
Comparative Semantics for a Real -TimeProgramming Language with Integration1Franck van Breugel2Department of Mathematics and Computer Science, Vrije UniversiteitDe Boelelaan 1081a, 1081 HV AmsterdamAbstractAn operational and a denotational semantic model are presented for a real-time program-ming language incorporating the concept of integration. This concept of integration, whichhas been introduced by Baeten and Bergstra [4], enables us to specify a restricted formof unbounded non-determinism. For example, the execution of an action at an arbitrarymoment in a time interval can be speci�ed using integration. The operational and the de-notational model are proved to be equivalent using a general method based on higher-ordertransformations and complete metric spaces. In this context, Banach's �xed point theoremand Michael's theorem will turn out to be the most important aspects of complete metricspaces. Banach's theorem, which states that a contraction on a complete metric space has aunique �xed point, will be used to de�ne semantic models and to compare semantic models.Michael's theorem, which roughly states that a compact union of compact sets is compact,will be used for the de�nition of semantic models.ContentsIntroduction : 11 Language de�nition : 22 Complete metric spaces : 53 Operational semantics : 94 Denotational semantics : 115 Equivalence proof : 21Conclusions : 31References : 32A Well-de�nedness proofs : 35IntroductionReal-time programming can be viewed as traditional concurrency supplied with timing con-straints [47]. Because these timing constraints cause more complexity, the advantages of high-level languages are even greater in real-time programming than in concurrency and sequentialprogramming. Several languages, like RTL [35], have been designed speci�cally for real-timeprogramming. Other languages are extensions of already existing languages, for example, thelanguage TCSP [24, 25] is an extension of the language CSP [34]. In real-time programmingthe correctness of a program depends not only on the
ow of control. The program should alsomeet its timing constraints [46]. Therefore new semantic models should be developed. Severalmodels both operational [4, 28, 32] and denotational [27, 37, 43] have already been provided.In this paper a simple real-time programming language is studied. Apart from the tradi-tional programming constructs, this language incorporates timed atomic actions and integration.1full version of [22]2electronic mail address: franck@cs.vu.nl

2 Language de�nitionTimed atomic actions are atomic actions each provided with some timing information. This tim-ing information denotes when the atomic action should be executed. The concept of integrationhas been introduced by Baeten and Bergstra [4]. A statement is integrated over a time set,which is a subset of the time domain, i.e. a non-deterministically chosen value from the time setis passed to the statement. Integration enables us to specify the execution of an action at anarbitrary moment in a time interval, for example, Rt2[1:03;2:41](a; t) denotes the execution of theaction a at an arbitrary moment in the time interval [1:03; 2:41]. This execution can give rise toan in�nite (conceptually uncountable) number of di�erent executions.For this simple real-time programming language an operational and a denotational semanticmodel are presented. The operational model is based on a labelled transition system in the styleof Hennessy and Plotkin [31]. The denotational model is by de�nition compositional and �xedpoints are exploited to handle recursion. This denotationalmodel uses a complete metric space asits mathematical domain, which has been initiated by Nivat [40] and de Bakker and Zucker [16].To compare these models a method based on higher-order transformations, which has beendescribed by Kok and Rutten [36], is used. This general method for comparing di�erent semanticmodels has already been applied successfully to several programming paradigms varying fromnotions related to concurrency [7, 13, 14] to notions related to logic programming [6, 10, 20]and object-oriented programming [15, 44]. The present paper shows another application of thistechnique. This method is founded on complete metric spaces. Higher-order transformations areused to de�ne semantic operators and models. Furthermore, the higher-order transformationsare also used to compare semantic models.In the de�nition of semantic models and in the comparison of these models we use severalaspects of complete metric spaces; Banach's theorem, which states that ifX is a complete metricspace and f : X ! X is a contraction then f has a unique �xed point, will be used to de�nesemantic models and to compare these models. Furthermore, in combination with �xed pointinduction Banach's �xed point theorem will be used to prove several properties of these semanticmodels; Michael's theorem, which states that if X is a compact set of compact sets then theset SX is also compact, will be used to de�ne semantic models; Kuratowski's theorem, whichstates that if X is a complete metric space then Pnc(X), the set of non-empty compact subsetsof X, provided with the Hausdor� metric based on the metric of X is again a complete metricspace, will be used to obtain complete metric spaces as mathematical domains of the semanticmodels.In this paper a denotational modelling of integration is presented. This concept of integra-tion describes a restricted form of unbounded non-determinism. In general, the modelling ofunbounded non-determinism causes serious technical problems [3, 5, 33]. Because higher-ordertransformations are used, in�nite computations can be modelled. This combination of metri-cally modelling a restricted form of unbounded non-determinism and in�nite computations hasnot been presented elsewhere [21, 41]. Because the denotational model is compared with anoperational model, which captures the computational intuition, we can derive the correctness ofthis denotational model with respect to the operational model. Banach's �xed point theoremand Michael's theorem play a technical but eminent role as will become clear in the rest of thispaper.1 Language de�nitionIn this section we introduce the syntax of the real-time programming language, which is studiedin this paper. This programming language is an extension of one of the languages studiedby de Bakker and Meyer [13]. The language is uniform, i.e. the elementary actions are left

Language de�nition 3atomic [11]. The language is built from atomic actions provided with some timing information,sequential composition, non-deterministic choice, parallel composition, so-called integration andrecursion.The real-time concepts of this language are timed atomic actions and integration. Withtimed atomic actions we denote atomic actions each provided with an expression. The evaluationof this expression yields an element of the time domain denoting the amount of time the atomicaction should be executed after its enabling. Integration of a statement over some time set,which is a subset of the time domain, gives rise to the execution of the statement with somenon-deterministically chosen value from the time set passed to that statement.Before we can introduce the syntax of expressions, which are part of timed atomic actions,we �rst introduce the following sets:� the set IR> of positive real numbers, with typical element r, which is our time domain;� the set TV ar of time variables, with typical element t;� the set FSym of function symbols, with typical element f .With each function symbol f we associate a function f : IRn> ! IR>. We have to restrictthe functions to continuous functions in order to be able to model integration as will becomeclear in section 4.De�nition 1.1The class Exp of expressions, with typical element e, is given bye ::= t j f(e1; : : : ; en)End 1.1Because expressions are built from function symbols and time variables, expressions themselvescan also be associated with continuous functions. We will denote the value of an expression eby V(e). After having de�ned the syntax of expressions, we have to introduce the following setsin order to be able to de�ne the class of statements:� the (possibly in�nite) set Atom of atomic actions, with typical element a;� the set PV ar of procedure variables, with typical element x;� the collection of time sets, which is represented by Pnc (IR>), the set of non-empty compactsubsets of IR>, with typical element T .Integration gives rise to a non-deterministic choice of an element from a time set. To guaranteethat we can always make such a choice we have to restrict time sets to non-empty subsets ofIR>. The restriction of time sets to compact subsets of IR> has a technical motivation and thisrestriction will be crucial for the modelling of integration.De�nition 1.2The class Stat of statements, with typical element s, is given bys ::= (a; e) j x j s1; s2 j s1 [s2 j s1 k s2 j Rt2T sEnd 1.2A statement s is of one of the six following forms:

4 Language de�nition� (a; e) : a timed atomic action: the atomic action a has to be executed at time V(e), thevalue of the expression e, after its enabling;� x : a procedure call: execution of the corresponding body of the procedure x;� s1; s2 : sequential composition of the statements s1 and s2;� s1 [s2 : non-deterministic choice of the statements s1 and s2;� s1 k s2 : parallel composition of the statements s1 and s2: the arbitrary interleaving ofthe atomic actions of both statements;� Rt2T s : integration: execution of the statement s with an arbitrary element of T passedto the time variable t in s.The execution of the statement (a; 1:56) corresponds to the execution of the atomic action a.The atomic action a should be executed 1.56 after its enabling. The execution of the inte-gration Rt2[0:82;1:73](a; f(t)) corresponds to the execution of the statement (a; f(t)) with a non-deterministically chosen value from the time set [0:82; 1:73] passed to the time variable t inthat statement, which can give rise to the execution of, for example, (a; f(1:08)). Because theevaluation of an expression delivers a positive real number, two successive atomic actions cannotbe executed at the same time. We stipulate that the execution of atomic actions and operatorstakes no time. We refer to [19] for a justi�cation of this assumption. Next we introduce theclass of guarded statements, which will be used to de�ne procedure bodies.De�nition 1.3The class GStat of guarded statements, with typical element g, is given byg ::= (a; e) j g; s j g1 [g2 j g1 k g2 j Rt2T gEnd 1.3Before we give the de�nition of the class of declarations, which bind procedure variables withtheir corresponding bodies, we introduce the notion of free time variables.De�nition 1.4The mapping tvar : Exp [Stat! P(TV ar) is given bytvar(t) = ftgtvar(f(e1; : : : ; en)) = tvar(e1) [� � � [tvar(en)tvar((a; e)) = tvar(e)tvar(x) = ;tvar(s1 � s2) = tvar(s1) [tvar(s2) � 2 f; ;[; kgtvar(Rt2T s) = tvar(s) n ftgEnd 1.4A statement is called closed whenever it does not contain any free time variables. In severalcases we will restrict ourselves to the class of closed statements or the class of closed guardedstatements, which are de�ned in the following de�nition.De�nition 1.5The class CStat of closed statements, with typical element s, is given byCStat = fs 2 Stat j tvar(s) = ;gand the class CGStat of closed guarded statements, with typical element g, is given by

Complete metric spaces 5CGStat = fg 2 GStat j tvar(g) = ;gEnd 1.5Now we have all the ingredients to de�ne the class of declarations.De�nition 1.6The class Decl of declarations, with typical element d, consists of sets of pairsf(xi; gi) 2 PV ar � CGStat j 1 � i � ngwhere xi are distinct procedure variables.End 1.6All procedure bodies in a declaration are restricted to guarded statements. This requirementcorresponds to the usual Greibach condition in formal language theory. There are possibilitiesto eliminate this restriction as is illustrated by Reed and Roscoe [41, 42, 43]. However, byeliminating this restriction we are not able to model recursion any more. The restriction of theprocedure bodies to closed statements guarantees that there are no global time variables. Theexecution of the procedure call x, where x is declared as (a; 1);x, corresponds to the executionof the procedure body (a; 1);x. We conclude this section with the de�nition of the class ofprograms.De�nition 1.7The class Prog of programs, with typical element p, consists of pairs (d; s), such that eachprocedure variable occurring in s or d is declared in d and s 2 CStat.End 1.72 Complete metric spacesBefore the operational and denotational model are presented, we pay some attention to someaspects of complete metric spaces. These complete metric spaces have been introduced intosemantics in papers of Nivat [40] and de Bakker and Zucker [16]. In this section we present twomain theorems, Banach's �xed point theorem and Michael's theorem, which will be used fre-quently in the rest of this paper. For further reference considering metric spaces we suggest [26].First we show how we can compose metric spaces. In the following de�nition we give somepossible compositions, which will be used in the rest of this paper.De�nition 2.1Let (X; dX), (X1; dX1) and (X2; dX2) be metric spaces, where dX : X � X ! [0; 1], dX1 :X1 �X1 ! [0; 1] and dX2 : X2 �X2 ! [0; 1].� We de�ne a metric on the Cartesian product of X1 and X2, X1 �X2, bydX1�X2((x1; x2); (y1; y2)) = maxfdX1(x1; y1); dX2(x2; y2)g� We de�ne a metric on the collection of functions from X1 to X2, X1 ! X2, bydX1!X2(f1; f2) = supfdX2(f1(x); f2(x)) j x 2 X1g� We de�ne a metric on the collection of continuous functions from X1 to X2, [X1 ! X2],by d[X1!X2](f1; f2) = supfdX2(f1(x); f2(x)) j x 2 X1g

