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Abstract

An operational and a denotational semantic model are presented for a real-time program-
ming language incorporating the concept of integration. This concept of integration, which
has been introduced by Baeten and Bergstra [4], enables us to specify a restricted form
of unbounded non-determinism. For example, the execution of an action at an arbitrary
moment in a time interval can be specified using integration. The operational and the de-
notational model are proved to be equivalent using a general method based on higher-order
transformations and complete metric spaces. In this context, Banach’s fixed point theorem
and Michael’s theorem will turn out to be the most important aspects of complete metric
spaces. Banach’s theorem, which states that a contraction on a complete metric space has a
unique fixed point, will be used to define semantic models and to compare semantic models.
Michael’s theorem, which roughly states that a compact union of compact sets is compact,
will be used for the definition of semantic models.
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Introduction

Real-time programming can be viewed as traditional concurrency supplied with timing con-
straints [47]. Because these timing constraints cause more complexity, the advantages of high-
level languages are even greater in real-time programming than in concurrency and sequential
programming. Several languages, like RTL [35], have been designed specifically for real-time
programming. Other languages are extensions of already existing languages, for example, the
language TCSP [24, 25] is an extension of the language CSP [34]. In real-time programming
the correctness of a program depends not only on the flow of control. The program should also
meet its timing constraints [46]. Therefore new semantic models should be developed. Several
models both operational [4, 28, 32] and denotational [27, 37, 43] have already been provided.
In this paper a simple real-time programming language is studied. Apart from the tradi-
tional programming constructs, this language incorporates timed atomic actions and integration.
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2 Language definition

Timed atomic actions are atomic actions each provided with some timing information. This tim-
ing information denotes when the atomic action should be executed. The concept of integration
has been introduced by Baeten and Bergstra [4]. A statement is integrated over a time set,
which is a subset of the time domain, i.e. a non-deterministically chosen value from the time set
is passed to the statement. Integration enables us to specify the execution of an action at an
arbitrary moment in a time interval, for example, fte 1.03’2.41]((1, t) denotes the execution of the
action a at an arbitrary moment in the time interval [[1.03, 2.41]. This execution can give rise to
an infinite (conceptually uncountable) number of different executions.

For this simple real-time programming language an operational and a denotational semantic
model are presented. The operational model is based on a labelled transition system in the style
of Hennessy and Plotkin [31]. The denotational model is by definition compositional and fixed
points are exploited to handle recursion. This denotational model uses a complete metric space as
its mathematical domain, which has been initiated by Nivat [40] and de Bakker and Zucker [16].

To compare these models a method based on higher-order transformations, which has been
described by Kok and Rutten [36], is used. This general method for comparing different semantic
models has already been applied successfully to several programming paradigms varying from
notions related to concurrency [7, 13, 14] to notions related to logic programming [6, 10, 20]
and object-oriented programming [15, 44]. The present paper shows another application of this
technique. This method is founded on complete metric spaces. Higher-order transformations are
used to define semantic operators and models. Furthermore, the higher-order transformations
are also used to compare semantic models.

In the definition of semantic models and in the comparison of these models we use several
aspects of complete metric spaces; Banach’s theorem, which states that if X is a complete metric
space and f : X — X is a contraction then f has a unique fixed point, will be used to define
semantic models and to compare these models. Furthermore, in combination with fixed point
induction Banach’s fixed point theorem will be used to prove several properties of these semantic
models; Michael’s theorem, which states that if X' is a compact set of compact sets then the
set |J X is also compact, will be used to define semantic models; Kuratowski’s theorem, which
states that if X is a complete metric space then P,.(X), the set of non-empty compact subsets
of X, provided with the Hausdorff metric based on the metric of X is again a complete metric
space, will be used to obtain complete metric spaces as mathematical domains of the semantic
models.

In this paper a denotational modelling of integration is presented. This concept of integra-
tion describes a restricted form of unbounded non-determinism. In general, the modelling of
unbounded non-determinism causes serious technical problems [3, 5, 33]. Because higher-order
transformations are used, infinite computations can be modelled. This combination of metri-
cally modelling a restricted form of unbounded non-determinism and infinite computations has
not been presented elsewhere [21, 41]. Because the denotational model is compared with an
operational model, which captures the computational intuition, we can derive the correctness of
this denotational model with respect to the operational model. Banach’s fixed point theorem
and Michael’s theorem play a technical but eminent role as will become clear in the rest of this

paper.

1 Language definition

In this section we introduce the syntax of the real-time programming language, which is studied
in this paper. This programming language is an extension of one of the languages studied
by de Bakker and Meyer [13]. The language is uniform, i.e. the elementary actions are left
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atomic [11]. The language is built from atomic actions provided with some timing information,
sequential composition, non-deterministic choice, parallel composition, so-called integration and
recursion.

The real-time concepts of this language are timed atomic actions and integration. With
timed atomic actions we denote atomic actions each provided with an expression. The evaluation
of this expression yields an element of the time domain denoting the amount of time the atomic
action should be executed after its enabling. Integration of a statement over some time set,
which is a subset of the time domain, gives rise to the execution of the statement with some
non-deterministically chosen value from the time set passed to that statement.

Before we can introduce the syntax of expressions, which are part of timed atomic actions,
we first introduce the following sets:

e the set IR~ of positive real numbers, with typical element r, which is our time domain;
e the set T'Var of time variables, with typical element ¢;

e the set F'Sym of function symbols, with typical element f.

With each function symbol f we associate a function f : IRT — IR.. We have to restrict
the functions to continuous functions in order to be able to model integration as will become
clear in section 4.

Definition 1.1

The class Exp of expressions, with typical element e, is given by
ex=t| fler,...,€n)

End 1.1

Because expressions are built from function symbols and time variables, expressions themselves
can also be associated with continuous functions. We will denote the value of an expression e
by V(e). After having defined the syntax of expressions, we have to introduce the following sets
in order to be able to define the class of statements:

e the (possibly infinite) set Atom of atomic actions, with typical element q;
e the set PVar of procedure variables, with typical element x;

e the collection of time sets, which is represented by P,. (IR ), the set of non-empty compact
subsets of IR, with typical element T

Integration gives rise to a non-deterministic choice of an element from a time set. To guarantee
that we can always make such a choice we have to restrict time sets to non-empty subsets of
IR~.. The restriction of time sets to compact subsets of IR~ has a technical motivation and this
restriction will be crucial for the modelling of integration.

Definition 1.2

The class Stat of statements, with typical element s, is given by
su=(a,e)|x|si;82|s1Usa|s1] 82| fyeps

End 1.2

A statement s is of one of the six following forms:
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(a,e) : a timed atomic action: the atomic action a has to be executed at time V(e), the
value of the expression e, after its enabling;

e x : a procedure call: execution of the corresponding body of the procedure x;
® s1; 59 : sequential composition of the statements s; and ss;
® 51 U sy : non-deterministic choice of the statements s; and so;

e 51 || so : parallel composition of the statements s; and so: the arbitrary interleaving of
the atomic actions of both statements;

o [,cps : integration: execution of the statement s with an arbitrary element of T passed
to the time variable ¢ in s.

The execution of the statement (a, 1.56) corresponds to the execution of the atomic action a.
The atomic action a should be executed 1.56 after its enabling. The execution of the inte-
gration ficiogo 1.73(a, f(t)) corresponds to the execution of the statement (a, f(t)) with a non-
deterministically chosen value from the time set [0.82,1.73] passed to the time variable ¢ in
that statement, which can give rise to the execution of, for example, (a, f(1.08)). Because the
evaluation of an expression delivers a positive real number, two successive atomic actions cannot
be executed at the same time. We stipulate that the execution of atomic actions and operators
takes no time. We refer to [19] for a justification of this assumption. Next we introduce the
class of guarded statements, which will be used to define procedure bodies.

Definition 1.3
The class GStat of guarded statements, with typical element g, is given by

gu=(a,e)|gslaVg|gllo| ficrg
End 1.3

Before we give the definition of the class of declarations, which bind procedure variables with
their corresponding bodies, we introduce the notion of free time variables.

Definition 1.4
The mapping tvar : FzpU Stat — P(T'Var) is given by
tvar(t) = {t}

tvar(f(ei,...,en)) =tvar(e1)U---Utvar(e,)
tvar((a,e)) = tvar( )
tvar(z) =0
tvar(sy * s3) = tvar(sy) U tvar(sa) xe{;,U, ]}
tvar( f,cp s) = tvar(s) \ {t}
End 1.4

A statement is called closed whenever it does not contain any free time variables. In several
cases we will restrict ourselves to the class of closed statements or the class of closed guarded
statements, which are defined in the following definition.

Definition 1.5
The class CStat of closed statements, with typical element s, is given by
CStat = {s € Stat | tvar(s) = 0}
and the class CGStat of closed guarded statements, with typical element g, is given by
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CGStat = {g € GStat | tvar(g) = 0}
End 1.5

Now we have all the ingredients to define the class of declarations.

Definition 1.6

The class Decl of declarations, with typical element d, consists of sets of pairs
{(z,9:;) € PVar x CGStat | 1 <i < n}

where x; are distinct procedure variables.

End 1.6

All procedure bodies in a declaration are restricted to guarded statements. This requirement
corresponds to the usual Greibach condition in formal language theory. There are possibilities
to eliminate this restriction as is illustrated by Reed and Roscoe [41, 42, 43]. However, by
eliminating this restriction we are not able to model recursion any more. The restriction of the
procedure bodies to closed statements guarantees that there are no global time variables. The
execution of the procedure call z, where z is declared as (a, 1); z, corresponds to the execution
of the procedure body (a,1);z. We conclude this section with the definition of the class of
programs.

