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Abstract

Generalized metric spaces are a common generalization of preorders and ordinary metric
spaces (Lawvere 1973). Combining Lawvere’s (1973) enriched-categorical and Smyth’ (1988,
1991) topological view on generalized metric spaces, it is shown how to construct 1. com-
pletion, 2. topology, and 3. powerdomains for generalized metric spaces. Restricted to the
special cases of preorders and ordinary metric spaces, these constructions yield, respectively:
1. chain completion and Cauchy completion; 2. the Alexandroff and the Scott topology, and
the e-ball topology; 3. lower, upper, and convex powerdomains, and the hyperspace of com-
pact subsets. All constructions are formulated in terms of (a metric version of) the Yoneda
(1954) embedding.
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1 Overview

A generalized metric space consists of a set X together with a distance function X (—,—) : X x X —
[0, o], satisfying X (z,2) = 0 and X (z,z) < X(z,y)+ X (y, 2), for all z, y, and z in X. The family
of generalized metric spaces contains all ordinary metric spaces (for which the distance is moreover
symmetric and different elements cannot have distance 0) as well as all preordered spaces (because
a preorder relation can be viewed as a discrete distance function). Thus generalized metric spaces
provide a common generalization of both preordered spaces and ordinary metric spaces, which is
the main motivation for the present study.

Our sources of inspiration are the work of Lawvere on V-categories and generalized metric
spaces [Law73] and the work by Smyth on quasi metric spaces [Smy91], and we have been influenced
by recent work of Flagg and Kopperman [FK95] and Wagner [Wag94]. The present paper continues
earlier work [Rut95], in which part of the theory of generalized metric spaces has been developed.

The guiding principle throughout is Lawvere’s view of metric spaces as [0, 0o]-categories, by
which they are structures that are formally similar to (ordinary) categories. As a consequence,
insights from category theory can be adapted to the world of metric spaces. In particular, we shall
give the metric version of the famous Yoneda Lemma, which expresses, intuitively, that one may
identify elements z of a generalized metric space X with a description of the distances between the
elements of X and z (formally, the function that maps any y in X to X(y,z)). This elementary
insight (with an easy proof) will be shown to be of fundamental importance for the theory of
generalized metric spaces (and, a fortiori, both for order-theoretic and metric domain theory as
well). Notably it will give rise to

1. a definition of completion of generalized metric spaces, generalizing both chain completion
of preordered spaces and metric Cauchy completion;

2. a topology on generalized metric spaces generalizing both the Scott topology for arbitrary
preorders, and the metric e-ball topology;

3. the definition and characterization of three powerdomains generalizing on the one hand the
familiar lower, upper, and convex powerdomains from order-theory; and on the other hand
the metric powerdomain of compact subsets.

The present paper is a reworking of an earlier report [BBR95], in which generalized ultrametric
spaces are considered, satisfying X (z, z) < max{X(z,y), X(y,2)}, for all z, y, and z in X. There
is but little difference between the two papers: as it turns out, none of the proofs about ultrametrics
relies essentially on the strong triangle inequality. (See also [BBR96], which contains part of the
present paper.)

As mentioned above, generalized metric spaces and the constructions that are given in the
present paper both unify and generalize a substantial part of order-theoretic and metric domain
theory. Both disciplines play a central role in (to a large extent even came into existence because
of) the semantics of programming languages (cf. recent textbooks such as [Win93] and [BV96],
respectively). The use of generalized metric spaces in semantics, or more precisely, in the study of
transition systems, will be an important next step. The combination of results from [Rut95] (on
domain equations) and the present paper will lead to the construction of domains for quantitative
versions of simulation and bisimulation.

The paper is organized as follows. Sections 2 and 3 give the basic definitions and facts on
generalized metric spaces. After the Yoneda Lemma in Section 4, completion, topology and
powerdomains are discussed in Sections 5, 6, and 7. Finally Section 8 discusses related work, and
the appendix recalls some basic facts from topology, and contains some proofs.

2 Generalized metric spaces as [0, co|-categories

Generalized metric spaces are introduced and the fact that they are [0, oc]-categories is recalled
from Lawvere’s [Law73]. (For a brief recapitulation of Lawvere’s enriched-categorical view of



(ultra)metric spaces see [Rut95].) The section concludes with a few basic definitions and properties
to be used in the sequel.
A generalized metric space (gms for short) is a set X together with a mapping

X(—=,—): X x X — [0, 00]
which satisfies, for all z, y, and z in X,
1. X(z,z) =0, and
2. X(z,2) < X(z,y) + X(y, 2),

the so-called triangle inequality. The real number X (z,y) will be called the distance from z to y.
Examples of generalized metric spaces are:

1. The set A* of finite and infinite words over some given set A with distance function, for v
and w in A,
0 if v is a prefix of w
oo —
A% (v,w) = { 27" otherwise,

where n is the length of the longest common prefix of v and w.

2. Any preorder (P, <) (satisfying for all p, ¢, and r in P, p < p, and if p < ¢ and ¢ < 7 then
p < 1) can be viewed as a gms, by defining

0 ifp<gq

P(p,q):{ o ifp¥%aq.

By a slight abuse of language, any gms stemming from a preorder in this way will itself be
called a preorder.

3. The set [0, 00] with distance, for 7 and s in [0, oc],

o ={ 1, 172

Generalized metric spaces are [0, oo]-enriched categories in the sense of [EK66, Law73, Kel82].
As shown in [Law73], [0,00] is a complete and cocomplete symmetric monoidal closed category.
It is a category because it is a preorder (objects are the non-negative real numbers including
infinity; and for r and s in [0, 0c] there is a morphism from 7 to s if and only if r > s). It is
complete and cocomplete: equalizers and coequalizers are trivial (because there is at most one
arrow between any two elements of [0, c0]), the product r 1 s of two elements r and s in [0, co] is
given by max {r, s}, and their coproduct r 11s by min{r, s}. More generally, products are given by
sup, and coproducts are given by inf. Most important for what follows is the monoidal structure
on [0, oo], which is given by

+ : [0, 00] % [0, 00] — [0, 0],

assigning to two real numbers their sum. (As usual, r + 00 = co +r = oo, for all r € [0,0¢].)
Let [0,00](—, —) be the (‘internal hom-’) functor that assigns to r and s in [0, co] the distance
[0,00](r, s) as defined in the third example above. The following fundamental equivalence states
that [0, 00](t, —) is right-adjoint to ¢t + —, for any ¢ in [0, co]:

Proposition 2.1 For all v, s, and t in [0, o],

t+ s> if and only if s > [0, 00](t, ).



Many constructions and properties of generalized metric spaces are determined by the category
[0, 00]. Important examples are the definitions of limit and completeness, presented in Section 3.
Also the category of all generalized metric spaces, which is introduced next, inherits much of the
structure of [0, oo].

Let Gms be the category with generalized metric spaces as objects, and non-erpansive maps
as arrows: i.e., mappings f : X — Y such that for all z and z' in X,

Y(f(x), f(2') < X(z,2").
A map f is isometric if for all z and z' in X,
Y(f(x), f(2')) = X(z,2").

