Semantic Models for a Language with Timed
Atomic Actions

Franck van Breugel

Department of Mathematics and Computer Science
Vrije Universiteit
De Boelelaan 1081a
1081 HV Amsterdam

email: franck@cs.vu.nl

Abstract

An operational and a denotational semantic model for a language incorporating time related
aspects, viz. timed atomic actions and integration, is presented. With timed atomic actions we
mean atomic actions each provided with a time stamp, which records the time at which the
atomic action should be executed. Integration of a statement over some non-empty subset of
the time domain gives rise to the execution of the statement with some non-deterministically
chosen value of this subset passed to that statement. Both models are built on complete metric
spaces. An equivalence result of the operational and the denotational semantic model concludes
this paper.

1 Introduction

In this paper the question whether programming notions expressing time related behaviour can
be described by models built on structures from metric topology in the style of De Bakker et al. is
studied. In this style, programming notions related to concurrency [BZ82, BBKM&84, BKMOZ86,
KR88], object-oriented programming [ABKR86, AB88| and logic programming [B88, BK88] have
already been described.

An operational and a denotational semantic model for a simple language incorporating time
related aspects is given. Also an equivalence result for these two semantic models is presented.

The language studied is a uniform language built from timed atomic actions, sequential com-
position, non-deterministic choice, parallel composition, integration and recursion. The time
related aspects of this language are timed actions and integration. With timed atomic actions
we mean atomic actions each provided with a time stamp. This absolute time stamp denotes
when the atomic action should be executed. Whenever an atomic action cannot be executed at
the time recorded in its time stamp a so-called failure occurs and the execution of the program
stops. Integration of a statement over some time set, i.e. a non-empty finite subset of the time
domain, gives rise to the execution of the statement with some non-deterministically chosen
value of the time set passed to that statement.

We assume that the execution of timed atomic actions and operators takes no time. We also
assume that two successive atomic actions cannot be executed at the same time. These assump-
tions are very useful as is argued in a paper by Berry and Cosserat [BC85].

The operational model is based on Plotkin’s transition systems as introduced by Hennessy and
Plotkin in [HP79]. This operational semantic model is a modified version of the model presented
by Baeten and Bergstra in [BB89.

The denotational model is defined compositionally using fixed points to deal with recursion.
Such fixed points exist on the basis of Banach’s theorem for contracting functions on complete
metric spaces [KR88, BM88]. Most definitions and lemmas in this paper rely on this theorem.

Related work can be found in [RR86, RR87, R88] of Reed and Roscoe and [L.Z88] of Lee and
Zwarico. In [RR86, RR87, R88] denotational semantic models based on metric spaces are pre-
sented for the language TCSP, as described by Davies and Schneider in [DS89]. All models
incorporate timed traces. A timed trace is a finite trace of timed events which records the his-
tory of the execution of the program. Reed and Roscoe introduce a system delay constant such
that the execution of a program amounts to performing only finitely many actions in a bounded
period of time. This system delay constant is also used to introduce some guardedness with
respect to procedure bodies. Although the language TCSP differs from the language studied in
this paper, the denotational semantic models for TCSP show some resemblance to our denota-
tional model. In [LZ88], Lee and Zwarico present a model which is also based on timed traces.
They use a temporal extension of acceptance trees to model the execution of a program

In the second section of this paper the language definition is given. The operational and denota-
tional semantics are defined in respectively section 3 and 4. Section 5 contains the equivalence
result. The final section consists of some concluding remarks. Some mathematical preliminaries
concerning metric spaces and labelled transition systems can be found in the appendix.

2 Language definition

In this section we introduce the syntax of the language Prog, which is studied in this paper.
This language incorporates some time related aspects. We build the syntax starting from the
following sets.

A set Atom of atomic actions, with typical element a, which can be infinite.

The set IR~, the set positive real numbers, with typical element r, which is our time
domain.

A collection of time sets, which is represented by P, (IR), the set of non-empty finite
subsets of IR~ , with typical element T

A set T'war of time variables, with typical element .

e A set Puvar of procedure variables, with typical element x.

Each procedure variable x has a certain arity n, with n > 0, and is labelled with n distinct time
variables: z ({1, ..., t,). We can view these time variables as formal parameters.

We introduce the syntactic class Fap of expressions, with typical element e. For simplicity,
we assume the syntax of EFzp built from elements of T'var and some arithmetic operators. We
postulate that no complications arise in the evaluation of expressions. The evaluation of an
expression is given by the evaluation function £. We apply this evaluation function only to
expressions without free variables. In that case, the function £ delivers an element of IR. For
example we have that £ (3 +4) = 7.

Now we can give the class of statements.

Definition 2.1

The class Stat of statements, with typical element s, is given by
su=(a,e) |z (er,...,en) | 851582 s1Usa|s1 2] freps
End 2.1

A statement s is of one of the six following forms:
* (a,¢)

A timed atomic action: the atomic action a has to be executed at time £ (e). However,
the execution of an atomic action at a non-positive time always fails.

oz (e1,...,en)
A procedure call: execution of the corresponding body of the procedure with the expres-
sions e, ..., e, passed to the procedure body.

® 3515 82

Sequential composition of the statements s; and ss.

® S U S92
Nondeterministic choice of the statements s; and s».

® S || S92
Parallel composition, or merge, of the statements s; and ss: the arbitrary interleaving of
the atomic actions of both statements.

® Jier s
Integration: execution of statement s with an arbitrary element of T passed to time

variable ¢ in s.

To guarantee that we can always take an arbitrary element of a time set, we have to restrict
time sets to non-empty subsets of IR~. The restriction of time sets to finite subsets of IR~ will
be crucial in the proof of property 3.4.

The execution of the integration [,c; 53y (a, t) corresponds to the execution of the statement
(a, t) with a non-deterministically chosen value of the time set {1,2,3} passed to the time
variable ¢ in that statement, which gives us the execution of (a, 1), (a, 2) or (a, 3). Note that
the integration is a generalisation, due to the value passing, of the non-deterministic choice.

We assume that the execution of atomic actions and operators takes no time. We further assume
that two successive atomic actions cannot be executed at the same time. These assumptions are
very useful as is argued in a paper by Berry and Cosserat [BC85].

Next we introduce the class of guarded statements, which will be used to administrate procedure
bodies.

Definition 2.2

The class Gstat of guarded statements, with typical element g, is given by
gu=(a,e)|lg;slaVUgaloll gl fiery

End 2.2

Before we give the definition of the class of declarations, we introduce the notion of free variables.

Definition 2.3

The mapping fv : Stat — P (T'var) is given by
fv((a, e)) = fv (e)

fo(z(e1, ..., en)) = fv(er)U...U fo (e,)

fv (s10ps2) = fv(s1)U fo(se) op € {;,U,[l}
Jv (frer s) = fo (s) \ {t}
End 2.3

Definition 2.4
The class Decl of declarations, with typical element d, consists of m-tuples

ClE.’L’l (tl, e, tnl) <41, -, Tm (tl, R tnm) <= 9m,

where z; are distinct procedure variables of arity n;, t1,...tn, are distinct elements of Tvar,
gi € Gstat and fv (g;) C {t1, ..., tn, }-

End 2.4

All procedure bodies g; in a declaration d are restricted to guarded statements. This requirement
corresponds to the usual Greibach condition in formal language theory. There are possibilities
to eliminate this restriction as is illustrated in [RR86, RR87] and [R88] by Reed and Roscoe.
However, in order to permit unguarded statements in declarations, we expect that we have to
determine some fixed delay constant for some operators. The restriction fv (g;) C {t1, ..., tn,}
states that there should not be any global time variables.

The execution of the procedure call z (1), where z (t) is declared as (a, t) ; = (t + 1), corresponds
to the execution of the procedure body (a, t) ; z (t + 1) with the expression 1 passed to this
procedure body, i.e. (a, 1) ; z (1 4+ 1).

Next we give the definition of the class of programs.