Definition 1.7
The class Prog of programs, with typical element p, consists of pairs (d,s), such that each

procedure variable occurring in s or d is declared in d and s € CStat.
End 1.7

2 Complete metric spaces

Before the operational and denotational model are presented, we pay some attention to some
aspects of complete metric spaces. These complete metric spaces have been introduced into
semantics in papers of Nivat [40] and de Bakker and Zucker [16]. In this section we present two
main theorems, Banach’s fixed point theorem and Michael’s theorem, which will be used fre-
quently in the rest of this paper. For further reference considering metric spaces we suggest [26].

First we show how we can compose metric spaces. In the following definition we give some
possible compositions, which will be used in the rest of this paper.

Definition 2.1
Let (X,dyx), (X1,dx,) and (X9,dx,) be metric spaces, where dy : X x X — [0,1], dx, :
X1 X Xl — [O, 1] and dX2 : XQ X X2 — [071]
e We define a metric on the Cartesian product of X; and Xs, X7 x Xy, by
dX1><X2(('r1ﬂ xQ)? (yla y2)) = max{Xm(Ih yl); dXz ($27 yQ)}
o We define a metric on the collection of functions from X; to X9, X1 — X5, by

dx,—x, (f1, f2) = sup{dx,(fi(z), fo()) | € X1}

e We define a metric on the collection of continuous functions from X; to Xy, [X; — X3,
by

dix,—x21(f1, f2) = sup{dx,(fi(z), fo(z)) | z € X1}
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e We define a metric on the disjoint union of X; and Xy, X1 U X5, by

dx, 0 x,(%,y) = dx, (2, ) reXiNyeXy
dx, 0 x,(7,9) = dx, (2, ) reXoNy € Xy
dx, 0 x,(z,y) =1 otherwise

e We define a metric on X by
didy (x) (2, y) = 2dx(z,y)
e We define a metric, the Hausdorff metric [30], on the set of non-empty compact subsets of
X, Pne(X), by
s - e L)
End 2.1

The following theorem states that the compositions, which have been described in the previous
definition, of complete metric spaces give us again complete metric spaces.

Theorem 2.2
If (X,dx), (X1,dx,) and (X2,dx,) are complete metric spaces, where dx : X x X — [0, 1],
dx, : X1 x X1 —[0,1] and dx, : X3 x X3 — [0, 1], then

X1 0 Xo,dx, 0 x,)

3

(
(
e ([X1— X2]7d[X1—>X2})a
(
(

(X)) and

[N

o (Pre(X), dP,.,(,-(X))

are also complete metric spaces.
End 2.2

All proofs but the proof of the last case of the above theorem are straightforward. The proof
of the last case, Kuratowski’s theorem, can be found in [38]. The next theorem, Banach’s fixed
point theorem [17], states that a contraction on a complete metric space has a unique fixed
point. We will use this theorem to define semantic operators and models and to compare the
semantic models developed below.

Theorem 2.3

If (X,dyx) is a complete metric space and f : X — X is a contraction then f has a unique fixed
point z. Furthermore, we have that Vy € X : lim, o f™(y) = z.

End 2.3

Michael’s theorem [9, 39] states that a compact union of compact sets is again compact. This
theorem will be used for the definition of semantic operators and semantic models.
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Theorem 2.4

For all X € Ppe(Pne(X)) we have that J X € Pp(X).

Proof

Let {z;}; be a sequence in |JAX. Then there exists a sequence {X;}; in X such that z; € X.
Because X’ is compact, {X;}; has a converging subsequence {X;}:, which converges to some
X € X. For each z; we can find y; € X such that dx(z;,¥;) < 2dp, (x)(Xs, X). Because
X is compact, the sequence {yy(;}; has a converging subsequence {y,:))}:; which converges
to some y € X. Then we have that dX($f(g(z))y) < dX(a:f(g(z))yf(g(z))) + dX(yf(g(z))yy) <
2dp, . (x)(Xf(gi)), X) +dx (Ys(g(s)): ¥)- So we can conclude that {z;}; has converging subsequence
{Z f(g()) }s» Which converges to y € U X

End 2.4

In the remainder of this section we introduce complete metric spaces, which will be used in the
rest of this paper. First of all, we define the so-called discrete metric on the class of atomic
actions. We obtain a complete metric space.

Definition 2.5
The mapping dazom : Atom X Atom — [0, 1] is given by

datom(a,a’) =0 a=a
datom(a,a’) =1 a#a
End 2.5

We extend our time domain IR to the set of non-negative real numbers IR> in order to obtain a
complete metric space. As will become clear in section 4 and 5 each mapping dr. : IR> X [R> —
[0, 1] defining a complete metric space suffices. The metric d. specifies the collection of compact
subsets of the time domain: the collection of time sets. We can define a metric on IR> as follows.

Definition 2.6
The mapping dr,, : IR> x IR> — [0,1] is given by

|r—r"|

dpy (r,7') = s
End 2.6

With respect to this metric closed intervals are compact sets. Furthermore, this metric and the
usual metric on IR>, dp. (r,7') = |r — /|, are equivalent, i.e. both induce the same converging
behaviour. However, the metric of definition 2.6 is restricted to [0,1]. Next we introduce the
class of timed actions. These timed actions will be used to describe the execution of timed
atomic actions.

Definition 2.7

The class T A of timed actions, with typical element «, is given by
TA = Atom x IR>

End 2.7

With the timed action (a,2) we will describe the execution of the atomic action a. The atomic
action a is executed 2 after its enabling. We define a metric on timed actions by combining
the metrics we have already defined on Atom and IR> as described in definition 2.1. As stated
in theorem 2.2 we obtain a complete metric space. To describe the execution of a sequence of
timed atomic actions we introduce timed streams. We define this class of timed streams as the
unique (up to isomorphism) solution of a domain equation in a certain category of complete
metric spaces [1, 16].
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Definition 2.8

The class T'S of timed streams, with typical element o, is given by the domain equation
TS=TAUTAxidi(TS)

End 2.8 ’

For example, the timed stream < (a,2),< (b,1),(c,3) >> describes the execution of atomic
action a at 2 (after its enabling) followed by the execution of atomic action b at 1 and the
execution of atomic action ¢ at 3. Furthermore, we have that, for example,

drs(< (a,2),(b,1) >, < (a,3),(c,1) >)

maz{dra((a,2),(a,3)), 3drs((b, 1), (c, 1))}

maz{dra((a,2), (a,3)), 5dra((b, 1), (¢, 1))}

maz{maz{datom(a,a),dr(2,3)}, Imaz{datom(b, c), drs (1,1)}}

maz{maz{0, 3}, 3maz{1,0}}

1

2
Sets of sequences of timed atomic actions will be described by non-empty compact sets of timed
streams. We can obtain a complete metric space on these sets of non-empty compact sets of
timed streams as is described in definition 2.1 and theorem 2.2. Also on the class of statements
we define the discrete metric. Again we obtain a complete metric space. Finally, we introduce
the class of substitutions and define a metric on this class.

Definition 2.9

The class Subst of substitutions, with typical element 0, consists of the class of homomorphisms
from Ezp to IR>.

End 2.9

We will only consider substitutions # with a finite support, i.e. there exist only finitely many
time variables ¢t such that 8t # t. To simplify the exposition we will, without loss of generality,
assume in almost all cases that substitutions 6 satisfy the additional property that the set of time
variables occurring in 6 is exactly the set {¢1,...,t,} of the first n time variables. Substitutions
will be notated as [t1/r1,...,tn/rn]. With ¢ we denote the empty substitution. For these
substitutions we define the set of time variables occurring in those substitutions as follows.

Definition 2.10
The mapping tvar : Subst — P(T'Var) is given by

tvar(0) = {t1,...,tn | 0 =[t1/71,. .. tn/Tn]}
End 2.10

We conclude this section with the definition of the metric on substitutions and the observation
that this metric gives us a complete metric space.

Definition 2.11
The mapping dgypst : Subst x Subst — [0, 1] is given by

dSubst(Guel) =0 =ecNbl =¢
dsubst(0,0') = maz{dRr, (0t,0't) | t € tvar(0)} tvar(8) = tvar(8') NG £ c NG #¢
dsubst(0,0") = 1 otherwise

End 2.11
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3 Operational semantics

In this section we present an operational semantic model for our language. The operational
semantics of a program describes the behaviour of an abstract machine running that program.
The execution of a program on an abstract machine is characterised by sets of timed streams.
Which timed actions and in which order the timed actions are performed by the abstract machine
is described by means of a labelled transition system a la Hennessy and Plotkin [31].

Before giving a labelled transition system, we first introduce the empty statement £. This
empty statement [2] is associated with termination. The class of statements Stat is extended to
StatE.

Definition 3.1

The class Statg, with typical element s, is given by
Statg = Stat U{F}

End 3.1

Having extended the class of statements, we also extend the notions of free time variables and
closed statements.

Definition 3.2

The mapping tvar : FxpU Statp — P(TVar) is given by
tvar(FE) =0

End 3.2

Definition 3.3

The class CStatg, with typical element &, is given by
CStaty = {5 € Statg | tvar(s) = 0} = CStat U {E}

End 3.3

Tt will be convenient to allow expressions of the form 5 % 5'. This will reduce the number of
rules of the labelled transition system. We define the following reasonable equivalences on these
expressions.

Definition 3.4

For all 5 € Statg and = € {;,U,||}
sx K =35
FE x5

End 3.4

S
5

Next we present a transition relation, which induces a labelled transition system as has been
described in, for example, [29].