6 Complete metric spaces� We de�ne a metric on the disjoint union of X1 and X2, X1 �[X2, bydX1 �[X2(x; y) = dX1(x; y) x 2 X1 ^ y 2 X1dX1 �[X2(x; y) = dX2(x; y) x 2 X2 ^ y 2 X2dX1 �[X2(x; y) = 1 otherwise� We de�ne a metric on X bydid 12 (X)(x; y) = 12dX(x; y)� We de�ne a metric, the Hausdor� metric [30], on the set of non-empty compact subsets ofX, Pnc(X), bydPnc(X)(Y; Z) = max(supfinffdX(y; z) j z 2 Zg j y 2 Y gsupfinffdX(z; y) j y 2 Y g j z 2 Zg)End 2.1The following theorem states that the compositions, which have been described in the previousde�nition, of complete metric spaces give us again complete metric spaces.Theorem 2.2If (X; dX), (X1; dX1) and (X2; dX2) are complete metric spaces, where dX : X � X ! [0; 1],dX1 : X1 �X1 ! [0; 1] and dX2 : X2 �X2 ! [0; 1], then� (X1 �X2; dX1�X2),� (X1 ! X2; dX1!X2),� ([X1 ! X2]; d[X1!X2]),� (X1 �[X2; dX1 �[X2),� (id 12 (X); did 12 (X)) and� (Pnc(X); dPnc(X))are also complete metric spaces.End 2.2All proofs but the proof of the last case of the above theorem are straightforward. The proofof the last case, Kuratowski's theorem, can be found in [38]. The next theorem, Banach's �xedpoint theorem [17], states that a contraction on a complete metric space has a unique �xedpoint. We will use this theorem to de�ne semantic operators and models and to compare thesemantic models developed below.Theorem 2.3If (X; dX) is a complete metric space and f : X ! X is a contraction then f has a unique �xedpoint x. Furthermore, we have that 8y 2 X : limn!1 fn(y) = x.End 2.3Michael's theorem [9, 39] states that a compact union of compact sets is again compact. Thistheorem will be used for the de�nition of semantic operators and semantic models.

Complete metric spaces 7Theorem 2.4For all X 2 Pnc(Pnc(X)) we have that SX 2 Pnc(X).ProofLet fxigi be a sequence in SX . Then there exists a sequence fXigi in X such that xi 2 Xi.Because X is compact, fXigi has a converging subsequence fXf(i)gi, which converges to someX 2 X . For each xi we can �nd yi 2 X such that dX(xi; yi) � 2dPnc(X)(Xi; X). BecauseX is compact, the sequence fyf(i)gi has a converging subsequence fyf(g(i))gi, which convergesto some y 2 X. Then we have that dX(xf(g(i)); y) � dX(xf(g(i)); yf(g(i))) + dX(yf(g(i)); y) �2dPnc(X)(Xf(g(i)); X)+dX(yf(g(i)); y). So we can conclude that fxigi has converging subsequencefxf(g(i))gi, which converges to y 2 SX .End 2.4In the remainder of this section we introduce complete metric spaces, which will be used in therest of this paper. First of all, we de�ne the so-called discrete metric on the class of atomicactions. We obtain a complete metric space.De�nition 2.5The mapping dAtom : Atom�Atom! [0; 1] is given bydAtom(a; a0) = 0 a = a0dAtom(a; a0) = 1 a 6= a0End 2.5We extend our time domain IR> to the set of non-negative real numbers IR� in order to obtain acomplete metric space. As will become clear in section 4 and 5 each mapping dIR� : IR��IR� ![0; 1] de�ning a complete metric space su�ces. The metric dIR� speci�es the collection of compactsubsets of the time domain: the collection of time sets. We can de�ne a metric on IR� as follows.De�nition 2.6The mapping dIR� : IR� � IR� ! [0; 1] is given bydIR�(r; r0) = jr�r0jjr�r0j+1End 2.6With respect to this metric closed intervals are compact sets. Furthermore, this metric and theusual metric on IR�, dIR�(r; r0) = jr � r0j, are equivalent, i.e. both induce the same convergingbehaviour. However, the metric of de�nition 2.6 is restricted to [0; 1]. Next we introduce theclass of timed actions. These timed actions will be used to describe the execution of timedatomic actions.De�nition 2.7The class TA of timed actions, with typical element �, is given byTA = Atom� IR�End 2.7With the timed action (a; 2) we will describe the execution of the atomic action a. The atomicaction a is executed 2 after its enabling. We de�ne a metric on timed actions by combiningthe metrics we have already de�ned on Atom and IR� as described in de�nition 2.1. As statedin theorem 2.2 we obtain a complete metric space. To describe the execution of a sequence oftimed atomic actions we introduce timed streams. We de�ne this class of timed streams as theunique (up to isomorphism) solution of a domain equation in a certain category of completemetric spaces [1, 16].

8 Complete metric spacesDe�nition 2.8The class TS of timed streams, with typical element �, is given by the domain equationTS �= TA �[TA� id 12 (TS)End 2.8For example, the timed stream < (a; 2); < (b; 1); (c; 3) >> describes the execution of atomicaction a at 2 (after its enabling) followed by the execution of atomic action b at 1 and theexecution of atomic action c at 3. Furthermore, we have that, for example,dTS(< (a; 2); (b; 1) >;< (a; 3); (c; 1) >)=maxfdTA((a; 2); (a; 3)); 12dTS((b; 1); (c; 1))g=maxfdTA((a; 2); (a; 3)); 12dTA((b; 1); (c; 1))g=maxfmaxfdAtom(a; a); dIR�(2; 3)g; 12maxfdAtom(b; c); dIR�(1; 1)gg=maxfmaxf0; 12g; 12maxf1; 0gg=12Sets of sequences of timed atomic actions will be described by non-empty compact sets of timedstreams. We can obtain a complete metric space on these sets of non-empty compact sets oftimed streams as is described in de�nition 2.1 and theorem 2.2. Also on the class of statementswe de�ne the discrete metric. Again we obtain a complete metric space. Finally, we introducethe class of substitutions and de�ne a metric on this class.De�nition 2.9The class Subst of substitutions, with typical element �, consists of the class of homomorphismsfrom Exp to IR�.End 2.9We will only consider substitutions � with a �nite support, i.e. there exist only �nitely manytime variables t such that �t 6= t. To simplify the exposition we will, without loss of generality,assume in almost all cases that substitutions � satisfy the additional property that the set of timevariables occurring in � is exactly the set ft1; : : : ; tng of the �rst n time variables. Substitutionswill be notated as [t1=r1; : : : ; tn=rn]. With � we denote the empty substitution. For thesesubstitutions we de�ne the set of time variables occurring in those substitutions as follows.De�nition 2.10The mapping tvar : Subst! P(TV ar) is given bytvar(�) = ft1; : : : ; tn j � = [t1=r1; : : : ; tn=rn]gEnd 2.10We conclude this section with the de�nition of the metric on substitutions and the observationthat this metric gives us a complete metric space.De�nition 2.11The mapping dSubst : Subst� Subst! [0; 1] is given bydSubst(�; �0) = 0 � = � ^ �0 = �dSubst(�; �0) = maxfdIR�(�t; �0t) j t 2 tvar(�)g tvar(�) = tvar(�0) ^ � 6= � ^ �0 6= �dSubst(�; �0) = 1 otherwiseEnd 2.11

Operational semantics 93 Operational semanticsIn this section we present an operational semantic model for our language. The operationalsemantics of a program describes the behaviour of an abstract machine running that program.The execution of a program on an abstract machine is characterised by sets of timed streams.Which timed actions and in which order the timed actions are performed by the abstract machineis described by means of a labelled transition system �a la Hennessy and Plotkin [31].Before giving a labelled transition system, we �rst introduce the empty statement E. Thisempty statement [2] is associated with termination. The class of statements Stat is extended toStatE.De�nition 3.1The class StatE, with typical element �s, is given byStatE = Stat [fEgEnd 3.1Having extended the class of statements, we also extend the notions of free time variables andclosed statements.De�nition 3.2The mapping tvar : Exp [StatE ! P(TV ar) is given bytvar(E) = ;End 3.2De�nition 3.3The class CStatE, with typical element �s, is given byCStatE = f�s 2 StatE j tvar(�s) = ;g = CStat [fEgEnd 3.3It will be convenient to allow expressions of the form �s � �s0. This will reduce the number ofrules of the labelled transition system. We de�ne the following reasonable equivalences on theseexpressions.De�nition 3.4For all �s 2 StatE and � 2 f; ;[; kg�s �E = �sE � �s = �sEnd 3.4Next we present a transition relation, which induces a labelled transition system as has beendescribed in, for example, [29].De�nition 3.5The transition relation �! is the smallest subset of CStat� TA�Decl � CStatE satisfying(a; e)�� (a;V(e))!d Eg �� �!d �s (x; g) 2 dx�� �!d �s

10 Operational semanticss�� �!d �ss; s0 �� �!d �s; s0s�� �!d �ss [s0 �� �!d �ss0 [s�� �!d �ss�� �!d �ss k s0 �� �!d �s k s0s0 k s�� �!d s0 k �ss[t=r]�� �!d �s r 2 TRt2T s�� �!d �sEnd 3.5Intuitively, a rule s���!d �s tells us that the execution of statement s consists of timed action� followed by the execution of statement �s. Consider the axiom for the statement (a; e). Theexecution of (a; e) consists of the execution of atomic action a at V(e), the value of expression e,after its enabling followed by termination. Because (a; e) is a closed statement, the evaluationof the expression e delivers an element of IR>. Since the evaluation of an expression deliversan element of IR>, we can conclude that two successive atomic actions cannot be executed atthe same time. The rule for a procedure call indicates body replacement. Parallel compositionis modelled by arbitrary interleaving of the atomic actions of both statements. The rule forintegration states that some arbitrary element r from time set T is passed to time variable t instatement s. Using the above rules we can derive that Rt2[1:03;2:41](a; t) �� (a; r) !d E for allr 2 [1:03; 2:41].Now we can de�ne the operational semantics for closed statements s, related to a declara-tion d, such that all procedure variables occurring in statement s or declaration d are declaredin declaration d.De�nition 3.6The mapping Od : CStat! P(TS) is given by� 2 Od(s) if and only if one of the following conditions is satis�ed:� 9n 2 IN : 9s1; : : : ; sn 2 CStat : 9�1; : : : ; �n+1 2 TA :s�� �1 !d s1 �� �2 !d � � � �� �n !d sn �� �n+1 !d E ^� =< �1; < �2; � � � < �n; �n+1 > � � � >>� 9s1; : : : 2 CStat : 9�1; : : : 2 TA :s�� �1 !d s1 �� �2 !d � � � ^ � =< �1; < �2; � � � >>End 3.6For example, we have that Od(Rt2[1:03;2:41](a; t)) = f(a; 1:03); : : : ; (a; 2:41)g. We conclude thissection with the de�nition of the operational semantics for programs.De�nition 3.7The mapping O : Prog ! P(TS) is given byO((d; s)) = Od(s)End 3.7

