
Semantic Models for a Language with TimedAtomic ActionsFranck van BreugelDepartment of Mathematics and Computer ScienceVrije UniversiteitDe Boelelaan 1081a1081 HV Amsterdamemail: franck@cs.vu.nl
AbstractAn operational and a denotational semantic model for a language incorporating time relatedaspects, viz. timed atomic actions and integration, is presented. With timed atomic actions wemean atomic actions each provided with a time stamp, which records the time at which theatomic action should be executed. Integration of a statement over some non-empty subset ofthe time domain gives rise to the execution of the statement with some non-deterministicallychosen value of this subset passed to that statement. Both models are built on complete metricspaces. An equivalence result of the operational and the denotational semantic model concludesthis paper.



1 IntroductionIn this paper the question whether programming notions expressing time related behaviour canbe described by models built on structures from metric topology in the style of De Bakker et al. isstudied. In this style, programming notions related to concurrency [BZ82, BBKM84, BKMOZ86,KR88], object-oriented programming [ABKR86, AB88] and logic programming [B88, BK88] havealready been described.An operational and a denotational semantic model for a simple language incorporating timerelated aspects is given. Also an equivalence result for these two semantic models is presented.The language studied is a uniform language built from timed atomic actions, sequential com-position, non-deterministic choice, parallel composition, integration and recursion. The timerelated aspects of this language are timed actions and integration. With timed atomic actionswe mean atomic actions each provided with a time stamp. This absolute time stamp denoteswhen the atomic action should be executed. Whenever an atomic action cannot be executed atthe time recorded in its time stamp a so-called failure occurs and the execution of the programstops. Integration of a statement over some time set, i.e. a non-empty �nite subset of the timedomain, gives rise to the execution of the statement with some non-deterministically chosenvalue of the time set passed to that statement.We assume that the execution of timed atomic actions and operators takes no time. We alsoassume that two successive atomic actions cannot be executed at the same time. These assump-tions are very useful as is argued in a paper by Berry and Cosserat [BC85].The operational model is based on Plotkin's transition systems as introduced by Hennessy andPlotkin in [HP79]. This operational semantic model is a modi�ed version of the model presentedby Baeten and Bergstra in [BB89].The denotational model is de�ned compositionally using �xed points to deal with recursion.Such �xed points exist on the basis of Banach's theorem for contracting functions on completemetric spaces [KR88, BM88]. Most de�nitions and lemmas in this paper rely on this theorem.Related work can be found in [RR86, RR87, R88] of Reed and Roscoe and [LZ88] of Lee andZwarico. In [RR86, RR87, R88] denotational semantic models based on metric spaces are pre-sented for the language TCSP, as described by Davies and Schneider in [DS89]. All modelsincorporate timed traces. A timed trace is a �nite trace of timed events which records the his-tory of the execution of the program. Reed and Roscoe introduce a system delay constant suchthat the execution of a program amounts to performing only �nitely many actions in a boundedperiod of time. This system delay constant is also used to introduce some guardedness withrespect to procedure bodies. Although the language TCSP di�ers from the language studied inthis paper, the denotational semantic models for TCSP show some resemblance to our denota-tional model. In [LZ88], Lee and Zwarico present a model which is also based on timed traces.They use a temporal extension of acceptance trees to model the execution of a programIn the second section of this paper the language de�nition is given. The operational and denota-tional semantics are de�ned in respectively section 3 and 4. Section 5 contains the equivalenceresult. The �nal section consists of some concluding remarks. Some mathematical preliminariesconcerning metric spaces and labelled transition systems can be found in the appendix.2 Language de�nitionIn this section we introduce the syntax of the language Prog, which is studied in this paper.This language incorporates some time related aspects. We build the syntax starting from thefollowing sets. 2



� A set Atom of atomic actions, with typical element a, which can be in�nite.� The set IR>, the set positive real numbers, with typical element r, which is our timedomain.� A collection of time sets, which is represented by Pnf (IR>), the set of non-empty �nitesubsets of IR>, with typical element T .� A set Tvar of time variables, with typical element t.� A set Pvar of procedure variables, with typical element x.Each procedure variable x has a certain arity n, with n � 0, and is labelled with n distinct timevariables: x (t1, : : : , tn). We can view these time variables as formal parameters.We introduce the syntactic class Exp of expressions, with typical element e. For simplicity,we assume the syntax of Exp built from elements of Tvar and some arithmetic operators. Wepostulate that no complications arise in the evaluation of expressions. The evaluation of anexpression is given by the evaluation function E . We apply this evaluation function only toexpressions without free variables. In that case, the function E delivers an element of IR. Forexample we have that E (3 + 4) = 7.Now we can give the class of statements.De�nition 2.1The class Stat of statements, with typical element s, is given bys ::= (a, e) j x (e1, : : : , en) j s1 ; s2 j s1 [ s2 j s1 k s2 j Rt2T sEnd 2.1A statement s is of one of the six following forms:� (a, e)A timed atomic action: the atomic action a has to be executed at time E (e). However,the execution of an atomic action at a non-positive time always fails.� x (e1, : : : , en)A procedure call: execution of the corresponding body of the procedure with the expres-sions e1, : : : , en passed to the procedure body.� s1 ; s2Sequential composition of the statements s1 and s2.� s1 [ s2Nondeterministic choice of the statements s1 and s2.� s1 k s2Parallel composition, or merge, of the statements s1 and s2: the arbitrary interleaving ofthe atomic actions of both statements.� Rt2T sIntegration: execution of statement s with an arbitrary element of T passed to timevariable t in s.To guarantee that we can always take an arbitrary element of a time set, we have to restricttime sets to non-empty subsets of IR>. The restriction of time sets to �nite subsets of IR> willbe crucial in the proof of property 3.4. 3



The execution of the integration Rt2f1;2;3g (a, t) corresponds to the execution of the statement(a, t) with a non-deterministically chosen value of the time set f1,2,3g passed to the timevariable t in that statement, which gives us the execution of (a, 1), (a, 2) or (a, 3). Note thatthe integration is a generalisation, due to the value passing, of the non-deterministic choice.We assume that the execution of atomic actions and operators takes no time. We further assumethat two successive atomic actions cannot be executed at the same time. These assumptions arevery useful as is argued in a paper by Berry and Cosserat [BC85].Next we introduce the class of guarded statements, which will be used to administrate procedurebodies.De�nition 2.2The class Gstat of guarded statements, with typical element g, is given byg ::= (a, e) j g ; s j g1 [ g2 j g1 k g2 j Rt2T gEnd 2.2Before we give the de�nition of the class of declarations, we introduce the notion of free variables.De�nition 2.3The mapping fv : Stat ! P (Tvar) is given byfv ((a, e)) = fv (e)fv (x (e1, : : : , en)) = fv (e1) [ : : :[ fv (en)fv (s1 op s2) = fv (s1) [ fv (s2) op 2 f;,[,kgfv (Rt2T s) = fv (s) n ftgEnd 2.3De�nition 2.4The class Decl of declarations, with typical element d, consists of m-tuplesd � x1 (t1, : : : , tn1) ( g1, : : : , xm (t1, : : : , tnm) ( gm,where xi are distinct procedure variables of arity ni, t1; : : : tni are distinct elements of Tvar,gi 2 Gstat and fv (gi) � ft1, : : : , tnig.End 2.4All procedure bodies gi in a declaration d are restricted to guarded statements. This requirementcorresponds to the usual Greibach condition in formal language theory. There are possibilitiesto eliminate this restriction as is illustrated in [RR86, RR87] and [R88] by Reed and Roscoe.However, in order to permit unguarded statements in declarations, we expect that we have todetermine some �xed delay constant for some operators. The restriction fv (gi) � ft1, : : : , tnigstates that there should not be any global time variables.The execution of the procedure call x (1), where x (t) is declared as (a, t) ; x (t + 1), correspondsto the execution of the procedure body (a, t) ; x (t + 1) with the expression 1 passed to thisprocedure body, i.e. (a, 1) ; x (1 + 1).Next we give the de�nition of the class of programs.De�nition 2.5The class Prog of programs, with typical element p, consists of pairsp � d j s,where d 2 Decl, s 2 Stat such that each procedure variable x occurring in s or d is declared ind and s contains no free variables.End 2.5It is possible to execute an in�nite number of atomic actions in a �nite amount of time. Forexample, the program x (t) ( (a, t) ; x (t + t2) j x (12) performs an in�nite number of a'sbetween 0 and 1. 4