Two spaces X and Y are called isometric (isomorphic) if there exists an isometric bijection between
them. The product X x Y of two gms X and Y is defined as the Cartesian product of their
underlying sets, together with distance, for (z,y) and (z’,y') in X x Y,

X x Y((2,9), (")) = max{X(z,2"), Y (4,5")}.
The exponent of X and Y is defined by

Y¥ ={f:X — Y| fis non-expansive },
with distance, for f and g in Y X,

YX(f,9) = sup{¥ (f(x), 9(2)) | = € X}.

This section is concluded by a number of constructions and definitions for generalized metric
spaces that will be used in the sequel.
A gms generally does not satisfy

3. if X(z,y) =0 and X(y,z) =0 then z =y,
4. X(z,y) = X(y,2),
5. X(z,y) < oo,

which are the additional conditions that hold for an ordinary metric space. Therefore it is some-
times called a pseudo-quasi metric space. A quasi metric space (qms for short) is a gms which
satisfies axioms 1, 2, and 3. Note that [0, co] is a quasi metric space. A gms satisfying 1, 2, and 4
is called a pseudo metric space. Finally, if a gms satisfies the so-called strong triangle inequality

2. X(z,z) < max{X(z,y), X(y,2)},

then it is called a generalized ultrametric space (cf. [BBR95]).
The opposite X°P of a gms X is the set X with distance

XP(x,2') = X (', z).
With this definition, the distance function X (—, —) can be described as a mapping
X(—,—): X?x X —[0,00].

Using Proposition 2.1 one can easily show that X (—, —) is non-expansive.

We saw that any preorder P induces a gms. (Note that a partial order induces a quasi
metric and that the non-expansive mappings between preorders are precisely the monotone maps.)
Conversely, any gms X gives rise to a preorder (X, <x), where <x, called the underlying ordering
of X, is given, for z and y in X, by

z <x y if and only if X (z,y) = 0.



Any (pseudo or quasi) metric space is a fortiori a gms. Conversely, any gms X induces a pseudo
metric space X°, the symmetrization of X, with distance

X?(z,y) = max{X(z,y), X*"(z,y)}.

For instance, the ordering that underlies A is the usual prefix ordering, and (A°)® is a natural
metric on words. The generalized metric on [0, co] induces the reverse of the usual ordering: for
r and s in [0, oc],

7 <[0,00] 8 if and only if s < r;
and the symmetric version of [0, 00| is defined by

0 ifr=s

[O,OO]S(T,S):{ |r —s| ifr+#s.

Any gms X induces a quasi metric space [X] defined as follows. Let &~ be the equivalence relation

on X defined, for z and y in X, by
z =~y iff (X(z,y) =0 and X(y,z) =0).

Let [z] denote the equivalence class of x with respect to &, and [X] the collection of all equivalence
classes. Defining [X]([z], [y]) = X (z,y) turns [X] into a quasi metric space. It has the following
universal property: for any non-expansive mapping f : X — Y from X to a quasi metric space Y
there exists a unique non-expansive mapping f': [X] = Y with f'([z]) = f(x), for z € X.

3 Cauchy sequences, limits, and completeness

The notion of Cauchy sequence is introduced, followed by the definition of metric limit, first for
Cauchy sequences in [0, oo] and then for Cauchy sequences in arbitrary generalized metric spaces.
Furthermore the notions of completeness, finiteness, and algebraicity are introduced.

A sequence (z,,), in a gms X is forward-Cauchy if

VYe>03INVn>m >N, X(2m,z,) <e.

Since our metrics need not be symmetric, the following variation exists: a sequence (z,), is
backward-Cauchy if

Ve>03INVn>m>N, X(zn,om) <e.

If X is an ordinary metric space then forward-Cauchy and backward-Cauchy both mean Cauchy
in the usual sense. And if X is a preorder then Cauchy sequences are eventually increasing: there
exists an N such that for all n > N, z,, < x,41. (Increasing sequences in a preorder are also
called chains.) Similarly backward-Cauchy sequences are eventually decreasing.

The forward-limit of a forward-Cauchy sequence (7,), in [0, 00| is defined by

limr, = sup inf 7g.
— n k>n

Dually, the backward-limit of a backward-Cauchy sequence (), in [0, 0c] is

limr,, = inf sup 7g.

- n k>n
These numbers are what one intuitively would consider as metric limits of Cauchy sequences. If
[0, 0c] is taken with the standard symmetric Euclidian metric: [0, 00]°(r,7') = |r — #/|, for 7 and
r" in [0, oc], then all bounded forward-Cauchy and backward-Cauchy sequences are Cauchy with
respect to [0, 00]®, and the forward-limit and backward-limit defined above coincide with the usual
notion of limit with respect to [0,0c]® (cf. [Smy91]).

The following proposition shows how forward-limits and backward-limits in [0, co] are related.



Proposition 3.1 For a forward-Cauchy sequence (1), in [0,00], and all 7 in [0, c0],

1. [0,00](T,li_r>nrn) = 1i_r>n [0, 00] (7, 70 );
2. [0, oo](llin T, T) = liin [0, 00] (70, 7).

For a backward-Cauchy sequence (r,), in [0,00], and all 7 in [0, c0],

3. [0, oo](r, lim r,,) = lim [0, 00](7, 7,,);
4. [0, oo](lim 7, 7) = lim [0, 00](7, 7).
— — O
A proof follows easily using the following elementary facts:
Lemma 3.2 For all non-empty subsets V C [0, 00| and r in [0, oo],
1. [0, 00](r, sup V) = sup [0, 00| (r, v);
veV
2. [0, 00](r,inf V) = ina [0, oo](r, v);
veE
3. [0, c0](sup V,r) = 12‘f/ [0, o0](v, T);
4. [0, oo](inf V1) = sup [0, oo](v, 7).
veV
O

Forward-limits in an arbitrary gms X can now be defined in terms of backward-limits in [0, oc]:
an element x is a forward-limit of a forward-Cauchy sequence (z,), in X,

z=limz, iff Vy € X, X(z,y) =1lim X (z,,y).
This is well defined because of the following.

Proposition 3.3 Let (z,), be a forward Cauchy sequence in X. Let z € X.
1. The sequence (X (z,xy))n is forward Cauchy in [0, oo].

2. The sequence (X (zn,x))n is backward Cauchy in [0, o).

Note that our earlier definition of the forward-limit of forward-Cauchy sequences in [0, 00| is
consistent with this definition for arbitrary generalized metric spaces: this follows from Proposition
3.1(2).

Further note that Cauchy sequences may have more than one limit. Therefore one has to be
careful with an argument like:

if x = limz, and y = lim z,, then z = v,

which in general is not correct. All one can deduce from the assumptions is that X (z,y) = 0 and
X (y,z) = 0. The conclusion z = y is justified only in quasi metric spaces where as a consequence,
limits are unique. For instance, limits in [0, co] are unique.

In spite of the fact that in an arbitrary gms X limits are not uniquely determined, we shall
nevertheless use expressions (for instance, in Proposition 3.4 below) such as

X(limz,,y)

(for a Cauchy sequence (z,), and an element y in X)), because the value they denote does not
depend on the particular choice of a limit. This is an immediate consequence of the fact that all
limits have distance 0.



For ordinary metric spaces, the above defines the usual notion of limit:

z =limz, if and only if Ve > 03dN Vn > N, X(z,,7) <e.