Denotational semantics 114 Denotational semanticsAfter having de�ned an operational semantics, we give a denotational semantics for the language.This denotational semantics is by de�nition compositional, i.e. the meaning of a program can bederived from the meaning of its constituent parts. Fixed points are used to deal with recursion.To obtain a compositional model we de�ne for every syntactic operator 2 a correspondingsemantic operator 3, such that, for example, D((d; s12s2)) = D((d; s1))3D((d; s2)). To handlerecursion we de�ne the denotational model as a �xed point of a higher-order transformation. Inthis section we will use extensively Banach's �xed point theorem and Michael's theorem. Boththeorems will be used for the construction of the semantic operators and the denotational model.For the syntactic operator ; we de�ne a corresponding semantic operator, which will also bedenoted by ;. First we de�ne the semantic operator ; on timed streams. This operator will bede�ned as a �xed point of a higher-order transformation 	;. This higher-order transformationis a contraction on a complete metric space. Using Banach's �xed point theorem, we canconclude that 	; has a unique �xed point, which we will denote by ;. Then we lift the semanticoperator ;, which has been de�ned on timed streams, such that we obtain a semantic operatorde�ned on (non-empty compact) sets of timed streams. First we introduce the higher-ordertransformation 	;.De�nition 4.1The mapping 	; : (TS � TS ! Pnc(TS))! (TS � TS ! Pnc(TS)) is given by	;(F)(�; �) = f< �; � >g	;(F)(< �; � >; �) = f< �; � >j � 2 F (�; �)gEnd 4.1It is obvious that the mapping 	; is well-de�ned. Next we prove that this mapping is a contrac-tion.Property 4.2The mapping 	; is a contraction.ProofWe distinguish the following two cases.1 dPnc(TS)(;(F)(�; �);	;(G)(�; �))=dPnc(TS)(f< �; � >g; f< �; � >g)=0�12dTS�TS!Pnc(TS)(F;G)2 dPnc(TS)(;(F)(< �; � >; �);	;(G)(< �; � >; �))=dPnc(TS)(f< �; � >j � 2 F (�; �)g; f< �; � >j � 2 G(�; �)g)=12dPnc(TS)(F (�; �); G(�; �))�12dTS�TS!Pnc(TS)(F;G)End 4.2

12 Denotational semanticsBecause 	; is a contraction on a complete metric space, we can deduce using Banach's �xedpoint theorem that 	; has a unique �xed point, which will be denoted by ;.Corollary 4.3The operator ; : TS � TS ! Pnc(TS) given by�; � = f< �; � >g< �; � >; � = f< �; � >j � 2 �; �gis well-de�ned.End 4.3Before we can lift the semantic operator ;, we have to prove that this operator is continuous. Weprove that the operator ; is non-distance increasing in its �rst argument and contracting withfactor 12 in its second argument using �xed point induction and Banach's �xed point theoremwithout using the de�nition of the metric dIR� .Property 4.4For all �; �0; �; � 0 2 TS and " 2 IR�dTS(�; �0) � " ^ dTS(�; � 0) � 2") dPnc(TS)(�; �; �0; � 0) � "ProofWe �rst prove8n � 0 : dTS(�; �0) � " ^ dTS(�; � 0) � 2") dPnc(TS)(n; (F)(�; �);	n; (F)(�0; � 0)) � "where F (�; �) = f�g, with induction on n.1 Let n = 0.dPnc(TS)(0; (F)(�; �);	0; (F)(�0; � 0))=dPnc(TS)(F (�; �); F (�0; � 0))=dPnc(TS)(f�g; f�0g)=dTS(�; �0)�"2 Let n > 0.We distinguish four cases.2.1 Let � = (a; r) and �0 = (a0; r0).2.1.1. Let a = a0.Then we have that dTS(�; �0) = dIR�(r; r0).dPnc(TS)(n; (F)(�; �);	n; (F)(�0; � 0))=dPnc(TS)(f< (a; r); � >g; f< (a0; r0); � 0 >g)=maxfdIR�(r; r0); 12dTS(�; � 0)g�"

Denotational semantics 132.1.2. Let a 6= a0.Then we have that dTS(�; �0) = 1.dPnc(TS)(n; (F)(�; �);	n; (F)(�0; � 0))�"2.2 Let � =< (a; r); �00 > and �0 = (a0; r0).Then we have that dTS(�; �0) = 1.dPnc(TS)(n; (F)(�; �);	n; (F)(�0; � 0))�"2.3 Let � = (a; r) and �0 =< (a0; r0); �00 >.This case is similar to the second case.2.4 Let � =< (a; r); �00 > and �0 =< (a0; r0); �000 >.2.4.1. Let a = a0.Then we have that dTS(�; �0) = maxfdIR�(r; r0); 12dTS(�00; �000)g.Furthermore, the induction hypothesis gives us thatdPnc(TS)(n�1; (F)(�00; �);	n�1; (F)(�000; � 0)) � 2".dPnc(TS)(n; (F)(�; �);	n; (F)(�0; � 0))=dPnc(TS) f< (a; r); � >j � 2 	n�1; (F)(�00; �)gf< (a0; r0); � >j � 2 	n�1; (F)(�000; � 0)g !=maxfdIR�(r; r0); 12dPnc(TS)(n�1; (F)(�00; �);	n�1; (F)(�000; � 0))g�"2.4.2. Let a 6= a0.Then we have that dTS(�; �0) = 1.dPnc(TS)(n; (F)(�; �);	n; (F)(�0; � 0))�"Now we can proceed as follows.8n � 0 : dTS(�; �0) � " ^ dTS(�; � 0) � 2") dPnc(TS)(n; (F)(�; �);	n; (F)(�0; � 0)) � ")dTS(�; �0) � " ^ dTS(�; � 0) � 2") 8n � 0 : dPnc(TS)(n; (F)(�; �);	n; (F)(�0; � 0)) � ")dTS(�; �0) � " ^ dTS(�; � 0) � 2") limn!1 dPnc(TS)(n; (F)(�; �);	n; (F)(�0; � 0)) � ")dTS(�; �0) � " ^ dTS(�; � 0) � 2") dPnc(TS)(limn!1	n; (F)(�; �); limn!1	n; (F)(�0; � 0)) � ") theorem 2.3dTS(�; �0) � " ^ dTS(�; � 0) � 2") dPnc(TS)(�; �; �0; � 0) � "End 4.4The operator ; is lifted to sets of timed streams in the following de�nition.De�nition 4.5The operator ; : Pnc(TS)�Pnc(TS)! Pnc(TS) is given byS;T = Sf�; � j � 2 S ^ � 2 TgEnd 4.5

14 Denotational semanticsNext we prove the well-de�nedness of the lifted operator ; using Michael's theorem and the factthat the operator ; is continuous.Property 4.6The operator ; is well-de�ned.ProofBy de�nition �; � 2 Pnc(TS) for all � 2 S and � 2 T . Because S and T are compact sets andthe operator ; is continuous, the set f�; � j � 2 S ^ � 2 Tg is compact. Theorem 2.4 tells usthat the set Sf�; � j � 2 S ^ � 2 Tg is compact.End 4.6Also for the lifted operator ; we prove that it is non-distance increasing in its �rst argumentand contracting with factor 12 in its second argument. This property will be used to prove thewell-de�nedness of the denotational semantics.Property 4.7For all S; S0; T; T 0 2 Pnc(TS) and " 2 IR�dPnc(TS)(S; S0) � " ^ dPnc(TS)(T; T 0) � 2") dPnc(TS)(S;T; S0;T 0) � "ProofWe �rst prove (�)8� > 0 : 8R 2 f�; � j � 2 S ^ � 2 Tg : 9R0 2 f�0; � 0 j �0 2 S0 ^ � 0 2 T 0g :dPnc(TS)(R;R0) � "+ �Take some � > 0 and some �; � where � 2 S and � 2 T . Because dPnc(TS)(S; S0) � " anddPnc(TS)(T; T 0) � 2", we have that 9�0 2 S0 : dTS(�; �0) � "+� and 9� 0 2 T 0 : dTS(�; � 0) � 2"+2�.From property 4.4 we can conclude that dPnc(TS)(�; �; �0; � 0) � "+ �. Having proved (�) we candeduce that dPnc(Pnc(TS))(f�; � j � 2 S ^ � 2 Tg; f�0; � 0 j �0 2 S0 ^ � 0 2 T 0g) � ". Usingproperty 4.9 we can conclude that dPnc(TS)(S;T; S0;T 0) � ".End 4.7Next we de�ne two semantic operators which correspond to the syntactic notions of non-deterministic choice and integration.De�nition 4.8The operator [: Pnc(TS) � Pnc(TS) ! Pnc(TS) is de�ned as the set-theoretic union and theoperator S : Pnc(Pnc(TS))! Pnc(TS) is de�ned as the generalised set-theoretic union.End 4.8From Michael's theorem we can conclude that the semantic operator S is well-de�ned. Bothoperators are non-distance increasing.Property 4.9For all S; T 2 Pnc(Pnc(TS)) and " 2 IR�dPnc(Pnc(TS))(S; T) � ") dPnc(TS)(SS;ST) � "ProofWe have to prove that 8� > 0 : 8� 2 SS : 9� 2 ST : dTS(�; �) � " + �. Take some� > 0 and � 2 SS. Then � 2 S for some S 2 S. We have that 8�0 > 0 : 8S0 2 S :9T 0 2 T : dPnc(TS)(S0; T 0) � " + �0. So we have that 9T 0 2 T : dPnc(TS)(S; T 0) � " + �2thus 9T 0 2 T : 8�00 > 0 : 8�0 2 S : 9� 0 2 T 0 : dTS(�0; � 0) � " + �2 + �00. We conclude that9� 2 S T : dTS(�; �) � "+ �.End 4.9

Denotational semantics 15The semantic counterpart of the syntactic operator k is also de�ned as the unique �xed point ofa higher-order transformation. This higher-order transformation 	k is de�ned by means of thehigher-order transformation 	;.De�nition 4.10The mapping 	k : (TS � TS ! Pnc(TS))! (TS � TS ! Pnc(TS)) is given by	k(F)(�; �) = 	;(F)(�; �) [;(F)(�; �)End 4.10The well-de�nedness of the mapping 	k follows from the well-de�nedness of 	;. From the factthat 	; is a contraction we can deduce that 	k is also a contraction as is illustrated in the proofof the following property.Property 4.11The mapping 	k is a contraction.ProofdPnc(TS)(k(F)(�; �);	k(G)(�; �))=dPnc(TS)(;(F)(�; �) [;(F)(�; �);	;(G)(�; �) [;(G)(�; �))� property 4.2 and property 4.912dTS�TS!Pnc(TS)(F;G)End 4.11We denote the unique �xed point of the higher-order transformation 	k by k. We can de�nek by means of a so-called left-merge bb [18] which expresses a merge where the �rst element istaken from the left argument. We have that� k � = 	k(k)(�; �) = 	;(k)(�; �) [;(k)(�; �)and 	;(k)(�; �) = f< �; � >gand 	;(k)(< �; � >; �) = f< �; � >j � 2 � k �gThus we can characterise the operators k and bb as follows.Corollary 4.12The operator k: TS � TS ! Pnc(TS) given by� k � = �bb� [�bb�and the operator bb: TS � TS ! Pnc(TS) given by�bb� = f< �; � >g< �; � > bb� = f< �; � >j � 2 � k �gare well-de�ned.End 4.12Also for the semantic operator k we prove a continuity property. This operator is non-distanceincreasing in both arguments as is stated in the following property.Property 4.13For all �; �0; �; � 0 2 TS and " 2 IR�dTS(�; �0) � " ^ dTS(�; � 0) � ") dPnc(TS)(� k �; �0 k � 0) � "