Definition 2.5

The class Prog of programs, with typical element p, consists of pairs

p=d]| s,

where d € Decl, s € Stat such that each procedure variable x occurring in s or d is declared in

d and s contains no free variables.
End 2.5

It is possible to execute an infinite number of atomic actions in a finite amount of time. For
example, the program z (t) < (a, t) ; = (¢t + %) | (3) performs an infinite number of a’s
between 0 and 1.

3 Operational semantics

In this section we present an operational semantics for our language. This operational semantic
model is a modified version of the model defined by Baeten and Bergstra in [BB89]. The
operational semantics of a program describes the behaviour of an abstract machine running that
program. The execution of a program on an abstract machine is characterised by strings of
actions. Which actions and in which order the actions are performed by the abstract machine
is described by means of a labelled transition system.

Before introducing the labelled transition system, we first take a look at the phenomenon of
termination of a program. We can distinguish two reasons for termination: (i) termination if
the program has successfully executed all its atomic actions, which we call successful termination,
and (ii) termination if an atomic action of the program cannot be executed at the time it should
be executed, which we call failure. For example, (a, 4) ; (b, 3) will fail immediately after the
execution of the atomic action a. Failure is modelled by a special symbol § with § ¢ Atom. We
introduce two new statements linked to these notions of termination. The empty statement £ is
associated with successful termination as introduced by Apt in [A81] and the failure statement A
is associated with failure. A and £ have a different nature as will become clear in the equivalences
given below and in the equivalence proof presented in section 5. The set of statements Stat is
extended to Statga.

Statga = Stat U {F,A}

with typical element 3.

It will be convenient to allow expressions of the form s ; 3’ and § || §' for 5, § € Statga. This will

reduce the number of rules of the labelled transition system. We define the following reasonable
equivalences on these expressions for § € Statga and op € {;,||}.

sopF =35
Fops=3s
Sop A=A
Aops=A

Now we can introduce the labelled transition system. The labelled transition system is associated
with a declaration d as will become clear in the definition of the rules. The set of configurations
consists of the set

Confpa = Statga X]RZ

with typical typical element C.

In a configuration [, r], r denotes the global time at which the atomic action preceding the
execution of statement § was executed. Global time is administrated to fulfill the restriction

that two successive atomic actions cannot be executed at the same time. We also introduce the
set

Conf = Stat x IR>
with typical element C.

Before we give the set of labels we define the set of timed actions and the set of timed failures.

The set T'A of timed actions is defined by
TA = Atom x IR~

with typical element «.

The set T'F of timed failures is defined by
TF = {6} x IR>.

The set of labels consists of the set

Label =TAUTF

with typical element {.

The label (a, r) denotes that the atomic action a is executed at time r. The label (6, r) denotes
failure at time r.

Intuitively, a rule [3, r] —l—4 [§/, r'] tells us that the execution of statement 5, following an
atomic action executed at time r, consists of action I at time r’ followed by the execution of
statement 8. Now we give the set of rules associated with the declaration d.

[(a, e), r] —(a, €)—q [E, € E(e)=cande>r
[(a, e), r] —(6, r)—q [A, 7] E(e)=cande<r
[g [el/tl, Ceey en/tn], 7"] _£_>d O x (tl, cey tn) < gc d
[z (e1, ..., en), 7] =l—=4 C

[s, 7] —l—4 [5, ']
[S ; Sl: T] _l_)d [§) Sla 7,1]

[s, 7] —l—4 C
[sUSs 1] —l—y4 C
[Us, 7| —l—4 C

[s, 7] —l—4 [5, ']
[s] s, r] —=l—=q[5] &, 7]
[s" || 5, 7] —=l—=a [s" || 5, 7]

[s[r' /1], r] —l—4 C reT
[fteT S, 7'] —l—q C

Consider the axioms for the configuration [(a, e), 7], where ¢ = £ (e). At time r the atomic
action preceding the execution of the statement (a, e) was executed. The time e denotes at
which time atomic action a should be executed. Since two successive atomic actions cannot be
executed at the same time, the atomic action a can only be executed at time € and terminate
successfully at time €, which is denoted by [E, €], if ¢ > r. If € < r, the atomic action a should
be executed at or before the time at which the atomic action preceding the execution of the
statement (a, €) was executed. In this case, the execution of the atomic action a fails at time 7,
denoted by [A, r]. We will only use the axioms for the configuration [(a, e), 7] in the case that
e does not contain any free variables, because we impose that the statement part of a program
does not contain any free variables.

The rule for a procedure call indicates body replacement and value passing of the expressions
to the time variables. Parallel composition is modelled by arbitrary interleaving of the atomic
actions of both statements. The rule for integration states that some element 7’ from the time
set T' is passed to the time variable ¢ in statement s.

Using the above rules, we can derive [(a, 3) ; (b, 4), 0] —(a, 3)—4 [(b, 4), 3] — (b, 4)—4 [£, 4]
and [(b, 4) ; (a, 3), 0] —(b, 4)—q [(a, 3), 4] —(6, 4)—4 [A, 4].
Now we define the operational semantics for configurations. The strings of actions obtained

from the labelled transition system are recorded by the mapping O). These strings of actions
are collected in P, (T FS’), the set of non-empty closed subsets of

TFS" = Label™ U Label*
with typical element o.

As we will see in property 3.3, for each configuration the operational semantics is a non-empty
set. We restrict ourselves to closed sets in order to obtain a complete metric space. At the end
of this section the semantic domain is restricted.

Definition 3.1
The mapping O/, : Conf — Py (T'FS') is given by
o € O} (C) if and only if one of the following three conditions is satisfied

1.3neIN3ICh,...,Ch1 €Conf I 1y,... 1, € Label I 1 € IR>
C—-li—gC1 —lo—g...—ly_1—49 Cpn1 —ln—y [E, 7“] A
c=lilo ...l 11,

2.3neIN3Cy,...,Choi€Conf I ,... 1, € Label 31 € IR>
C—-li—gC1 —lo—g...—lh_1—49 Cpn1 —ln—y [A, 7’] A
g = ll lQ --~ln—1 ln

3.3C,...€ Conf I 1l,... € Label
C—l1—=qg C1 —lg—yg ...l 1—q Cphq —lp—q ... N
g = ll lQ --~ln—1 ln

End 3.1

To prove that O/, is well-defined, we need two properties of the labelled transition system. We
prove these properties using induction on the complexity of statements. We define a complexity
function on statements associated with a declaration d.

Definition 3.2
The mapping cfd Stat — IN is given by
cfa ((a, €)) =
cfd(:c(...,en)):cfd()+1 x(ty, ..., th) <= ged
cfa (s1; 82) =cfq(s1) +1
cfa (51 U s2) = cfq (s1) + cfa (s2)
cfa (s1 || 52) = cfq (1) + cfa (s2)
(

cfa ftET s) = cfa (s) +
End 3.2

For each guarded statement g the complexity function cf, is well-defined. This follows from
the definition of the complexity function and the form of guarded statements. In the case of
sequential composition only induction with respect to the first argument can be applied. From
the above definition we can derive that cfy (s [r/t]) = cfq (s).

In all proofs below using the induction on the complexity of statements, only the most interesting
cases are considered.

The first property states that for all configurations C there is a label [and a configuration C
such that C' —Il—4 C'. Using this property we can show that O delivers non-empty sets.

Property 3.3

For all C € Conf there exist [€ Label and C € Confgra such that C —l—,4 C.

Proof

We prove that for all s € Stat and r € IR> there exist | € Label and C € Confga such that
[s, 7] —l—4 C, using induction on the complexity of statement s.

1. Let s = (a, e) and € = & (e).
We can distinguish two cases.

(a) For the case that e > r we have that [(a, €), 7] —(a, €)—4 [E, €].
(b) And for the case that ¢ < r we have that [(a, €), 7] — (6, 7)—4 [A, 7].

2. Let s=x (e1, ..., e,) and z (1, ..., tn) < g € d.
1€ Label 3C € Confpa [z (e1, ..., en), 7] —=l—q C
=4

1€ Label 3C € Confra [g [e1/t1, ..., en/tn], 7] —1—4 C
which follows from the induction hypothesis.

