking e = 1/2 we obtain that V is also gS-open
because for every x in X, By s(z) = z7.

A subset V of a complete gum X is generalized Scott closed (gS-closed, for short) if its
complement X \ V' is gS-open. This is equivalent to the following condition: for all Cauchy
sequences (z,), in X,

(VNVe>03n>N3dyeV, X(z,,y)<e) = limz, €V,

Notice that if V' is a gS-closed set and (z,), is a Cauchy sequence in V (satisfying hence
the above condition), then all its limits should belong to V. The following lemma, due to
Flagg and Siinderauf, gives an example of gS-closed sets.

Lemma 5.5 For every complete gum X, x in X and 6 > 0 the set B{’(z) = {y € X |
X(y,z) < 6} is gS-closed.

Proof: Let (z,), be a Cauchy sequence in X such that
VN Ve>03n > N 3y € Bi¥(z), X(z,,y)<e.
Then
VN Ve>0dn >N, X(z,,y) < max{ed}. (7)

We need to show that limxz,, in B (z); that is, X (limx,,z) < §. Suppose € > 0. Since
(x,)n is a Cauchy sequence we can choose Ny so that Vm >n > Ny, X(x,,,,) <e. For
every n > Ny, by (7), there exists m > n such that X (z,,,2) < max{¢, 6}. Hence, for all
n > Ny, X(z,,2) < max{X(z,, Tm), X(Tm, )} < max{e, max{e,6}} < max{e, ¢}, from
which follows

X(limz,,z) = lim X (z,,z) = inf sup X (z,,z) < sup X(z,,z) < max{e, 6}.
— N n>N n>Ng

Since € was arbitrary, X (lim,, ,,,z) < 6. O

For a subset V' of X we write clg(V') for the closure of V' in the generalized Scott topology,
that is, clg(V') is the smallest gS-closed set containing V. From the definition of limits we
have that for any Cauchy sequence (z,), in V, limz, in clg(V). The latter implies that
if X is a gum with base B then B is dense in X, that is clg(B) = X. Indeed, B C X
implies clg(B) C clg(X) = X. For the converse we use the fact that every element of X is
the limit of a Cauchy sequence in B.
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Theorem 5.6 Let X be an algebraic complete gum X with base B. For all subsets V C X,
cs(V) = Js o ps(V).

Proof: This theorem can be proved along the same lines as Proposition 3.6. It follows
from the characterization (5) of [ o ps and the fact that the e-balls of finite elements form
a basis for the generalized Scott topology. O

The specialization preorder on a complete gum X induced by its generalized Scott topology
coincides with the preorder underlying X:

Proposition 5.7 Let X be a complete gum X. For x andy in X, z <o s y if and only if
T <xY.

Proof: For any gS-open set V, if z € V and X(x,y) = 0, then y € V. From this
observation, the implication from right to left is clear. For the converse, suppose X (z,y) #
0. Then z in X \ {2z | X(z,y) <0} but y & X \ {z | X(2,y) < 0}. Since, by Lemma 5.5,
the set X \ {z | X(z,y) < 0} is gS-open it follows that x Lo ¢ ¥. O

Note that the specialization preorder is a partial order—or, equivalently the gS-topology
is 7o—if and only if X is an algebraic complete quasi ultrametric space.

This section is concluded with two observations relating limits and topological conver-
gence. In the sequel we denote by A (z) the principal filter induced by z in X, that is,
N(z) = {V € O(X) | € V}. Similarly, for any sequence (z,), in X we denote by
N((zn),) the filter

N((z)n) = {V € OX)| 3N ¥n > N, z, € V).

As usual, we say that N ((z,).) converges to z in X, denoted by (z,), —o =, if N(x) C
N((x,)n). Note that it is straightforward from the definition of convergence, that a se-
quence (z,), in an algebraic complete gum X converges (with respect to the gS-topology
on X) to an element z in X, if and only if

Ve>0Va e B, X(a,z)<e = (INVn>N, X(a,z,) <e).

In the next proposition we show that in a complete gum every Cauchy sequence is topolog-
ically convergent to its limit. However, not every convergent sequence is Cauchy: Provide
the set X = {1,2,...,w} with the distance function

0 ife=y
X(z,y)=¢ + ifz=wandy=n
1 otherwise

Then X is an algebraic complete quasi ultrametric space with X itself as base since there
are no non-trivial Cauchy sequence. The sequence (n), converges to w but is not Cauchy.

Proposition 5.8 Let X be a complete gum and (x,), a Cauchy sequence in X. Then for
any y m X, r, —o,s Yy if and only if y <o s limz,.
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Proof: Clearly z,, —¢,, lim z, and since gS-open sets are upper closed sets, y <¢ ¢ lim z,
implies z,, —o_¢ y. For the converse assume x,, —¢ ¢ y and suppose y £o, ¢ lim x,. Then
there is a 6 > 0 such that X(y,limz,) € 6. Soy € X \ {z | X(z,limz,) < 6}, which is
a gS-open set by Lemma 5.5. Since x, —o,s y, we can choose Ny so that for all n > Ny,
zn € X\ {2z | X(2z,limz,) <é}. But

0= X(limz,,limz,) = lim X (z,,limz,),

so there is an N; such that X (z,,limz,) < ¢ for all n > N;. Taking n > max{Ny, N;}
gives a contradiction. Therefore y <¢_, lim z,,. O

Recall that a function f: X — Y between two complete gum’s is (metrically) continuous if
f(limx,) = lim f(x,) for every Cauchy sequence (z,), in X. It is topologically continuous
if the inverse image of a gS-open subset of Y is gS-open in X. The two notions are related
as follows.