16 Denotational semanticsProofFrom the proof of property 4.4 we know that8n � 0 : dTS(�; �0) � " ^ dTS(�; � 0) � 2") dPnc(TS)(n; (F)(�; �);	n; (F)(�0; � 0)) � ")8n � 0 : dTS(�; �0) � " ^ dTS(�; � 0) � ")dPnc(TS)(n; (F)(�; �);	n; (F)(�0; � 0)) � " ^ dPnc(TS)(n; (F)(�; �);	n; (F)(� 0; �0)) � ") property 4.98n � 0 : dTS(�; �0) � " ^ dTS(�; � 0) � ")dPnc(TS)(n; (F)(�; �) [n; (F)(�; �);	n; (F)(�0; � 0) [n; (F)(� 0; �0)) � ")8n � 0 : dTS(�; �0) � " ^ dTS(�; � 0) � ") dPnc(TS)(nk (F)(�; �);	nk(F)(�0; � 0)) � "Using the arguments as in the proof of property 4.4 we can conclude thatdTS(�; �0) � " ^ dTS(�; � 0) � ") dPnc(TS)(� k �; �0 k � 0) � "End 4.13The operator bb is non-distance increasing in its �rst argument and contracting with factor 12 inits second argument.Property 4.14For all �; �0; �; � 0 2 TS and " 2 IR�dTS(�; �0) � " ^ dTS(�; � 0) � 2") dPnc(TS)(�bb�; �0bb� 0) � "ProofFrom property 4.13 we can deduce thatdTS(�; �0) � " ^ dTS(�; � 0) � 2") dPnc(TS)(� k �; �0 k � 0) � "Using property 4.4 we can deduce thatdTS(�; �0) � " ^ dTS(�; � 0) � 2") dPnc(TS)(;(k)(�; �);	;(k)(�0; � 0)) � "So we can conclude thatdTS(�; �0) � " ^ dTS(�; � 0) � 2") dPnc(TS)(�bb�; �0bb� 0) � "End 4.14The operators k and bb are lifted to sets of timed streams.De�nition 4.15The operator k: Pnc(TS)�Pnc(TS)! Pnc(TS) is given byS k T = SbbT [T bbSand the operator bb: Pnc(TS)�Pnc(TS)! Pnc(TS) is given bySbbT = Sf�bb� j � 2 S ^ � 2 TgEnd 4.15Because the operator bb is continuous, we can conclude that the lifted operators k and bb arewell-de�ned.Property 4.16The operators k and bb are well-de�ned.ProofSimilar to property 4.6.End 4.16Also the lifted operator k is non-distance increasing in both arguments.

Denotational semantics 17Property 4.17For all S; S0; T; T 0 2 TS and " 2 IR�d(S; S0) � " ^ d(T; T 0) � ") d(S k T; S0 k T 0) � "ProofSimilar to property 4.7.End 4.17Having de�ned the semantic operators, we de�ne the denotational semantics for statementsrelated to a declaration, such that all procedure variables occurring in the statement or thedeclaration are declared in the declaration. To obtain a compositional model we introducesubstitutions, which record the choices made for the time variables with respect to integration.For example, to derive the meaning of the statement Rt2[1:03;2:41](a; t) from the meaning of thestatement (a; t), we record the choice made for the time variable t in the substitutions [t=r] forr 2 [1:03; 2:41].We de�ne the denotational semantics Dd : Stat! Subst!p Pnc(TS) as a partial functionsuch that Dd(s)(�) is de�ned whenever tvar(s) � tvar(�). The substitution � should bind all freevariables of statement s. We de�ne the denotational semantics Dd as the �xed point of a higher-order transformation 	D. We have to impose a restriction on this mapping 	D in order to obtaina well-de�ned mapping. We restrict 	D to a mapping from [Stat ! Subst !p Pnc(TS)], thecollection of continuous mappings Stat! Subst!p Pnc(TS), to [Stat! Subst!p Pnc(TS)].De�nition 4.18The mapping 	D : [Stat! Subst!p Pnc(TS)]! [Stat! Subst!p Pnc(TS)] is given by	D(F)((a; e))(�) = f(a;V(e�))g	D(F)(x)(�) = 	D(F)(g)(�) (x; g) 2 d	D(F)(s1; s2)(�) = 	D(F)(s1)(�);F (s2)(�)	D(F)(s1 � s2)(�) = 	D(F)(s1)(�) �	D(F)(s2)(�) � 2 f[; kg	D(F)(Rt2T s)(�) = Sf	D(F)(s)(�[t=r]) j r 2 Tgwhenever tvar(s) � tvar(�).End 4.18In several of the forthcoming proofs, we will use induction on the structure of statements.Therefore we introduce a complexity function on statements associated with a declaration d inthe usual way.De�nition 4.19The mapping cfd : Stat! IN is given bycfd((a; e)) = 1cfd(x) = cfd(g) + 1 (x; g) 2 dcfd(s1; s2) = cfd(s1) + 1cfd(s1 � s2) = cfd(s1) + cfd(s2) � 2 f[; kgcfd(Rt2T s) = cfd(s) + 1End 4.19For each guarded statement the complexity function cfd is well-de�ned, which follows immedi-ately from the de�nition of the complexity function and the form of guarded statements. We canconclude that the complexity function is well-de�ned for all statements. In the case of sequentialcomposition only induction on the �rst argument can be applied. From the de�nition of thecomplexity function we can derive that cfd(s[t=e]) = cfd(s).

18 Denotational semanticsUsing this induction principle, we will prove that the higher-order transformation 	D iswell-de�ned. Because expressions are continuous functions, time sets are non-empty compactsets and the semantic operators are continuous, we can prove that 	D is well-de�ned usingMichael's theorem.Property 4.20The mapping 	D is well-de�ned.ProofWe have to prove 8F 2 [Stat ! Subst !p Pnc(TS)] : 	D(F) 2 [Stat ! Subst !p Pnc(TS)].The mapping 	D(F) is continuous if and only if limi!1	D(F)(s)(�i) = 	D(F)(s)(�) wheneverlimi!1 �i = �. We prove this property with induction on the complexity of statement s. Weassume limi!1 �i = �.1 Let s � (a; e).limi!1	D(F)((a; e))(�i)=limi!1f(a;V(e�i))g= e is continuousf(a;V(e�))g=	D(F)((a; e))(�)The set f(a;V(e�))g is an element of Pnc(TS).2 Let s � x and (x; g) 2 d.limi!1	D(F)(x)(�i)=limi!1	D(F)(g)(�i)=	D(F)(g)(�)=	D(F)(x)(�)Because 	D(F)(g)(�) is an element of Pnc(TS), 	D(F)(x)(�) is an element of Pnc(TS).3 Let s � s1; s2.limi!1	D(F)(s1; s2)(�i)=limi!1(D(F)(s1)(�i);F (s2)(�i))=limi!1	D(F)(s1)(�i); limi!1 F (s2)(�i)=	D(F)(s1)(�);F (s2)(�)=	D(F)(s1; s2)(�)Because both 	D(F)(s1)(�) and F (s2)(�) are elements of Pnc(TS) and the operator ; iswell-de�ned, 	D(F)(s1; s2)(�) is also an element of Pnc(TS).4 Let s � s1 � s2 and � 2 f[; kg.limi!1	D(F)(s1 � s2)(�i)=limi!1(D(F)(s1)(�i) �	D(F)(s2)(�i))

Denotational semantics 19=limi!1	D(F)(s1)(�i) � limi!1	D(F)(s2)(�i)=	D(F)(s1)(�) �	D(F)(s2)(�)=	D(F)(s1 � s2)(�)Because both 	D(F)(s1)(�) and 	D(F)(s2)(�) are elements of Pnc(TS) and the operator� is well-de�ned, 	D(F)(s1 � s2)(�) is also an element of Pnc(TS).5 Let s � Rt2T s.limi!1	D(F)(Rt2T s)(�i)=limi!1Sf	D(F)(s)(�i[t=r]) j r 2 Tg=Sflimi!1	D(F)(s)(�i[t=r]) j r 2 Tg=Sf	D(F)(s)(�[t=r]) j r 2 Tg=	D(F)(Rt2T s)(�)For all r 2 T the set 	D(F)(s)(�[t=r]) is an element of Pnc(TS). Because 	D(F) iscontinuous and T is non-empty and compact, the set f	D(F)(s)(�[t=r]) j r 2 Tg is anelement of Pnc(TS). From theorem 2.4 we can conclude that Sf	D(F)(s)(�[t=r]) j r 2 Tgis also an element of Pnc(TS).End 4.20Next we prove that 	D is a contraction. The contractivity of 	D follows from the contractivityproperties of the semantic operators.Property 4.21The mapping 	D is a contraction.ProofWe prove for all s 2 Stat and � 2 Subst such that tvar(s) � tvar(�) thatdPnc(TS)(D(F)(s)(�);	D(G)(s)(�)) � 12d[Stat!Subst!pPnc(TS)](F;G)using induction on the complexity of statement s.1 Let s � (a; e).dPnc(TS)(D(F)((a; e))(�);	D(G)((a; e))(�))=dPnc(TS)(f(a;V(e�))g; f(a;V(e�))g)=0�12d[Stat!Subst!pPnc(TS)](F;G)2 Let s � x and (x; g) 2 d.dPnc(TS)(D(F)(x)(�);	D(G)(x)(�))=dPnc(TS)(D(F)(g)(�);	D(G)(g)(�))�12d[Stat!Subst!pPnc(TS)](F;G)

20 Denotational semantics3 Let s � s1; s2.dPnc(TS)(D(F)(s1; s2)(�);	D(G)(s1; s2)(�))=dPnc(TS)(D(F)(s1)(�);F (s2)(�);	D(G)(s1)(�);G(s2)(�))� property 4.712d[Stat!Subst!pPnc(TS)](F;G)4 Let s � s1 � s2 and � 2 f[; kg.dPnc(TS)(D(F)(s1 � s2)(�);	D(G)(s1 � s2)(�))=dPnc(TS)(D(F)(s1)(�) �	D(F)(s2)(�);	D(G)(s1)(�) �	D(G)(s2)(�))� property 4.9 and property 4.1712d[Stat!Subst!pPnc(TS)](F;G)5 Let s � Rt2T s.dPnc(TS)(D(F)(Rt2T s)(�);	D(G)(Rt2T s)(�))=dPnc(TS)(Sf	D(F)(s)(�[t=r]) j r 2 Tg;Sf	D(G)(s)(�[t=r]) j r 2 Tg)� property 4.912d[Stat!Subst!pPnc(TS)](F;G)End 4.21Because 	D is a contraction on a complete metric space, this mapping has a unique �xed point,which we will denote by Dd. We can characterise Dd as follows.Corollary 4.22The mapping Dd : Stat! Subst!p Pnc(TS) is given byDd((a; e))(�) = f(a;V(e�))gDd(x)(�) = Dd(g)(�) (x; g) 2 dDd(s1 � s2)(�) = Dd(s1)(�) � Dd(s2)(�) � 2 f; ;[; kgDd(Rt2T s)(�) = SfDd(s)(�[t=r]) j r 2 Tgwhenever tvar(s) � tvar(�).End 4.22We have, for example,Dd(Rt2[1:03;2:41](a; t))(�)=SfDd((a; t))([t=r]) j r 2 [1:03; 2:41]g=Sff(a; t[t=r])g j r 2 [1:03; 2:41]g=f(a; r) j r 2 [1:03; 2:41]gThe denotational semantics for programs is de�ned as follows.De�nition 4.23The mapping D : Prog ! Pnc(TS) is given byD((d; s)) = Dd(s)(�)End 4.23