3. Let s = s1 ; $0.
31 € Label 3 C € Confra [s1; 82, 7] —l—4 C
<= # Let C' =[5, '] and take C = [5 ; 89,] #
31 € Label 3 C" € Confpa [s1, 1] —l—4 C'
which follows from the induction hypothesis.

4. Let s = 51 U s9.
1€ Label 3 C € Confga [s1 U s9, 7] —l—¢q C
P
31 € Label 3 C € Confga [s1, 7] —1—4 C
which follows from the induction hypothesis.

End 3.3

The second property is used to show that O is closed. This second property states that for
all configurations C' and for all labels [the number of configurations C such that C' —{—,4 C'is
finite. This corresponds to the notion of image finiteness of labelled transition systems.

Property 3.4

For all C' € Conf and | € Label the set { C' | C —l—4 C } is finite.

Proof

We define S (s, 7, 1) ={ C | [s, r] —=I—4 C }. We prove that S (s, r,) is finite for all s € Stat,
r € IR> and | € Label using induction on the complexity of statement s.

1. Let s = (a, e) and e = & (e).
We can distinguish three cases.

(a) Let e > r and | = (a, €).

S ((a, e), r, (a, €))

C | [(aa 6)7 T‘] _(at 6)_>d C }

=1

{[£; €]}
(b) Let e <rand !l = (8, r).
S ((a,e), r, (6, 1))

(O] (@ e), 1] — (6, r)—a O)

a7y
(c) Otherwise S ((a, e), r, 1) = 0.

5. Let s = s1 || so.
S (s1 | s2, 7, 0)

C|[s1] s2, 7] =l—4 C}

[s 11 s2, '] [[s1, 7] —l=a [s, "] YU { [s1 ['8, '] | [s2, 7] —l=a [5, 7] }

=1 =1l

{5l s2, 7] [s, 71 €S (s1,r,) Ju{lsi |l s,r]|[s,] €S (s2,7,0)}
This set is finite, because the sets S (s1, 7, [) and S (s9, 7, [) are finite, which follows from
the induction hypothesis.

6. Let s = [,cp s.
S (ftET s, T, l)

Cllfer s 71 —1—=a C'}

=1

U{{CIlIsl'/t,rl —l=aC} |1 el }

UL{S(slr/thr)| reT}
This set is finite, because the sets S (s [r'/t], r, I) are finite, which follows from the
induction hypothesis, and 7T is finite.

End 3.4

Note that the restriction of time sets to finite sets is essential in the proof of this property.
We can even prove that the set { (I, C) | C —l—4 C } is finite for all configurations C, which
corresponds to the notion of finitely branching of labelled transition systems.

Applying the mapping Oy to the configuration [[,c v z (1, t + 1), 0], where x (1, t2) is declared
as (a, min {t1, t2}) ; = (t1 + 1, t2), delivers a non-closed set.

Having proved properties 3.3 and 3.4, we can show that O/, is well-defined as stated in the
following lemma.

Lemma 3.5

The mapping O} is well-defined.

Proof

We have to prove for all C € Conf that O (C) € Pn. (T'FS'). The fact O (C) € P (I'FS’)
follows immediately from the definition of @). From property 3.3 we can conclude that O
delivers non-empty sets. We have left to prove that O} (C) is a closed set. Let {o;}; be a
Cauchy sequence in O/, (C'), which converges to o. We only consider the case that o € Label“.
Let 0 =1 Iy We show that there exist configurations C1, Cs, ...such that C —l1—4 C}
and Cy —ly—4 Cy, For {o;}; is a Cauchy sequence, there exists an infinite subsequence
{of@y}i such that op,y = Iy - 0}(i). From property 3.4 we can deduce that there exists an
infinite subsequence {o4(f(;y)}: such that ogpq)) = 11 - aé(f(i)) such that C —1;—4 Oy for some
fixed configuration Cy. We can continue this process ad infinitum. Hence o € O} (C).

End 3.5

We can also define the operational semantics as the unique fixed point, which we call Oy, of a
higher-order mapping W¢,. This mapping and the mapping O give rise to the same sets for
each configuration as will be shown in lemma 3.10. The former mapping will be used to prove
the equivalence of the operational and the denotational semantics. With abuse of language we
will write U instead of Wp,. We show that this higher-order mapping is well-defined and that
it is a contraction. Due to Banach’s theorem, we have that W has a unique fixed-point. The
higher-order mapping W¢ is given in the following definition.

Definition 3.6

The mapping ¥ : (Conf — Pp. (TFS")) — (Conf — Pp. (TFS")) is given by

o (F)C) = U {1l F(C)|C 1=y @ YU{1]C g [B,r] }O{1]C lmg [A, 7] }
End 3.6

Now we show that Wy is well-defined.

Lemma 3.7

The mapping Wy is well-defined.

Proof

We prove for all ' € Conf — Ppe (TFS'") and C € Conf that Up (F)(C) € Ppe (TFS"). From
the definition of ¥ immediately follows that ¥p € P (T'FS’). By property 3.3, we have that
for all configurations C there exists a label I and a configuration C such that C —I—4 C. Now
immediately follows that the set ¥ is non-empty. We have left to prove that this set is also
closed. Let {o;}; be a Cauchy sequence in Uy (F)(C). By the definition of Wp, there exists an
infinite subsequence {o(;)}; in one of the three following sets.

LU{L-F(C)]|C 1=4C"}
2. {1 C ==y [E, 1]}
3. {1 C—l=y A, 7]}

We only consider the first case. This Cauchy sequence {o ;) }i is of the form {lsuy - o}
where C' —lf;y—4 C' for some configuration C’. Since it is a Cauchy sequence there exists an
infinite subsequence {I -« o4p))}i of {lf(i) * o) }i, for some fixed label I such that C —i—4 C'
for some configuration C’. By property 3.4 we have that for all configurations C and all labels
[there are only a finite number configurations C’ such that ¢ —l—4 C’. So by the pigeon-
hole principle, there exists an infinite subsequence of {l + o44(;))}: for some fixed label I and
configuration C” such that C' —I—4 C'. Since F' (C") is closed, this subsequence converges to an
element in [- F (C'), which is also an element of Uy (F)(C). So the whole sequence converges
to that same element.

End 3.7

Next we show that Wy is a contraction.

Lemma 3.8

The mapping ¥ is a contraction.

Proof

d (Yo (F)(C), Yo (G)(C))

dU{l-FC)|C—=l=4C'YU{l|C—l—=4[E, 7] }U{l]|C —l—4][A, 1]},
ULl G(C)]C—lmg C'YU{L]C g [Byr] Y UL L] €l [A, 7] D)

< #d(l - F(C),1-G(C)) <3d(F,G), property A.11 of the appendix #

1d(F, Q)

End 3.8

Now we know that W» has a unique fixed-point. Using the fixed point property gives us the
following definition of Oy.

Definition 3.9

The mapping Oy : Conf — Pp. (TFS') is given by

Og (C)=UA{l-04C)|C—l=gC" }U{l|C—l—=g[E,r]}U{l]|C—l—=a]A 7]}
End 3.9

10

As already mentioned, we show that O/, and Oy give rise to the same sets for each configuration.
We do this by showing that O, is a fixed point of We.

Lemma 3.10

Oy = Yo (Oy)

Proof

o€ O (C)

i=4

3C" €Conf3leLabel C—l—4C'" No=1o"No' €O, (C")V
drelRs C —l—y [E, 7’]\/

drelRs C—l—y4 [A, 7]

i=4

ceU{l -FC)|C—l—=gC }U{l|C—l=gE,r}U{l|C—l—q[A, 7]}
i=4

g€ Yo (O)(C)

End 3.10

In the following we restrict our semantic domain. The set T'F'S’ is restricted to the set of timed
failure streams T'F'S to exclude meaningless streams.

TFS ={0eTATUTA*TFUTA® |

if (a, r) precedes (a', ') in o then r < 7/,

if (a, r) immediately precedes (6, r') in o then r = 7' }
with typical element o.
The fact that if (a, r) precedes (a', r') in o then r < ' represents that two successive atomic
actions cannot be executed at the same time. The clause if (a,) immediately precedes (8, ')
in o then r = 7’ represents the notion of failure.