3 Operational semanticsIn this section we present an operational semantics for our language. This operational semanticmodel is a modi�ed version of the model de�ned by Baeten and Bergstra in [BB89]. Theoperational semantics of a program describes the behaviour of an abstract machine running thatprogram. The execution of a program on an abstract machine is characterised by strings ofactions. Which actions and in which order the actions are performed by the abstract machineis described by means of a labelled transition system.Before introducing the labelled transition system, we �rst take a look at the phenomenon oftermination of a program. We can distinguish two reasons for termination: (i) termination ifthe program has successfully executed all its atomic actions, which we call successful termination,and (ii) termination if an atomic action of the program cannot be executed at the time it shouldbe executed, which we call failure. For example, (a, 4) ; (b, 3) will fail immediately after theexecution of the atomic action a. Failure is modelled by a special symbol � with � 62 Atom. Weintroduce two new statements linked to these notions of termination. The empty statement E isassociated with successful termination as introduced by Apt in [A81] and the failure statement �is associated with failure. � andE have a di�erent nature as will become clear in the equivalencesgiven below and in the equivalence proof presented in section 5. The set of statements Stat isextended to StatE�.StatE� = Stat [ fE;�gwith typical element �s.It will be convenient to allow expressions of the form �s ; �s0 and �s k �s0 for �s, �s0 2 StatE�. This willreduce the number of rules of the labelled transition system. We de�ne the following reasonableequivalences on these expressions for �s 2 StatE� and op 2 f;,kg.�s op E = �sE op �s = �s�s op � = �� op �s = �Now we can introduce the labelled transition system. The labelled transition system is associatedwith a declaration d as will become clear in the de�nition of the rules. The set of con�gurationsconsists of the setConfE� = StatE� � IR�with typical typical element �C.In a con�guration [�s, r], r denotes the global time at which the atomic action preceding theexecution of statement �s was executed. Global time is administrated to ful�ll the restrictionthat two successive atomic actions cannot be executed at the same time. We also introduce thesetConf = Stat� IR�with typical element C.Before we give the set of labels we de�ne the set of timed actions and the set of timed failures.The set TA of timed actions is de�ned byTA = Atom � IR>with typical element �.The set TF of timed failures is de�ned byTF = f�g � IR�. 5



The set of labels consists of the setLabel = TA [ TFwith typical element l.The label (a, r) denotes that the atomic action a is executed at time r. The label (�, r) denotesfailure at time r.Intuitively, a rule [�s, r] l!d [�s0, r0] tells us that the execution of statement �s, following anatomic action executed at time r, consists of action l at time r0 followed by the execution ofstatement �s0. Now we give the set of rules associated with the declaration d.[(a, e), r] (a, �)!d [E, �] E (e) = � and � > r[(a, e), r] (�, r)!d [�, r] E (e) = � and � � r[g [e1/t1, : : : , en/tn], r] l!d �C x (t1, : : : , tn) ( g 2 d[x (e1, : : : , en), r] l!d �C[s, r] l!d [�s, r0][s ; s0, r] l!d [�s ; s0, r0][s, r] l!d �C[s [ s0, r] l!d �C[s0 [ s, r] l!d �C[s, r] l!d [�s, r0][s k s0, r] l!d [�s k s0, r0][s0 k s, r] l!d [s0 k �s, r0][s[r0/t], r] l!d �C r0 2 T[Rt2T s, r] l!d �CConsider the axioms for the con�guration [(a, e), r], where � = E (e). At time r the atomicaction preceding the execution of the statement (a, e) was executed. The time � denotes atwhich time atomic action a should be executed. Since two successive atomic actions cannot beexecuted at the same time, the atomic action a can only be executed at time � and terminatesuccessfully at time �, which is denoted by [E, �], if � > r. If � � r, the atomic action a shouldbe executed at or before the time at which the atomic action preceding the execution of thestatement (a, e) was executed. In this case, the execution of the atomic action a fails at time r,denoted by [�, r]. We will only use the axioms for the con�guration [(a, e), r] in the case thate does not contain any free variables, because we impose that the statement part of a programdoes not contain any free variables.The rule for a procedure call indicates body replacement and value passing of the expressionsto the time variables. Parallel composition is modelled by arbitrary interleaving of the atomicactions of both statements. The rule for integration states that some element r0 from the timeset T is passed to the time variable t in statement s.Using the above rules, we can derive [(a, 3) ; (b, 4), 0] (a, 3)!d [(b, 4), 3] (b, 4)!d [E, 4]and [(b, 4) ; (a, 3), 0] (b, 4)!d [(a, 3), 4] (�, 4)!d [�, 4].Now we de�ne the operational semantics for con�gurations. The strings of actions obtainedfrom the labelled transition system are recorded by the mapping O0d. These strings of actionsare collected in Pnc (TFS0), the set of non-empty closed subsets of6



TFS0 = Label+ [ Label!with typical element �.As we will see in property 3.3, for each con�guration the operational semantics is a non-emptyset. We restrict ourselves to closed sets in order to obtain a complete metric space. At the endof this section the semantic domain is restricted.De�nition 3.1The mapping O0d : Conf ! Pnc (TFS0) is given by� 2 O0d (C) if and only if one of the following three conditions is satis�ed1. 9 n 2 IN 9 C1; : : : ; Cn�1 2 Conf 9 l1; : : : ; ln 2 Label 9 r 2 IR�C l1!d C1 l2!d : : : ln�1!d Cn�1 ln!d [E, r] ^� = l1 l2 : : : ln�1 ln2. 9 n 2 IN 9 C1; : : : ; Cn�1 2 Conf 9 l1; : : : ; ln 2 Label 9 r 2 IR�C l1!d C1 l2!d : : : ln�1!d Cn�1 ln!d [�, r] ^� = l1 l2 : : : ln�1 ln3. 9 C1; : : : 2 Conf 9 l1; : : : 2 LabelC l1!d C1 l2!d : : : ln�1!d Cn�1 ln!d : : :^� = l1 l2 : : : ln�1 ln : : :End 3.1To prove that O0d is well-de�ned, we need two properties of the labelled transition system. Weprove these properties using induction on the complexity of statements. We de�ne a complexityfunction on statements associated with a declaration d.De�nition 3.2The mapping cfd : Stat! IN is given bycfd ((a, e)) = 1cfd (x (e1, : : : , en)) = cfd (g) + 1 x (t1, : : : , tn) ( g 2 dcfd (s1 ; s2) = cfd (s1) + 1cfd (s1 [ s2) = cfd (s1) + cfd (s2)cfd (s1 k s2) = cfd (s1) + cfd (s2)cfd (Rt2T s) = cfd (s) + 1End 3.2For each guarded statement g the complexity function cfd is well-de�ned. This follows fromthe de�nition of the complexity function and the form of guarded statements. In the case ofsequential composition only induction with respect to the �rst argument can be applied. Fromthe above de�nition we can derive that cfd (s [r/t]) = cfd (s).In all proofs below using the induction on the complexity of statements, only the most interestingcases are considered.The �rst property states that for all con�gurations C there is a label l and a con�guration �Csuch that C l!d �C. Using this property we can show that O0d delivers non-empty sets.Property 3.3For all C 2 Conf there exist l 2 Label and �C 2 ConfE� such that C l!d �C.ProofWe prove that for all s 2 Stat and r 2 IR� there exist l 2 Label and �C 2 ConfE� such that[s, r] l!d �C, using induction on the complexity of statement s.1. Let s � (a, e) and � = E (e).We can distinguish two cases. 7