Definition 3.5
The transition relation — is the smallest subset of CStat x T'A x Decl x CStatg satisfying

(a,e) — (a,V(e)) —q F

g—a—q5§ (z,9) €d
5

r— & —¢g
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S—a—y4S

8,8 —a—435 s

S—Oé—>d§

sUs —a—45
sUs—a—45

S—a—y4 S8

sl —a—yg5| s
sls—a—gs]s

slt/r] —a—4 3 reT

fteTS_O[—>d§

End 3.5

Intuitively, a rule s —a —4 § tells us that the execution of statement s consists of timed action
a followed by the execution of statement s. Consider the axiom for the statement (a,e). The
execution of (a,e) consists of the execution of atomic action a at V(e), the value of expression e,
after its enabling followed by termination. Because (a,e€) is a closed statement, the evaluation
of the expression e delivers an element of IR~. Since the evaluation of an expression delivers
an element of IR~, we can conclude that two successive atomic actions cannot be executed at
the same time. The rule for a procedure call indicates body replacement. Parallel composition
is modelled by arbitrary interleaving of the atomic actions of both statements. The rule for
integration states that some arbitrary element r from time set T is passed to time variable ¢ in
statement s. Using the above rules we can derive that [,c(y 3 5.41(a,t) — (a,7) —q E for all
r € [1.03,2.41].

Now we can define the operational semantics for closed statements s, related to a declara-
tion d, such that all procedure variables occurring in statement s or declaration d are declared
in declaration d.

Definition 3.6
The mapping Oy : CStat — P(T'S) is given by
o € Oy4(s) if and only if one of the following conditions is satisfied:

e In € IN :dsy,...,8, € CStat: daq,...,an1 € TA:
S— Q] =g 81 — 0y =g — Qp —7d Sp — Ap41l _>dE/\
0 =< q1,< 09, " < Qp,Qpt1 > - >>

e dsy,...€ CStat: Jaq,... € TA:
§— 1 —g81— 0 —g---No=<a,<qy,--->>

End 3.6

For example, we have that Og(fye(103,2.41(a: 1)) = {(a,1.03),...,(a,2.41)}. We conclude this
section with the definition of the operational semantics for programs.

Definition 3.7

The mapping O : Prog — P(TS) is given by
O((d, 5)) = Oa(s)

End 3.7
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4 Denotational semantics

After having defined an operational semantics, we give a denotational semantics for the language.
This denotational semantics is by definition compositional, i.e. the meaning of a program can be
derived from the meaning of its constituent parts. Fixed points are used to deal with recursion.
To obtain a compositional model we define for every syntactic operator O a corresponding
semantic operator <, such that, for example, D((d, s10s2)) = D((d, 51))OD((d, s2)). To handle
recursion we define the denotational model as a fixed point of a higher-order transformation. In
this section we will use extensively Banach’s fixed point theorem and Michael’s theorem. Both
theorems will be used for the construction of the semantic operators and the denotational model.

For the syntactic operator ; we define a corresponding semantic operator, which will also be
denoted by ;. First we define the semantic operator ; on timed streams. This operator will be
defined as a fixed point of a higher-order transformation W,. This higher-order transformation
is a contraction on a complete metric space. Using Banach’s fixed point theorem, we can
conclude that W, has a unique fixed point, which we will denote by ;. Then we lift the semantic
operator ;, which has been defined on timed streams, such that we obtain a semantic operator
defined on (non-empty compact) sets of timed streams. First we introduce the higher-order
transformation W..

Definition 4.1

The mapping V. : (T'S X T'S — Ppe(TS)) = (TS x TS — Ppe(TS)) is given by
U.(F)a,7)={<a,7>}
V.(F)(<a,0>1)={<a,p>pe F(o,1)}

End 4.1

It is obvious that the mapping V. is well-defined. Next we prove that this mapping is a contrac-
tion.

Property 4.2

The mapping W, is a contraction.
Proof

We distinguish the following two cases.

Ldp,.(rs)(V;(F)(, 7), ¥,(G)(a, 7))

dP71,{;(TS)({< a, T >}a {< «, T >})

= A O Il

drsxT8—P.(Ts) (I, G)

2 dP,,,,;(TS)(\II§<F)(< a,0 >77_)7\II;(G)(< a,o >7T))

dp, . rsy({< o, p>|p€ F(o,7)}, {<a,p>|peG(o,7)})

%d,PTJ,c(TS) (F(U: T)’ G(O', T))
<

5drsxr5—p.(15)(F) G)

End 4.2
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Because W. is a contraction on a complete metric space, we can deduce using Banach’s fixed
point theorem that W. has a unique fixed point, which will be denoted by ;.

Corollary 4.3

The operator ;: T'S x T'S — P,.(T'S) given by
a;7={<a,7>}
<o, 0 >T={<a,p>|p€o;T}

is well-defined.

End 4.3

Before we can lift the semantic operator ;, we have to prove that this operator is continuous. We
prove that the operator ; is non-distance increasing in its first argument and contracting with
factor % in its second argument using fixed point induction and Banach’s fixed point theorem

without using the definition of the metric dp. .

Property 4.4
For all o,0', 7,7 € T'S and ¢ € IR>
drs(o,0') <eNdrs(1,7") < 2e = dp, (15)(0; 7,0, 7') < €
Proof
We first prove
Vn > 0:drs(o,0') <eNdrps(t,7') <2 = dp, (75 (Y (F)(0,7), ¥ (F) (o', 7")) < ¢
where F(o,7) = {c}, with induction on n.

1 Let n=0.
dp,.crs) (¥ (F)(o,7), ¥)(F)(c',7"))

d’Pnn(TS)(F(Uv T)’F(UI:T/))

C;Pnc(TS)({O-}a {o'})
drs(o,0)
<

£

2 Let n > 0.
We distinguish four cases.

2.1 Let 0 = (a,r) and o' = (a,1").

2.1.1. Let a=4d'.
Then we have that drs(o,0') = dp (r, 7).
dp,.(rs) (Y (F)(0,7), W (F) (o', 7"))

dP,,,,;(TS)({< (a‘a T)wT >}a {< (a/aTI)aT/ >})

maz{dp, (r,v"), 2drs(t,7")}
” >
E
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2.1.2. Let a # d'.
Then we have that drs(o,0”) = 1.
dp,.r5) (V] (F)(0.7), WX (F) (o', 7))
<

€

2.2 Let 0 =< (a,r),0" > and o' = (d',1").
Then we have that dpg(o,0’) = 1.
dPnc(TS) (\II;TL(F)(Uv 7—)7 \I]?(F)(Ula T,))
<

€
2.3 Let 0 = (a,r) and o' =< (a',7'),0" >.
This case is similar to the second case.
2.4 Let 0 =< (a,r),0" > and ' =< (da/,7'),0" >.
2.4.1. Let a =a’.

Then we have that drg(o,0') = maz{dp. (r,7'), 5drs(c"”,o")}.
Furthermore, the induction hypothesis gives us that
dp, . (rs) (YT H(F) (0", 7), UI—H(F) (0", 7")) < 2e.
dp,.(rs) (VI (F) (o, 7), ¥ (F)(o',7'))

r),p>|p €W F)(0",7)}
'), p > p € UPTHE) (0", ')}

Ip,o(TS) ( E EZ

~ -

maz{di, (r,7'), 3dp,(rs) (VI (F) (0", 7), W2 (F) (0", ')}
<
3
2.4.2. Let a #d'.
Then we have that drg(o,0’) = 1.
dp,. (1) (P(F)(o,7), O™(F)(c’, "))
<
3

Now we can proceed as follows.

Vn > 0:drs(o,0') <eNdrps(t,7') <2 = dp, (1) (V(F)(0,7), U (F)(o',7")) < ¢
=

drs(o,0') <eNdpg(r,7') <2e =Vn>0: dpnc(Ts)(\Il;n(F)(O',T), \If;n(F)(OJ,T/)) <e
=

drs(o,0') < e Ndrps(7,7') < 26 = im0 dp,,, (75) (Y (F) (0, 7), WP (F) (o', 7")) <€
=

drs(o,0') <eANdps(r,7') < 2e = d’pm:(TS)(hHln_,oo \IJ;”(F)(U, 7), limy o0 \IJ;TL(F)(O'/, ) <e
= theorem 2.3

drs(o,0') <eNdrs(1,7") < 2e = dp, (1s)(0;7,0;7') <€

End 4.4

The operator ; is lifted to sets of timed streams in the following definition.

Definition 4.5

The operator ;: Ppe(T'S) X Ppe(T'S) — Ppe(T'S) is given by
S;T=U{o;7|c€eSATET}

End 4.5

13
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Next we prove the well-definedness of the lifted operator ; using Michael’s theorem and the fact
that the operator ; is continuous.

Property 4.6

The operator ; is well-defined.

Proof

By definition o;7 € P,o(T'S) for all 0 € S and 7 € T. Because S and T" are compact sets and
the operator ; is continuous, the set {o;7 | 0 € S AT € T} is compact. Theorem 2.4 tells us
that the set (J{o;7 | o € SAT € T} is compact.

End 4.6

Also for the lifted operator ; we prove that it is non-distance increasing in its first argument
and contracting with factor % in its second argument. This property will be used to prove the
well-definedness of the denotational semantics.