To justify this restriction, we show that for each configuration the mapping O delivers an
element of P (TFS). This follows immediately from the properties 3.11 and 3.12. The first
property shows that if (a,) precedes (a’, r’) then r < 7’

Property 3.11

For all s € Stat, 5 € Statpa, a € Aand r, 7', 7" € IR>

[s, 7] —(a, ")—=q [, r"] =7 =r" ANr <2

Proof

We prove this using induction on the complexity of statement s.

1. Let s = (a, e) and € = £ (e). Since the only rule which satisfies the premise is
[(a, €), r] —(a, €)—q4 [F, €], where r < ¢, it is clear that the property holds in this case.

2. Let s=x (e1, ..., e,) and z (t1, ..., tn) < g € d.
[z (e1, ..., en), 7] —(a, r")—4 [3, "]
=
[g [61/t17 ey en/tn]a T] —(CL, T’)_>d [57 TH]
=

rr=r"Ar<y

5. Let s = s1 || so.
[s1 1] 82, 7] —(a, 7')—a [8, 7]

<~
([s1, r] —(a, ")—=q [, "] NS =8| s2) V ([s2,] —(a, r")—q [, "] A s =91 || &)
=
r=r"ANr<r
End 3.11

11

The second property shows that if a failure occurs in a stream, it will be the last element of that
stream. In conjunction with the first property it also shows that if (a, r) immediately precedes
(6, r'") then r = r'.

Property 3.12

For all s € Stat, 5 € Statga and r, ', " € IR>

[s, 7] = (6, 7)—=q [5, 7| =>r=1""Ar=r"N5=A

Proof

We prove this using induction on the complexity of statement s.

1. Let s = (a, ¢) and ¢ = £ (e). Since the only rule which satisfies the premise is
[(a, e), 1] —(6, r)—q [A, 7], where r > ¢, it is clear that the property holds in this case.

3. Let s = 51 ; s9.
[s1; 82, 7] —(8, ")—4 [S, 7]

=2
[s1, 7] — (6, r")—4 [, "] N5 =5; 59
= #A;sy=A#

r=r Ar=r"A5=A

6. Let s = f,cp s.
Uier s, 71 = (8, 7")=a [5, 1"

<~
A7 e T [s[r/t], r] —(8, 7")—q [5, 7]
=
r=r"Ar=r"As=A
End 3.12

We conclude this section with the definition of the operational semantics for programs. The
well-definedness of the operational semantics O follows from the well-definedness of O,

Definition 3.13

The mapping O : Prog — Pn. (TFS) is given by
O (d]s)= 0, ([s, 0])

End 3.13

4 Denotational semantics

After having defined an operational semantics, we give a denotational semantics for our language.
A denotational semantics D should be compositional, i.e. for every syntactic operator op a
corresponding semantics operator op’ should be defined such that

D(d|s1ops2)=D(d]|s1)op D(d] s2)
and it should tackle recursion with the help of fixed points.

This denotational semantics does not record failures, but just streams of timed actions, which
are not even ordered in time.

The semantic domain used to define the denotational semantics is the set of timed streams

TS =TATUTAY

with typical element o.

For the syntactic operator ; we define the corresponding semantic operator o. We first define

this operator on timed streams. Then we extend this definition to non-empty closed sets of
timed streams.

12

Definition 4.1

The operator @ : T'S x TS — TS is given by

aeT=q-"T

(a-0)eT=a-(cerT)

The operator e : Py, (T'S) X Ppe (1'S) — Pre (1'S) is given by
YeT={ocer|oceXANTET}

End 4.1

It may not be obvious that the operator e is well-defined.

Lemma 4.2

The operator e is well-defined.

Proof

We have to prove that the set X o T is closed. Let {p;}; be a Cauchy sequence in ¥ @ T. So
pi = 0; ® 7; for some o; € ¥ and 7; € T. Let n; € IN. Since {p;}; is a Cauchy sequence,
there exists a subsequence {py,¢;}s such that pg ;y [n1], the prefixes of py, ;) of length ny, are
constant. By the pigeon-hole principle we have that there exists a subsequence {/)g1(f1 (i))}i such
that pg, () [n1] = 0 ® T4 (g) [n1], where 0 € X, 744,y € T and ny = n; - length (o),
Or Pgy (@) [M] = 0gi(a0)) [ml, where o, (5,5 € X In the first case pg,(,0)) = 7 @ 79,11
The Cauchy sequence {7, (f, () }i converges to some 7 € T, due to the fact that 7 is closed.
So {pg,(f.(i)) }i converges to o e 7. From this we can conclude that the sequence {p;}; also
converges to o e 7, which is an element of 3 e 7. In the second case, we can continue the
process by taking a subsequence {pfz(gl(h(,-)))}i, whose prefixes of length ns > ny are constant.
If the process terminates, we will end up in the first case, which gives us the desired result. If
the process does not terminate, we define h (i) = ¢;(fi(... g1(f1(0)) ...)). It is easy to see that
{pn()}i is @ Cauchy sequence in ¥, which converges to some ¢ € ¥, since ¥ is closed. This o
is infinite and therefore an element of ¥ e 7. So we can conclude that {p;}; converges to an
element of 3. e T.

End 4.2

We can also define the operator e as a fixed point of a higher-order mapping. We therefore first
introduce an auxiliary operator.

Definition 4.3

For each 3 € P, (T'S) and a € T'A, 34 € P, (T'S) is given by
Ya={oceTS|a-0ce¥}

End 4.3

Tt is straightforwardly shown that this auxiliary operator is well-defined.

Lemma 4.4

For all ¥ € P, (I'S) and a € T A, ¥, € P, (T'S)

Proof

Y, is an element of P (T'S), which follows from the definition. Let {o;}; be a Cauchy sequence
in ¥4. Then {a - 0;}; is a Cauchy sequence in 3. Since X is closed, the Cauchy sequence

{a - 0;}; converges to an element of 3, which will be of the form a - . So the Cauchy sequence
{oi}; will converge to o, which is an element of 3.

End 4.4

Now we can define the operator the higher-order mapping as follows.

Definition 4.5
The mapping We : (Ppe (1'S) X Pre (T'S) — Pre (1'S)) = (Pre (T'S) X Pre (I'S) — Ppe (1'S))

is given by

13

U (F)E, T)=U{a- - F3, T)|2#0}UuU{a -TlaeX}
End 4.5

We show that W, is well-defined and that it is a contraction.

Lemma 4.6

The mapping W, is well-defined.

Proof

We have to prove for all F' € (Pne (T'S) X Ppe (T'S)) — Ppe (T'S) and 3, T€ P, (T'S) that
U, (F)(X, T) € Pnc (TS). The fact that ¥e (F)(X, T) € P (T'S) follows from the definition.
Since 3 is non-empty, there must be an « such that >, is non-empty or a € ¥, which gives us
that W, (F)(X, T) is non-empty. We have left to prove that W, (F)(X, T) is closed. Let {o;};
be a Cauchy sequence in W, (F)(%, 7). Then there exists an infinite subsequence {o:; }; in

one of the following sets.
L. U{O"F(ZaaT)|Ea7ém}
2. U{a-TlaeX}

We only consider the first case. In this case there exists an infinite subsequence {ag(f(i))}i in
a - F (3, T) for a fixed a. Since F' (X, T) is closed, the sequence {ogfxiy)}: converges to
an element in a - F (X4, T). So the whole Cauchy sequence converges to that same element,
which is also an element of ¥, (F)(X, T).

End 4.6

Lemma 4.7

The mapping ¥, is a contraction.

Proof

dUf{a - F (3., T)|%a
U{a G((Ea, T)|X

< # property A.11 #

maz (d (U{a F (X, T)[Za#0} U{a G &, T)[Ea#01}),

dU{a TlaeX} U{a: TlaeX}))

dU{a- - Fa T)|Z2#0} U{a -G T)[Za#0})
< #Ea#@:d(a-F(Za,’T}a-G(EQ,T))S%GZ(
3 d(F,G)
End 4.7

F, G), property A.11 #

Because ¥, is a contraction we know that W, has a unique fixed point according to Banach’s
theorem. The fixed point property gives us the following definition for the operator e.