If X is a partial order and (z,,), is a chain in X then
x =limz, ifand only if Vy € X, 2z <xy<&Vn>0, z, <x v,
ie., z = | |x,, the least upperbound of the chain (z,,),.
One could also consider backward-limits for arbitrary gms. Since these will not play a role in the

rest of this paper, this is omitted. For simplicity, we shall use Cauchy instead of forward-Cauchy.
Similarly, we shall write

lim z,, rather than limz,,,

and use limit instead of forward-limit.

Note that subsequences of a Cauchy sequence are Cauchy again. If a Cauchy sequence has a
limit z, then all its subsequences have limit = as well.

The following fact will be useful in the future:

Proposition 3.4 For a Cauchy sequence (z,,), and an element x in a gms X,
X (z,lim, z,) < lim, X (z,z,).
Proof: The inequality follows from

[0, oo](lim,, X (z, 2y,), X (z,lim, z,))
1<i£nn [0, 00](X (z,2,), X (z,lim, z,))

IN

lgnnX(mn, lim, z,,) [the mapping X (z,—): X — [0,00] is non-expansive
= X(lim, 2y, lim, z,)
= 0.

A gms X is complete if every Cauchy sequence in X has a limit. A subset V' C X is complete if
every Cauchy sequence in V has a limit in V. For instance, [0, 0] is complete. If X is a partial
order completeness means that X is a complete partial order, cpo for short: all w-chains have
a least upperbound. For ordinary metric spaces this definition of completeness is the usual one.
There is the following fact (cf. Theorem 6.5 of [Rut95]).

Proposition 3.5 Let X and Y be generalized metric spaces. If Y is complete then YX is com-
plete. Moreover, limits are pointwise: let (f,)n be a Cauchy sequence in Y and f an element in
YX. Thenlim f, = f if and only if for all x € X, lim f,(z) = f(x). Furthermore, if Y is a quasi

metric space then YX is a quasi metric space as well. O

A mapping f : X — Y between gms X and Y is continuous if it preserves Cauchy sequences
and their limits: if (z,), is Cauchy and z = limz,, in X, then (f(z,)), is again Cauchy and
f(z) =1lim f(z,) in Y. For ordinary metric spaces, this is the usual definition. For partial orders
it amounts to preservation of least upperbounds of w-chains.

An element b in a gms X is finite if the mapping

X(,—-): X —-10,00], z— X(b,x)

is continuous. (So for finite elements, the inequality in Proposition 3.4 actually is an equality.) If
X is a partial order this means that for any chain (z,), in X,

X(b,| |an) = lim X (b, 2.,



or, equivalently,
b<x |_|l“n iff In, b <x z,,

which is the usual definition of finiteness in ordered spaces. If X is an ordinary metric space then
X (b,—) is continuous for any b in X, hence all elements are finite.

A basis for a gms X is a subset B C X consisting of finite elements such that every element z
in X is the limit = lim b,, of a Cauchy sequence (b,), of elements in B. A gms X is algebraic
if there exists a basis for X. Note that such a basis is in general not unique. If X is algebraic
then the collection Bx of all finite elements of X is the largest basis. Further note that algebraic
does not imply complete. (Take any ordinary metric space which is not complete.) If there exists
a countable basis then X is w-algebraic.

For instance, the gms A from Section 2 is algebraic with basis A*, the set of all finite words
over A. If Ais countable then A is w-algebraic. Also the space [0, o] is algebraic: by Proposition
3.1(1), all elements are finite. (It is even w-algebraic, with the set of rational numbers as a basis.)
This fact is somewhat surprising, since [0, 0] is not algebraic as a partial order.

4 The Yoneda Lemma

The following lemma turns out to be of great importance for the theory of generalized metric
spaces. It is the [0, co]-categorical version of the famous Yoneda Lemma [Yon54] from category
theory. We shall see in the subsequent sections that it gives rise to elegant definitions and charac-
terizations of completion, topology, and powerdomains. A general proof of the Yoneda Lemma for
arbitrary enriched categories can be found in [Kel82]. For generalized metric spaces, it is proved
in [Law86].

The following notation will be used throughout the rest of this paper:

X =10,00%"

3

i.e., the set of all non-expansive functions from X°? to [0, co].

Lemma 4.1 (Yoneda Lemma) Let X be a gms. For any z € X let
X(—,z): X7 > [0,00], y+— X(y,z).
This function is non-expansive and hence an element of X. For any other element ¢ in X,

X(X(—,z), ¢) = ¢(z).

Proof: Because X(—,—) : X x X — [0, oc] is non-expansive, so is X(—, ), for any z in X.
Now let ¢ € X. On the one hand,

¢p(z) = [0,00](X(z,z), ¢(z))

< sup [0, 0o) (X (y, ), ¢(y))

= X(X(-2), ¢).
On the other hand, non-expansiveness of ¢ gives, for any y in X,
[0, 00](¢(z), ¢(y)) < XP(z,y) = X(y,z),

which is equivalent by Proposition 2.1 to [0, c0](X (y, ), ¢(y)) < ¢(z). It follows that

X(X(=2), ¢) < ().

The following corollary is immediate.



Corollary 4.2 The Yoneda embedding y : X — X, defined for z in X by y(z) = X(—,z) is
isometric: for all x and ' in X,

X(z,a') = X(y(2),y(a").

The following fact will be of use when defining completion.
Lemma 4.3 For any = in X, y(x) is finite in X.

Proof: We have to show that X(y(z),—) : X — [0,00] is continuous: for any Cauchy sequence
(¢n)n in X,
X(y(z),lim¢,) = (lim¢,)(z) [the Yoneda Lemmal
= lim¢,(z) [Proposition 3.5]
= lim X(y(x), ¢n) [the Yoneda Lemma].

5 Completion via Yoneda

The completion of gms’s is defined by means of the Yoneda embedding. It yields for ordinary
metric spaces Hausdorff’s standard Cauchy completion (as introduced in [Haul4]), for preorders
the chain completion, and for qms’s a completion given by Smyth (see [Smy91, page 214]).

Let X be a gms. Because [0, c0] is a complete qms (cf. Section 2 and 3), it follows from Propo-
sition 3.5 that X is a complete qms as well. According to Corollary 4.2, the Yoneda embedding y
isometrically embeds X in X. The completion of X can now be defined as the smallest complete
subspace of X which contains the y-image of X.

Definition 5.1 The completion of a gms X is defined by
X = ﬂ{V C X |y(X)CV and V is a complete subspace of X }.

The collection of which the intersection is taken is nonempty, since it contains X. Because X is a
complete subspace of the complete qms X also X is a complete qms, and, as a consequence, for
any Cauchy sequence in X, its limits in X and X coincide.

As with preorders, completlon is not idempotent, that is, the completion of the completion of
X is in general not isomorphic to the completion of X. An interesting question is to characterize
the family of gms’s for which completion is idempotent (it contains at least all ordinary metric
spaces). (Cf. [FS96].)

Completion for ordinary metric spaces is usually defined by means of (equivalence classes of)
Cauchy sequences. The same applies to countable preorders: there the most common form of
completion, ideal completion, is isomorphic to chain completion, and we have seen that chains are
(special cases of) Cauchy sequences. It will be shown next that the completion introduced above
can be expressed in terms of Cauchy sequences as well. This will at the same time enable us to
prove its equivalence with the definition of the completion of qms’s by Smyth. R

Note that a sequence (z,), is Cauchy in a gms X if and only if (y (z,)), is Cauchy in X,
because the Yoneda embedding y is isometric. This is used in the following.