Property 4.7
For all S,S8",T,T" € Pp.(1S) and ¢ € IR>

dP,,,,;(TS)(S) S,) <eA dP,,,,;(TS) (T, Tl) <2 = dP,,,,;(TS)(S; T,S"; T/) <e
Proof
We first prove (x)

V6 >0:YRe{o;7r|ceSATeT}: 3R €{o';7'|c' € S"AT €T'}:

de(TS)(Ru R/) <e+é
Take some § > 0 and some o;7 where ¢ € S and 7 € T. Because dp, (75)(S,5') < € and
dp, rs)(T,T") < 2¢, we have that 3o’ € S’ : dps(0,0') < e+band Ir' € T" : dps(r,7") < 26426.
From property 4.4 we can conclude that dp, (rg)(o;7,0';7') < e+ 6. Having proved (x) we can
deduce that dp, (p,.rs)y({o;7 | 0 € SAT € T}{o;7" | o' € S A7 € T'}) < e. Using
property 4.9 we can conclude that dp, (1g)(S;7,5";1") <e.
End 4.7

Next we define two semantic operators which correspond to the syntactic notions of non-
deterministic choice and integration.

Definition 4.8

The operator U : Ppc(1'S) X Pre(T'S) — Pre(1'S) is defined as the set-theoretic union and the
operator | : Pre(Pre(T'S)) — Pre(TS) is defined as the generalised set-theoretic union.

End 4.8

From Michael’s theorem we can conclude that the semantic operator | is well-defined. Both
operators are non-distance increasing.

Property 4.9
For all §,7 € Ppe(Pre(TS)) and € € IR>

AP, (Pue(r8)(S,T) < & = dp, (15 (US,UT) < e
Proof
We have to prove that V6 > 0 : Vo € US : 37 € U7 : drg(o,7) < € + 6. Take some
6 >0and 0 € US. Then ¢ € S for some S € S. We have that V§' > 0 : VS' € S :
AT € T : dp, (7s)(S',T') < e+ 8. So we have that 31" € T : dp, (75)(S, 1) < e+ 5
thus 37" € 7 : V68" > 0:Vo' € S: 37" € T' : dps(o’,7") < e+ g + 6". We conclude that
dreU7T :drs(o,7) <e+6.
End 4.9
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The semantic counterpart of the syntactic operator || is also defined as the unique fixed point of
a higher-order transformation. This higher-order transformation ¥ is defined by means of the
higher-order transformation V..

Definition 4.10

The mapping W) : (1S x T'S — Ppc(T'S)) — (I'S x T'S — Pp(1'S)) is given by
W) (F)(o,7) = U,(F)(o,7) U T,(F)(r,0)

End 4.10

The well-definedness of the mapping ¥ follows from the well-definedness of ¥,. From the fact
that W, is a contraction we can deduce that W is also a contraction as is illustrated in the proof
of the following property.

Property 4.11
The mapping ¥ is a contraction.
Proof

dp,.rs) (V) (F)(o,7), ¥ (G)(o,T))

dp,.rs)(V;(F) (0, 7) UV, (F)(7,0), ¥,(G)(0, 7) U W, (G)(7,0))
< property 4.2 and property 4.9

5475575 —Po(15) (F, G)

End 4.11

We denote the unique fixed point of the higher-order transformation Wy by ||. We can define
|| by means of a so-called left-merge || [18] which expresses a merge where the first element is
taken from the left argument. We have that

o |l =¥)(e,7) =¥()(o,7) V¥ (][)(r,0)
and

ql%(”)(aaT) = {< Q, T >}
and

(< a,0> ) ={<a,p>[pea|r}

Thus we can characterise the operators || and || as follows.

Corollary 4.12

The operator ||: T'S x T'S — Pp.(T'S) given by
o|lT=0c|rUrT|o

and the operator |[: TS X T'S — P,.(TS) given by
allr ={<a,7 >}
<a,0>||[r={<a,p>|p€a| T}

are well-defined.

End 4.12

Also for the semantic operator || we prove a continuity property. This operator is non-distance
increasing in both arguments as is stated in the following property.

Property 4.13
For all 0,0, 7,7 € T'S and ¢ € IR>
drg(o,0') <eNdrs(r,7) <e= dp, . rsy(o || T, | <e
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Proof

From the proof of property 4.4 we know that

Vn>0:drs(o,0") <eNdrs(t,7') <2 = dp, (1) (Y (F)(o,7), ¥ (F) (o', 7")) < ¢
=

Vn > 0:dprs(o,0') <eANdpg(r,7") <e=

5y (WHCF) (0, 7), WHF)(0", 7)) < & A, o) (W7 (F) (7,0, WH(F) (', 07)) < e
= property 4.9

Vn > 0:dps(o,0') <eANdpg(r,7') <e=

dp,.rs) (VI (F) (o, 7) UVT(F)(T,0), VI(F) (o', 7 ) UW(F)(T', 0')) < &

=

Vn > 0:drg(o,0') <eAdrs(r,7') < e = dp, (rs) (V[ (F)(o,7), V}(F)(o', 7)) <€
Using the arguments as in the proof of property 4.4 we can conclude that
drs(o,0') <eNdrs(1,7") <e = dp, (rs)(a || 70" || 7') < e

End 4.13

The operator || is non-distance increasing in its first argument and contracting with factor % in

its second argument.

Property 4.14
For all 0,0, 7,7 € T'S and ¢ € IR>

drs(o,0') <eNdrs(1,7") < 2e = dp, (rs)(o|l7,0'|l7) < e
Proof
From property 4.13 we can deduce that
drs(o,0') <eNdrs(1,7") <26 = dp, (rs)(o || T,0" || 7) <e
Using property 4.4 we can deduce that
drs(o,0") < & Adgs(r,7') < 22 = dp, s (W[ (o, 7). W, () (0, 7)) < &
So we can conclude that
drs(o,0') <eNdps(1,7') <26 = dp, (rs)(o|lT,0'[[T') <€
End 4.14

The operators || and || are lifted to sets of timed streams.

Definition 4.15

The operator ||: Ppe(1'S) X Ppe(T'S) — Pre(1'S) is given by
S|T=S|TuT|S

and the operator [|: Ppe(T'S) X Ppe(TS) — Pne(TS) is given by
ST =U{ollr|ce SATET}

End 4.15

Because the operator || is continuous, we can conclude that the lifted operators || and || are
well-defined.

Property 4.16

The operators || and || are well-defined.
Proof

Similar to property 4.6.

End 4.16

Also the lifted operator || is non-distance increasing in both arguments.
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Property 4.17
For all S,5",T,7' € TS and € € IR>
d(S,8) <enNd(T,T")<e=d(S|T,5|T)<e
Proof
Similar to property 4.7.
End 4.17

Having defined the semantic operators, we define the denotational semantics for statements
related to a declaration, such that all procedure variables occurring in the statement or the
declaration are declared in the declaration. To obtain a compositional model we introduce
substitutions, which record the choices made for the time variables with respect to integration.
For example, to derive the meaning of the statement f,c(; o3 5 417(a;t) from the meaning of the
statement (a,t), we record the choice made for the time variable ¢ in the substitutions [¢/r] for
r € [1.03,2.41].

We define the denotational semantics Dy : Stat — Subst —p, Ppc(T'S) as a partial function
such that Dy(s)(6) is defined whenever tvar(s) C tvar(f). The substitution € should bind all free
variables of statement s. We define the denotational semantics Dy as the fixed point of a higher-
order transformation Wp. We have to impose a restriction on this mapping Wp in order to obtain
a well-defined mapping. We restrict ¥p to a mapping from [Stat — Subst —, Pn.(1'S)], the
collection of continuous mappings Stat — Subst —, Pp(T'S), to [Stat — Subst —, Pp(TS)].

Definition 4.18
The mapping ¥p : [Stat — Subst —, Pp(1'S)] — [Stat — Subst —, Ppe(1'S)] is given by

Up(F)((a,e))(0 )— {(a,V(e0))}

Up(F)(2)(0) = (F)(g)(H) (z,9) e d
Up(F)(s1;52)(0) = ( )(s1)(0); ( 2)(0)
Wp(F)(s1 % 52)(0) = Up(F)(s1)(0) * Up(F)(s2)(6) * € {U, [[}

( )(s1
0) = U{¥n(F)(s)(0[t/r]) [ r € T}

Up(F )(ftET s)(
C tvar(0).

whenever tvar(s) C
End 4.18

In several of the forthcoming proofs, we will use induction on the structure of statements.
Therefore we introduce a complexity function on statements associated with a declaration d in
the usual way.

Definition 4.19
The mapping cfy : Stat — IN is given by
cfa((a,e)) =1

cfa(z) = clalg) + (z,9) €d
cfa(s1;82) = cfd(sl) +1
cfa(s1 xs2) = cfa(s1) + cfa(s2) *€{U, ||}
cfalfers) = cfals) +1

End 4.19

For each guarded statement the complexity function cfy is well-defined, which follows immedi-
ately from the definition of the complexity function and the form of guarded statements. We can
conclude that the complexity function is well-defined for all statements. In the case of sequential
composition only induction on the first argument can be applied. From the definition of the
complexity function we can derive that cfy(s[t/e]) = cfq(s).
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Using this induction principle, we will prove that the higher-order transformation Wp is
well-defined. Because expressions are continuous functions, time sets are non-empty compact
sets and the semantic operators are continuous, we can prove that Up is well-defined using
Michael’s theorem.

Property 4.20

The mapping Vp is well-defined.

Proof

We have to prove YF' € [Stat — Subst —p Ppe(1'S)] : Up(F) € [Stat — Subst —, Pre(T'S)].
The mapping Wp(F') is continuous if and only if lim; o Wp(F)(s)(6;) = $p(F)(s)(8) whenever
lim; o 0; = 6. We prove this property with induction on the complexity of statement s. We
assume lim;_ ... 8; = 6.