(a) For the case that � > r we have that [(a, e), r] (a, �)!d [E, �].(b) And for the case that � � r we have that [(a, e), r] (�, r)!d [�, r].2. Let s � x (e1, : : : , en) and x (t1, : : : , tn) ( g 2 d.9 l 2 Label 9 �C 2 ConfE� [x (e1, : : : , en), r] l!d �C,9 l 2 Label 9 �C 2 ConfE� [g [e1/t1, : : : , en/tn], r] l!d �Cwhich follows from the induction hypothesis.3. Let s � s1 ; s2.9 l 2 Label 9 �C 2 ConfE� [s1 ; s2, r] l!d �C( # Let �C 0 � [�s, r0] and take �C � [�s ; s2, r0] #9 l 2 Label 9 �C 0 2 ConfE� [s1, r] l!d �C 0which follows from the induction hypothesis.4. Let s � s1 [ s2.9 l 2 Label 9 �C 2 ConfE� [s1 [ s2, r] l!d �C(9 l 2 Label 9 �C 2 ConfE� [s1, r] l!d �Cwhich follows from the induction hypothesis.End 3.3The second property is used to show that O0d is closed. This second property states that forall con�gurations C and for all labels l the number of con�gurations �C such that C l!d �C is�nite. This corresponds to the notion of image �niteness of labelled transition systems.Property 3.4For all C 2 Conf and l 2 Label the set f �C j C l!d �C g is �nite.ProofWe de�ne S (s, r, l) = f �C j [s, r] l!d �C g. We prove that S (s, r, l) is �nite for all s 2 Stat,r 2 IR� and l 2 Label using induction on the complexity of statement s.1. Let s � (a, e) and � = E (e).We can distinguish three cases.(a) Let � > r and l = (a, �).S ((a, e), r, (a, �))=f �C j [(a, e), r] (a, �)!d �C g=f[E, �]g(b) Let � � r and l = (�, r).S ((a, e), r, (�, r))=f �C j [(a, e), r] (�, r)!d �C g=f[�, r]g(c) Otherwise S ((a, e), r, l) = ;.5. Let s � s1 k s2.S (s1 k s2, r, l) 8



=f �C j [s1 k s2, r] l!d �C g=f [�s k s2, r0] j [s1, r] l!d [�s, r0] g[ f [s1 k �s, r0] j [s2, r] l!d [�s, r0] g=f [�s k s2, r0] j [�s, r0] 2 S (s1, r, l) g[ f [s1 k �s, r0] j [�s, r0] 2 S (s2, r, l) gThis set is �nite, because the sets S (s1, r, l) and S (s2, r, l) are �nite, which follows fromthe induction hypothesis.6. Let s � Rt2T s.S (Rt2T s, r, l)=f �C j [Rt2T s, r] l!d �C g=S f f �C j [s [r0/t], r] l!d �C g j r0 2 T g=S f S (s [r0/t], r, l) j r0 2 T gThis set is �nite, because the sets S (s [r0/t], r, l) are �nite, which follows from theinduction hypothesis, and T is �nite.End 3.4Note that the restriction of time sets to �nite sets is essential in the proof of this property.We can even prove that the set f (l, �C) j C l!d �C g is �nite for all con�gurations C, whichcorresponds to the notion of �nitely branching of labelled transition systems.Applying the mapping Od to the con�guration [Rt2IN x (1, t + 1), 0], where x (t1, t2) is declaredas (a, min ft1, t2g) ; x (t1 + 1, t2), delivers a non-closed set.Having proved properties 3.3 and 3.4, we can show that O0d is well-de�ned as stated in thefollowing lemma.Lemma 3.5The mapping O0d is well-de�ned.ProofWe have to prove for all C 2 Conf that O0d (C) 2 Pnc (TFS0). The fact O0d (C) 2 P (TFS0)follows immediately from the de�nition of O0d. From property 3.3 we can conclude that O0ddelivers non-empty sets. We have left to prove that O0d (C) is a closed set. Let f�igi be aCauchy sequence in O0d (C), which converges to �. We only consider the case that � 2 Label!.Let � = l1 l2 : : : . We show that there exist con�gurations C1, C2, : : : such that C l1!d C1and C1 l2!d C2, : : : . For f�igi is a Cauchy sequence, there exists an in�nite subsequencef�f(i)gi such that �f(i) = l1 � �0f(i). From property 3.4 we can deduce that there exists anin�nite subsequence f�g(f(i))gi such that �g(f(i)) = l1 � �0g(f(i)) such that C l1!d C1 for some�xed con�guration C1. We can continue this process ad in�nitum. Hence � 2 O0d (C).End 3.5We can also de�ne the operational semantics as the unique �xed point, which we call Od, of ahigher-order mapping 	Od . This mapping and the mapping O0d give rise to the same sets foreach con�guration as will be shown in lemma 3.10. The former mapping will be used to provethe equivalence of the operational and the denotational semantics. With abuse of language wewill write 	O instead of 	Od . We show that this higher-order mapping is well-de�ned and thatit is a contraction. Due to Banach's theorem, we have that 	O has a unique �xed-point. Thehigher-order mapping 	O is given in the following de�nition.9



De�nition 3.6The mapping 	O : (Conf ! Pnc (TFS0)) ! (Conf ! Pnc (TFS0)) is given by	O (F )(C) = S f l � F (C 0) j C l!d C 0 g [ f l j C l!d [E, r] g [ f l j C l!d [�, r] gEnd 3.6Now we show that 	O is well-de�ned.Lemma 3.7The mapping 	O is well-de�ned.ProofWe prove for all F 2 Conf ! Pnc (TFS0) and C 2 Conf that 	O (F )(C) 2 Pnc (TFS0). Fromthe de�nition of 	O immediately follows that 	O 2 P (TFS0). By property 3.3, we have thatfor all con�gurations C there exists a label l and a con�guration �C such that C l!d �C. Nowimmediately follows that the set 	O is non-empty. We have left to prove that this set is alsoclosed. Let f�igi be a Cauchy sequence in 	O (F )(C). By the de�nition of 	O, there exists anin�nite subsequence f�f(i)gi in one of the three following sets.1. S f l � F (C 0) j C l!d C 0 g2. f l j C l!d [E, r] g3. f l j C l!d [�, r] gWe only consider the �rst case. This Cauchy sequence f�f(i)gi is of the form flf(i) � �f(i)giwhere C lf(i)!d C 0 for some con�guration C 0. Since it is a Cauchy sequence there exists anin�nite subsequence fl � �g(f(i))gi of flf(i) � �f(i)gi, for some �xed label l such that C l!d C 0for some con�guration C 0. By property 3.4 we have that for all con�gurations C and all labelsl there are only a �nite number con�gurations C 0 such that C l!d C 0. So by the pigeon-hole principle, there exists an in�nite subsequence of fl � �g(f(i))gi for some �xed label l andcon�guration C 0 such that C l!d C 0. Since F (C 0) is closed, this subsequence converges to anelement in l � F (C 0), which is also an element of 	O (F )(C). So the whole sequence convergesto that same element.End 3.7Next we show that 	O is a contraction.Lemma 3.8The mapping 	O is a contraction.Proofd (	O (F )(C), 	O (G)(C))=d (S f l � F (C 0) j C l!d C 0 g [ f l j C l!d [E, r] g [ f l j C l!d [�, r] g,S f l � G (C 0) j C l!d C 0 g [ f l j C l!d [E, r] g [ f l j C l!d [�, r] g)� # d (l � F (C 0), l � G (C 0)) � 12 d (F , G), property A.11 of the appendix #12 d (F , G)End 3.8Now we know that 	O has a unique �xed-point. Using the �xed point property gives us thefollowing de�nition of Od.De�nition 3.9The mapping Od : Conf ! Pnc (TFS0) is given byOd (C) = S f l � Od (C 0) j C l!d C 0 g [ f l j C l!d [E, r] g [ f l j C l!d [�, r] gEnd 3.9 10



As already mentioned, we show that O0d and Od give rise to the same sets for each con�guration.We do this by showing that O0d is a �xed point of 	O.Lemma 3.10O0d = 	O (O0d)Proof� 2 O0d (C),9 C 0 2 Conf 9 l 2 Label C l!d C 0 ^ � = l �0 ^ �0 2 O0d (C 0) _9 r 2 IR� C l!d [E, r] _9 r 2 IR� C l!d [�, r],� 2 S f l � F (C 0) j C l!d C 0 g [ f l j C l!d [E, r] g [ f l j C l!d [�, r] g,� 2 	O (O0d)(C)End 3.10In the following we restrict our semantic domain. The set TFS0 is restricted to the set of timedfailure streams TFS to exclude meaningless streams.TFS = f � 2 TA+ [ TA�:TF [ TA! jif (a, r) precedes (a0, r0) in � then r < r0,if (a, r) immediately precedes (�, r0) in � then r = r0 gwith typical element �.The fact that if (a, r) precedes (a0, r0) in � then r < r0 represents that two successive atomicactions cannot be executed at the same time. The clause if (a, r) immediately precedes (�, r0)in � then r = r0 represents the notion of failure.To justify this restriction, we show that for each con�guration the mapping O0d delivers anelement of P (TFS). This follows immediately from the properties 3.11 and 3.12. The �rstproperty shows that if (a, r) precedes (a0, r0) then r < r0.Property 3.11For all s 2 Stat, �s 2 StatE�, a 2 A and r, r0, r00 2 IR�[s, r] (a, r0)!d [�s, r00] ) r0 = r00 ^ r < r0ProofWe prove this using induction on the complexity of statement s.1. Let s � (a, e) and � = E (e). Since the only rule which satis�es the premise is[(a, e), r] (a, �)!d [E, �], where r < �, it is clear that the property holds in this case.2. Let s � x (e1, : : : , en) and x (t1, : : : , tn) ( g 2 d.[x (e1, : : : , en), r] (a, r0)!d [�s, r00],[g [e1/t1, : : : , en/tn], r] (a, r0)!d [�s, r00])r0 = r00 ^ r < r05. Let s � s1 k s2.[s1 k s2, r] (a, r0)!d [�s, r00],([s1, r] (a, r0)!d [�s0, r00] ^ �s � �s0 k s2) _ ([s2, r] (a, r0)!d [�s, r00] ^ �s � s1 k �s0))r0 = r00 ^ r < r0End 3.11 11