Proposition 5.2 For any gms X,
X ={lim,y (z,) | (zn)n is a Cauchy sequence in X }.

Proof: The inclusion from right to left is immediate from the fact that the set on the right is
contained in any complete subspace V of X which contains y (X). The reverse inclusion follows
from the fact that the set on the right contains y (X'), which is trivial, and the fact that it is a

complete subspace of X: thisisa consequence of Lemma 4.3 and Proposition B.3 in the appendix.
O
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The elements of X can be seen to represent equivalence classes of Cauchy sequences. To this
end, let CS (X) denote the set of all Cauchy sequences in X, and let A : CS (X) — X map a
Cauchy sequence (vy ), in X to lim, y (v,). This mapping induces a generalized metric structure
on CS (X) by putting, for Cauchy sequences (v, )m and (wp)n,

CS (X) (Vi) ms (wn)n) = X (A ((Wm)m); A ((wn)n))-

This metric can be characterized as follows.

( [y (vn) is finite in )?]
= hm mlim, X (’Um, ’wn) [y is isometric].

The latter formula is what Smyth has used for a definition of the distance between Cauchy se-
quences of qms’s. In his approach, the completion of a qms is defined as [CS (X )], which is the qms
obtained from CS (X) by identifying all Cauchy sequences with distance 0 in both directions (cf.
Section 2). Such sequences can be considered to represent the same limit. Both ways of defining
completion are equivalent.

Proposition 5.3 For any gms X, X = [CS (X)].

Proof: Because X isa qms, the non-expansive mapping A : CS (X) — X induces a non-expansive
mapping A’ : [CS (X)] — X (cf. Section 2). Because A is isometric by the definition of the metric
on CS (X), A’ is injective. Because A is surjective by Proposition 5.2, A’ is also surjective. O

A corollary of this theorem is that the completion of gms’s generalizes Cauchy completion of
ordinary metric spaces and chain completion of preorders.

Recall that the category Gms has gms’s as objects and non-expansive functions as arrows.
Let Acq be the category with algebraic complete qms’s as objects, and with non-expansive and
continuous functions as arrows. We will show that completion can be extended to a functor from
Gms to Acq, which is a left adjoint to the forgetful functor from Acq to Gms. First of all, the
completion of a gms X is an object in Acq.

Theorem 5.4 For any gms X, X is an algebraic complete qms.

Proof: Since X is a complete subspace of the complete qms )2, also X is a complete qms.
Because all elements of y (X) are finite in X according to Lemma 4.3, they are also finite in X.
From Proposition 5.2 we can conclude that every element of X is the limit of a Cauchy sequence
in y (X). Consequently X is algebraic. a

The next theorem is the key to the extension of completion to a functor. It says that completion
is a so-called free construction.

Theorem 5.5 For any complete gqms Y and non-expansive function f : X — Y there exists a
unique non-expansive and continuous function f# : X — Y such that f# oy = f.

y _
I
\f\if

\J
Y
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Proof: For all Cauchy sequences (v,)n and (wp)m in X,

Y (lim,, f (vn), lim,, f (wp))
l(iLnnY (f (vn), limp, f (wp))

< lim, limy Y (f (vn), f (wpm))  [Proposition 3.4]
< lim, limy, X (vn, wm)  [f is non-expansive]
= lim,lim,, X (y (vn),y (wm)) [y is isometric]
= lim, X (y (vp),limp y (wm)) [y (va) is finite in X]
= X (limy y (vn), limp, y ().

Consequently,

limy y (v) = limpm y (wim)
= X (limyy (0n),limp y (w5n)) = 0A X (limg, y (wi), limg y (0n)) = 0
= Y (lim, f (vn),limp, f (wm)) = 0AY (limp, f (wr), limy f (v,)) =0
= lim, f (v,) = lim,, f (w,).
According to Proposition 5.2, for all Z in X, there exists a Cauchy sequence (z,,), in X, such that

z = lim, y (z,). Since f is non-expansive, the sequence (f (z,))n is also Cauchy. Because Y is a
complete qms, lim,, f (z,) exists. Hence, we can define f# : X — Y by

F# (limn y (w0)) = limp f (20).
Since, for all Cauchy sequences (vy,), and (w.,)m in X,

Y (f# (limn y (vn)), f# (limp y (wn)))
= ):(limn £ (vn), lim,, f (w,,))

< X (lim,y (vn),lim,, y (wm)) [see above]

the function f# is non-expansive.

Next we prove that f# is continuous. Let (Z,), be a Cauchy sequence in X. Without loss of
generality we can assume that

Vn, X (Zn, Tni1) < gom- (1)

Because y is isometric, we can conclude from Proposition 5.2 that
X ={lim,y (z,) | (y (z))n is a Cauchy sequence in y (X) }.
Because y (X) is a subspace of the complete qms )?, and all elements of y (X) are finite in X

according to Lemma 4.3, we can conclude from Lemma B.1 and B.2 that there exist Cauchy
sequences (w]"), in y (X) satisfying

Vi, y (X) (i, wity,) < 1,
Vn¥m, y (X) (w, wit?) < L,
Vn,lim, w' = Z,,

Since y is isometric, there exist Cauchy sequences (z),, in X satisfying

VmVn,X(mT,xZZ_l) < %, (2)
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Vn¥m, X (2, 2t < L (3)

Vn,lim, y (z)') = Tn, (4)

lirnky(mZ) = lim, Z,. (5)

As we have seen above, f# is non-expansive. Consequently, (f# (Z,)), is a Cauchy sequence in
Y. Since f is non-expansive, we can derive from (2) and (3) that

Vm¥n, Y (f (z3), f (2741)) < 5, (6)

vavm, Y (f (a), f (27 F1)) < (7)
From (4) we can deduce that

Y, lim,, f (z™) = f# (Z,). (8)

Since Y is a complete qms, it follows from (6), (7), (8), and Lemma B.2 that the sequence (f (z}))r
is Cauchy and

limy, f (z¥) = lim,, f# (,,).
From (5) we can derive that
f# (lim, Z,) = limy, f (zF).

Hence f# is continuous.
Let g : X — Y be a non-expansive and continuous function such that g oy = f. For all Cauchy

sequences (2, ) in X,

g (lim, y (zn))

= lim, g(y(z,)) [gis continuous]
lim, f(zn) [goy = f]
F# (lim, y (24))-

This proves the unicity of f#. O

Completion can be extended to a functor (7) : Gms — Acq, by defining its action on arrows in
Gms in the following standard way: for gms’s X and Y and a non-expansive mapping f : X — Y,

let f: X — Y be defined by f = (y o f)#.

X—f>Y

yl ly

X—-——-=->Y
(Yof)*

According to Theorem 5.5, the function f is non-expansive and continuous, and hence an arrow
in Acq. One can easily verify that we have extended completion to a functor. It is an immediate
consequence of Theorem 5.5 that it is left adjoint to the forgetful functor from Acqg to Gms (cf.
[ML71, Chapter 4]). The Yoneda embedding y is the unit of the adjunction.