Definition 4.8

The operator @ : P (T'S) X Pre (T'S) — Ppe (1'S) is given by
YeT=U{a - EaeT)|E,#0}tUU{a-T|laeX}
End 4.8

We can easily verify that the operators defined in the definitions 4.1 and 4.8 are equivalent,
because U, (o)(X, T) =X o T.

Next we define two semantic operators which correspond to the syntactic notions of non-
deterministic choice and integration.

14

Definition 4.9

The operator U : Ppe (T'S) X Pre (T'S) — Pre (T'S) is defined as the set-theoretic union.
The operator J : (Ppe (1'S))* — Pre (1'S) is defined as the generalised set-theoretic union.
End 4.9

The semantic counterpart of the syntactic operator || is first defined on timed streams. This is
done by defining a so-called left-merge ||, as introduced by Bergstra and Klop in [BK82], which
expresses a merge where the first element is taken from the left argument. Then we extend this
definition to non-empty closed sets of timed streams.

Definition 4.10

The operator || : TS x T'S — P (T'S) is given by
olltr=0c||7UT |0

The operator || : TS x TS — P (TS) is given by

al|l7={a- 1}

(@-o)[r=a- (o])

The operator || : Ppe (T'S) X Prpe (T'S) — Ppe (T'S) is given by
Y| T=U{o||7lceXATeT}

The operator || : Ppe (1'S) X Pre (I'S) — Ppe (T'S) is given by
S| T=U{o|l7|lceXATeT}

End 4.10

Proving that the operator || is well-defined can be done along the lines of the well-definedness
proof of the operator e and is left to the reader.

Again we can characterise the operator as the unique fixed point of a higher-order mapping.

Definition 4.11

is given by

N (F)(3, T) =V (F) (%, T) UV (F)T,)
End 4.11

So the fixed point property gives us the following definition, which is equivalent to the earlier
given definition of ||.

Definition 4.12

The operator || : Ppe (1'S) X Pre (I'S) — Ppe (1'S) is given by

Y1 T=U{a- Ea|T)|Z2%#0}ulU{a T |aceX}U
Ufa: (TallX) [Ta#diuU{a - X|aecT}

End 4.12

Now we can give the denotational semantics for statements recorded in the mapping Dy, which
is the fixed point of the higher-order mapping ¥p.

Definition 4.13

The mapping Dy : Stat — Py (T'S) is given by

Dd ((a, €)) = {(a, €)} Ee)=c¢c
Dy (x (s ooy en)) =Dy (g ler/t1, ..., en/tn]) z(ty, ..., tn) = g€d
Dy (51 ; 82) = Dy (s1) ® Dy (s2)
(51 U 82) =Dy (51) U Dy (82)
Dy (s1 || 52) = Dy (51) || Da (s2)

Dd (Jiers) =UADa (s [r/t]) | r €T}
End 4.13

The higher-order mapping Wp is defined in the following definition.

15

Definition 4.14
The mapping Wp : (Stat — Pne (T'S)) — (Stat — Pne (T'S)) is given by

Up (F) ((a, e)) = {(a, €)} £(e)=e
Up (F) (.23 (61, ...,6n)) =Up (F) (g [el/tl, ...,en/tn]) x (tl, ...,tn) <=ge€ed
Up (F) (s1; 52) = Wp (F) (1) @ F (s2)

Up (F) (81 U 52) =Up (F) (81) Uvp (F) (82)

Up (F) (51| s2) = ¥p (F) (s1) || ¥p (F) (s2)

Up (F) (Jiers) = U {¥p (F) (s [r/1]) | r € T}

End 4.14

The fact that Wp is well-defined follows from the fact that the operators are well-defined. In
order to prove that Wp is a contraction we need two properties. The first property states that
1

the operator e is non-distance increasing in its first argument and contracting with factor 5 in

its second argument.

Property 4.15
For all ¥, ¥, T, T' € Pp. (T'S) and € € [0, 1]
d(E,X)<eANd(T, TN <2e=d(XeT,XeT)<c¢

Proof

d(E,Y)<enNd(T, T <2¢

= # note 1 #

Vn>0d (U7 (F)(X, T), 92 ()3, T)) <e
= # note 2 #

d (lim, 92 (F)(X, T), lim, 97 (F)(X, T')) < e
= # Banach’s theorem #
d(XeT, Y eT')<e

Note 1:

For n =0 we have that d (3, X)) < e Ad (T, T') <2e=d(F (X, T), F (¥, T") <e, by
taking F' (X, T) = X. Assume that n > 0and d (X, ¥) <eandd (T, T') <2 ¢ and
d (U (F) (%, T), Uy (F)(X, T'") < e. We have to prove that
d (Wt (F)(3, T), Uett (F)(X, T") < ¢
&
d(U{a- 9 (F) (5., T)|Za#0}uU{a-TlaeX},
Ufa W (FEL THIX#0F0U{a- T aeX })<e
This can be proved using property A.11 and the following facts. We distinguish three cases for
each a € T A.

1. Assume that (e € X & aeX)A (Ba £ 0 < XL #10).

d(E, XY <eANd(T, T"h<2e

=

S ZOASL#£0=>d (B0, XL) <2eAd (T, T')<2¢

=

SaAOASL #£0=d(F (S, T), F (X, T)) <2eAd (T, T)<2¢

=

Yo ZzOASL#0=>d(a - F (3, T),a FE,T))<eAd(a T,a T <e
2. Assume that (¢ € ¥ & a € ¥').

d(5,Y)<eAd (T, T')<2e¢

= #d (X, X)=1,s0e>1+#

SaZOANEL#0=>d(a- F (3, T),a- FE,TY) <eAd(a-T,a-T'")<ce¢
3. Assume that (X, Z0 4 XL £0) A (€ X & ae). Let ¥, # 0 and X, = . Then

a € Y, because X' £ (.

16

d(X,Y)Y<enNd(T, T <2e¢
= #d(E,Y)>2,s0e>1 #
Yo#b0=d(a- F (X0, T)ya-TY<eAd(a -T,a -T)<e
Note 2:
Since WU, is contracting with factor 3, {U7 (F)(X, T)}, and {97 (F)(X, T')}, are Cauchy
sequences. For some arbitrary n > 0, we have that
d (limn, WZ (F)(3, T), lim, ¥} (F)(X', T"))

<
d (limy, W2 (F)(X, T), W7 (F)(2, T)) + d (Y7 (F)(%, T), ¥ ()X, T') +
d (U (F)(X, T), limy, WQ (F)(

The second property states that the operator || is non-distance increasing in both arguments.
The proof of this property, which has the same structure as the proof of the preceding property,
is left to the reader.

Property 4.16

Forall ¥, ¥, T, T' € Pp. (T'S) and € € [0, 1]
dE,YX)<enNd (T, T <e=dX|T,Y||T)<e¢
End 4.16

Now we are ready to prove the contractivity of Up.

Lemma 4.17

The mapping ¥p is a contraction.

Proof

We prove for all s € Stat that d (Up (F)(s), Up (G)(s)) < 5 d (F, G) using induction on the
complexity of statement s.

1. Let s = (a, e) and e = & (e).
d (Vp (F)((a, €)), ¥p (G)((a, €)))

d({ (@0} (o)
0
<
1d(F, Q)
2. Let s=x (e1, ..., en) and z (b, ..., t,) < g € d.

d (Up (F)(z (e1, ..., en)), ¥p (G)(z (e1, ..., en)))

3. Let s = s1 ; so.
d (Wp (F)(s1; s2), ¥p (G)(s1; 52))

d (Up (F)(s1) @ F (s2), Up (G)(s1) G (s2))

< # property 4.15 #
maz (d (Up (F)(s1), ¥p (G)(51)); 3 d (F (s2), G (52)))

17

<

maz (3 d (F,G), 1 d (F, G))

1d(F,G)

4. Let s = 51 U s9.
d (‘I’D (F)(S] @] 82), \I/D (G)(Sl U 82))

d (Wp (F)(s1) U ¥p (F)(s2), Up (G)(s1) U ¥Up (G)(s2))

< # property A.11 #
maz (d (Yp (F)(s1), ¥p (G)(s1)), d (Yp (F)(s2), ¥p (G)(s2)))
<

maz (5 d (F, G), } d (. Q)

5 d(F,G)
End 4.17
The mapping ¥p has a unique fixed point, which can be conclude from Banach’s theorem. Dy
is derived from Wp using the fixed point property.
Finally we extend the denotational semantics from statements to programs in the last definition
of this section.