1 Let s = (a,e).
lim; o W (F)((a,€))(0:)

limi_mo{(a, V(eel))}

= e is continuous

{(a, V(eh))}

Y (F)((a, €))(0)

The set {(a, V(ef))} is an element of Pp.(T5).

2 Let s =z and (z,9) € d.
lim; oo Up(F)(2)(6;)

lim; 00 Up(£)(g9)(6;)
Up(F)(g)(0)

U (F)(2)(0)
Because Up(F)(g)(0) is an element of Pp.(T'S), ¥p(F)(z)(6) is an element of Pp.(TS).

3 Let s = s1; s9.
limi_mo \I/D(F)(Sl; 82)(91)

lim; oo (Up (F)(51)(6:); F(52)(6:))

lim,-_wo \IJD(F)(Sl)(Gi); 1lmz—>oo F(SQ)(HZ)

W (F)(s1)(0); F(s2)(0)

U (F)(s1552)(0)

Because both Up(F')(s1)(0) and F(sq2)(6) are elements of P,.(7T'S) and the operator ; is
well-defined, Wp(F')(s1;82)(0) is also an element of P,,.(T'S).

4 Tet s = s1 %89 and * € {U, || }.
hmi—)oo \IJD(F)(Sl * 82)(01)

1im; oo (W (F)(81)(6;) * Up(F)(s2)(6:))
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lim; o0 \IJ'D(F)(Sl)(Hz) 1m0 \II’D(F)(SQ)(HZ)

W (F)(51)(0) * Wp(F)(s2)(0)

Up(F)(s1 % s9)(0)
Because both Up(F)(s1)(0) and Wp(F)(s2)(0) are elements of Pp.(TS) and the operator
 is well-defined, Wp(F)(s1 * $2)(0) is also an element of P,.(7T5).

5 Let s = [,cps.
lim; o0 \IJD(F)(fteT S) (91)

limi oo U{Wp (F)(s)(Bit/r]) | r € T)
Ulimie Up(F)(s) (6ilt/r]) | r € T)
ULU(F)(s) (0lt/r]) | 7 € T}

o (F)(fer 5)(6)

For all » € T the set Wp(F)(s)(0[t/r]) is an element of P,.(1'S). Because Vp(F) is
continuous and 7" is non-empty and compact, the set {Up(F)(s)(8[t/r]) | r € T} is an
element of P,.(T'S). From theorem 2.4 we can conclude that J{Up(F)(s)(8[t/r]) | r € T}
is also an element of P, (7S).

End 4.20

Next we prove that Up is a contraction. The contractivity of ¥p follows from the contractivity
properties of the semantic operators.

Property 4.21

The mapping ¥p is a contraction.

Proof

We prove for all s € Stat and § € Subst such that tvar(s) C tvar() that

dPnc(TS)(‘I’D(F)(S)(e)z Up(G)(s)(0)) < %d[StaHsubsHme(Ts)](Fz G)

using induction on the complexity of statement s.

1 Let s = (a,e).
dp,.(rs)(¥p(F)((a,))(0), ¥n(G)((a,¢))(0))

I crs)({(a V(e0)}, {(a, V(b))

IAN <l

%d[StatﬁSubst—gg'Pnc(TS)} (F7 G)

2 Let s=z and (z,9) € d.
dp,.rs) (Yo (F)(2)(0), ¥p(G)(z)(6))

dp,.(rs)(Yp(F)(9)(8), ¥(G)(9)(6))
<

%d[statHSubsthPnc(TS)} (Fa G)
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3 Let s = s1; s9.
dp,.(rs) (Y (F)(s1; 52)(0), Un(G)(s1; 52)(0))

C;Pm(TS)(\I’D(F)(sl)(e)Q F(s2)(0), ¥p(G)(51)(0); G(s2)(0))
< property 4.7

%d[statHSubsthPnc(TS)} (Fa G)

4 Tet s = s1 % s9 and * € {U, || }.
dp,,.(rs)(Pp(F)(s1 % 52)(0), ¥n(G)(s1 * 52)(0))

dp,,.(rs) (YD (F)(51)(0) * Up(F)(s2)(0), Wp(G)(s51)(0) * Up(G)(52)(0))
< property 4.9 and property 4.17

%d[stateSubst—mlpmz (1'5)] (F’ G)

5 Let s = [,cps.
dp,,.rs) (YD (F)(fier $)(0), ¥n(G)(fier 5)(6))

;P,I,,;(TS)(U{‘I"D(F)(S)(G[t/r]) |7 €T} U{Vp(G)(s)(O]t/r]) | r € T})
< property 4.9

%d[StatﬁSubst—@Pnc(TS)} (F? G)

End 4.21

Because Up is a contraction on a complete metric space, this mapping has a unique fixed point,
which we will denote by D,;. We can characterise D, as follows.

Corollary 4.22

The mapping D, : Stat — Subst —, Pp(1'S) is given by
Da((a,¢))(6) = {(a, V(eB))}
Da()(6) = Dalg)(0) (5,9) € d
Da(s1 * $2)(0) = Da(s1)() * Da(s2)(6) € {5, U I}
Da(fyer s)(0) = U{Da(s)(6[t/r]) [ r € T}

whenever tvar(s) C tvar().

End 4.22

We have, for example,
Dd(fte[1.03, 2.41] (a,))(e)

U{Dal(a, 0)([t/r]) | v € [1.03,2.41])
U{{(a, tlt/r])} | 7 € [1.03,2.41]}

{(a,r) | r € [1.03,2.41]}
The denotational semantics for programs is defined as follows.

Definition 4.23

The mapping D : Prog — P,.(TS) is given by
D((d, s)) = Da(s)(e)

End 4.23
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5 Equivalence proof

Having defined both an operational and a denotational semantics for our language the question
arises whether the denotational model is correct with respect to the computational intuition
captured by the operational model. In this section we will show that we can relate the operational
model O and the denotational model D. We will prove that these models are equivalent. To
prove this we will use a general method for comparing different semantic models as described by
Kok and Rutten [36]: if two models are both a fixed point of a higher-order transformation and
this higher-order transformation is a contraction on a complete metric space, we can conclude
that those models are equivalent.

We will introduce an intermediate operational semantic model O} and relate this model to
the operational model O4. Furthermore, we will define an intermediate denotational semantic
model D} and relate this model to the denotational model Dy. Finally, we will introduce a
higher-order transformation Wep«p~ and prove that this mapping is a contraction on a complete
metric space. We will prove that Wp«p+(0) = O and Vp«p+ (D) = D). From this we can
conclude that O} and D} are equivalent. These relations will enable us to prove the equivalence
of O and D.

First an intermediate operational model O}, which is associated with a labelled transition
system, is introduced. In this operational model statements and substitutions, which record
choices made for time variables with respect to integration, are separated. Therefore we intro-
duce the class of configurations.

Definition 5.1

The class Conf of configurations, with typical element C, is given by
Conf = {[s, 0] € Stat x Subst | tvar(s) C tvar(6)}

and the class Confg of configurations, with typical element C, is given by
Confg = {[5,0] € Statg x Subst | tvar(s) C tvar(9)}

End 5.1

The transition relation, which induces the labelled transition system describing the intermediate
operational semantics, is presented in the following definition.

Definition 5.2
The transition relation — is the smallest subset of Conf x T A x Decl x Confg satisfying

[(a,e),0] — (a,V(eb)) —4 [E, 0]
[979]_O‘_>dc_’ (ng)ed

[2,0] —a —4 C

[$,0] — a —4[5,0]

[s;8,0] —a —4[5;8, 0

[5,0]—a—>dé

[sUs 0] —a —4 C

[s'Us, 0] —a —4 C

[s,0] —a —4[5,0']
5 5,6] — o —q [5 ] /.6
8" || 8,0] —a —q s || 5,0
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[8[t/tns1], Oltns1 /7] — @ —4 C tvar(0) = {t1,...,tn} reT
fier s,0] —a—4 C

End 5.2

It is not obvious that the transition relation given above is well-defined, i.e. if [s,6] € Conf
and [s,0] — a —4 [3,0'] then [3,0'] € Confg, which implies tvar(s) C tvar(6'). To prove the
well-definedness of the transition relation we introduce the notion of a substitution 8’ being an
extension of a substitution 6, which is denoted by 6 C #'.

Definition 5.3

The relation EC Subst x Subst is given by

6 C 0" if and only if tvar(8) C tvar(0') and Vt € tvar(6) : t0 = t6'
End 5.3

Next we show that if [s,0] — o —4 [5,6'] then 8’ is an extension of . From this we can deduce
the well-definedness of the transition relation.

Property 5.4
For all [s,0] € Conf, § € Statg, §' € Subst and o € TA
[$,0] —a —q4 (5,0 = 0C ¢
Proof
We prove this property using induction on the complexity of statement s.

1 Let s = (a,e).
By inspection of the transition system, [(a,e), 0] — (a,V(ed)) —4 [F, 0], and the fact that
f C 6, we can deduce that the property is satisfied in this case.