For every complete qms X with basis B, X = B. More generally:

Theorem 5.6 Let X be a complete qms. Let B C X. Then the following three conditions are
equivalent.

1. B is a basis for X.
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2. The function yp : X — B defined, for z € X, by

i.e

ve(z) =Xbe B.X (b,x),

., the restriction of y(z) € X to B, is isometric and continuous.

3. The inclusion function i : B — X induces an isomorphism i# : B — X.

Proof:

1. = 2.

According to Corollary 4.2, y is isometric. Consequently, yp is non-expansive. Because,
for all Cauchy sequences (z,), in X,

lim, y5 (z,)
= lim,A\be B.X (b,z,)
= Abe€ B.lim, X (b,z,) [Proposition 3.5
Abe B. X (b, lim, z,, [bis finite in X]
= YB (limn mn):

y B is continuous. Consider the following diagram:

where j is the inclusion of B in B. One can easily verify that yp o i# oy = y and
joy =y. Therefore by Theorem 5.5,

Since B is a basis for X, i# is surjective. Because i# is furthermore non-expansive and
b)
7 is isometric, y g is isometric.

. For all Cauchy sequences (b,), in B,

(yp 0i*) (lim y (bn))
y5 (lim, i* o y (bn)) [i# is continuous]
yi (limy, i (by))

= lim,ypoi(b,) [yp is continuous]

= lim, y (bn)a
from which (9) follows. Thus yp actually maps into B. Because yp is isometric it is
injective. As a consequence, i¥ o yp = 1x follows from

ypo(i*oyp)=(ypoi*)oyp=yp=ypolx,

where 1x is the identity on X. Thus i# is an isomorphism with yp as inverse.

. As we have already seen in the proof of Theorem 5.4, all elements of y (B) are finite in B.

Since i# is isometric and surjective, all elements in (i# oy) (B) are finite in X. Because
i =i# oy, all elements of B are finite in X. Since i# is surjective, every element of X is
the limit of a Cauchy sequence in B. Hence, B is a basis for X. O
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A subset B of a gms X for which the function yp of the second clause above is isometric, is called
adequate in [Law73, page 154].

This section is concluded by the introduction of the notion of adjoint pairs of mappings between
gms’s, and a characterization of completeness in terms thereof. This will not be used in the rest
of the paper.

Let X and Y be gms’s. A pair of non-expansive mappings f: X - Y and g : Y — X form an
adjunction, with f left adjoint to g denoted by f - g, if

Ve e XVy e Y,Y (f(z),y) = X (z,9(y)).

An equivalent condition is that XX (1x,go f) =0 and Y'Y (fog,1y) = 0. Expressed in terms of
the underlying orderings, this can be read as 1x < go f and fog < 1y, saying that f and g form
an adjunction as monotone maps between the underlying preorders (X, <x) and (Y, <y).

The following lemma was suggested to us by Bart Jacobs.

Lemma 5.7 Let X be a gms. Consider the (corestriction of the) Yoneda embeddingy : X — X.
The space X 1is complete if and only if there exists a non-expansive and continuous mapping

f: X - X with fy.

Proof: Suppose X is complete. By Theorem 5.5, there exists a unique non-expansive and
continuous extension lﬁ : X — X of the identity mapping on X, defined, for ¢ = lim, y (z,) in
X with (z,), a Cauchy sequence in X, by

lﬁ (¢) = limy, z,.
For any z € X,

X (1% (¢).2)

X (lim,, z,,, x)
= lim, X (z,,2)
= lgnnX (y (zn),y (z)) [the Yoneda embedding is isometric
= X (lim,y (zn),y (2))
= X(¢,y(2)),
showing that 1?&( - y. For the converse suppose we are given a non-expansive and continuous
mapping f : X — X with f Hy. For any Cauchy sequence (z,), in X and z € X,
X (f(limny (za)),2) = X (limpy (za),y (z))
= lim, X (y (2a),y (2))

= l(iinnX (zn,2) [the Yoneda embedding is isometric],

proving that lim, z,, = f (lim, y (z,)). O

6 Topology via Yoneda

Let X be a gms. Recall that Xisa gms with the supremum distance, and that it contains as a
subset an isometric copy of X via the Yoneda embedding. The Yoneda embedding of a gms X
into X gives rise to two topological closure operators. Their corresponding topologies are shown
to generalize both the e-ball topology of ordinary metric spaces and the Alexandroff and Scott
topologies of preordered spaces.

The main idea (stemming from [Law86]) is to interpret an element ¢ of X as a ‘fuzzy’ predicate
(or ‘fuzzy’ subset) on X: the value that ¢ assigns to an element z in X is thought of as a measure
for ‘the extent to which z is an element of ¢’. The smaller this number is, the more z should be
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viewed as an element of the fuzzy subset ¢. In fact, the only real elements are the ones where ¢
is 0. By taking only its real elements we obtain its extension,

Jad=A{z € X | ¢(z) =0},

where the subscript A stands for Alexandroff. For instance, for z in X, [,y(z) = [,X(—,z) =
{z € X | X(z,2) =0} = z|. More generally, for any ¢ in X,

Ja¢ = {z€X|é(z)=0}
= {zeX|X(X(-,x), ) =0} [the Yoneda Lemma 4.1]
= {zeX|X(y(z), ) =0} [definition of the Yoneda embedding]
= {zeX|y(z) <x ¢}

Any subset V' C X defines, conversely, a predicate ps(V) : X°? — [0, 0o] which is referred to as
the character of the subset V. It is defined, for z € X, by

pa(V)(a) = inf{X(x,0) | v € V},

i.e., the distance from z to the set V. Note that, by definition of the Yoneda embedding, this is
equivalent to

pa(V) = Az € X.inf{y(v)(z) | v € V}.

The mappings fA X - P(X) and py : P(X) — X can be nicely related by considering X with
the underlying preorder <, and P(X) ordered by subset inclusion (cf. [Law86]):

Proposition 6.1 Let X be a gms. The maps fA : (X,SX) — (P(X),C) and pa : (P(X),C) —
<X, <x) are monotone. Moreover pa is left adjoint to [ ,.

Proof: Monotonicity of fA and p4 follows directly from their definitions. We will hence concen-

trate on the second part of the proposition by proving for all V- € P(X) and ¢ € X,

VC [4pa(V) and pa(f,0) <x ¢,

which is equivalent to p4 being left adjoint to fA’ (cf. Theorem 0.3.6 of [GHK™80]). Because,
for all Ve P(X) and v in V, y(v) <4 pa(V), we have that

VC{zeX|y(z) <g pa(V)} = [4pa(V).
Furthermore, for ¢ € X and z € X,

pa(f,0)(x) = nf{X(z,y) |y e X &yly) <; ¢}

= inf{y(y)(z) |y € X &Vz € X, y(y)(2) = ¢(2)}

> inf{y(y)(z) |y € X &y(y)(z) = ¢(z)}

> ¢(x).
Consequently, pA(fA¢) < ¢ (note that the ordering underlying [0, oo] is the reverse of the usual
one). O

The above fundamental adjunction relates character of subsets and extension of predicates and
is often referred to as the comprehension schema (cf. [Law73, Ken88]). As with any adjoint
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pair between preorders, the composition fA o pa is a closure operator on X (cf. Theorem 0.3.6
of [GHK™80]). It satisfies, for V C X,

(J4opa)(V) {z € X [pa(V)(zx) =0}
= {zeX|X(y(®),pa(V)) =0} [the Yoneda Lemma 4.1]
= {zeX[veX, [0,00](y(x)(y),pa(V)(y)) =0}
= {zeX|[WweX, y)(y) 2pa(V)(2)}
= {zeX|Ve>0Vye X, y)ly) <e=(FveV, X(y,v)<e)}
= {zeX|Ve>0Vye X, X(y, e=> (v eV, X(y,v)<e)} (10)

[the Yoneda Lemma 4.1].