Equivalence proof 215 Equivalence proofHaving de�ned both an operational and a denotational semantics for our language the questionarises whether the denotational model is correct with respect to the computational intuitioncaptured by the operational model. In this section we will show that we can relate the operationalmodel O and the denotational model D. We will prove that these models are equivalent. Toprove this we will use a general method for comparing di�erent semantic models as described byKok and Rutten [36]: if two models are both a �xed point of a higher-order transformation andthis higher-order transformation is a contraction on a complete metric space, we can concludethat those models are equivalent.We will introduce an intermediate operational semantic model O�d and relate this model tothe operational model Od. Furthermore, we will de�ne an intermediate denotational semanticmodel D�d and relate this model to the denotational model Dd. Finally, we will introduce ahigher-order transformation 	O�D� and prove that this mapping is a contraction on a completemetric space. We will prove that 	O�D�(O�d) = O�d and 	O�D�(D�d) = D�d. From this we canconclude that O�d and D�d are equivalent. These relations will enable us to prove the equivalenceof O and D.First an intermediate operational model O�d, which is associated with a labelled transitionsystem, is introduced. In this operational model statements and substitutions, which recordchoices made for time variables with respect to integration, are separated. Therefore we intro-duce the class of con�gurations.De�nition 5.1The class Conf of con�gurations, with typical element C, is given byConf = f[s; �] 2 Stat� Subst j tvar(s) � tvar(�)gand the class ConfE of con�gurations, with typical element �C, is given byConfE = f[�s; �] 2 StatE � Subst j tvar(�s) � tvar(�)gEnd 5.1The transition relation, which induces the labelled transition system describing the intermediateoperational semantics, is presented in the following de�nition.De�nition 5.2The transition relation �! is the smallest subset of Conf � TA�Decl� ConfE satisfying[(a; e); �]�� (a;V(e�))!d [E; �][g; �]�� �!d �C (x; g) 2 d[x; �] �� �!d �C[s; �] �� �!d [�s; �0][s; s0; �]�� �!d [�s; s0; �0][s; �]�� �!d �C[s [s0; �]�� �!d �C[s0 [s; �]�� �!d �C[s; �] �� �!d [�s; �0][s k s0; �]�� �!d [�s k s0; �0][s0 k s; �]�� �!d [s0 k �s; �0]

22 Equivalence proof[s[t=tn+1]; �[tn+1=r]]�� �!d �C tvar(�) = ft1; : : : ; tng r 2 T[Rt2T s; �]�� �!d �CEnd 5.2It is not obvious that the transition relation given above is well-de�ned, i.e. if [s; �] 2 Confand [s; �] �� � !d [�s; �0] then [�s; �0] 2 ConfE, which implies tvar(�s) � tvar(�0). To prove thewell-de�nedness of the transition relation we introduce the notion of a substitution �0 being anextension of a substitution �, which is denoted by � v �0.De�nition 5.3The relation v� Subst� Subst is given by� v �0 if and only if tvar(�) � tvar(�0) and 8t 2 tvar(�) : t� = t�0End 5.3Next we show that if [s; �]�� �!d [�s; �0] then �0 is an extension of �. From this we can deducethe well-de�nedness of the transition relation.Property 5.4For all [s; �] 2 Conf , �s 2 StatE, �0 2 Subst and � 2 TA[s; �]�� �!d [�s; �0]) � v �0ProofWe prove this property using induction on the complexity of statement s.1 Let s � (a; e).By inspection of the transition system, [(a; e); �]�� (a;V(e�))!d [E; �], and the fact that� v �, we can deduce that the property is satis�ed in this case.2 Let s � x and (x; g) 2 d.[x; �] �� �!d [�s; �0])[g; �]�� �!d [�s; �0])� v �03 Let s � s1; s2.[s1; s2; �]�� �!d [�s; �0])9�s0 2 StatE : [s1; �]�� �!d [�s0; �0])� v �04 Let s � s1 [s2.[s1 [s2; �]�� �!d [�s; �0])[s1; �]�� �!d [�s; �0] _ [s2; �]�� �!d [�s; �0])� v �05 Let s � s1 k s2.[s1 k s2; �]�� �!d [�s; �0]

Equivalence proof 23)9�s0 2 StatE : [s1; �]�� �!d [�s0; �0] _ 9�s0 2 StatE : [s2; �]�� �!d [�s0; �0])� v �06 Let s � Rt2T s and tvar(�) = ft1; : : : ; tng.[Rt2T s; �]�� �!d [�s; �0])9r 2 T : [s[t=tn+1]; �[tn+1=r]]�� �!d [�s; �0])�[tn+1=r] v �0)� v �0End 5.4The intermediate operational model O�d is de�ned along the lines of the de�nition of the opera-tional model Od.De�nition 5.5The mapping O�d : [Conf ! Pnc(TS)] is given by� 2 O�d(C) if and only if one of the following conditions is satis�ed:� 9n 2 IN : 9C1; : : : ; Cn 2 Conf : 9�1; : : : ; �n+1 2 TA : 9� 2 Subst :C �� �1 !d C1 �� �2 !d � � � �� �n !d Cn �� �n+1 !d [E; �] ^� =< �1; < �2; � � � < �n; �n+1 > � � � >>� 9C1; : : : 2 Conf : 9�1; : : : 2 TA :C �� �1 !d C1 �� �2 !d � � � ^ � =< �1; < �2; � � � >>End 5.5The well-de�nedness of the intermediate operational semantics follows from the compactlybranching property and the continuity property of the labelled transition system as is describedin property A.3 of the appendix.Lemma 5.6The mapping O�d is well-de�ned.ProofThe proof of this lemma can be found in lemma A.6 of the appendix.End 5.6Next we relate the operational models Od and O�d via their labelled transition systems. Fromthe following property we can deduce that each step according to the labelled transition systemdescribing Od can be mimicked by a step according to the labelled transition system describingO�d and vice versa.Property 5.7For all [s; �] 2 Conf , �s 2 StatE and � 2 TAs� �� �!d �s, 9[�s0; �0] 2 ConfE : [s; �]�� �!d [�s0; �0] ^ �s = �s0�0

24 Equivalence proofProofWe prove this property using induction on the complexity of statement s.1 Let s � (a; e).(a; e)� �� �!d �s,� = (a;V(e�)) ^ �s = E,9[�s0; �0] 2 ConfE : [(a; e); �]�� �!d [�s0; �0] ^ �s = �s0�02 Let s � x and (x; g) 2 d.x� �� �!d �s,g� �� �!d �s,9[�s0; �0] 2 ConfE : [g; �]�� �!d [�s0; �0] ^ �s = �s0�0,9[�s0; �0] 2 ConfE : [x; �] �� �!d [�s0; �0] ^ �s = �s0�03 Let s � s1; s2.(s1; s2)� �� �!d �s,s1�; s2� �� �!d �s,9�s0 2 StatE : s1� �� �!d �s0 ^ �s = �s0; s2�,9�s0 2 StatE : 9[�s00; �0] 2 ConfE : [s1; �]�� �!d [�s00; �0] ^ �s0 = �s00�0 ^ �s = �s0; s2�,9[�s00; �0] 2 ConfE : [s1; �]�� �!d [�s00; �0] ^ �s = �s00�0; s2�, property 5.4: � v �09[�s00; �0] 2 ConfE : [s1; �]�� �!d [�s00; �0] ^ �s = (�s00; s2)�0,9[�s0; �0] 2 ConfE : [s1; s2; �]�� �!d [�s0; �0] ^ �s = �s0�04 Let s � s1 [s2.(s1 [s2)� �� �!d �s,s1� [s2� �� �!d �s,s1� �� �!d �s _ s2� �� �!d �s,9[�s0; �0] 2 ConfE : [s1; �]�� �!d [�s0; �0] ^ �s = �s0�0 _9[�s0; �0] 2 ConfE : [s2; �]�� �!d [�s0; �0] ^ �s = �s0�0,9[�s0; �0] 2 ConfE : [s1 [s2; �]�� �!d [�s0; �0] ^ �s = �s0�05 Let s � s1 k s2.(s1 k s2)� �� �!d �s,s1� k s2� �� �!d �s

Equivalence proof 25,9�s0 2 StatE : s1� �� �!d �s0 ^ �s = �s0 k s2� _ 9�s0 2 StatE : s2� �� �!d �s0 ^ �s = s1� k �s0,9�s0 2 StatE : 9[�s00; �0] 2 ConfE : [s1; �]�� �!d [�s00; �0] ^ �s0 = �s00�0 ^ �s = �s0 k s2� _9�s0 2 StatE : 9[�s00; �0] 2 ConfE : [s2; �]�� �!d [�s00; �0] ^ �s0 = �s00�0 ^ �s = s1� k �s0,9[�s00; �0] 2 ConfE : [s1; �]�� �!d [�s00; �0] ^ �s = �s00�0 k s2� _9[�s00; �0] 2 ConfE : [s2; �]�� �!d [�s00; �0] ^ �s = s1� k �s00�0, property 5.4: � v �09[�s00; �0] 2 ConfE : [s1; �]�� �!d [�s00; �0] ^ �s = (�s00 k s2)�0 _9[�s00; �0] 2 ConfE : [s2; �]�� �!d [�s00; �0] ^ �s = (s1 k �s00)�0,9[�s0; �0] 2 ConfE : [s1 k s2; �]�� �!d [�s0; �0] ^ �s = �s0�06 Let s � Rt2T s and tvar(�) = ft1; : : : ; tng.(Rt2T s)� �� �!d �s,9r 2 T : s�[t=r]�� �!d �s, tn+1 62 tvar(�)9r 2 T : s[t=tn+1]�[tn+1=r]�� �!d �s,9r 2 T : 9[�s0; �0] 2 ConfE : [s[t=tn+1]; �[tn+1=r]]�� �!d [�s0; �0] ^ �s = �s0�0,9[�s0; �0] 2 ConfE : 9r 2 T : [s[t=tn+1]; �[tn+1=r]]�� �!d [�s0; �0] ^ �s = �s0�0,9[�s0; �0] 2 ConfE : [Rt2T s; �]�� �!d [�s0; �0] ^ �s = �s0�0End 5.7Having related the labelled transition systems, which describe the operational models Od andO�d, we can relate these models.Lemma 5.8For all [s; �] 2 ConfO�d([s; �]) = Od(s�)ProofWe can deduce this immediately from property 5.7.End 5.8Now we introduce an intermediate denotational model D�d. This denotational model is de�nedas the �xed point of a higher-order transformation 	D� .De�nition 5.9The mapping 	D� : [Conf ! Pnc(TS)]! [Conf ! Pnc(TS)] is given by	D�(F)([(a; e); �]) = f(a;V(e�))g	D�(F)([x; �]) = 	D�(F)([g; �]) (x; g) 2 d	D�(F)([s1; s2; �]) = 	D�(F)([s1; �]);F ([s2; �])	D�(F)([s1 � s2; �]) = 	D�(F)([s1; �]) �	D�(F)([s2; �]) � 2 f[; kg	D�(F)([Rt2T s; �]) = Sf	D�(F)([s[t=tn+1]; �[tn+1=r]]) j r 2 Tg tvar(�) = ft1; : : : ; tngEnd 5.9