Proposition 5.9 A non-expansive function f : X — Y between complete gum’s is metri-
cally continuous if and only if it is topologically continuous.

Proof: Let f : X — Y be a non-expansive and metrically continuous function and let
V C Y be gS-open. We need to prove f~'(V) in O,5(X) in order to conclude that f is
topologically continuous. Indeed, for any Cauchy sequence (z,), in X we have
limz, € f (V) <= f(limz,) eV
<= lim f(z,) € V [f metrically continuous]
= dN3Je>0Yn> N, B(f(z,)) CV [f non-expansive and
(f(xn))n Cauchy sequence and V gS-open)]
= dN3e>0Yn> N, B(z,) C f (V) [f non-expansivel.
For the converse assume f : X — Y is topologically continuous and let (z,), be a Cauchy
sequence in X. Because f is topologically continuous and, by Proposition 5.8, x, —o,
limz,, then f(z,) —o,s f(limz,). But then, by Proposition 5.8 again, f(limz,) <o,
lim f(x,). Since f is non-expansive,
X(lim f(,), f(ima,)) = lim X (f(za), f(lim,))
< lim X (z,,lim x,,)
= X(limz,,limz,) = 0.

Thus lim f(2,) <o,s f(x). By definition of limits we can then conclude that f(limx,) is
a limit of (f(z,))n. O
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6 Related work

Lawvere’s work on generalized metric spaces as enriched categories ([Law73]) together
with the more topological perspective of Smith ([Smy87]) have been our main source of
inspiration for the present paper, which continues the work of Rutten ([Rut95]) and is
part of the work of Bonsangue, van Breugel and Rutten ([BBR95]). Recently, we have
been influenced also by the work of Flagg and Kopperman [FK95] and Wagner [Wag94].
Generalized ultrametric spaces are a special instance of Lawvere’s V-categories. The non-
symmetric ultrametric for [0, 1] is also described and studied in his paper. The notion of
forward Cauchy for a non-symmetric metric space is from [Smy87] as well as the notion of
limit. A purely enriched-categorical definition of forward Cauchy sequences and of limits
can be found in Wagner’s [Wag94, Wag95]. The notion of finiteness and algebraicity for a
generalized ultrametric spaces are from [Rut95|. Clearly we are working in the tradition
of domain theory and metric spaces, for which Plotkin’s [Plo83] and Engelking’s [Eng89]
have been our respective main source of information.

The comprehension schema as comparison between fuzzy predicates and subsets has
been studied by Lawvere ([Law73]) and also by Kent ([Ken87]). The generalized Alexan-
droff topology by using specifying the open sets, has been studied by Flagg and Kopperman
([FK95]) in the context of V-domains. The definition of the generalized Scott topology via
the Yoneda embedding is new while its definition by specifying the basis is briefly mentioned
in the conclusion of [Smy87]. According the terminology of the latter paper, our generalized
Scott topology is the finest strongly appropriate topology for an algebraic complete quasi
ultrametric space X whenever X is taken together with the standard quasi-uniformity.
Recently, Flagg and Siinderhauf [FS95] have proved a quasi metric version of Hofmann’s
Theorem on the soberification of the generalized Alexandroff topology. It has as a corol-
lary the fact that the generalized Scott topology on an algebraic complete quasi ultrametric
space is sober. A generalized Scott topology is given also in [Wag95]. However, his notion
of topology does not coincides with the standard set theoretical one: for example it does
not coincides with the ordinary e-ball topology in case of ordinary metric spaces.

Another important topological approach to quasi metric space, which need to be men-
tioned is that of, again, Smyth ([Smy91]) and Flagg and Kopperman ([FK95]). They con-
sider quasi metric spaces equipped with the generalized Alexandroff topology. In order to
reconcile metric spaces with complete partial orders they assign to partial orders a distance
function which in general is not two-valued. Their approach to topology is much simpler
than ours since much of the standard topological theorems for ordinary metric spaces can
be adapted. The price to be paid for such simplicity is that this approach works only for
a restricted class of spaces: they have to be spectral. Hence a full reconciliation between
metric spaces and partial orders is not possible because only algebraic cpo’s which are so
called 2/3 SFP are spectral in their Scott topology. Also the work of Siinderhauf on quasi
uniformities ([Siin94]) is along the same lines.

Other papers on reconciling complete partial orders with metric spaces are [WS81,
CD85, Doi88, Mat94|. Different definitions of Cauchy sequence for non-symmetric metric
spaces can be found in [RSV82].
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