)
(
) <
z) <

By using the above characterization (10) we can prove the following lemma.

Lemma 6.2 For a gms X, the closure operator fA opa on X is topological.

Proof: It is an immediate consequence of (10) that [, o p4(0) = 0. Moreover, for V,W C X,
JaopaVUW) 2 [ 0pa(V)U [, 0pa(W),

because fA o p4 is a closure operator. For the reverse inclusion, let = € fA opa(VUW). Suppose
T ¢ fA o pa(V). We will show = € fA o pa(W). Let yy in X and ey > 0 with X(yw,z) < ew.
We should find a w in W with X (yw,w) < ew. Because z not in [, o ps(V) there exist a yy in
X and an ey > 0 such that

X(yv,z)<ey & MveV, X(yv,v) >ey). (11)

Let € = min{ey — X (yv,z),ew — X(yw, z)}. Because zin [, 0 pa((VUW) and X (z,z) <e, there
exists a w in V. UW with X (2,w) < e. The assumption that w in V contradicts (11) because

X(yv,w) < X(yv,z) + X(z,w) < ey.
Thus y € W. Furthermore,

X(yw,w) < X(yw,z) + X(z,w) < ew.
O

The above lemma implies that the closure operator fA o pa induces a topology on X, which in
Proposition 6.3 below is proved equivalent to the following generalized e-ball topology: For z € X
and € > 0 define the e-ball centered in x by

B(z)={z€ X | X(z,2) <e€}.
A subset 0 C X of a gms X is generalized Alezandroff open (gA-open, for short) if, for all z € X,
z€o =3Je>0, Bz)Co.

The set of all gA-open subsets of X is denoted by Oy4(X). For instance, for every z € X the
e-ball B.(x) is a gA-open set. The pair (X,0,4(X)) can be shown to be topological space with
B.(z), for every € > 0 and = € X, as basic open sets (cf. [FK95]). For a subset V of X we write
cl4(V) for the closure of V in the generalized Alexandroff topology.

Proposition 6.3 For every subset V of a gms X, cla(V fA opa(V).
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Proof: It follows from the characterization (10) of [, o pa that it is sufficient to prove
cda(V)={z e X |Ve>0Vze X, X(z,2)<e = (weV, X(z,v)<e)}.

Because cla(V) = VU V? where V7 is the so-called derived set of V (cf. Section A of the
appendix), it follows from the definition of derived set and the fact that the set of all e-balls is a
basis for the generalized Alexandroff topology, that for every z € X,

eVt &= VYoc0,4(X), z€0 = on(V\{z}) #0
< Ve>0Vze X, € B(z) = B(z)N(V\{a})#0
= Ve>0Vze X, X(z,z)<e = Fve (V\{z}), X(2,v)<e.
Therefore,

As(V)=VUVi={reX|Ve>0Vze X, X(z,z)<e = (weV, X(z,v)<e)}.
O

For ordinary metric spaces, gA-open sets are just the usual open sets. For preorders, a set is
gA-open precisely when it is Alexandroff open (upper closed) because if X is a preorder then for
every € > 0,

B(z) = {yeX|X(z,y) <e}
= {ye X |X(z,y) =0}
= {yeX|z<xy}

The specialization preorder on a gms X induced by its generalized Alexandroff topology coin-
cides with the preorder underlying X.

Proposition 6.4 Let X be a gms. For allz andy in X, v <o,, y if and only if v <x y.

Proof: For any gA-open set V, if z in V and X(z,y) = 0 then y in V. From this observation the
implication from right to left is clear. For the converse, suppose # <p_, y. Then, for every € > 0,
z € Be(z) implies y € B.(z), because generalized e-balls are gA-open sets. Hence X (z,y) <.
Since € was arbitrary, X (z,y) = 0, that is z <x y. |

The above proposition tells us that the underlying preorder of a gms can be reconstructed from
its generalized Alexandroff topology. Note that the specialization preorder <¢p_, is a partial
order this is equivalent to the generalized Alexandroff topology being Ty if and only if X is a
qms.

For computational reasons we are interested in complete spaces, in which one can model infinite
behaviors by means of limits. A topology for a complete space X can then be considered satis-
factory if limits in X are topological limits. This is not the case for the generalized Alexandroff
topology: for instance, for complete partial orders O,4(X) coincides with the standard Alexan-
droff topology, for which the coincidence of the least upperbounds of chains and their topological
limits does not hold. Therefore the Scott topology is usually considered to be preferable: it is
the coarsest topology refining the Alexandroff topology, in which least upper bounds of chains
are topological limits (cf. Section II-1 of [GHKT80]. See also [Mel89, Smy92]). Also for gms’s, a
suitable refinement of the generalized Alexandroff topology exists.

This topology will be introduced, first, by defining which sets are open, and next for algebraic
gms’s by means of the Yoneda embedding.

A subset 0 C X of a gms X is generalized Scott open (gS-open, for short) if for all Cauchy
sequences (Tn)n in X and x € X with z = lim z,,,

z€0=3INJe>0Vn >N, Bz,)Co.

The set of all gS-open subsets of X is denoted by O,5(X ). Below it will be shown that this defines
a topology indeed. Note that every gS-open set o C X is gA-open because every point z € X is the
limit of the constant Cauchy sequence (z), in X. Therefore this topology refines the generalized
Alexandroff topology. Furthermore it will be shown to
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1. coincide with the e-ball topology in case X is a metric space; and to
2. coincide with the Scott topology in case X is a complete partial order.

The following proposition gives an example of gS-open sets:

Proposition 6.5 For every gms X, an element b € X is finite if and only if for every e >0, the
set Be(b) is gS-open.

Proof: Let b be finite in X and € > 0. We have to show that the generalized e-ball B,(b) is
gS-open. Let (z,), be a Cauchy sequence in X and assume z € B.(b) with z = lim z,,. It suffices
to prove that

36 >03IN Vn >N, X(b,z,)<e—24. (12)
Because z in B(b), we have that there exists § > 0 such that X (b,z) < e — 6. Since
e—6 > X(bx)
= lim X(b,zn) [bis finite in X]

and the sequence (X (b, z,)), is Cauchy, we can conclude (12).
Conversely, assume that, for all € > 0, the set B.(b) is gS-open. We need to prove, for every
Cauchy sequence (z,), in X and z € X with 2 = lim z,,, that

lim X (b, z,,) < X (b, x) (13)
(the reverse inequality is given by Proposition 3.4). We have

Ve>0, = € Bx(haz)+e(b)
Because the set Bx (s,2)+c(b) is gS-open,

Ve>036>03N VYn > N, Bs(xn) C Bx(sz)+e(b)-
Hence, lim X (b, z,,) < X (b, z). O

Next we prove that the collection of all gS-open sets forms indeed a topology.