Definition 4.18

The mapping D : Prog — Pn. (T'S) is given by
D (d]|s) =Dy (s)

End 4.18

5 Equivalence proof

Having defined both an operational and a denotational semantics for our language the question
rises whether the denotational model D is correct with respect to the computational intuition
captured by the operational model O. We observe that the denotational model D does not
record failures. Therefore we define a function fail which introduces failures in timed streams.
We will show that

O = fail (0) o D.

In order to prove this we define a so-called intermediate semantics Z. We define this intermediate
semantics with the help of a labelled transition system like we have defined the operational
semantics. This intermediate semantic model does not record failures just like the denotational
semantics. We will prove that

1 =".

Finally, we relate the labelled transition systems defining the operational and intermediate
semantics resulting in

O = fail (0) o T.

We first give the labelled transition system describing the intermediate model. This transition
system is again associated with a declaration d. The set of configurations consists of Statg
where

Statp = Stat U {F}

and the set of labels consists of the set of timed actions. The rules associated with the declaration
d are

18

(a,e)—(a, €)—q £ E(e)=c¢

glei/t1, ..., en/tn] —a—g 3 z(t, ..., tn) =g €d
z (€1, ..., €n) ——4 §
S —a—y 8

s;8 —a—g38;s

S —a—y 8

sUs —a—y 35

ssUs—a—y5

S—a—yq S

s| s —a—g8] s

dls—a—qgs]s

sr/t] —a—q4 3 reT
ftGT S —O—y S

Using the above rules, we can derive (a, 3) ; (b, 4) —(a, 3)—4 (b, 4) — (b, 4)—4 F and
(b: 4) ; (ay 3) _(b7 4)—>d (aa 3) _(aa 3)_>d E.

Having defined the labelled transition system we can give the intermediate semantics for state-
ments.

Definition 5.1

The mapping Z; : Stat — Pp. (T'S) is given by
Ta(s)=U{a-Z4(s) | s—a—gs }U{a|s—a—y E}
End 5.1

The fact that the intermediate semantics Z4 is well-defined can be proved along the lines of
the well-definedness proof of the operational semantics Og4. We only introduce the higher-order
mapping Wz, which will be used in lemma 5.4.

Definition 5.2

The mapping Wz : (Stat — Ppe (T'S)) — (Stat — Pne (T'S)) is given by
Uy (F)(s)=U{a- F(s)|s—a—gsd}tU{als—a—gE}

End 5.2

Now we introduce the intermediate semantics for programs.

Definition 5.3

The mapping Z : Prog — Pp. (T'S) is given by

T(d|s)=1Ta (s)

End 5.3

We have all the ingredients to prove Z = D. First we show that Uz (Dy) = D,. Using Banach’s
theorem we can conclude that Z; = Dy. From this we can easily deduce Z = D.

Lemma 5.4

U7 (Dy) = Dy

Proof

We prove for all s € Stat that Wz (Dy)(s) = Dy (s) using induction on the complexity of
statement s.

1. Let s = (a, ¢) and & (e) = .
Yz (Pa)((a, €))

19

U{a-Dy(s)|(a,e) —a—ygs }U{al (e e)—a—qg E}

{(a,)}

Da ((a; ¢))

.Let s=z(e1,...,en)and z (t1, ..., tn) < g.

\If_'[(Dd)(a: (61, ey en))
U{a-Dy(s)|z(er,...,en) —a—gs }U{alz(er,...,en) —a—qg £}

G{oz =Dy (s) | gler/tr, ..., en/tn] —a—gq s Y U{al|glei/t1, ..., en/ty] —a—q E }

Uz (Da) (g [er/tr, - en/tnl)

Dy (g ler/t1, -, en/tn])

Dy (z (e1, ..., €n))
. Let s = 51 || s2.

Uz (Da)(s1]| s2)

U{a-Dg(s)|s1| s2—a—gs tU{als | ss—a—qgFE}

U{a-Dyg(s|s2)|s1—a—gstUlU{a-Dy(s2)]|s1—a—qgF}U
U{a -Dg(s1]s)]|s2—a—=qgstulU{a-Dy(s1)]|s2—a—yE}
U{a: - (Ds(s) || Da(s2))|s1—a—as }UlU{a:Dy(s2)]|s1—a—q FE}U
U{a-(Dyg(s1) || Dg(s))]| s2—a—gs }UlU{a-Dy(s1)]|s2—a—qFE}
U{a-(o]|7)|c€Dy(s)ANT €Dy (s2) ANs1 —a—ys }U
{a-7|7€Dy(s2) ANsy —a—qgF}U
U{a-(c||7)|oc€eDy(s1) NT €Dy ()N sy —a—qgs }U
{a-0|ce€Dy(s1)Nsy—a—g E}
D{(a-0)L[T|U€Dd(s’)/\TEDd(52)/\sl—a—>ds'}U
{a| 7|7 €Dy (s2) N sy —a—q E } U
U{(a-7)|[oc|oc€Dyg(s1) N7 €Dy (s)Nsyg—a—ygs }U
{OKUO|(7€’Dd(81)/\82fOA—>dE}
U{(a Dy (s)|s1—a—gs tU{alsi—a—qgE})| Dg(s2)U
(U{(a Dy (s)]sg—a—gs tU{a|sy—a—q E}) | Dg(s1)

7 (Da)(s1) || Da (s2) U V7 (Dy)(s2) |l Da (51)

O

d (1) || Da (s2) U Dy (s2) || Da (s1)

SR

a4 (1) || Da (s2)

Dy (51| s2)

20

6. Let s = [,cp s.
U1 (Da)(fyer)

Ul o Du ()| e s —ama# } Ufal fp s—ama £}

U{U{a - Du(s) 5[/ —ama s } 1T} UU{{als [/ —ama B} reT)
U{U{a - Du(s) 5[/ —ama s }U{al s /] —ama B} |1ET)

UL (s /) | 1T)

ULDi (s /i) reT)

Dy (fteT s)
End 5.4

We have left to prove that O = fail (0) o Z. First we give the function fail which introduces
failures in timed streams. The function fail (r) identifies those streams o whose first action
occurs after time r and whose actions are in the right order, i.e. if (a, r) precedes (a’, ') in o
then = < r'. If the first action of a stream o occurs at or before r, fail (r)(o) delivers (8, r).
If the actions of stream ¢ are not in the right order, fail (r)(c) gives the longest prefix of o,
which is in the right order, concatenated with a failure after the time stamp of the last action
of this longest prefix.

Definition 5.5
The mapping fail : IR> — TS — TFS is given by

fail (r)((a, ")) = (a, 1) r<r
fail (r)((a, r')) = (6, 1) P>
fail (r)((a, ") + o) = (a, ") + fail (r")(0) r<r
fail (r)((a, r") - o) = (8,) r>r

The mapping fail : IR> — Ppe (I'S) — Pre (T'FS) is given by

fail (r)(X) ={ fail (r)(c) |c€eX}

End 5.5

For example, we have that fail (0)((a, 3)(b, 4)) = (a, 3) fail (3)((b, 4)) = (a, 3)(b, 4) and
fail (0)((b, 4)(a, 3)) = (b, 4) fail (4)((a, 3)) = (b, 4)(5, 4).

Proving that fail is well-defined is left to the reader. The proof follows from the fact that if
fail (r)(o) is infinite, then we have that fail (r)(o) = o.

Next we prove two properties which relate the transition systems describing the operational and
intermediate semantics.

Property 5.6

For all s € Stat, s € Staty, a € Atom and r, r' € IR>
s—(a,")—=g 5 AT <1 & s, r] —(a,r")—q4 5 1]

Proof

We prove this using induction on the complexity of statement s.