26 Equivalence proofThe well-de�nedness of the mapping 	D� follows from the fact that that expressions are continu-ous functions, time sets are non-empty compact sets and the semantic operators are continuous.Property 5.10The mapping 	D� is well-de�ned.ProofSimilar to property 4.20 except for the continuity proof in the case of integration.5 Let s � Rt2T s. From de�nition 2.11 we can derive that there exists a subsequence f�i+kgisuch that tvar(�i+k) = ft1; : : : ; tng.limi!1	D�(F)([Rt2T s; �i])=limi!1	D�(F)([Rt2T s; �i+k])=limi!1Sf	D�(F)([s[t=tn+1]; �i+k [tn+1=r]]) j r 2 Tg=Sflimi!1	D�(F)([s[t=tn+1]; �i+k [tn+1=r]]) j r 2 Tg=Sf	D�(F)([s[t=tn+1]; �[tn+1=r]]) j r 2 Tg=	D�(F)([Rt2T s; �])End 5.10Next we prove that 	D� is a contraction. The contractivity of 	D� follows from the contractivityproperties of the semantic operators.Property 5.11The mapping 	D� is a contraction.ProofSimilar to property 4.21.End 5.11Because 	D� is a contraction on a complete metric space, this mapping has a unique �xed point,which will be denoted by D�d.Corollary 5.12The mapping D�d : [Conf ! Pnc(TS)] given byD�d([(a; e); �]) = f(a;V(e�))gD�d([x; �]) = D�d([g; �]) (x; g) 2 dD�d([s1 � s2; �]) = D�d([s1; �]) � D�d([s2; �]) � 2 f; ;[; kgD�d([Rt2T s; �]) = SfD�d([s[t=tn+1]; �[tn+1=r]]) j r 2 Tg tvar(�) = ft1; : : : ; tngis well-de�ned.End 5.12The denotational models D�d and Dd are related by proving that D�d is a �xed point of thehigher-order transformation 	D de�ning Dd.Lemma 5.13For all [s; �] 2 Conf

Equivalence proof 27D�d([s; �]) = Dd(s)(�)ProofWe prove that D�d is a �xed point of the curried version of 	D, with induction on the complexityof statement s.1 Let s � (a; e).	D(D�d)([(a; e); �])=f(a;V(e�))g=D�d([(a; e); �])2 Let s � x and (x; g) 2 d.	D(D�d)([x; �])=	D(D�d)([g; �])=D�d([g; �])=D�d([x; �])3 Let s � s1; s2.	D(D�d)([s1; s2; �])=	D(D�d)([s1; �]);D�d([s2; �])=D�d([s1; �]);D�d([s2; �])=D�d([s1; s2; �])4 Let s � s1 � s2 and � 2 f[; kg.	D(D�d)([s1 � s2; �])=	D(D�d)([s1; �]) �	D(D�d)([s2; �])=D�d([s1; �]) � D�d([s2; �])=D�d([s1 � s2; �])5 Let s � Rt2T s and tvar(�) = ft1; : : : ; tng.	D(D�d)([Rt2T s; �])=Sf	D(D�d)([s; �[t=r]]) j r 2 Tg=SfD�d([s; �[t=r]]) j r 2 Tg=SfD�d([s[t=tn+1]; �[tn+1=r]]) j r 2 Tg=D�d([Rt2T s; �])End 5.13

28 Equivalence proofWe relate the intermediate models O�d and D�d by proving that they are both a �xed point ofthe higher-order transformation 	O�D� . This mapping 	O�D� is related to a declaration similarto the denotational models.De�nition 5.14The mapping 	O�D� : [Conf ! Pnc(TS)]! [Conf ! Pnc(TS)] is given by	O�D�(F)(C) = f< �; � >j C �� �!d C 0 ^ � 2 F (C 0)g [f� j C �� �!d [E; �0]gEnd 5.14The well-de�nedness of the higher-order transformation 	O�D� follows from the compactlybranching property and the continuity property of the labelled transition system.Lemma 5.15The mapping 	O�D� is well-de�ned.ProofThe proof of this property can be found in lemma A.7 of the appendix.End 5.15To conclude that 	O�D� has a unique �xed point, we have to prove that this mapping is acontraction.Property 5.16The mapping 	O�D� is a contraction.ProofdPnc(TS)(O�D�(F)(C);	O�D�(G)(C))=dPnc(TS) f< �; � >j C �� �!d C 0 ^ � 2 F (C 0)g [f� j C �� �!d [E; �0]gf< �; � >j C �� �!d C 0 ^ � 2 G(C 0)g [f� j C �� �!d [E; �0]g !�12d[Conf!Pnc(TS)](F;G)End 5.16First we prove that the intermediate operational model O�d is a �xed point of 	O�D� .Lemma 5.17	O�D�(O�d) = O�dProof� 2 	O�D�(O�d)(C),� 2 f< �; � >j C �� �!d C 0 ^ � 2 O�d(C 0)g [f� j C �� �!d [E; �0]g,9C 0 2 Conf : 9� 2 TA : 9� 2 TS : C �� �!d C 0 ^ � 2 O�d(C 0) ^ � =< �; � > _9�0 2 Subst : 9� 2 TA : C �� �!d [E; �0] ^ � = �,� 2 O�d(C)End 5.17Also the intermediate denotational model D�d is a �xed point of 	O�D� .

Equivalence proof 29Lemma 5.18	O�D�(D�d) = D�dProofWe prove 8[s; �] 2 Conf : 	O�D�(D�d)([s; �]) = D�d([s; �]) using induction on the complexity ofstatement s.1 Let s � (a; e).	O�D�(D�d)([(a; e); �])=f< �; � >j [(a; e); �]�� �!d C 0 ^ � 2 D�d(C 0)g [f� j [(a; e); �]�� �!d [E; �0]g=f(a;V(e�))g=D�d([(a; e); �])2 Let s � x and (x; g) 2 d.	O�D�(D�d)([x; �])=f< �; � >j [x; �]�� �!d C 0 ^ � 2 D�d(C 0)g [f� j [x; �]�� �!d [E; �0]g=f< �; � >j [g; �]�� �!d C 0 ^ � 2 D�d(C 0)g [f� j [g; �]�� �!d [E; �0]g=	O�D�(D�d)([g; �])=D�d([g; �])=D�d([x; �])3 Let s � s1; s2.	O�D�(D�d)([s1; s2; �])=f< �; � >j [s1; s2; �]�� �!d C 0 ^ � 2 D�d(C 0)g [f� j [s1; s2; �]�� �!d [E; �0]g=f< �; � >j [s1; �]�� �!d [s0; �0] ^ � 2 D�d([s0; s2; �0])g [f< �; � >j [s1; �]�� �!d [E; �0] ^ � 2 D�d([s2; �0])g=f< �; � >j [s1; �]�� �!d [s0; �0] ^ � 2 D�d([s0; �0]);D�d([s2; �0])g [f< �; � >j [s1; �]�� �!d [E; �0] ^ � 2 D�d([s2; �0])g= property 5.4: � v �0 and tvar(s2) � tvar(�) so D�d([s2; �0]) = D�d([s2; �])f< �; � >j [s1; �]�� �!d [s0; �0] ^ � 2 D�d([s0; �0]);D�d([s2; �])g [f< �; � >j [s1; �]�� �!d [E; �0] ^ � 2 D�d([s2; �])g=(f< �; � >j [s1; �]���!d [s0; �0]^� 2 D�d([s0; �0])g[f� j [s1; �]���!d [E; �0]g);D�d([s2; �])=	O�D�(D�d)([s1; �]);D�d([s2; �])=D�d([s1; �]);D�d([s2; �])=D�d([s1; s2; �])

30 Equivalence proof4 Let s � s1 [s2.	O�D�(D�d)([s1 [s2; �])=f< �; � >j [s1 [s2; �]�� �!d C 0 ^ � 2 D�d(C 0)g [f� j [s1 [s2; �]�� �!d [E; �0]g=f< �; � >j [s1; �]�� �!d C 0 ^ � 2 D�d(C 0)g [f� j [s1; �]�� �!d [E; �0]g [f< �; � >j [s2; �]�� �!d C 0 ^ � 2 D�d(C 0)g [f� j [s2; �]�� �!d [E; �0]g=	O�D�(D�d)([s1; �]) [O�D�(D�d)([s2; �])=D�d([s1; �]) [D�d([s2; �])=D�d([s1 [s2; �])5 Let s � s1 k s2.	O�D�(D�d)([s1 k s2; �])=f< �; � >j [s1 k s2; �]�� �!d C 0 ^ � 2 D�d(C 0)g [f� j [s1 k s2; �]�� �!d [E; �0]g=f< �; � >j [s1; �]�� �!d [s0; �0] ^ � 2 D�d([s0 k s2; �0])g [f� j [s1; �]�� �!d [E; �0] ^ � 2 D�d([s2; �0])g [f< �; � >j [s2; �]�� �!d [s0; �0] ^ � 2 D�d([s1 k s0; �0])g [f� j [s2; �]�� �!d [E; �0] ^ � 2 D�d([s1; �0])g=f< �; � >j [s1; �]�� �!d [s0; �0] ^ � 2 D�d([s0; �0]) k D�d([s2; �0])g [f� j [s1; �]�� �!d [E; �0] ^ � 2 D�d([s2; �0])g [f< �; � >j [s2; �]�� �!d [s0; �0] ^ � 2 D�d([s1; �0]) k D�d([s0; �0])g [f� j [s2; �]�� �!d [E; �0] ^ � 2 D�d([s1; �0])g= property 5.4: � v �0 and tvar(si) � tvar(�) so D�d([si; �0]) = D�d([si; �]f< �; � >j [s1; �]�� �!d [s0; �0] ^ � 2 D�d([s0; �0]) k D�d([s2; �])g [f� j [s1; �]�� �!d [E; �0] ^ � 2 D�d([s2; �])g [f< �; � >j [s2; �]�� �!d [s0; �0] ^ � 2 D�d([s1; �]) k D�d([s0; �0])g [f� j [s2; �]�� �!d [E; �0] ^ � 2 D�d([s1; �])g=(f< �; � >j [s1; �]�� �!d C 0 ^ � 2 D�d(C 0)g [f� j [s1; �]�� �!d [E; �0]g)bbD�d([s2; �]) [(f< �; � >j [s2; �]�� �!d C 0 ^ � 2 D�d(C 0)g [f� j [s2; �]�� �!d [E; �0]g)bbD�d([s1; �])=	O�D�(D�d)([s1; �])bbD�d([s2; �]) [O�D�(D�d)([s1; �])bbD�d([s1; �])=D�d([s1; �])bbD�d([s2; �]) [D�d([s2; �])bbD�d([s1; �])=D�d([s1; �]) k D�d([s2; �])=D�d([s1 k s2; �])6 Let s � Rt2T s and tvar(�) = ft1; : : : ; tng.	O�D�(D�d)([Rt2T s; �])=f< �; � >j [Rt2T s; �]�� �!d C 0 ^ � 2 D�d(C 0)g [f� j [Rt2T s; �]�� �!d [E; �0]g