Proposition 6.6 For every gms X the pair (X, O,s(X)) is a topological space. If X is also
algebraic with basis B, then the set {B.(b) | b € B & ¢ >0} forms a basis for the generalized Scott

topology Oys5(X).

Proof: We first prove that O,5(X) is closed under finite intersections and arbitrary unions. Let
I be a finite index set (possibly empty) and let o = (), 0; with 0; € Oys(X) foralli e I. If z € o
for a Cauchy sequence (z,), in X and x € X with z = lim z,,, then for every i € I there exist
N; > 0 and ¢; > 0 such that B,,(z,) C o; for all n > N;. Take N = max; N; and € = minj ¢; (here
maxg = 0 and ming = co). Then B.(z,) C o for all n > N, that is, o is gS-open.

Next let I be an arbitrary index set and let o = |J; 0; with 0; € Oys(X) foralli e I. If z € o
for a Cauchy sequence (z,), in X and z € X with 2 = limz,,, then there exists i € I such that
x € 0;. Therefore there exists N > 0 and € > 0 such that B.(z,) C 0; C o for all n > N, that is, o
is gS-open.

Finally assume that X is an algebraic gms with basis B. We have already seen that for every
€>0 and finite element b € B the set B.(b) is gS-open. We claim that every gS-open set o C X is the
union of e-balls of finite elements. Let € o. Since X is algebraic there is a Cauchy sequence (b,,),
in B with z = lim b,,. Because o is gS-open, there exists ¢, >0 and N, > 0 such that B._(b,) C o
for all n > N, and with = € B, (b,) for N, big enough. Therefore o C |J,, B, (bn, ). Since the
other inclusion trivially holds we have that the collection of all e-balls of finite elements forms a
basis for the generalized Scott topology. O
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Any ordinary metric space X is an algebraic gms where all elements are finite. Therefore, by the
previous proposition, the basic open sets of the generalized Scott topology are all the e-balls B.(z),
with z € X. Hence for ordinary metric spaces the generalized Scott topology coincides with the
standard e-ball topology.

For a complete partial order X, a set o C X is gS-open precisely when it is Scott open: if
0 € Oys(X) then it is upper closed because the gS-topology refines the gA-topology. Moreover,
if | |z, € o for an w-chain (z,), in X then because o is gS-open there exists e >0 and N > 0
such that Be(z,) C o for all n > N. But z,, € B(x,) for all €, therefore o is an ordinary Scott
open set. Conversely, assume o is Scott open and let = € o, for a Cauchy sequence (), in X and
z € X with z = lim z,,. Because o is Scott open (and limits are least upper bounds) there exists
N > 0 such that z,, € o for all » > N. This is enough to prove that o is also gS-open because for
every z € X and € >0, B(z) = zT.

As usual, a subset ¢ of a gms X is gS-closed if its complement X \ ¢ is gS-open. This is equivalent
to the following condition: for all Cauchy sequences (z,), in X and z € X with z = lim z,,,

(VNVe>03n>N3y€e, X(zn,y)<e) = z€ec. (14)

For a subset V of X we write clg(V) for the closure of V in the generalized Scott topology, that
is, clg(V) is the smallest generalized Scott closed set containing V. From the definition of limits
we have that for any Cauchy sequence (z,), in V and z € X with 2 = limz,,, € ¢lg(V). The
latter implies that if X is an algebraic gms with basis B then B is dense in X, that is clg(B) = X.
Indeed, B C X implies clg(B) C clg(X) = X. For the converse we use the fact that every element
of X is the limit of a Cauchy sequence in B. Since (the image under y of) every gms X is a basis
for its completion X it follows that every gms is dense in its completion.

The following lemma, suggested to us by Flagg and Siinderhauf, gives an example of gS-closed
sets.

Lemma 6.7 Let X be a gms. For all z in X and § > 0, the set B{f(z) = {y € X | X(y,z) < 6}
is gS-closed.

Proof Let (z,)n be a Cauchy sequence in X and let z € X, with z = lim z,,, be such that
VN Ve>03n > N 3y € B{F(z), X(zn,y) <e.
Then
VN Ve>03dn >N, X(zp,z)<e+6.
Because the sequence (z, ), is Cauchy,
Ye>03IN Vn >N, X(zp,z)<e+0.
Consequently, lan(zn, x) < 8, and hence X (z,z) < 6. |

Like for the generalized Alexandroff topology, the specialization preorder on a gms X induced by
its gS-topology coincides with the preorder underlying X.

Proposition 6.8 Let X be a gms. For all z and y in X, v <o ¢ y if and only if x <x y.

Proof: For any gS-open set o, if z € 0 and X (z,y) = 0, then also y € 0. From this observation,
the implication from right to left is clear. For the converse, suppose X (z,y) # 0. Then z & B;?(y)
but y € Bg¥(y). Since, by Lemma 6.7, the set X \ By (y) is gS-open it follows that z £, y. O

As promised above, next we show that the generalized Scott topology also encodes all information
about convergence.

Proposition 6.9 Let X be a gms, (zn)n a Cauchy sequence in X, and let x € X be such that
@ = limz,. Forally € X, N((zn)n) — y if and only if y <o, x, that is, limits are mazimal
topological limits.
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Proof: By definition of gS-open sets, N'((zn)n) — 2. Hence y <o,; z implies N'((zn)n) — -
For the converse, let N'((2,)n) — ¥ and assume y £0,; «. According to Proposition 6.8 there is a
6 > 0 such that X(y,z) £ 6. Hence, y € X \ ng(m), which is a gS-open set by Lemma 6.5. Since
N((zn)n) = v,

AN Vn > N, z, € X \ B’ (z).
But

0 =X(z,z) = limX(z,,z)

so there exists M such that for all m > M, X(x,,,x) < é. This gives a contradiction. Therefore,
Y <0,s T- |

From the above proposition we can conclude that in a complete gms every Cauchy sequence
topologically converges to its metric limits. However, not every topologically convergent sequence
is Cauchy. For example, provide the set X = {1,2, ..., w} with the distance function

0 ifz=y
X(z,y) = % ifr=wandy=mn
1 otherwise

Then X is an algebraic complete qms with X itself as basis, since there are no non-trivial Cauchy
sequences. The sequence (n), topologically converges to w but is not Cauchy.

For an algebraic gms X with basis B, topological convergence (with respect to the gS-topology
on X) is easily characterized: a sequence (z,,), in X converges to z € X if and only if

Ve>0Vbe B, X(bz)<e = (ANVn >N, X(b,z,)<e).
Continuity is also encoded by the generalized Scott topology.

Proposition 6.10 Let X and Y be two complete gms’s. A mon-expansive function f : X —Y is
metrically continuous if and only if it is topologically continuous.

Proof: Let f: X — Y be a non-expansive and metrically continuous function and let o C Y be
gS-open. We need to prove f (o) C X in order to conclude that f is topologically continuous.
Indeed, for any Cauchy sequence (z,), in X and z € X with z = lim z,, we have

z€f o) < f(z)€o
<= lim f(x,) € 0 [f is metrically continuous]
= dN3e>0VYn >N, B(f(z,)) Co
[f is non-expansive, (f(n))n is a Cauchy sequence, o is gS-open]
= AN 3e>0VYn> N, B.(z,) C f'(0) [fis non-expansive].