The second property shows that if a failure occurs in a stream, it will be the last element of thatstream. In conjunction with the �rst property it also shows that if (a, r) immediately precedes(�, r0) then r = r0.Property 3.12For all s 2 Stat, �s 2 StatE� and r, r0, r00 2 IR�[s, r] (�, r0)!d [�s, r00] ) r = r0 ^ r0 = r00 ^ �s = �ProofWe prove this using induction on the complexity of statement s.1. Let s � (a, e) and � = E (e). Since the only rule which satis�es the premise is[(a, e), r] (�, r)!d [�, r], where r � �, it is clear that the property holds in this case.3. Let s � s1 ; s2.[s1 ; s2, r] (�, r0)!d [�s, r00],[s1, r] (�, r0)!d [�s0, r00] ^ �s � �s0 ; s2) # � ; s2 = � #r = r0 ^ r0 = r00 ^ �s = �6. Let s � Rt2T s.[Rt2T s, r] (�, r0)!d [�s, r00],9 �r 2 T [s [�r/t], r] (�, r0)!d [�s, r00])r = r0 ^ r0 = r00 ^ �s = �End 3.12We conclude this section with the de�nition of the operational semantics for programs. Thewell-de�nedness of the operational semantics O follows from the well-de�nedness of O0d.De�nition 3.13The mapping O : Prog ! Pnc (TFS) is given byO (d j s) = O0d ([s, 0])End 3.134 Denotational semanticsAfter having de�ned an operational semantics, we give a denotational semantics for our language.A denotational semantics D should be compositional, i.e. for every syntactic operator op acorresponding semantics operator op0 should be de�ned such thatD (d j s1 op s2) = D (d j s1) op0 D (d j s2)and it should tackle recursion with the help of �xed points.This denotational semantics does not record failures, but just streams of timed actions, whichare not even ordered in time.The semantic domain used to de�ne the denotational semantics is the set of timed streamsTS = TA+ [ TA!with typical element �.For the syntactic operator ; we de�ne the corresponding semantic operator �. We �rst de�nethis operator on timed streams. Then we extend this de�nition to non-empty closed sets oftimed streams. 12



De�nition 4.1The operator � : TS � TS ! TS is given by� � � = � � �(� � �) � � = � � (� � �)The operator � : Pnc (TS) � Pnc (TS) ! Pnc (TS) is given by� � �= f � � � j � 2 � ^ � 2 � gEnd 4.1It may not be obvious that the operator � is well-de�ned.Lemma 4.2The operator � is well-de�ned.ProofWe have to prove that the set � � � is closed. Let f�igi be a Cauchy sequence in � � � . So�i = �i � �i for some �i 2 � and �i 2 � . Let n1 2 IN . Since f�igi is a Cauchy sequence,there exists a subsequence f�f1(i)gi such that �f1(i) [n1], the pre�xes of �f1(i) of length n1, areconstant. By the pigeon-hole principle we have that there exists a subsequence f�g1(f1(i))gi suchthat �g1(f1(i)) [n1] = � � �g1(f1(i)) [n01], where � 2 �, �g1(f1(i)) 2 � and n01 = n1 - length (�),or �g1(f1(i)) [n1] = �g1(f1(i)) [n1], where �g1(f1(i)) 2 �. In the �rst case �g1(f1(i)) = � � �g1(f1(i)).The Cauchy sequence f�g1(f1(i))gi converges to some � 2 � , due to the fact that � is closed.So f�g1(f1(i))gi converges to � � � . From this we can conclude that the sequence f�igi alsoconverges to � � � , which is an element of � � � . In the second case, we can continue theprocess by taking a subsequence f�f2(g1(f1(i)))gi, whose pre�xes of length n2 > n1 are constant.If the process terminates, we will end up in the �rst case, which gives us the desired result. Ifthe process does not terminate, we de�ne h (i) = gi(fi( : : : g1(f1(0)) : : : )). It is easy to see thatf�h(i)gi is a Cauchy sequence in �, which converges to some � 2 �, since � is closed. This �is in�nite and therefore an element of � � � . So we can conclude that f�igi converges to anelement of � � � .End 4.2We can also de�ne the operator � as a �xed point of a higher-order mapping. We therefore �rstintroduce an auxiliary operator.De�nition 4.3For each � 2 Pnc (TS) and � 2 TA, �� 2 Pc (TS) is given by�� = f� 2 TS j � � � 2 � gEnd 4.3It is straightforwardly shown that this auxiliary operator is well-de�ned.Lemma 4.4For all � 2 Pnc (TS) and � 2 TA, �� 2 Pc (TS)Proof�� is an element of P (TS), which follows from the de�nition. Let f�igi be a Cauchy sequencein ��. Then f� � �igi is a Cauchy sequence in �. Since � is closed, the Cauchy sequencef� � �igi converges to an element of � , which will be of the form � � �. So the Cauchy sequencef�igi will converge to �, which is an element of ��.End 4.4Now we can de�ne the operator the higher-order mapping as follows.De�nition 4.5The mapping 	� : (Pnc (TS) � Pnc (TS)! Pnc (TS)) ! (Pnc (TS) � Pnc (TS)! Pnc (TS))is given by 13



	� (F )(�, � ) = S f � � F (��, � ) j �� 6= ; g [ S f � � � j � 2 � gEnd 4.5We show that 	� is well-de�ned and that it is a contraction.Lemma 4.6The mapping 	� is well-de�ned.ProofWe have to prove for all F 2 (Pnc (TS) � Pnc (TS)) ! Pnc (TS) and �, �2 Pnc (TS) that	� (F )(�, � ) 2 Pnc (TS). The fact that 	� (F )(�, � ) 2 P (TS) follows from the de�nition.Since � is non-empty, there must be an � such that �� is non-empty or � 2 �, which gives usthat 	� (F )(�, � ) is non-empty. We have left to prove that 	� (F )(�, � ) is closed. Let f�igibe a Cauchy sequence in 	� (F )(�, � ). Then there exists an in�nite subsequence f�f(i)gi inone of the following sets.1. S f � � F (��,� ) j �� 6= ; g2. S f � � � j � 2 � gWe only consider the �rst case. In this case there exists an in�nite subsequence f�g(f(i))gi in� � F (��, � ) for a �xed �. Since F (��, � ) is closed, the sequence f�g(f(i))gi converges toan element in � � F (��, � ). So the whole Cauchy sequence converges to that same element,which is also an element of 	� (F )(�, � ).End 4.6Lemma 4.7The mapping 	� is a contraction.Proofd (	� (F )(�, � ), 	� (G)(�, � ))=d (S f � � F (��, � ) j �� 6= ; g [ S f � � � j � 2 � g,S f � � G (��, � ) j �� 6= ; g [ S f � � � j � 2 � g)� # property A.11 #max (d (S f � � F (��, � ) j �� 6= ; g, S f � � G (��, � ) j �� 6= ; g),d (S f � � � j � 2 � g, S f � � � j � 2 � g))=d (S f � � F (��, � ) j �� 6= ; g, S f � � G (��, � ) j �� 6= ; g)� # �� 6= ; ) d (� � F (��, � ) � � G (��, � )) � 12 d (F , G), property A.11 #12 d (F , G)End 4.7Because 	� is a contraction we know that 	� has a unique �xed point according to Banach'stheorem. The �xed point property gives us the following de�nition for the operator �.De�nition 4.8The operator � : Pnc (TS) � Pnc (TS) ! Pnc (TS) is given by� � �= S f � � (�� � � ) j �� 6= ; g [ S f � � � j � 2 � gEnd 4.8We can easily verify that the operators de�ned in the de�nitions 4.1 and 4.8 are equivalent,because 	� (�)(�, � ) = � � � .Next we de�ne two semantic operators which correspond to the syntactic notions of non-deterministic choice and integration. 14