Conclusions 31=f< �; � >j [s[t=tn+1]; �[tn+1=r]]�� �!d C 0 ^ � 2 D�d(C 0) ^ r 2 Tg [f� j [s[t=tn+1]; �[tn+1=r]]�� �!d [E; �0] ^ r 2 Tg=Sf f< �; � >j [s[t=tn+1]; �[tn+1=r]]�� �!d C 0 ^ � 2 D�d(C 0)g[f� j [s[t=tn+1]; �[tn+1=r]]�� �!d [E; �0]g j r 2 Tg=Sf	O�D�(D�d)([s[t=tn+1]; �[tn+1=r]]) j r 2 Tg=SfD�d([s[t=tn+1]; �[tn+1=r]]) j r 2 Tg=D�d([Rt2T s; �])End 5.18Because O�d and D�d are both �xed points of the higher-order transformation 	O�D� , which is acontraction on a complete metric space, we have that O�d and D�d are equivalent due to Banach's�xed point theorem.Corollary 5.19O�d = D�dEnd 5.19We conclude this section by collecting all the relations between the various models into anequivalence proof.Theorem 5.20O = DProofO((d; s))=Od(s)= lemma 5.8O�d([s; �])= corollary 5.19D�d([s; �])= lemma 5.13Dd(s)(�)=D((d; s))End 5.20ConclusionsAn operational and a denotational semantic model have been presented for a real-time pro-gramming language incorporating the concept of integration. As we have seen, a restricted formof unbounded non-determinism can be speci�ed by means of integration. Because the seman-tic operators and the semantic models have been de�ned using higher-order transformations,we were able to describe in�nite behaviour. The operational and denotational semantics have

32 Referencesbeen proved equivalent. Banach's �xed point theorem and Michael's theorem have been usedfruitfully to de�ne and to compare those models.We expect it to be possible to relate the denotational semantics de�ned by Reed and Roscoe[41, 42, 43] to a denotational model based on the denotational model presented in this paperfollowing the lines of [12]. We have the strong feeling that it is possible to extend the languagewith communication and global non-determinism [11] and to de�ne a branching time model[8] for this language. Enriching the language with delays [37, 43] and a parameter mechanismprovided to procedure variables causes no serious problems. However, extending the languagewith priorities [23, 45] and enforced deadlines for atomic actions may cause discontinuity ofsemantic operators.AcknowledgementsI would like to thank the members of the Amsterdam Concurrency Group, consisting of Jaco deBakker, Frank de Boer, Arie de Bruin, Eiichi Horita, Jean-Marie Jacquet, Peter Knijnenburg,Joost Kok, Jan Rutten, Erik de Vink and Jeroen Warmerdam, for comments on previous work.In particular, I thank Erik de Vink for his comments and suggestions during the evolvement ofthis paper. Also I would like to thank Jos Baeten for giving me the opportunity to present mywork to some of his students.References[1] P. America and J.J.M.M. Rutten. Solving Re
exive Domain Equations in a Category ofComplete Metric Spaces. Journal of Computer and System Sciences 39 (1989), 343-375.[2] K.R. Apt. Recursive Assertions and Parallel Programs. Acta Informatica 15 (1983), 219-232.[3] K.R. Apt and G.D. Plotkin. Countable Non-Determinism and Random Assignment. Journalof the ACM 33 (1986), 724-767.[4] J.C.M. Baeten and J.A. Bergstra. Real-Time Process Algebra. Report P8916, ProgrammingResearch Group, University of Amsterdam, Amsterdam (1989).[5] J.W. de Bakker. Mathematical Theory of Program Correctness. Prentice-Hall International(1980).[6] J.W. de Bakker. Comparative Semantics for Flow of Control in Logic Programming withoutLogic. Report CS-8840, Centre for Mathematics and Computer Science, Amsterdam (1988).To appear in Information and Computation.[7] J.W. de Bakker. Designing Concurrency Semantics. Proceedings 11th World ComputerCongress (G.X. Ritter, ed.), North Holland (1989), 591-598.[8] J.W. de Bakker, J.A. Bergstra, J.W. Klop and J.-J.Ch. Meyer. Linear Time and BranchingTime Semantics for Recursion with Merge. Theoretical Computer Science 34 (1984), 135-156.[9] J.W. de Bakker and J.N. Kok. Towards a Uniform Topological Treatment of Streams andFunctions on Streams. Proceedings 12th International Colloquium on Automata, Languagesand Programming (W. Brauer, eds.), Lecture Notes in Computer Science 194, Springer(1985).

References 33[10] J.W. de Bakker and J.N. Kok. Comparative Metric Semantics for Concurrent Prolog. The-oretical Computer Science 75 (1990), 15-43.[11] J.W. de Bakker, J.N. Kok, J.-J.Ch. Meyer, E.-R. Olderog and J.I. Zucker. ContrastingThemes in the Semantics of Imperative Concurrency. Current Trends in Concurrency:Overviews and Tutorials (J.W. de Bakker, W.P. de Roever and G. Rozenberg, eds.), LectureNotes in Computer Science 224, Springer (1986), 51-121.[12] J.W. de Bakker, J.-J.Ch. Meyer and E.-R. Olderog. In�nite Streams and Finite Observationsin the Semantics of Uniform Concurrency. Theoretical Computer Science 49 (1987), 87-112.[13] J.W. de Bakker and J.-J.Ch. Meyer. Metric Semantics for Concurrency. BIT 28 (1988),504-529.[14] J.W. de Bakker and J.J.M.M. Rutten. Concurrency Semantics based on Metric DomainEquations. Report CS-8954, Centre for Mathematics and Computer Science, Amsterdam(1989).[15] J.W. de Bakker and E.P. de Vink. CCS for OO and LP. Proceedings TAPSOFT 91, LectureNotes in Computer Science, Springer (1991).[16] J.W. de Bakker and J.I. Zucker. Processes and the Denotational Semantics of Concurrency.Information and Control 54 (1982), 70-120.[17] S. Banach. Sur les Op�erations dans les Ensembles Abstraits et leur Applications aux Equa-tions Int�egrales. Fundamenta Mathematicae 3 (1922), 133-181.[18] J.A. Bergstra and J.W. Klop. Fixed Point Semantics in Process Algebra. Report IW 206/82,Mathematical Centre, Amsterdam (1982).[19] G. Berry and L. Cosserat. The ESTEREL Synchronous Programming Language and itsSemantics. Proceedings CMU Seminar on Concurrency (S.D. Brookes, A.W. Roscoe andG. Winksel, eds.), Lecture Notes in Computer Science 197, Springer (1985), 389-448.[20] F.S. de Boer, J.N. Kok, C. Palamidessi and J.J.M.M. Rutten. From Failure to Success:Comparing a Denotational and a Declarative Semantics for Horn Clause Logic. Proceed-ings Workshop on Semantics for Concurrency (M.Z. Kwiatkowska, M.W. Shields and R.M.Thomas, eds.), Leicester (1990), 38-60.[21] F. van Breugel. Semantic Models for a Language with Timed Atomic Actions. Report IR-218, Vrije Universiteit, Amsterdam (1990).[22] F. van Breugel. Comparative Semantics for a Real-Time Programming Language with Inte-gration. Proceedings TAPSOFT 91, Lecture Notes in Computer Science, Springer (1991).[23] R. Cleaveland and M. Hennessy. Priorities in Process Algebra. Information and Computa-tion 87 (1990), 58-77.[24] J.W. Davies and S.A. Schneider. An Introduction to Timed CSP. Technical MonographPRG-75, Oxford University Computing Laboratory, Oxford (1989).[25] J.W. Davies and S.A. Schneider. An Extended Syntax for Timed CSP. Report PRG-TR-4-90, Oxford University Computing Laboratory, Oxford (1990).

34 References[26] R. Engelking. General Topology. Heldermann Verlag (1989).[27] A. Goswami and M. Joseph. Semantics of Real-Time Distributed Programs. ProceedingsInternational Conference on Concurrency (F.H. Vogt, ed.), Lecture Notes in ComputerScience 335, Springer (1988), 292-306.[28] J.F. Groote. Speci�cation and Veri�cation of Real-Time Systems in ACP. Proceedings 10thInternational IFIP WG 6.1, Symposium on Protocol Speci�cation, Testing and Veri�cation,Ottawa (1990), 259-270.[29] J.F. Groote and F.W. Vaandrager. Structured Operational Semantics and Bisimulation asa Congruence. Proceedings 16th International Colloquium on Automata, Languages andProgramming (G. Ausiello, M. Dezani-Ciancaglini and S. Ronchi Della Rocca, eds.), LectureNotes in Computer Science 372, Springer (1989), 423-438.[30] F. Hausdor�. Grundz�uge der Mengenlehre. Leipzig (1914).[31] M. Hennessy and G.D. Plotkin. Full Abstraction for a Simple Parallel Programming Lan-guage. Proceedings 8th Mathematical Foundations of Computer Science (J. Be�cva�r, ed.),Lecture Notes in Computer Science 74, Springer (1979), 108-120.[32] M. Hennessy and T. Regan. A Temporal Process Algebra. Report 2-90, University of Sussex,Brighton (1990).[33] W.H. Hesselink. Interpretations of Recursion under Unbounded Non-Determinacy. Theo-retical Computer Science 59 (1988), 211-234.[34] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International (1985).[35] F. Jahanian and A. Mok. Safety Analysis of Timing Properties in Real-Time Systems. IEEETransactions on Software Engineering 12 (1986), 890-904.[36] J.N. Kok and J.J.M.M. Rutten. Contractions in Comparing Concurrency Semantics. The-oretical Computer Science 76 (1990), 179-222.[37] R. Koymans, R.K. Shyamasundar, W.P. de Roever, R. Gerth and S. Arun-Kumar. Com-positional Semantics for Real-Time Distributed Computing. Information and Computation79 (1988), 210-256.[38] K. Kuratowski. Sur une M�ethode de M�etrisation Compl�ete des Certains Espaces d'En-sembles Compacts. Fundamenta Mathematicae 42 (1956), 114-138.[39] E. Michael. Topologies on Spaces of Subsets. Transactions of the American MathematicalSociety 71 (1951), 152-182.[40] M. Nivat. In�nite Words, In�nite Trees, In�nite Computations. Foundations of ComputerScience (J.W. de Bakker and J. van Leeuwen, eds.), Mathematical Centre Tracts 109,Mathematical Centre, Amsterdam (1979), 3-52.[41] G.M. Reed. A Hierarchy of Domains for Real-Time Distributed Computing. ProceedingsMathematical Foundations of Programming Languages and Semantics (M. Main, A. Melton,M. Mislove and D. Schmidt, eds.), Lecture Notes in Computer Science 442, Springer (1991),80-128.

Well-de�nedness proofs 35[42] G.M. Reed and A.W. Roscoe. Metric Spaces as Models for Real-Time Concurrency. Pro-ceedings Mathematical Foundations of Programming Languages and Semantics (M. Main,A. Melton, M. Mislove and D. Schmidt, eds.), Lecture Notes in Computer Science 298,Springer (1987), 331-343.[43] G.M. Reed and A.W. Roscoe. A Timed Model for Communicating Sequential Processes.Theoretical Computer Science 58 (1988), 249-261.[44] J.J.M.M. Rutten. Semantic Correctness for a Parallel Object-Oriented Language. SIAMJournal of Computation 19 (1990), 341-383.[45] S.A. Smolka and B. Ste�en. Priority as Extremal Probability. Proceedings Conference onTheories of Concurrency: Uni�cation and Extension (J.C.M. Baeten and J.W. Klop, eds.),Lecture Notes in Computer Science 458 (1990), 456-466.[46] J.A. Stankovic. A Serious Problem for Next-Generation Systems. Computer 21 (1988), 10-19.[47] N. Wirth. Towards a Discipline of Real-Time Programming. Communications of the ACM20 (1977), 577-583.A Well-de�nedness proofsIn this appendix the well-de�nedness proofs of the mappings O�d (lemma 5.6) and 	O�D�(lemma 5.15) are presented. Usually the well-de�nedness of a semantic mapping, which isrelated to a labelled transition system, follows from the fact that the labelled transition systemis �nitely branching, i.e. for all con�gurations C the set f(�; �C) j C �� � !d �Cg is �nite [36].However our labelled transition system (de�nition 5.2) is not �nitely branching. For example,the setf(�; �C) j [Rt2[1:03;2:41](a; t); �]�� �!d �Cg = f((a; r); [E; [t1=r]]) j r 2 [1:03; 2:41]gis in�nite. For our labelled transition system we have more involved properties (compactlybranching property and continuity property), which are stated in the following de�nitions.De�nition A.1A labelled transition system (Conf; Label;�!) is compactly branching whenever we have thatfor all C 2 Conf the set f(l; C 0) j C �� l!d C 0g is compact.End A.1Note that if a labelled transition system is �nitely branching then it is also compactly branching.De�nition A.2A labelled transition system (Conf; Label;�!) is continuous whenever the mapping Init :Conf ! P(Label� Conf) given by Init(C) = f(l; C 0) j C �� l!d C 0g is continuous.End A.2If the con�gurations are endowed with a discrete metric then the corresponding labelled transi-tion system is continuous. Our labelled transition system is compactly branching and continuousas is stated in the following property.