2 Let s=z and (z,9) € d.
[xae] — & 4 [5’ 0/]
=
[gaa] — & —4q [57 Gl]
=
6C 6

3 Let s = s1; s9.
[s1; 82,0] —a —4 [5,0']
=
35’ € Statg : [31,9] — O —yg [5’,9/]
=
gC o

4 Let s = 51 U 89.
[81 U 52,9] —a —y [5, 9/]
=
[51,0] —a —4 [5,0'] V [s2,0] —a —4 [5,0]
=
oo

5 Let s = s1 || so.
[s1 || s2,6] —a —4 [5,6']
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=
35’ € Statg : [$1,0] — a —4 [5’,9/] v 3§’ € Statp : [$2,0] — a —4 [§l,9l]
=

6C 6o

6 Let s = [,cp s and tvar(0) = {t1,...,tn}.
[ftET 5, 6] — & 4 [57 91]
=
Ar € T : [s[t/tns1], Oltns1/7]] — a —4 [8, 0]
=
Oltni1/T] EO
=
6C 6

End 5.4

The intermediate operational model O} is defined along the lines of the definition of the opera-
tional model Oy.

Definition 5.5
The mapping O : [Conf — Pre(TS)] is given by
o € O}(C) if and only if one of the following conditions is satisfied:

e dn e IN :3C,...,Cp € Conf: Jar,...,0pt1 € TA: 30 € Subst :
C—a; =40 —ay—g-—ay,—qCh—apt1 —q [E,0) A
O =< a1, < a9, < Qp,Qpyp] > - >>

e 3Cy,...€ Conf:3aq,... € TA:
C—ap —gCl—ay—g-No=<a,<ag, - >>

End 5.5

The well-definedness of the intermediate operational semantics follows from the compactly
branching property and the continuity property of the labelled transition system as is described
in property A.3 of the appendix.

Lemma 5.6

The mapping O} is well-defined.

Proof

The proof of this lemma can be found in lemma A.6 of the appendix.
End 5.6

Next we relate the operational models Oy and O via their labelled transition systems. From
the following property we can deduce that each step according to the labelled transition system
describing Oy can be mimicked by a step according to the labelled transition system describing
O3 and vice versa.

Property 5.7
For all [s,0] € Conf, § € Statg and a € TA
s —a —y 53[50 € Confg:[s,0)] —a—y4[5,0]AN5=250¢
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Proof
We prove this property using induction on the complexity of statement s.

1 Let s = (a,e).
(a,e) —a —4 5
-~
a=(a,V(ed)As=E
<
J[¢',6'] € Confg : [(a,e),0] —a —4 [s,0| N5 =56

2 Let s=x and (z,9) € d.
CEG-O&—)dg

<~

gl —a —4 s

<~

3[5,0') € Confp:[g,0] —a —4 (5,0 ] ANs=735¢
=

A[s',0' € Confg:[x,0] —a —4 (8,0 Ns=35¢

3 Let s = s1; s9.
(s1;82)0 —av —4 §

<~

510,890 —a —4 5

<~

5’ € Statg : 510 —a —435 N5 =135";590

=4

35" € Statg : 3[s",0'] € Confg : [51,0) —a —4 [§", 0| N8 =5"0 AN5=5;590
<~

3[3",6') € Confg : [s1,0) — a —4 [§",0'] A5 =3"0'; 590
& property 5.4: 6 C 6’

3[5",0'] € Confg :[51,0] —a —q[5",0'| A5 =(5";32)0
<

A[s',0'] € Confg : [s1;892,0] —a —q [§,0'] A5 =50

4 Let s = 81 U 89.
(S1U82)9—Oé—>d§

<

$10U 890 —ax —4 §

<~

810 —a —g 8V s —ax—4 8

=4

d[s',0'] € Confg :[s1,0) —a —q4 6,0 |As5=580V
3[5,0') € Confg : [s2,0] —a —4 [§,0] N5 =350

<~
J[5',0' € Confg :[s1Usg, 0] —a —4[5,0|A5=50¢

5 Let s = s1 || so.
(51 || 82)9 —Qa —g 8
<
510 || 820 —a —4 5
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<~

d5' € Statg : 510 — o —d S ANs=5 || s90 Vv 35 € Statg : s90 — o —d 5 A5=s50 || s
<~

35" € Statg : 3[5",0'] € Confg : [s1,0] —a —4 [§", 0| N5 =5"0 AN5=5| s20 V

35" € Staty : 3[5",0'] € Confg : [s2,0] —a —4[§",0'|N§ =5"0'AN5=2510]| &

<

3[5",8'] € Confg : [s1,0) —a —4 [8",0| N5 =5"0"|| s26 V

3[3",0'] € Confg : [s2,0] —a —4 [3",0| N5= 3510 50

& property 5.4: 6 C ¢’

J[5",0'] € Confg : [s1,0] —a —4 [3",0]| A5 =

J[3",6'] € Confr : [s2,0]| —a —4 [3",0| A5 = (51 | 30’
-

A[¢",0'] € Confg : [s1] $2,0] —a —4 [§,0/] N5 =50

6 Let s = [,cp s and tvar(0) = {t1,...,ln}
(fiers)) —a—a45

<
reT:sl[t)r] —a—43§
& tnt1 & tvar(0)
AreT:s[t/tnt1]0tns1/r] —a —4 5
-
Ar e T:3[7,0'] € Confr : [s[t/tns1],0tns1/7]] —a =4 [§,0 N5 =506
<
35,0l € Confg:3r e T : [st/tns1],0ltns1/7]] —a —4 [, 0 ) N5 =56
-
35,0l € Confp : [[iep 8,0] —a—q (5,0 A5 =50
End 5.7

Having related the labelled transition systems, which describe the operational models O4 and
O}, we can relate these models.

Lemma 5.8
For all [s,0] € Conf
Og([s,0]) = Oa(s0)
Proof
We can deduce this immediately from property 5.7.
End 5.8

Now we introduce an intermediate denotational model D};. This denotational model is defined
as the fixed point of a higher-order transformation Up-.

Definition 5.9
The mapping Wp-« : [Conf — Pne(TS)] — [Conf — Pp.(T5)] is given by
Up- (F)([(a,e),0]) = {(a,V(ed))}

[
Wp- (F)([z, 6]) = Wp-(F)([g, 0]) (z,9) € d
Up- (F )([3175279]) U (F)([s1,6]); F([s2,0])
Up-(F)([s1 # 52,0]) = Up+ (F)([s1,0])  Up- (F)([s2, 6]) + € {U, [}
\IID*(F)(U;&GT $,01) = U{Wo (F)([s[t/tnt], Oftnsr /r]]) | 7 € T} tvar(0) = {t1,. .., tn}
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The well-definedness of the mapping Wp« follows from the fact that that expressions are continu-
ous functions, time sets are non-empty compact sets and the semantic operators are continuous.

Property 5.10

The mapping Wp- is well-defined.

Proof

Similar to property 4.20 except for the continuity proof in the case of integration.

5 Let s = [,y s. From definition 2.11 we can derive that there exists a subsequence {6; 1}
such that tvar(0;+x) = {t1,...,tn}
lim; 00 Up~ (F)([fteT s, 0;])

lim; 00 U« (F)([fyer 8 Oivr))

1010 LW (F) (08 tns], 0ss 4l /7]) | 7 € T

Ui oo W (F) ([t i), Big it /) | 7 € T
U (F)([slt/tns], Oltns1 /7]]) | 7 € T}

U (F)(Jier 5:6))
End 5.10

Next we prove that Up« is a contraction. The contractivity of Up+ follows from the contractivity
properties of the semantic operators.

Property 5.11

The mapping Wp« is a contraction.
Proof

Similar to property 4.21.

End 5.11

Because Up~ is a contraction on a complete metric space, this mapping has a unique fixed point,
which will be denoted by Dj.

Corollary 5.12
The mapping D} : [Conf — Ppc(1'S)] given by
Dy([(a,e),0]) = {(a, V(eh))}

Dj([z,0]) = Dy(lg, 0]) (z,9) €d
Dy([s1 * 52,06]) = Dy([s1,6]) = Di([s2, ]) €45,V }
Di([Jier 5:0]) = U{Di([s[t/tn+1], Oltnta/7]]) | 7 € T} tvar(0) = {t1,...,t,}
is well-defined.
End 5.12

The denotational models D} and D, are related by proving that D} is a fixed point of the
higher-order transformation Wp defining Dy.

Lemma 5.13
For all [s,0] € Conf
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Dy([s,0]) = Da(s)(0)
Proof
We prove that D} is a fixed point of the curried version of Wp, with induction on the complexity
of statement s.

1 Let s = (a,e).
Yo (Dg)([(a, e), 6])

{(a,V(e0))}

D;([(a;e), 6])

2 Let s =z and (z,9) € d.
W (Dg) ([, 6])

p(D3)([g. )

Dilg, 01)

Dj([=,9])

3 Let s = s1; s9.
Up(D;)([s1; s2,6])

(D) (51, 61): P[5 6])

Di(ls1,0]); Dy([s2,6])

Dy(Is1; 52,6])
4 Let s = s1 %89 and * € {U, || }.
W (D5)([s1 + 52,0

W (D) (s1,6]) + W (D) (. 6)

Di([s1,0]) * Dy([s2,6])

Di([s1 * s2,0])

5 Let s = [,cp s and tvar(0) = {t1,...,tn}.
U (D)(ier s, 61)

U (D) (s, 0lt/r])) | 7 € T)
ULD([s. 8lt/7]]) | r € T}
UD([5lt /] Bltwer /o) | 7 € T}

Di([Jier 5:6])
End 5.13
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We relate the intermediate models O} and D} by proving that they are both a fixed point of
the higher-order transformation Wo«p«. This mapping We«p~ is related to a declaration similar
to the denotational models.

Definition 5.14

The mapping Wp«p- : [Conf — Pp(T'S)] — [Conf — Pnc(1'S)] is given by
Uop«(F)(C)={<a,p>C—a—3C'"Ape F(C"}YU{a|C —a —4[F, 0]}

End 5.14

The well-definedness of the higher-order transformation ¥Wo-p+ follows from the compactly
branching property and the continuity property of the labelled transition system.