De�nition 4.9The operator [ : Pnc (TS) � Pnc (TS) ! Pnc (TS) is de�ned as the set-theoretic union.The operator S : (Pnc (TS))� ! Pnc (TS) is de�ned as the generalised set-theoretic union.End 4.9The semantic counterpart of the syntactic operator k is �rst de�ned on timed streams. This isdone by de�ning a so-called left-merge bb, as introduced by Bergstra and Klop in [BK82], whichexpresses a merge where the �rst element is taken from the left argument. Then we extend thisde�nition to non-empty closed sets of timed streams.De�nition 4.10The operator k : TS � TS ! P (TS) is given by� k � = � bb � [ � bb �The operator bb : TS � TS ! P (TS) is given by� bb � = f� � �g(� � �) bb � = � � (� k �)The operator k : Pnc (TS) � Pnc (TS) ! Pnc (TS) is given by� k �= S f � k � j � 2 � ^ � 2 � gThe operator bb : Pnc (TS) � Pnc (TS) ! Pnc (TS) is given by� bb �= S f � bb � j � 2 � ^ � 2 � gEnd 4.10Proving that the operator k is well-de�ned can be done along the lines of the well-de�nednessproof of the operator � and is left to the reader.Again we can characterise the operator as the unique �xed point of a higher-order mapping.De�nition 4.11The mapping 	k : (Pnc (TS) � Pnc (TS)! Pnc (TS)) ! (Pnc (TS) � Pnc (TS)! Pnc (TS))is given by	k (F )(�, � ) = 	�(F )(�, � ) [ 	�(F )(� , �)End 4.11So the �xed point property gives us the following de�nition, which is equivalent to the earliergiven de�nition of k.De�nition 4.12The operator k : Pnc (TS) � Pnc (TS) ! Pnc (TS) is given by� k �= S f � � (�� k � ) j �� 6= ; g [ S f � � � j � 2 � g [S f � � (� � k �) j � � 6= ; g [ S f � � � j � 2 � gEnd 4.12Now we can give the denotational semantics for statements recorded in the mapping Dd, whichis the �xed point of the higher-order mapping 	D.De�nition 4.13The mapping Dd : Stat ! Pnc (TS) is given byDd ((a, e)) = f(a, �)g E (e) = �Dd (x (e1, : : : , en)) = Dd (g [e1/t1, : : : , en/tn]) x (t1, : : : , tn) ( g 2 dDd (s1 ; s2) = Dd (s1) � Dd (s2)Dd (s1 [ s2) = Dd (s1) [ Dd (s2)Dd (s1 k s2) = Dd (s1) k Dd (s2)Dd (Rt2T s) = S fDd (s [r/t]) j r 2 TgEnd 4.13The higher-order mapping 	D is de�ned in the following de�nition.15



De�nition 4.14The mapping 	D : (Stat ! Pnc (TS)) ! (Stat ! Pnc (TS)) is given by	D (F ) ((a, e)) = f(a, �)g E (e) = �	D (F ) (x (e1, : : : , en)) = 	D (F ) (g [e1/t1, : : : , en/tn]) x (t1, : : : , tn) ( g 2 d	D (F ) (s1 ; s2) = 	D (F ) (s1) � F (s2)	D (F ) (s1 [ s2) = 	D (F ) (s1) [ 	D (F ) (s2)	D (F ) (s1 k s2) = 	D (F ) (s1) k 	D (F ) (s2)	D (F ) (Rt2T s) = S f	D (F ) (s [r/t]) j r 2 TgEnd 4.14The fact that 	D is well-de�ned follows from the fact that the operators are well-de�ned. Inorder to prove that 	D is a contraction we need two properties. The �rst property states thatthe operator � is non-distance increasing in its �rst argument and contracting with factor 12 inits second argument.Property 4.15For all �, �0, � , � 0 2 Pnc (TS) and " 2 [0, 1]d (�, �0) � " ^ d (� , � 0) � 2 " ) d (� � � , �0 � � 0) � "Proofd (�, �0) � " ^ d (� , � 0) � 2 ") # note 1 #8 n � 0 d (	n� (F )(�, � ), 	n� (F )(�0, � 0)) � ") # note 2 #d (limn 	n� (F )(�, � ), limn 	n� (F )(�0, � 0)) � ") # Banach's theorem #d (� � � , �0 � � 0) � "Note 1:For n = 0 we have that d (�, �0) � " ^ d (� , � 0) � 2 " ) d (F (�, � ), F (�0, � 0)) � ", bytaking F (�, � ) = �. Assume that n � 0 and d (�, �0) � " and d (� , � 0) � 2 " andd (	n� (F )(�, � ), 	n� (F )(�0, � 0)) � ". We have to prove thatd (	n+1� (F )(�, � ), 	n+1� (F )(�0, � 0)) � ",d (S f � � 	n� (F )(��, � ) j �� 6= ; g [ S f � � � j � 2 � g,S f � � 	n� (F )(�0�, � 0) j �0� 6= ; g [ S f � � � 0 j � 2 �0 g) � "This can be proved using property A.11 and the following facts. We distinguish three cases foreach � 2 TA.1. Assume that (� 2 � , � 2 �0) ^ (�� 6= ; , �0� 6= ;).d (�, �0) � " ^ d (� , � 0) � 2 ")�� 6= ; ^ �0� 6= ; ) d (��, �0�) � 2 " ^ d (� , � 0) � 2 ")�� 6= ; ^ �0� 6= ; ) d (F (��, � ), F (�0�, � 0)) � 2 " ^ d (� , � 0) � 2 ")�� 6= ; ^ �0� 6= ; ) d (� � F (��, � ), � � F (�0�, � 0)) � " ^ d (� � � , � � � 0) � "2. Assume that (� 2 � 6, � 2 �0).d (�, �0) � " ^ d (� , � 0) � 2 ") # d (�, �0) = 1, so " � 1 #�� 6= ; ^ �0� 6= ; ) d (� � F (��, � ), � � F (�0�, � 0)) � " ^ d (� � � , � � � 0) � "3. Assume that (�� 6= ; 6, �0� 6= ;) ^ (� 2 � , � 2 �0). Let �� 6= ; and �0� = ;. Then� 2 �0, because �0 6= ;. 16



d (�, �0) � " ^ d (� , � 0) � 2 ") # d (�, �0) � 12 , so " � 12 #�� 6= ; ) d (� � F (��, � ), � � � 0) � " ^ d (� � � , � � � 0) � "Note 2:Since 	� is contracting with factor 12 , f	n� (F )(�, � )gn and f	n� (F )(�0, � 0)gn are Cauchysequences. For some arbitrary � > 0, we have thatd (limn 	n� (F )(�, � ), limn 	n� (F )(�0, � 0))�d (limn 	n� (F )(�, � ), 	m� (F )(�, � )) + d (	m� (F )(�, � ), 	m� (F )(�0, � 0)) +d (	m� (F )(�0, � 0), limn 	n� (F )(�0, � 0))<�2 + " + �2End 4.15The second property states that the operator k is non-distance increasing in both arguments.The proof of this property, which has the same structure as the proof of the preceding property,is left to the reader.Property 4.16For all �, �0, � , � 0 2 Pnc (TS) and " 2 [0, 1]d (�, �0) � " ^ d (� , � 0) � " ) d (� k � , �0 k � 0) � "End 4.16Now we are ready to prove the contractivity of 	D.Lemma 4.17The mapping 	D is a contraction.ProofWe prove for all s 2 Stat that d (	D (F )(s), 	D (G)(s)) � 12 d (F , G) using induction on thecomplexity of statement s.1. Let s � (a, e) and � = E (e).d (	D (F )((a, e)), 	D (G)((a, e)))=d (f (a, �) g, f (a, �) g)=0�12 d (F , G)2. Let s � x (e1, : : : , en) and x (t1, : : : , tn) ( g 2 d.d (	D (F )(x (e1, : : : , en)), 	D (G)(x (e1, : : : , en)))=d (	D (F )(g [e1/t1, : : : en/tn]), 	D (G)(g [e1/t1, : : : en/tn]))�12 d (F , G)3. Let s � s1 ; s2.d (	D (F )(s1 ; s2), 	D (G)(s1 ; s2))=d (	D (F )(s1) � F (s2), 	D (G)(s1) � G (s2))� # property 4.15 #max (d (	D (F )(s1), 	D (G)(s1)), 12 d (F (s2), G (s2)))17