1. Let s = (d/, e) and ¢ = £ (e). By inspection of the transition systems we can write the
left-hand side of the equivalence as (a/, €) —(a’, €)—4 E A r < € and the right-hand side
as [(a',), r] —(a', €)—4 [E, €], where r < e. We can conclude from this that the property
is satisfied in this case.

21

2. Let s = 571 ; s9.
s1;8 —(a,r)—=g5Ar<r

<
s1—(a,)—=qg 8 ANr<r'As=5; s
<~
[s1, 7] —(a,)—=q [§,]| ANS=5 ;s
<~

[s1; 82, 7] —(a, r')—q4 [8, ']

4. Let s = 51 U s9.

s1Usy—(a,m)—=g 5 N1 <7
<~
(s1 —(a, r")—=aSAT<7)V (s9 —(a, r")—4 A r<7)
=4
[s1, 7] —(a, ")—q4 [5, 7] V [s2, 7] —(a, ")—4 [3, 7]
<~
[s1 U sg, 7] —(a, r')—q4 [5,]

End 5.6

From this property we can deduce that the empty statement F of the operational semantics is
related to the empty statement of the intermediate statement.

Property 5.7

For all s € Stat, § € Statg, a € Atom and r, r' € IR>
s—(a,)y=qg s ANr>1r o [s, 1] —(6,1)—q [A, 7]

Proof

We prove this using induction on the complexity of statement s.

1. Let s = (d/, e) and € = &£ (e). By inspection of the transition systems we can write the
left-hand side of the equivalence as (a/, ¢) —(a’, €)—4 F A r > € and the right-hand side
as [(d, e), r] —(6, r)—4 [A, r], where r > €. We can conclude from this that the property
is satisfied in this case.

2. Let s=x (e1,...,e,) and z (L1, ..., tn) < g € d.
z(er, ..., eq) —(a,)—=g5 AT >0
<
g lei/tr, ..., enftn] —(a,7")—qg s AT >7
g
lg9 le1/t1, -, en/tn] s 7] — (6, T)—a [A, 7]
-~
[z (e1, ..., en), 7] —(6, 7)—=a [A, 7]

5. Let s = s1 || so.
s1 || s2 —(a, 7")—=g 5 AT >7

-

(s1 —(a,”")—=g @ ANr>r"ANS=5 | s9) V(sg—(a,7)—=gF ANr>r'"As=s | 7)
<

(Is1, 7] =(6, r)—a [A, F] AS=F | s2) V ([s2, 7] —(6, r)—=a [A, r] NS =351 || §)

=

[s1]| 82,] —(8, r)—q [A, 7]

6. Let s = [,cp s
Jier s —(a,) —=a 5 AT >7

22

-~
Ar"eT s r"/t] —(a, r')—=a 5 AT >7

~
Ar"eT [s[r/t], r] —(6, r)—q [A, 7]
<~
[fteT $, T] *(& T)_>d [Aa T]
End 5.7

The above property tells us that the failure statement A is related to an arbitrary statement of
the intermediate semantics.

We introduce the mapping Igail in order to prove that Oy ([s, r]) = fail (r)(Zy4 (8)).
Definition 5.8
The mapping Ij(”l : Conf — Ppe (TFS) is given by

atl .
" ([s. 71) = fail (r)(Za (5))
End 5.8
We show that ¥ (Ig“il) = Ig“il. Again using Banach’s theorem we can conclude that
O = T3%" which gives us Og ([s, r]) = fail (r)(Zs (s)).
Lemma 5.9 ‘
T (Ijazl) _ Z—({ml
Proof ‘ ‘
We prove for all C' € Conf that Up (Z1*)(C) = ZJ* (C). Let C = [s, 7).

ail

Vo (Z]™)((s, 71)

ULl () s, 1l =1=a O YU L L] [s, r] =l=a [E, P] YU {1][5, 7] —l—a [A, 7] }
(a,)| [s, 7] —(a, r)=aq [E, '] } U

(a,)| [s, r] —(a, 7)=a [A, 7] }
property 5.6 and property 5.7

y } (a,) = T3 (Is', 7)) | [s, 7] —(a, 1)—q I8, 7] } U
{

{(a,r) - T3 (¢, ¥]) | s —(a, r)—q &' AT <7 }U
{(a,m) | s—(a,7r)—=a EAT<?r }U

{6,)] s—(a,r)—=gs Ar>r"}U

{6, 7)]|s—(a,r)=g EAT>71"}

U{(a,7) - fail (") (Zqg (") | s—(a,1)—=qgs Ar<r } U

{(a,7)]|s—(a,r) =g EATr<r }U

{6, 7)]s—(a,r)—=gs Ar>r }U

{6, r)|s—(a,r)—=g EAT>7"}

fail (r)(Z4 (5))

al
73 ([s, 1))
End 5.9

23

We conclude the equivalence proof and this section by showing that O = fail (0) o Z.

Theorem 5.10

O = fail (0)oZ

Proof

We prove for all p € Prog that O (p) = (fail (0) o Z) (p). Let p =d | s.
O (d]s)

o, (Js, 0l)

= # lemma 3.10 #

Oq ([3: OD

= # lemma 5.9 #

fail (0)(Za (5))

fail (0)(T (d] 5))
(fail (0) 0) (d| 5))
End 5.10

6 Concluding remarks

We can conclude that the metric approach for defining models can also be applied to languages
incorporating time related aspects like timed atomic actions and integration.

It seems possible to give another denotational model D leading to the equivalence result O = D.
We expect it to be possible to relate the denotational semantics defined in [RR86, RR87, R88]
to a denotational semantics based on the denotational model presented in this paper following
the lines of [BMOS87]. Finding other criteria to restrict time sets and enriching the language
with communication and global non-determinism are still issues for further research.

Acknowledgements

We would like to thank the members of the Amsterdam Concurrency Group for comments on
a previous version of this paper. In particular, we thank Erik de Vink for his comments and
suggestions during the evolvement of this paper.

References

[A81] K.R. Apt. Recursive Assertions and Parallel Programs. Acta Informatica 15 (1981),
219-232.

[ABS&S] P. America and J.W. de Bakker. Designing equivalent semantic models for pro-

cess creation. in: Proceedings Advanced School on Mathematical models for the
Semantic Parallelism (M. Venturini Zilli, ed.), Lecture Notes in Computer Science
280, Springer (1988), 109-176.

[ABKR86] P. America, J.W. de Bakker, J.N. Kok and J.J.M.M. Rutten. Denotational se-
mantics for a parallel object-oriented language. Information and Computation 83
(1989), 152-205.

[B88] J.W. de Bakker. Comparative semantics for flow of control in logic programming
without logic. Report CS-8840, Centre for Mathematics and Computer Science,
Amsterdam (1988). To appear in Information and Computation.

24

[BB8Y]

[BBKMS8A4]

[BC85]

[BKS2]

[BKS8S]

[BMSS]

[BMOS7]

[BKMOZ86]

[BZ82]

[DS89)]

[E89]

[GV89]

[HPT79]

[KR8S]

J.C.M. Baeten and J.A. Bergstra. Real Time Process Algebra. Report P8916, Pro-
gramming Research Group, University of Amsterdam (1989).

J.W. de Bakker, J.A. Bergstra, J.W. Klop and J.-J.Ch. Meyer. Linear time and
branching time semantics for recursion with merge. Theoretical Computer Science
34 (1984), 135-156.

G. Berry and L. Cosserat. The ESTEREL Synchronous Programming Language
and its Semantics. in: Proceedings CMU Seminar on Concurrency (S.D. Brookes,
A.W. Roscoe and G. Winksel, eds.), Lecture Notes in Computer Science 197,
Springer (1985), 389-448.

J.A. Bergstra and J.W. Klop. Fized Point Semantics in Process Algebra. Report
IW 206/82, Mathematical Centre, Amsterdam (1982).

J.W. de Bakker and J.N. Kok. Uniform abstraction, atomicity and contractions
in the comparative semantics of Concurrent Prolog. in: Proceedings International
Conference on Fifth Generation Computer Systems 1988, Institute for New Gen-
eration Computer Technology (1988), 347-355.