Lemma 5.15

The mapping Wo=p~ is well-defined.

Proof

The proof of this property can be found in lemma A.7 of the appendix.
End 5.15

To conclude that Up«p=~ has a unique fixed point, we have to prove that this mapping is a
contraction.

Property 5.16
The mapping Wp«p+ is a contraction.
Proof

dp,.(rs) (Yo (I)(C), Yorp+(G)(C))

. (<a,p>|C—a—yC'Ape F(C)}U{a|C —a —y4|E, 0}
PeelT) | I a,p>| C—a—gC'Ape GO U{a|C—a—y[E,0])
<

5diConf—Pau(rs)(F, G)
End 5.16

First we prove that the intermediate operational model O} is a fixed point of We«p«.

Lemma 5.17

Veop(OF) = OF

Proof

0 € Wo-p-(05)(C)

<~
cge{<a,p>C—a—=4CApeOy(C"}U{a|C—a—4[E,01}
-~

3C" e Conf:3a € TA:3peTS:C—a—,C' NpeO)(CYNo=<a,p>V
30" € Subst : Ja € TA:C —a —4 [E,0']No =«

<~

o€ OHC)

End 5.17

Also the intermediate denotational model D} is a fixed point of Wep«p+.
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Lemma 5.18

Proof

We prove V[s,0] € Conf : Wowp-(D})([s,0]) = Dj([s,6]) using induction on the complexity of
statement s.

1 Let s = (a,e).
Vo p(Dg)([(a;¢),6])

{_< a,p>|[(a,€),8] —a—4 C'Ap e Dy(C}U{a||(a,e),0] —a —4 [E,0']}

{(a;V(e0))}

D;([(a,e),0])

2 Let s =z and (z,9) € d.
Vorp-(Dy)([z, 6])

(< ap 3| [5,8] —a =4 C' A p € DHC} U o | [3,6] — @ —a [E, 8]}

{_< a, p >| [gae] — & —4g Cl/\pe D;(C')}U{a | [gaa] — O —¢ [E’Q’]}

Wo-p- (DY)([9, 6]

D;(lg, 01)

D;([=,6])

3 Let s = s1; s9.
Vo p+(Dy)([s15 52, 0])

{<a,p>|[s1;82,0) —a—4 C'"ApeDHCNU{a| [s1;52,0] —a —q4 |E, 0}
{<a,p>[[s1,0] —a—q4[s", 6] A p € Dy([s; s2,0'])} U
{<a,p>|[51,0] —a —4[E,0]ApecDj[s2,0')}

[< arp > [30,6] — =[50 A p € Di([s 61): D([2, 1)) U

{<a,p>|[s1,0] —a —4 [E, 0] Ap e Di[s2,6])}

= property 5.4: 8 C 6" and tvar(sy) C tvar(8) so Dj([s2,0']) = Dj([s2,0])
{<a,p>|ls1,0] —a—als', 01 A peDys',0); Dy([s2, 6]) } U

{<arp>|fs1,6] — & —q [B.6] A p € Dy([s2,6)}

{<ap>][s1,0] —a —q s, 0] Ap € Dy([s', ')} Uia | [s1,0] —a —q [E,0]}); Dy([s2, 0])

o (D) (51, 6]); Dy [52. )

Dj([s1,0]); Dy([s2,0])

Dj([s1; 82, 0])
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4 Let s = 51 U 89.

Yo+ (Dy)([s1 U s2,6])

{<a,p>|[s1Us2,0] —a =4 C"'ANpeDy(C")}U{a]|[s1Us2,0] —a —4|E, 0}
{<a,p>|[s1,0] —a—4 C'"ApeDi(ChU{a | [s1,0] —a —4 [E, 0]} U
{<a,p>[[s2,0] —a—q C'ApeDy(C)yU{a|[s2,0] —a —4 [E,0]}

Voup+(Dy)([s1,0]) U Worp+(Dy)([s2,0])

Dj([s1,06]) U Dy([s2,6])

Dj([s1 U s2,6])

Let s = s1 || so.
Vorp-(Dg)([s1 || 52,6))

{<a,p>|[s1] 82,0] —aa—q C'ApeDHCHU{a | [s1 | 82,0] —a —q4 [E, 0]}

(<0021 (01,0 = =g ,010 0 € DY [ 52,0)} U
{a|[s1,0] —a—a[F,0') Ap € Di(ls2,0'])} U

{<a,p>|[s2,0] —a—4]s, H]ApEDd([51 s, 60} u

{04 | [52,0] —a —a [E,0'] A p € Dy([s1,0'])}

{<a,p>[[s1,6] —a —q [s",0] A p € Dy([s",0]) || Dy([s2,0'])} U
{o] [s1,0] —a —a [B,0) A p € Dy([s2, 6'])} U

{<a,p>|ls2,0] —a =4[5 G]APED*([SM N Dy, )3 u

{allss, 6] —a —alB.07 A p € Dills1,67)}
property 5.4: 8 C 6" and tvar(s;) C tvar(0) so D;([si,8']) = Dj([si, 0]
{<aup>| s8] —a—al, 0] A pe Di([s",0') [l Di([s2, 6])} U

{alls1,0] —a—a[F, 9’]/\06%([82, o))} U
{<a,p>|[s2,0] —a —a s, 6"l A p € Dy([s1,06]) || Dy([s', ')} U
{a|[52, 0] —a —qE, 9]/\06%([81, o))}

(< p | [51,6] — & —a C' A p € DC) U {a | [51,6] — & —a [E, 811 D5 ([5, 6]) U
{<a,p>[[s2,6] —a =4 C"Ap e DYC )} U{a| [s2,0] —a —q [E,6]})[[D5([51,6])

Vop (D) ([s1, 1) 1 P5([s2, 6]) U Worp+ (Dg)([s1,0)) | Py ([s1, 6])

Di([s1, ) Di([s2,6]) U Dy([s2, 6]) [[ Di([s1,6])

Di([s1,0]) || Dals2,6])

Dj([s1 || 52,06])

Let s = [,cps and tvar(f) = {t1,...,tn}.
Vo (Dg)([fier 5, 61)

{<a,p>[iers0l —a—=a C"Ape DyC)}U{a] [ficrs 0] —a —a [E, 07}
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(< a,p>| [8[t/tns1], Oltns1 /7] — @ —a C' A p € DEC) AT € T}U

3

(] [s[t/trns), Oltnsr /7] — @ —4 [B,6] A7 € T}

UL A< @, 0 3| [3lt/tns], Otnss /1] — @ =4 €7 A p € DY) U
" {a ] st/tns) Oltass /1) — @ =4 [£,6) | 7 € T)

U{W o (D) ([s[t/tns1], O[tnsr /7)) [ m € T}
U5 ([st/tns1], Oltnia /7]]) [ € T}

D;([Jier 5:6])
End 5.18

Because O} and D} are both fixed points of the higher-order transformation Wp«p+, which is a
contraction on a complete metric space, we have that O} and D} are equivalent due to Banach’s
fixed point theorem.

Corollary 5.19
0; = D;
End 5.19

We conclude this section by collecting all the relations between the various models into an
equivalence proof.

Theorem 5.20
O=D

Proof

O((d, s))

Oa(s)
= lemma 5.8

O3 ([s. <))

Dy([s,€l)
= lemma 5.13

Da(s)(c)

corollary 5.19

D((d, s))
End 5.20

Conclusions

An operational and a denotational semantic model have been presented for a real-time pro-
gramming language incorporating the concept of integration. As we have seen, a restricted form
of unbounded non-determinism can be specified by means of integration. Because the seman-
tic operators and the semantic models have been defined using higher-order transformations,
we were able to describe infinite behaviour. The operational and denotational semantics have
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been proved equivalent. Banach’s fixed point theorem and Michael’s theorem have been used
fruitfully to define and to compare those models.

We expect it to be possible to relate the denotational semantics defined by Reed and Roscoe
[41, 42, 43] to a denotational model based on the denotational model presented in this paper
following the lines of [12]. We have the strong feeling that it is possible to extend the language
with communication and global non-determinism [11] and to define a branching time model
[8] for this language. Enriching the language with delays [37, 43] and a parameter mechanism
provided to procedure variables causes no serious problems. However, extending the language
with priorities [23, 45] and enforced deadlines for atomic actions may cause discontinuity of
semantic operators.
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A Well-definedness proofs

In this appendix the well-definedness proofs of the mappings O} (lemma 5.6) and Vpp-
(lemma 5.15) are presented. Usually the well-definedness of a semantic mapping, which is
related to a labelled transition system, follows from the fact that the labelled transition system
is finitely branching, i.e. for all configurations C the set {(a,C) | C — a —4 C} is finite [36].
However our labelled transition system (definition 5.2) is not finitely branching. For example,
the set
{(0.0) | heppon,o.an(@ 0, — & =4 CF = {((a, ), [E, [t /r1]) | r € [1.03, 2.41]}

is infinite. For our labelled transition system we have more involved properties (compactly
branching property and continuity property), which are stated in the following definitions.

Definition A.1

A labelled transition system (Conf, Label, —) is compactly branching whenever we have that
for all C' € Conf the set {(I,C") | C —1 —4 C'} is compact.

End A.1

Note that if a labelled transition system is finitely branching then it is also compactly branching.

Definition A.2

A labelled transition system (Conf, Label,—) is continuous whenever the mapping Init :
Conf — P(Label x Conf) given by Init(C) ={(l,C") | C — 1 —4 C"} is continuous.