�max (12 d (F , G), 12 d (F , G))=12 d (F , G)4. Let s � s1 [ s2.d (	D (F )(s1 [ s2), 	D (G)(s1 [ s2))=d (	D (F )(s1) [ 	D (F )(s2), 	D (G)(s1) [ 	D (G)(s2))� # property A.11 #max (d (	D (F )(s1), 	D (G)(s1)), d (	D (F )(s2), 	D (G)(s2)))�max (12 d (F , G), 12 d (F , G))=12 d (F , G)End 4.17The mapping 	D has a unique �xed point, which can be conclude from Banach's theorem. Ddis derived from 	D using the �xed point property.Finally we extend the denotational semantics from statements to programs in the last de�nitionof this section.De�nition 4.18The mapping D : Prog ! Pnc (TS) is given byD (d j s) = Dd (s)End 4.185 Equivalence proofHaving de�ned both an operational and a denotational semantics for our language the questionrises whether the denotational model D is correct with respect to the computational intuitioncaptured by the operational model O. We observe that the denotational model D does notrecord failures. Therefore we de�ne a function fail which introduces failures in timed streams.We will show thatO = fail (0) � D.In order to prove this we de�ne a so-called intermediate semantics I. We de�ne this intermediatesemantics with the help of a labelled transition system like we have de�ned the operationalsemantics. This intermediate semantic model does not record failures just like the denotationalsemantics. We will prove thatI = D.Finally, we relate the labelled transition systems de�ning the operational and intermediatesemantics resulting inO = fail (0) � I.We �rst give the labelled transition system describing the intermediate model. This transitionsystem is again associated with a declaration d. The set of con�gurations consists of StatEwhereStatE = Stat [ fEgand the set of labels consists of the set of timed actions. The rules associated with the declarationd are 18



(a, e) (a, �)!d E E (e) = �g [e1/t1, : : : , en/tn] �!d �s x (t1, : : : , tn) ( g 2 dx (e1, : : : , en) �!d �ss �!d �ss ; s0 �!d �s ; s0s �!d �ss [ s0 �!d �ss0 [ s �!d �ss �!d �ss k s0 �!d �s k s0s0 k s �!d s0 k �ss [r/t] �!d �s r 2 TRt2T s �!d �sUsing the above rules, we can derive (a, 3) ; (b, 4) (a, 3)!d (b, 4) (b, 4)!d E and(b, 4) ; (a, 3) (b, 4)!d (a, 3) (a, 3)!d E.Having de�ned the labelled transition system we can give the intermediate semantics for state-ments.De�nition 5.1The mapping Id : Stat ! Pnc (TS) is given byId (s) = S f � � Id (s0) j s �!d s0 g [ f � j s �!d E gEnd 5.1The fact that the intermediate semantics Id is well-de�ned can be proved along the lines ofthe well-de�nedness proof of the operational semantics Od. We only introduce the higher-ordermapping 	I , which will be used in lemma 5.4.De�nition 5.2The mapping 	I : (Stat ! Pnc (TS)) ! (Stat ! Pnc (TS)) is given by	I (F )(s) = S f � � F (s0) j s �!d s0 g [ f � j s �!d E gEnd 5.2Now we introduce the intermediate semantics for programs.De�nition 5.3The mapping I : Prog ! Pnc (TS) is given byI (d j s) = Id (s)End 5.3We have all the ingredients to prove I = D. First we show that 	I (Dd) = Dd. Using Banach'stheorem we can conclude that Id = Dd. From this we can easily deduce I = D.Lemma 5.4	I (Dd) = DdProofWe prove for all s 2 Stat that 	I (Dd)(s) = Dd (s) using induction on the complexity ofstatement s.1. Let s � (a, e) and E (e) = �.	I (Dd)((a, e))= 19



S f � � Dd (s0) j (a, e) �!d s0 g [ f � j (a, e) �!d E g=f(a, �)g=Dd ((a, e))2. Let s � x (e1, : : : , en) and x (t1, : : : , tn) ( g.	I (Dd)(x (e1, : : : , en))=S f � � Dd (s0) j x (e1, : : : , en) �!d s0 g [ f � j x (e1, : : : , en) �!d E g=S f � � Dd (s0) j g [e1/t1, : : : , en/tn] �!d s0 g [ f � j g [e1/t1, : : : , en/tn] �!d E g=	I (Dd) (g [e1/t1, : : : , en/tn])=Dd (g [e1/t1, : : : , en/tn])=Dd (x (e1, : : : , en))5. Let s � s1 k s2.	I (Dd)(s1 k s2)=S f � � Dd (s0) j s1 k s2 �!d s0 g [ f � j s1 k s2 �!d E g=S f � � Dd (s0 k s2) j s1 �!d s0 g [ S f � � Dd (s2) j s1 �!d E g [S f � � Dd (s1 k s0) j s2 �!d s0 g [ S f � � Dd (s1) j s2 �!d E g=S f � � (Dd (s0) k Dd (s2)) j s1 �!d s0 g [ S f � � Dd (s2) j s1 �!d E g [S f � � (Dd (s1) k Dd (s0)) j s2 �!d s0 g [ S f � � Dd (s1) j s2 �!d E g=S f � � (� k �) j � 2 Dd (s0) ^ � 2 Dd (s2) ^ s1 �!d s0 g [f � � � j � 2 Dd (s2) ^ s1 �!d E g [S f � � (� k �) j � 2 Dd (s1) ^ � 2 Dd (s0) ^ s2 �!d s0 g [f � � � j � 2 Dd (s1) ^ s2 �!d E g=S f (� � �) bb � j � 2 Dd (s0) ^ � 2 Dd (s2) ^ s1 �!d s0 g [f � bb � j � 2 Dd (s2) ^ s1 �!d E g [S f (� � �) bb � j � 2 Dd (s1) ^ � 2 Dd (s0) ^ s2 �!d s0 g [f � bb � j � 2 Dd (s1) ^ s2 �!d E g=(S f (� � Dd (s0) j s1 �!d s0 g [ f � j s1 �!d E g) bb Dd (s2) [(S f (� � Dd (s0) j s2 �!d s0 g [ f � j s2 �!d E g) bb Dd (s1)=	I (Dd)(s1) bb Dd (s2) [ 	I (Dd)(s2) bb Dd (s1)=Dd (s1) bb Dd (s2) [ Dd (s2) bb Dd (s1)=Dd (s1) k Dd (s2)=Dd (s1 k s2) 20



6. Let s � Rt2T s.	I (Dd)(Rt2T s)=S f � � Dd (s0) j Rt2T s �!d s0 g [ f � j Rt2T s �!d E g=S f S f � � Dd (s0) j s [r/t] �!d s0 g j r 2 T g [ S f f � j s [r/t] �!d E g j r 2 T g=S f S f � � Dd (s0) j s [r/t] �!d s0 g [ f � j s [r/t] �!d E g j r 2 T g=S f 	I (s [r/t]) j r 2 T g=S f Dd (s [r/t]) j r 2 T g=Dd (Rt2T s)End 5.4We have left to prove that O = fail (0) � I. First we give the function fail which introducesfailures in timed streams. The function fail (r) identi�es those streams � whose �rst actionoccurs after time r and whose actions are in the right order, i.e. if (a, r) precedes (a0, r0) in �then r < r0. If the �rst action of a stream � occurs at or before r, fail (r)(�) delivers (�, r).If the actions of stream � are not in the right order, fail (r)(�) gives the longest pre�x of �,which is in the right order, concatenated with a failure after the time stamp of the last actionof this longest pre�x.De�nition 5.5The mapping fail : IR� ! TS ! TFS is given byfail (r)((a, r0)) = (a, r0) r < r0fail (r)((a, r0)) = (�, r) r � r0fail (r)((a, r0) � �) = (a, r0) � fail (r0)(�) r < r0fail (r)((a, r0) � �) = (�, r) r � r0The mapping fail : IR� ! Pnc (TS) ! Pnc (TFS) is given byfail (r)(�) = f fail (r)(�) j � 2 � gEnd 5.5For example, we have that fail (0)((a, 3)(b, 4)) = (a, 3) fail (3)((b, 4)) = (a, 3)(b, 4) andfail (0)((b, 4)(a, 3)) = (b, 4) fail (4)((a, 3)) = (b, 4)(�, 4).Proving that fail is well-de�ned is left to the reader. The proof follows from the fact that iffail (r)(�) is in�nite, then we have that fail (r)(�) = �.Next we prove two properties which relate the transition systems describing the operational andintermediate semantics.Property 5.6For all s 2 Stat, �s 2 StatE , a 2 Atom and r, r0 2 IR�s (a, r0)!d �s ^ r < r0 , [s, r] (a, r0)!d [�s, r0]ProofWe prove this using induction on the complexity of statement s.1. Let s � (a0, e) and � = E (e). By inspection of the transition systems we can write theleft-hand side of the equivalence as (a0, e) (a0, �)!d E ^ r < � and the right-hand sideas [(a0, e), r] (a0, �)!d [E, �], where r < �. We can conclude from this that the propertyis satis�ed in this case. 21