J.W. de Bakker and J.-J.Ch. Meyer. Meiric semantics for concurrency. BIT 28
(1988), 504-529.

J.W. de Bakker, J.-J.Ch. Meyer and E.-R. Olderog. Infinite streams and finite 0b-
servations in the semantics of uniform concurrency. Theoretical Computer Science
49 (1987), 87-112.

J.W. de Bakker, J.N. Kok, J.-J.Ch. Meyer, E.-R. Olderog and I.J. Zucker. Con-
trasting themes in the semantics of imperative concurrency. in: Current Trends in
Concurrency: Overviews and Tutorials (J.W. de Bakker, W.P. de Roever and G.
Rozenberg, eds.), Lecture Notes in Computer Science 224, Springer (1986), 51-121.

J.W. de Bakker and J.I. Zucker. Processes and the denotational semantics of con-
currency. Information and Control 54 (1982), 70-120.

J.W. Davies and S.A. Schneider. An introduction to timed CSP. Report PRG-75,
Oxford University Computing Laboratory, Oxford (1989).

R. Engelking. General Topology. Revised and completed version. Sigma Series in
Pure Mathematics 6, Heldermann Verlag Berlin (1989).

J.F. Groote and F.W. Vaandrager. Structured Operational Semantics and Bisim-
ulation as a Congruence. in: Proceedings 16th International Colloquium on Au-
tomata, Languages and Programming (G. Ausiello, M. Dezani-Ciancaglini and
S. Ronchi Della Rocca, eds.), Lecture Notes in Computer Science 372, Springer
(1989), 423-438.

M. Hennessy and G.D. Plotkin. Full abstraction for a simple parallel programming
language. in: Proceedings 8th Mathematical Foundations of Computer Science (J.
Becvar, ed.), Lecture Notes in Computer Science 74, Springer (1979), 108-120.

J.N. Kok and J.J.M.M. Rutten. Contractions in Comparing Semantics. in: Pro-
ceedings 15th International Colloquium on Automata, Languages and Program-
ming (T. Lepistd, A. Salomaa, eds.), Lecture Notes in Computer Science 317,
Springer (1988), 317-332.

25

[LZ88] 1. Lee and A. Zwarico. Times Acceptances: A Model of Time Dependent Processes.
in: Proceedings Formal Techniques in Real-Time and Fault-Tolerant Systems (M.
Joseph, ed.), Lecture Notes in Computer Science 331, Springer (1988), 128-130.

[R88] G.M. Reed. A Uniform Mathematical Theory of Real-time Distributed Computing.
Ph.D. thesis, Oxford University (1988).

[RR86] G.M. Reed and A.W. Roscoe. A Timed Model for Communicating Sequential Pro-
cesses. in: Proceedings 13th International Colloquium on Automata, Languages
and Programming (L. Kott, ed.), Lecture Notes in Computer Science 226, Springer
(1986), 314-323. Theoretical Computer Science 58 (1988), 249-261.

[RR&7] G.M. Reed and A.W. Roscoe. Metric spaces as models for real-time concurrency.
in: Proceedings Mathematical Foundations of Programming Languages and Se-
mantics (M. Main, A. Melton, M. Mislove and D. Schmidt, eds.), Lecture Notes in
Computer Science 298, Springer (1987), 331-343.

A Mathematical preliminaries

In this appendix we introduce the notions metric space [EE89] and labelled transition system.

Definition A.1
A metric space is a tuple (X, d) where X is a non-empty set and d is a mapping
d: X x X — [0, 1], which we call metric or distance, that satisfies the following properties.

eVzeXVyeX dz,yy=0cz=y
eVreXVyeX d(z,y)=d(y,)

eVzeXVyeXVzeX d(x, 2)<d(z,y)+d(y, 2)
End A.1

In the sequel, we will define some metric spaces on finite and infinite streams over some set A.
With A>* = A* U A we denote the set of all finite and infinite streams over A. For ¢ € A*®
and n € IN o [n] denotes the prefix of length n of stream o, in the case the length of ¢ is greater
than or equal to n, and o otherwise. We put d (o, 7) = 2~ supinleln="lnl} The tuple (4%, d) is
a metric space.

Definition A.2
Let (X, d) be a metric space and let {z;}; be a sequence in X. We say that {z;}; is a Cauchy

sequence whenever we have that
Ve>03aNeINVn>NVYm>N d(zg, zm) <e¢
End A.2

For example, the sequence {a'}; in A> is a Cauchy sequence.

Definition A.3

Let (X, d) be a metric space ,{z;}; be a sequence in X and z € X. We say that {x;}; converges
to x and call z the limit of {z;}; whenever we have that

Ve>03INeINsVn>N d(z,z,) <ce

End A.3

For example, the sequence {a’b}; in A% converges to a“.

26

Definition A.4

A metric space (X, d) is called complete whenever each Cauchy sequence in X converges to an
element in X.

End A4

The metric space (A%, d) is complete. However, the metric space (A*, d) is not complete.

Definition A.5

Let (X, d) be a metric space. A subset Y of X is called closed whenever each Cauchy sequence
in Y converges to an element in Y.

End A.5

The set {a’b} U {a“} is closed and the set {a’b} is not closed.

Definition A.6

Let (X1, d1) and (X2, d2) be metric spaces. We define a metric d on functions fi, fo € X1 — X»
by

d (f1, f2) = sup { do (f1 (2), f2 (2z)) |z € X1 }

End A.6

Note that the above definition does not depend on the metric d; on X;.

Definition A.7

Let (X1, di) and (X3, d2) be metric spaces. Let ¢ > 0. With X; —¢ X5 we denote the set of
functions f from X; to X5 that satisfy

VeeXiVyeXy do (f(2), f(y) <exd (z,9)

The functions in X; —! X, are called non-distance increasing and the functions in X; —° X,
with 0 < e < 1 are called contracting.

End A.7

We can extend a metric on sets to a metric on non-empty closed subsets of those sets as stated
in the following definition.

Definition A.8

Let (X, d) be a metric space. We define a mapping dg, the Hausdorff distance, on P (X), the
set of all non-empty closed subsets of X, by

dg (X, Y)=maz {supzre XinfyeY d(z,y),supyeY infezeXd(y, z)}

End A.8

Next we state Hahn’s theorem.

Theorem A.9
If (X, d) is a complete metric space, then (P, (X), dir) is also a complete metric space.
End A.9

From this theorem we can derive that (P,. (A>°), d) is a complete metric space.

Banach’s theorem, which will often be used in the various sections of this paper, is stated in the
following theorem.

Theorem A.10

If (X, d) is a complete metric space and f : X — X is a contraction then f has a unique fixed
point z. Furthermore, we have that for all y € X lim,, f" (y) = «.

End A.10

The next property states that the operator |J is non-distance increasing in all its operands. This
property will be useful to prove several contraction properties.

27

Property A.11
For all 3;, T; € Ppe (A*) and € € [0, 1]
Vi d(2;,T)<e=>dU%,UT;) <e

Proof
=2

Vi max {supoced;infreT; d(o,7),supTr € T;info€d; d(r,o)}<e
=4

Vi supoeX;infreT; d(o,7)<eAVi supT€ T info€d; d(r,o)<e¢
=

Vi supoeX;infreJT; d(o,7)<eAVi supreT;infoelU®; d(r,o0)<e¢
=

supoceUX;infreUT; do,7)<eAsupreJT;infoelUX; d(r,o)<e
=4

max {supoc e U, infreUT; d(o,7),supr e JT;infoelUd d(r,o)}<e
=4

dUX,UT:) <Le

End A.11

We conclude this section with the definition of a labelled transition system.

Definition A.12

A labelled transition system is a triple (Conf, Label, —) consisting of a set of configurations
Conf, a set of labels Label and a transition relation —C Conf x Label x Conf.

End A.12

It is convenient to write C' —I—,4 C' instead of (C, [, C') € —. When we defined a labelled
transition system in one of the previous sections, we gave the set of configurations, the set
of labels and the axioms and rules of a transition system specification. From this transition
system specification, the transition relation of the labelled transition system can be derived as
is described by Groote and Vaandrager in [GV89].

28