End A.2

If the configurations are endowed with a discrete metric then the corresponding labelled transi-
tion system is continuous. Our labelled transition system is compactly branching and continuous
as is stated in the following property.



36

Property A.3
The labelled transition system defined in definition 5.2 is compactly branching and continuous.
Proof
We prove this property using induction on the complexity of statement s. We assume that

{((a,V(ed)), )}
This set is compact. Furthermore, we have that
lim; oo {(1,C) | [(a,€),0;] — 1 —4 C}

limy—oo {((a, V(e6)), E)}
= e 1s continuous

{((a, V(e0)), E)}

{(l7é) | [(a,e),@] — 1l —q é}

Let s =z and (z,9) € d.
{(l,C) | [2,0] — 1 —q é}

This set is compact. We have that
lim; oo{(1,0) | [2,0;] — 1 —4 C}

limi oo {({,C) | lg,0s] — 1 —a C}

{(1,O) g, 0] =1 —a C}

{.C) | [2,6] =1 =4 C}

Let 5 = 51; S2. B
{(1,C) | [s1;82,0] — 1 —q C}

{(,[8582,6') | [s1,6] — 1 —q [5,0']}
This set is compact. Also we have that
hmz—>oo{(lv C_’) | [31; 52, 91] —1 —d C}

limioe{(0, (552, 0) | 31, 6] — L —4 5,07}

{(1,15;52,0]) | [s1,0] — 1 —a [5,6']}

{(1,0) | [s1; 82,0] — 1 —4 C}

Let §531U32. B
{(I,C) | [s1Usg,0] —1 —4 C}

{(1,C) | 151,01 =1 —a CYU{(L,C) | [52,0] — 1 =4 C}

Well-definedness proofs
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This set is compact. We have that
hmz_wo{(l, C’) | [81 U 89, 91] — 11—y C’}

lim o { (1, C) | [51, 6] — [ —a CYU{(L,C) | [59, 6] — [ —o O}

{(,C) | [s1,6] =1 =a CYUA{(L,C) | [52,0] — 1 =4 C}

{(1,C) | [s1 U s9,0] — 1 —4 C}

5Let,§551 ||52. B
{(LO) | 1 |l 52,0] =1 —a C}

{(L[s || 52, 0) | [s1,0] =1 —q [5,0']F U{(l,[s1 ]| 5,0']) | [s2,6] — 1 —a 5,6}
This set is compact. Also we have t?at
hmzaoo{(l,C’) | [81 || 52,51'] —1 —d C}

limy oo {(1, 5 | 52,6) | [s1,6] — 1 —a [5. 61} U{(L[s1 1| 5,6) | [s2, 6] — L —4 [5.6}

{515 1 52,0) [ [s1,6] — 1 —a [5,01} U{(l, [s1 [ 5,6']) | [s2,0] — 1 —a [5,0']}

{(,0) | [s1 | 82,6] —1 —4 C}

6 Let s = [,cps and var(f) = {t1,...,tn}.
O | ier s, 6] —1—a C}

{(1,C) | [8[t/tns1], Oltnsr /7] — L —4 C Ar € T}

U0 C) | 80t/ tnsa], Bltmss /7] — L —a C} | 7 € T} ]

For each r € T' the set {(I,C) | [s[t/tn+1],Oltn+1/7]] — | —4 C} is compact. Furthermore,
the set {{(1,C) | [s[t/tns1],0[tns1/7]]—1 —aq C} | » € T} is compact, because T is compact
and {(I,C) | [s[t/tns1], 0tns1/7]] — I —4 C} is continuous in r. Michael’s theorem gives
us that the set U{{(l, C) | [s[t/tn+1],0ltn+1/7]] — 1 —4 C} | 7 € T} is compact.

From definition 2.11 we can derive that there exists a subsequence {6;;4}; such that
tvar(O;pk) = {t1,. -, tn}.

limoo{(l, C) | lfser 5, 6i] — 1 =4 C}

lim oo { (1, O) | s 5, 6:14] — 1 —a C}

e (1 ©) |1t/ tir ], Bl /7] — L —a @ A € T)
o UL O) | 506/t ] sl /7] — 1 —a O [ r € T}
Um0, O) | 50t/ tmsr) sk lins /7] — 1 —a O} | r € T}
UL ©) |0t /tni),Bltwsn /)] — 1 —a C} | - € T}

{0.0) | Urer .6 — 1 =a O}

End A.3
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To prove the well-definedness of the mapping O we introduce a collection of mappings OF,
which describe approximations of O}.

Definition A.4

The mapping OF : [Conf — Pp(1'S)] is given by

OMC)={<ai,...<ap-1,0,>...>|C—a; =g C1 —as =4 —a, —4 [E,0] An <m}U
{< 1, .. <ozm,1,ozm>...>|C—a1 —q C1 — oy —>d---—am—>de}

End A.4

We prove that all these mappings are well-defined using property A.3.

Property A.5

The mappings OF are well-defined.

Proof

We prove this property with induction on m.

1 Let m = 1.
0a(C)
{041 | C— a) —y4 [E,@l]} U {041 | C— oy —4 Cl}
By inspection of the labelled transition system we can derive the non-emptiness of this set.
The compactness of this set follows immediately from the compactly branching property of
the labelled transition system. The continuity of O} follows from the continuity property
of the labelled transition system.

2 Let m > 1.
07(C)
{<ay,...<ap-1,0,>...>|C—a; =4 C1 —ay —4 - —a, =4 [F,0]An<m}U
{<ay,...<am1,0m>...>C—0a1 =4 C1 —as =g — am —q Cn}

{01 | C— an —y [E,07} U
{< al,...<an,1,an>...>|0—a1 —qg C1NCL—ag =g —Qy —yg [E,QI]/\TLSm}U
{<041,...<04m,1,04m>...>|C—O&1 —>dC1/\Cl—oz2—>d---—am—>de}

{og | C— a1 =4 [B, 0} U{< a1,p>| C— a1 —4C1 Ap e O HC1)}

By inspection of the labelled transition system we can derive the non-emptiness of this
set. The set {a1 | C — a1 —4 [E,0']} is compact. Also the set {< a1,p >| p€ O '(C1)}
is compact. Because O;”_l is continuous and the labelled transition system is compactly
branching, the set {{< a1,p >| p € O771(C1)} | C — a3 —4 C1} is compact. Michael’s
theorem gives us that the set {< aj,p >| C — a1 —4 C1 A p € OF71(Cy)} is compact.
The continuity of OF" follows immediately from the the continuity of 02”*1 and the fact
that the labelled transition system is continuous.

End A.5
Because the mappings OF" are well-defined, we can conclude that O} is well-defined.

Lemma A.6
The mapping O} is well-defined.



Well-definedness proofs 39

Proof
The sequence {OF },, is a Cauchy sequence : VN € IN : Vm > N :¥n > N :dp, 1)(Og,O0f) <

27N Furthermore, we have that lim,,_ o or =03,
End A.6

We conclude this appendix with the well-definedness proof of the higher-order mapping Wo«p~.
Also in this proof we will use property A.3.

Lemma A.7
The mapping Wo«p~ is well-defined.
Proof
By inspection of the labelled transition system we can immediately derive the non-emptiness of
the set Weo«p+(F)(C).

Next we have to prove that the set Weo«p=(F)(C) is compact. Let {o;}; be a sequence in
Voip«(F)(C). Then there exits a subsequence {o(; }; in one of the following sets.

1{<a,p>C—a—4C Ape F(C")}
2 {Q|C—Of_>d [Eael]}

In the first case we have that o ;) =< ay(;), pfi) > where C—ayp,y —q C}(i) and py(;) € F(C}(i)).
Because the labelled transition system is compactly branching, the sequence {(ozf(i),C}(i))}i
has a converging subsequence {(as(g(:)), Cy(ys)))}i» Which converges to some (a, C') such that
C —a —4 C'. Because I' is continuous, {F'(C’,,)))}: converges to F'(C”). For each py;)) €
F(C}(g(z))) we can find a p, € F(C") such that de(pf(g(i)),p;) < QdP'nC(TS)(F(O}.(g(‘I:)))" F(C").
Because F(C') is compact, the sequence {p.}; has a converging subsequence {p’h(i)}i, which con-
verges to some p € I'(C’). We have that the sequence {pf(4(n(:))) }: also converges to p, because
drs(Ps(g(n@)s P) < drs(Pp(g(n(i))s plh(i)) + dTS(p,h(i)’ p) < QdPM(TS)(F(C}(g(h(i))))’ F(C") +
drs(Phiys p)- S0 {0 p(g(n(i))) bi converges to < a,p >, which is an element of Wowp-(£)(C). In
the second case, we have that oy = ay;) where C — ayp;) —q [E, 9 ( )] Because the labelled
transition system is compactly branching, the sequence {(Ozf(l) [E, 9 o) ])}2 has a converging
subsequence {(as(g(i)): [£, 0% (4(iy)]) }i, which converges to (e, [E,0']) where C'— o —q [E,6']. So
{0 f(g(s)) }s converges to a, which is an element of Woup:(F)(C).

Finally, we have to prove that Weo«p+(F') is continuous. Assume that lim;_,o C; = C, then

we have
lim; 00 To=p= (F)(C;)

lmioo{< a,p>|Ci—a—4C'Ape F(C"}U{a | C; —a —4 [E,0]}
= the labelled transition system is continuous

{<a p>|C—a—gC'Ape F(CY}U{a| C—a—q[E,60])
Yo-p+(F)(Ci)

End A.7