2. Let s � s1 ; s2.s1 ; s2 (a, r0)!d �s ^ r < r0,s1 (a, r0)!d �s0 ^ r < r0 ^ �s � �s0 ; s2,[s1, r] (a, r0)!d [�s0, r0] ^ �s � �s0 ; s2,[s1 ; s2, r] (a, r0)!d [�s, r0]4. Let s � s1 [ s2.s1 [ s2 (a, r0)!d �s ^ r < r0,(s1 (a, r0)!d �s ^ r < r0) _ (s2 (a, r0)!d �s ^ r < r0),[s1, r] (a, r0)!d [�s, r0] _ [s2, r] (a, r0)!d [�s, r0],[s1 [ s2, r] (a, r0)!d [�s, r0]End 5.6From this property we can deduce that the empty statement E of the operational semantics isrelated to the empty statement of the intermediate statement.Property 5.7For all s 2 Stat, �s 2 StatE , a 2 Atom and r, r0 2 IR�s (a, r0)!d �s ^ r � r0 , [s, r] (�, r)!d [�, r]ProofWe prove this using induction on the complexity of statement s.1. Let s � (a0, e) and � = E (e). By inspection of the transition systems we can write theleft-hand side of the equivalence as (a0, e) (a0, �)!d E ^ r � � and the right-hand sideas [(a0, e), r] (�, r)!d [�, r], where r � �. We can conclude from this that the propertyis satis�ed in this case.2. Let s � x (e1, : : : , en) and x (t1, : : : , tn) ( g 2 d.x (e1, : : : , en) (a, r0)!d �s ^ r � r0,g [e1/t1, : : : , en/tn] (a, r0)!d �s ^ r � r0,[g [e1/t1, : : : , en/tn] , r] (�, r)!d [�, r],[x (e1, : : : , en), r] (�, r)!d [�, r]5. Let s � s1 k s2.s1 k s2 (a, r0)!d �s ^ r � r0,(s1 (a, r0)!d �s0 ^ r � r0 ^ �s � �s0 k s2) _ (s2 (a, r0)!d �s0 ^ r � r0 ^ �s � s1 k �s0),([s1, r] (�, r)!d [�, r] ^ �s � �s0 k s2) _ ([s2, r] (�, r)!d [�, r] ^ �s � s1 k �s0),[s1 k s2, r] (�, r)!d [�, r]6. Let s � Rt2T s.Rt2T s (a, r0)!d �s ^ r � r0 22



,9 r00 2 T s [r00/t] (a, r0)!d �s ^ r � r0,9 r00 2 T [s [r00/t], r] (�, r)!d [�, r],[Rt2T s, r] (�, r)!d [�, r]End 5.7The above property tells us that the failure statement � is related to an arbitrary statement ofthe intermediate semantics.We introduce the mapping Ifaild in order to prove that Od ([s, r]) = fail (r)(Id (s)).De�nition 5.8The mapping Ifaild : Conf ! Pnc (TFS) is given byIfaild ([s, r]) = fail (r)(Id (s))End 5.8We show that 	O (Ifaild ) = Ifaild . Again using Banach's theorem we can conclude thatOd = Ifaild , which gives us Od ([s, r]) = fail (r)(Id (s)).Lemma 5.9	O (Ifaild ) = IfaildProofWe prove for all C 2 Conf that 	O (Ifaild )(C) = Ifaild (C). Let C � [s, r].	O (Ifaild )([s, r])=S f l � Ifaild (C 0) j [s, r] l!d C 0 g [ f l j [s, r] l!d [E, r0] g [ f l j [s, r] l!d [�, r0] g=S f (a, r) � Ifaild ([s0, r0]) j [s, r] (a, r)!d [s0, r0] g [f (a, r) j [s, r] (a, r)!d [E, r0] g [f (a, r) j [s, r] (a, r)!d [�, r0] g= # property 5.6 and property 5.7 #S f (a, r) � Ifaild ([s0, r0]) j s (a, r)!d s0 ^ r < r0 g [f (a, r) j s (a, r)!d E ^ r < r0 g [f (�, r) j s (a, r)!d s0 ^ r � r0 g [f (�, r) j s (a, r)!d E ^ r � r0 g=S f (a, r) � fail (r0)(Id (s0)) j s (a, r)!d s0 ^ r < r0 g [f (a, r) j s (a, r)!d E ^ r < r0 g [f (�, r) j s (a, r)!d s0 ^ r � r0 g [f (�, r) j s (a, r)!d E ^ r � r0 g=S f fail (r)(� � Id (s0)) j s �!d s0 g [ f fail (r)(�) j s �!d E g=fail (r)(S f � � Id (s0) j s �!d s0 g [ f � j s �!d E g)=fail (r)(Id (s))=Ifaild ([s, r])End 5.9 23



We conclude the equivalence proof and this section by showing that O = fail (0) � I.Theorem 5.10O = fail (0) � IProofWe prove for all p 2 Prog that O (p) = (fail (0) � I) (p). Let p � d j s.O (d j s)=O0d ([s, 0])= # lemma 3.10 #Od ([s, 0])= # lemma 5.9 #fail (0)(Id (s))=fail (0)(I (d j s))=(fail (0) � I) (d j s))End 5.106 Concluding remarksWe can conclude that the metric approach for de�ning models can also be applied to languagesincorporating time related aspects like timed atomic actions and integration.It seems possible to give another denotational model D leading to the equivalence result O = D.We expect it to be possible to relate the denotational semantics de�ned in [RR86, RR87, R88]to a denotational semantics based on the denotational model presented in this paper followingthe lines of [BMO87]. Finding other criteria to restrict time sets and enriching the languagewith communication and global non-determinism are still issues for further research.AcknowledgementsWe would like to thank the members of the Amsterdam Concurrency Group for comments ona previous version of this paper. In particular, we thank Erik de Vink for his comments andsuggestions during the evolvement of this paper.References[A81] K.R. Apt. Recursive Assertions and Parallel Programs. Acta Informatica 15 (1981),219-232.[AB88] P. America and J.W. de Bakker. Designing equivalent semantic models for pro-cess creation. in: Proceedings Advanced School on Mathematical models for theSemantic Parallelism (M. Venturini Zilli, ed.), Lecture Notes in Computer Science280, Springer (1988), 109-176.[ABKR86] P. America, J.W. de Bakker, J.N. Kok and J.J.M.M. Rutten. Denotational se-mantics for a parallel object-oriented language. Information and Computation 83(1989), 152-205.[B88] J.W. de Bakker. Comparative semantics for ow of control in logic programmingwithout logic. Report CS-8840, Centre for Mathematics and Computer Science,Amsterdam (1988). To appear in Information and Computation.24