36 Well-de�nedness proofsProperty A.3The labelled transition system de�ned in de�nition 5.2 is compactly branching and continuous.ProofWe prove this property using induction on the complexity of statement s. We assume thatlimi!1 �i = �.1 Let s � (a; e).f(l; �C) j [(a; e); �]�� l!d �Cg=f((a;V(e�)); E)gThis set is compact. Furthermore, we have thatlimi!1f(l; �C) j [(a; e); �i]�� l!d �Cg=limi!1f((a;V(e�i)); E)g= e is continuousf((a;V(e�)); E)g=f(l; �C) j [(a; e); �]�� l!d �Cg2 Let s � x and (x; g) 2 d.f(l; �C) j [x; �]�� l!d �Cg=f(l; �C) j [g; �]�� l!d �CgThis set is compact. We have thatlimi!1f(l; �C) j [x; �i]�� l!d �Cg=limi!1f(l; �C) j [g; �i]�� l!d �Cg=f(l; �C) j [g; �]�� l!d �Cg=f(l; �C) j [x; �]�� l!d �Cg3 Let s � s1; s2.f(l; �C) j [s1; s2; �]�� l!d �Cg=f(l; [�s; s2; �0]) j [s1; �]�� l!d [�s; �0]gThis set is compact. Also we have thatlimi!1f(l; �C) j [s1; s2; �i]�� l!d �Cg=limi!1f(l; [�s; s2; �0]) j [s1; �i]�� l!d [�s; �0]g=f(l; [�s; s2; �0]) j [s1; �]�� l!d [�s; �0]g=f(l; �C) j [s1; s2; �]�� l!d �Cg4 Let s � s1 [s2.f(l; �C) j [s1 [s2; �]�� l!d �Cg=f(l; �C) j [s1; �]�� l!d �Cg [f(l; �C) j [s2; �]�� l!d �Cg

Well-de�nedness proofs 37This set is compact. We have thatlimi!1f(l; �C) j [s1 [s2; �i]�� l!d �Cg=limi!1f(l; �C) j [s1; �i]�� l!d �Cg [f(l; �C) j [s2; �i]�� l!d �Cg=f(l; �C) j [s1; �]�� l!d �Cg [f(l; �C) j [s2; �]�� l!d �Cg=f(l; �C) j [s1 [s2; �]�� l!d �Cg5 Let s � s1 k s2.f(l; �C) j [s1 k s2; �]�� l!d �Cg=f(l; [�s k s2; �0]) j [s1; �]�� l!d [�s; �0]g [f(l; [s1 k �s; �0]) j [s2; �]�� l!d [�s; �0]gThis set is compact. Also we have thatlimi!1f(l; �C) j [s1 k s2; �i]�� l!d �Cg=limi!1f(l; [�s k s2; �0]) j [s1; �i]�� l!d [�s; �0]g [f(l; [s1 k �s; �0]) j [s2; �i]�� l!d [�s; �0]g=f(l; [�s k s2; �0]) j [s1; �]�� l!d [�s; �0]g [f(l; [s1 k �s; �0]) j [s2; �]�� l!d [�s; �0]g=f(l; �C) j [s1 k s2; �]�� l!d �Cg6 Let s � Rt2T s and var(�) = ft1; : : : ; tng.f(l; �C) j [Rt2T s; �]�� l!d �Cg=f(l; �C) j [s[t=tn+1]; �[tn+1=r]]�� l!d �C ^ r 2 Tg=Sff(l; �C) j [s[t=tn+1]; �[tn+1=r]]�� l!d �Cg j r 2 TgFor each r 2 T the set f(l; �C) j [s[t=tn+1]; �[tn+1=r]]�� l !d �Cg is compact. Furthermore,the set ff(l; �C) j [s[t=tn+1]; �[tn+1=r]]�� l!d �Cg j r 2 Tg is compact, because T is compactand f(l; �C) j [s[t=tn+1]; �[tn+1=r]] �� l !d �Cg is continuous in r. Michael's theorem givesus that the set Sff(l; �C) j [s[t=tn+1]; �[tn+1=r]]�� l!d �Cg j r 2 Tg is compact.From de�nition 2.11 we can derive that there exists a subsequence f�i+kgi such thattvar(�i+k) = ft1; : : : ; tng.limi!1f(l; �C) j [Rt2T s; �i]�� l!d �Cg=limi!1f(l; �C) j [Rt2T s; �i+k]�� l!d �Cg=limi!1f(l; �C) j [s[t=tn+1]; �i+k [tn+1=r]]�� l!d �C ^ r 2 Tg=limi!1Sff(l; �C) j [s[t=tn+1]; �i+k [tn+1=r]]�� l!d �Cg j r 2 Tg=Sflimi!1f(l; �C) j [s[t=tn+1]; �i+k [tn+1=r]]�� l!d �Cg j r 2 Tg=Sff(l; �C) j [s[t=tn+1]; �[tn+1=r]]�� l!d �Cg j r 2 Tg=f(l; �C) j [Rt2T s; �]�� l!d �CgEnd A.3

38 Well-de�nedness proofsTo prove the well-de�nedness of the mapping O�d we introduce a collection of mappings Omd ,which describe approximations of O�d.De�nition A.4The mapping Omd : [Conf ! Pnc(TS)] is given byOmd (C) = f< �1; : : : < �n�1; �n > : : : >j C �� �1 !d C1 �� �2 !d � � � �� �n !d [E; �0] ^ n � mg[f< �1; : : : < �m�1; �m > : : : >j C �� �1 !d C1 �� �2 !d � � � �� �m !d CmgEnd A.4We prove that all these mappings are well-de�ned using property A.3.Property A.5The mappings Omd are well-de�ned.ProofWe prove this property with induction on m.1 Let m = 1.O1d(C)=f�1 j C �� �1 !d [E; �0]g [f�1 j C �� �1 !d C1gBy inspection of the labelled transition system we can derive the non-emptiness of this set.The compactness of this set follows immediately from the compactly branching property ofthe labelled transition system. The continuity of O1d follows from the continuity propertyof the labelled transition system.2 Let m > 1.Omd (C)=f< �1; : : : < �n�1; �n > : : : >j C �� �1 !d C1 �� �2 !d � � � �� �n !d [E; �0] ^ n � mg [f< �1; : : : < �m�1; �m > : : : >j C �� �1 !d C1 �� �2 !d � � � �� �m !d Cmg=f�1 j C �� �1 !d [E; �0]g [f< �1; : : : < �n�1; �n > : : : >j C���1 !d C1^C1���2 !d � � ����n !d [E; �0]^n � mg[f< �1; : : : < �m�1; �m > : : : >j C �� �1 !d C1 ^ C1 �� �2 !d � � � �� �m !d Cmg=f�1 j C �� �1 !d [E; �0]g [f< �1; � >j C �� �1 !d C1 ^ � 2 Om�1d (C1)gBy inspection of the labelled transition system we can derive the non-emptiness of thisset. The set f�1 j C���1 !d [E; �0]g is compact. Also the set f< �1; � >j � 2 Om�1d (C1)gis compact. Because Om�1d is continuous and the labelled transition system is compactlybranching, the set ff< �1; � >j � 2 Om�1d (C1)g j C �� �1 !d C1g is compact. Michael'stheorem gives us that the set f< �1; � >j C �� �1 !d C1 ^ � 2 Om�1d (C1)g is compact.The continuity of Omd follows immediately from the the continuity of Om�1d and the factthat the labelled transition system is continuous.End A.5Because the mappings Omd are well-de�ned, we can conclude that O�d is well-de�ned.Lemma A.6The mapping O�d is well-de�ned.

Well-de�nedness proofs 39ProofThe sequence fOmd gm is a Cauchy sequence : 8N 2 IN : 8m > N : 8n > N : dPnc(T)(Omd ;Ond) �2�N . Furthermore, we have that limm!1Omd = O�d.End A.6We conclude this appendix with the well-de�nedness proof of the higher-order mapping 	O�D� .Also in this proof we will use property A.3.Lemma A.7The mapping 	O�D� is well-de�ned.ProofBy inspection of the labelled transition system we can immediately derive the non-emptiness ofthe set 	O�D�(F)(C).Next we have to prove that the set 	O�D�(F)(C) is compact. Let f�igi be a sequence in	O�D�(F)(C). Then there exits a subsequence f�f(i)gi in one of the following sets.1 f< �; � >j C �� �!d C 0 ^ � 2 F (C 0)g2 f� j C �� �!d [E; �0]gIn the �rst case we have that �f(i) =< �f(i); �f(i) > where C���f(i) !d C 0f(i) and �f(i) 2 F (C 0f(i)).Because the labelled transition system is compactly branching, the sequence f(�f(i); C 0f(i))gihas a converging subsequence f(�f(g(i)); C 0f(g(i)))gi, which converges to some (�;C 0) such thatC �� � !d C 0. Because F is continuous, fF (C 0f(g(i)))gi converges to F (C 0). For each �f(g(i)) 2F (C 0f(g(i))) we can �nd a �0i 2 F (C 0) such that dTS(�f(g(i)); �0i) � 2dPnc(TS)(F (C 0f(g(i))); F (C 0)).Because F (C 0) is compact, the sequence f�0igi has a converging subsequence f�0h(i)gi, which con-verges to some � 2 F (C 0). We have that the sequence f�f(g(h(i)))gi also converges to �, becausedTS(�f(g(h(i))); �) � dTS(�f(g(h(i))); �0h(i)) + dTS(�0h(i); �) � 2dPnc(TS)(F (C 0f(g(h(i)))); F (C 0)) +dTS(�0h(i); �). So f�f(g(h(i)))gi converges to < �; � >, which is an element of 	O�D�(F)(C). Inthe second case, we have that �f(i) = �f(i) where C �� �f(i) !d [E; �0f(i)]. Because the labelledtransition system is compactly branching, the sequence f(�f(i); [E; �0f(i)])gi has a convergingsubsequence f(�f(g(i)); [E; �0f(g(i))])gi, which converges to (�; [E; �0]) where C ���!d [E; �0]. Sof�f(g(i))gi converges to �, which is an element of 	O�D�(F)(C).Finally, we have to prove that 	O�D�(F) is continuous. Assume that limi!1 Ci = C, thenwe havelimi!1	O�D�(F)(Ci)=limi!1f< �; � >j Ci �� �!d C 0 ^ � 2 F (C 0)g [f� j Ci �� �!d [E; �0]g= the labelled transition system is continuousf< �; � >j C �� �!d C 0 ^ � 2 F (C 0)g [f� j C �� �!d [E; �0]g=	O�D�(F)(Ci)End A.7