[BB89] J.C.M. Baeten and J.A. Bergstra. Real Time Process Algebra. Report P8916, Pro-gramming Research Group, University of Amsterdam (1989).[BBKM84] J.W. de Bakker, J.A. Bergstra, J.W. Klop and J.-J.Ch. Meyer. Linear time andbranching time semantics for recursion with merge. Theoretical Computer Science34 (1984), 135-156.[BC85] G. Berry and L. Cosserat. The ESTEREL Synchronous Programming Languageand its Semantics. in: Proceedings CMU Seminar on Concurrency (S.D. Brookes,A.W. Roscoe and G. Winksel, eds.), Lecture Notes in Computer Science 197,Springer (1985), 389-448.[BK82] J.A. Bergstra and J.W. Klop. Fixed Point Semantics in Process Algebra. ReportIW 206/82, Mathematical Centre, Amsterdam (1982).[BK88] J.W. de Bakker and J.N. Kok. Uniform abstraction, atomicity and contractionsin the comparative semantics of Concurrent Prolog. in: Proceedings InternationalConference on Fifth Generation Computer Systems 1988, Institute for New Gen-eration Computer Technology (1988), 347-355.[BM88] J.W. de Bakker and J.-J.Ch. Meyer. Metric semantics for concurrency. BIT 28(1988), 504-529.[BMO87] J.W. de Bakker, J.-J.Ch. Meyer and E.-R. Olderog. In�nite streams and �nite ob-servations in the semantics of uniform concurrency. Theoretical Computer Science49 (1987), 87-112.[BKMOZ86] J.W. de Bakker, J.N. Kok, J.-J.Ch. Meyer, E.-R. Olderog and I.J. Zucker. Con-trasting themes in the semantics of imperative concurrency. in: Current Trends inConcurrency: Overviews and Tutorials (J.W. de Bakker, W.P. de Roever and G.Rozenberg, eds.), Lecture Notes in Computer Science 224, Springer (1986), 51-121.[BZ82] J.W. de Bakker and J.I. Zucker. Processes and the denotational semantics of con-currency. Information and Control 54 (1982), 70-120.[DS89] J.W. Davies and S.A. Schneider. An introduction to timed CSP. Report PRG-75,Oxford University Computing Laboratory, Oxford (1989).[E89] R. Engelking. General Topology. Revised and completed version. Sigma Series inPure Mathematics 6, Heldermann Verlag Berlin (1989).[GV89] J.F. Groote and F.W. Vaandrager. Structured Operational Semantics and Bisim-ulation as a Congruence. in: Proceedings 16th International Colloquium on Au-tomata, Languages and Programming (G. Ausiello, M. Dezani-Ciancaglini andS. Ronchi Della Rocca, eds.), Lecture Notes in Computer Science 372, Springer(1989), 423-438.[HP79] M. Hennessy and G.D. Plotkin. Full abstraction for a simple parallel programminglanguage. in: Proceedings 8th Mathematical Foundations of Computer Science (J.Becvar, ed.), Lecture Notes in Computer Science 74, Springer (1979), 108-120.[KR88] J.N. Kok and J.J.M.M. Rutten. Contractions in Comparing Semantics. in: Pro-ceedings 15th International Colloquium on Automata, Languages and Program-ming (T. Lepist�o, A. Salomaa, eds.), Lecture Notes in Computer Science 317,Springer (1988), 317-332. 25



[LZ88] I. Lee and A. Zwarico. Times Acceptances: A Model of Time Dependent Processes.in: Proceedings Formal Techniques in Real-Time and Fault-Tolerant Systems (M.Joseph, ed.), Lecture Notes in Computer Science 331, Springer (1988), 128-130.[R88] G.M. Reed. A Uniform Mathematical Theory of Real-time Distributed Computing.Ph.D. thesis, Oxford University (1988).[RR86] G.M. Reed and A.W. Roscoe. A Timed Model for Communicating Sequential Pro-cesses. in: Proceedings 13th International Colloquium on Automata, Languagesand Programming (L. Kott, ed.), Lecture Notes in Computer Science 226, Springer(1986), 314-323. Theoretical Computer Science 58 (1988), 249-261.[RR87] G.M. Reed and A.W. Roscoe. Metric spaces as models for real-time concurrency.in: Proceedings Mathematical Foundations of Programming Languages and Se-mantics (M. Main, A. Melton, M. Mislove and D. Schmidt, eds.), Lecture Notes inComputer Science 298, Springer (1987), 331-343.A Mathematical preliminariesIn this appendix we introduce the notions metric space [E89] and labelled transition system.De�nition A.1A metric space is a tuple (X, d) where X is a non-empty set and d is a mappingd : X � X ! [0, 1], which we call metric or distance, that satis�es the following properties.� 8 x 2 X 8 y 2 X d (x, y) = 0 , x = y� 8 x 2 X 8 y 2 X d (x, y) = d (y, x)� 8 x 2 X 8 y 2 X 8 z 2 X d (x, z) � d (x, y) + d (y, z)End A.1In the sequel, we will de�ne some metric spaces on �nite and in�nite streams over some set A.With A1 = A� [ A! we denote the set of all �nite and in�nite streams over A. For � 2 A1and n 2 IN � [n] denotes the pre�x of length n of stream �, in the case the length of � is greaterthan or equal to n, and � otherwise. We put d (�, �) = 2�supfnj�[n]=� [n]g. The tuple (A1, d) isa metric space.De�nition A.2Let (X, d) be a metric space and let fxigi be a sequence in X. We say that fxigi is a Cauchysequence whenever we have that8 " > 0 9 N 2 IN 8 n > N 8 m > N d (xn, xm) < "End A.2For example, the sequence faigi in A1 is a Cauchy sequence.De�nition A.3Let (X, d) be a metric space ,fxigi be a sequence in X and x 2 X. We say that fxigi convergesto x and call x the limit of fxigi whenever we have that8 " > 0 9 N 2 IN> 8 n > N d (x, xn) < "End A.3For example, the sequence faibgi in A1 converges to a!.26



De�nition A.4A metric space (X, d) is called complete whenever each Cauchy sequence in X converges to anelement in X.End A.4The metric space (A1, d) is complete. However, the metric space (A�, d) is not complete.De�nition A.5Let (X, d) be a metric space. A subset Y of X is called closed whenever each Cauchy sequencein Y converges to an element in Y .End A.5The set faibg [ fa!g is closed and the set faibg is not closed.De�nition A.6Let (X1, d1) and (X2, d2) be metric spaces. We de�ne a metric d on functions f1, f2 2 X1 ! X2byd (f1, f2) = sup f d2 (f1 (x), f2 (x)) j x 2 X1 gEnd A.6Note that the above de�nition does not depend on the metric d1 on X1.De�nition A.7Let (X1, d1) and (X2, d2) be metric spaces. Let " � 0. With X1 !" X2 we denote the set offunctions f from X1 to X2 that satisfy8 x 2 X1 8 y 2 X2 d2 (f (x), f (y)) � " � d1 (x, y)The functions in X1 !1 X2 are called non-distance increasing and the functions in X1 !" X2with 0 � " < 1 are called contracting.End A.7We can extend a metric on sets to a metric on non-empty closed subsets of those sets as statedin the following de�nition.De�nition A.8Let (X, d) be a metric space. We de�ne a mapping dH , the Hausdor� distance, on Pnc (X), theset of all non-empty closed subsets of X, bydH (X, Y ) = max f sup x 2 X inf y 2 Y d (x, y), sup y 2 Y inf x 2 X d (y, x) gEnd A.8Next we state Hahn's theorem.Theorem A.9If (X, d) is a complete metric space, then (Pnc (X), dH) is also a complete metric space.End A.9From this theorem we can derive that (Pnc (A1), dH) is a complete metric space.Banach's theorem, which will often be used in the various sections of this paper, is stated in thefollowing theorem.Theorem A.10If (X, d) is a complete metric space and f : X ! X is a contraction then f has a unique �xedpoint x. Furthermore, we have that for all y 2 X limn fn (y) = x.End A.10The next property states that the operator S is non-distance increasing in all its operands. Thisproperty will be useful to prove several contraction properties.27



Property A.11For all �i, � i 2 Pnc (A1) and " 2 [0, 1]8 i d (�i, � i) � " ) d (S �i, S � i) � "Proof8 i d (�i, � i) � ",8 i max f sup � 2 �i inf � 2 � i d (�, �), sup � 2 � i inf � 2 �i d (� , �) g � ",8 i sup � 2 �i inf � 2 � i d (�, �) � " ^ 8 i sup � 2 � i inf � 2 �i d (� , �) � ")8 i sup � 2 �i inf � 2 S � i d (�, �) � " ^ 8 i sup � 2 � i inf � 2 S�i d (� , �) � ")sup � 2 S�i inf � 2 S � i d (�, �) � " ^ sup � 2 S � i inf � 2 S�i d (� , �) � ",max f sup � 2 S�i inf � 2 S � i d (�, �), sup � 2 S � i inf � 2 S�i d (� , �) g � ",d (S �i, S � i) � "End A.11We conclude this section with the de�nition of a labelled transition system.De�nition A.12A labelled transition system is a triple (Conf , Label, �!) consisting of a set of con�gurationsConf , a set of labels Label and a transition relation �!� Conf � Label � Conf .End A.12It is convenient to write C l!d C 0 instead of (C, l, C 0) 2 �!. When we de�ned a labelledtransition system in one of the previous sections, we gave the set of con�gurations, the setof labels and the axioms and rules of a transition system speci�cation. From this transitionsystem speci�cation, the transition relation of the labelled transition system can be derived asis described by Groote and Vaandrager in [GV89].

28