For the converse assume f : X — Y to be non-expansive and topologically continuous. Let (z,)n
be a Cauchy sequence in X and z € X with = limz,,. Since f is non-expansive, (f(z,)), is a
Cauchy sequence in Y. Let y = lim f(z,). According the definition of metric limit, it suffices to
prove, that Y (y, f(z)) = 0 and Y(f(z),y) = 0. We have that

Y(y, f()) = ImY(f(zn), f(z))

< lim X(zp,z) [f is non-expansive]

X(z,z) [z=limz,]
= 0.
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Since f is topologically continuous and, by Proposition 6.9, (z,,), converges to z, also (f(zn))n
converges to f(x). By Proposition 6.9 again, f(z) <p,s y. Therefore, by Proposition 6.8,
Y(f(x),y) =0. O

This section is concluded with a characterization of the generalized Scott topology for algebraic
complete metric spaces in term of the Yoneda embedding. A key step towards the definition of a
topological closure operator for the generalized Scott topology is to compare the fuzzy subsets of
a basis B of an algebraic complete gms X, rather than the fuzzy subsets of X as we have done for
the generalized Alexandroff topology, with the ordinary subsets of X. To this end, the previously
defined extension and character functions are extended as follows:

f:B—>77(X) and p:P(X)— B, (15)
¢p—{ze X |yp(z) <z o} V= Ab€ B.inf{yg(v)(b) |v e V},

where yp : X — B is the restriction of the Yoneda embedding as defined in Theorem 5.6.
Similar to Proposition 6.1 we have that the mappings [ : (B,SB) — (P(X),C) and p :
(P(X),C) — (B, <) are monotone, and p is left adjoint to [. Thus, [ o p is a closure operator
on X. Since a basis is generally not unique, one might think that its definition depends on the
choice of the basis. In Theorem 6.12 below we will demonstrate that this is not the case.
In a way similar to (10), the closure operator [ o p can be characterized, for an algebraic

complete gms X with basis B and V C X, by
(Jop)(V) = {2e€X|VbeBVe>0, X(bz)<e= (FveV, X(bv)<e)}. (16)

An alternative characterization of [ o p, which will be useful in the next section, is the following.
For an algebraic complete gms X with basis B and V C X,

([op)(V) = {zeX|yn(z)<zp(V)}
= {z € X |B(ys(x),p(V)) =0}
= {ze X |Vbe B, [0,00|(ys(x)(b),p(V)(b)) =0}
= {zeX|Vbe B, infyp()(h) <yp(z)b)}
= {ze€eX|VbeB, in‘f/X(b,v)SX(b,x)}
vE
= {ze€eX|VbeBVYe>0IweV, X(bv)<X(bz)+e} (17)
The closure operator [ o p is topological.
Lemma 6.11 Let X be an algebraic complete gms. The closure operator [op on X is topological.

Proof: This lemma is proved using the characterization (16) along the same lines as Lemma 6.2,
but one needs the following additional observation. If B is a basis for X then, for any by and by
in B, ey, ew >0, and z € X, such that X (by,z)<ey and X (bw,z) <ew, there exists a bin B such
that X (by,b) <ev, X(bw,b) <ew, and X (b, z) <e, where ¢ = min{ey — X (by,b), ew — X (bw,b)}.
This fact can be proved as follows. Because X is an algebraic complete gms with B as basis, there
exists a Cauchy sequence (by,), in B with z = limb,,. Because

€y > X(va)
= lim X(by,b,) [z =Ilimb,, by is finite in X|

there exists an Ny such that, for all n > Ny, X (by,b,) < ey. Similarly, there exists an Ny such
that, for all n > Ny, X (bw,b,) < ey . Since

0 = X(z,2)
= lirnX(bmm) [m:limbn]
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there exists an N such that, for all n > N, X(b,,z) < €. The element bmax{Ny ,Nw,N} in B is the
one we were looking for. O

Thus, the closure operator [ o p induces a topology on algebraic complete gms’s. According to
(17), a subset V of an algebraic complete gms X with basis B is closed in this topology if and
only if

V =([op)(V)= {zeX|VbeBVYe>03veV, X(bv)<X(bx)+e}. (18)

In the case that X is an algebraic complete partial order with basis B it follows from characteri-
zation (16) that for every V C X,

(Jop)(V)={z e X |VbeB, b<xz=3TFveV, b<xuv},

which we recognize as the closure operator induced by the ordinary Scott topology.

Next we show that the topology induced by [ op on an algebraic complete gms coincides with
the generalized Scott topology. Recall that, for V' C X, we write clg(V') for the closure of V' in
the generalized Scott topology.

Theorem 6.12 Let X be an algebraic complete gms with basis B. For all V C X, clg(V) =

([ op)(V).

Proof: This theorem can be proved along the same lines as Theorem 6.3. It follows from charac-
terization (16) of [ o p and the fact that the generalized e-balls of finite elements form a basis for
the generalized Scott topology. O

Since the definition of the closure operator clg does not use the basis, the above theorem implies
that the choice of the basis is irrelevant for the definition of the closure operator [ o p.

7 Powerdomains via Yoneda

A generalized lower (or Hoare) powerdomain for algebraic complete generalized metric spaces is de-
fined, again by means of the Yoneda embedding. Next this powerdomain is characterized in terms
of completion and topology. Also the definition of generalized upper and convex powerdomains
will be given. Their characterizations will be discussed elsewhere.

For the rest of this section let X be an algebraic complete gms and let B be a basis for X.
Recall (Theorem 5.6) that yp : X — §, defined for z € X by

ve(z)=Xbe B.X (bz),
is continuous and isometric. This fact justifies the following
convention: yg () will often be denoted by z.

We shall define a powerdomain on X as a subspace of é, using the Yoneda embedding yp. Let
1 : [0, 00] X [0,00] — [0,0c] map elements r and s in [0, 00] to (their coproduct) min{r,s}. This
makes ([0, oo], 1) a semi-lattice: for all r, s, and ¢ in [0, o],

(rar=r, (it)rus=sur, (i) (rus)nt=ru(smt).
Furthermore, the following inequality holds for all 7 and s in [0, co]:
(iv) r <jo,00] T 11 5.

It is immediate that (E, 1) is a semi-lattice as well, with 11 taken pointwise: for ¢ and % in B and
bin B,

(¢ u)(b) = ¢(b) 3 (b).
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Recalling the idea that elements in B are fuzzy subsets of B, the semi-lattice operation 11 may
be viewed as fuzzy subset union. A generalized lower powerdomain on X is now defined as the
smallest subset of B which contains the image of X under the Yoneda embedding y g; is metrically
complete (i.e., contains limits of Cauchy sequences); and is closed under the operation 1. Formally,

Pau(X) = ﬂ{V CB | yB(X) CV, Vis a complete subspace of B, and V is closed under m}.

This definition is very similar to the definition of completion in Section 5. It will be a consequence
of Theorem 7.14 below that this definition is independent of the choice of the basis B.

A generalized Hausdorff distance

The powerdomain Pg(X) can be described in a number of ways. The main tool will be the
adjunction (15) of Section 6:

[:B—=P(X), ¢ {ze€X|yp(z) <o}
p:P(X)— B, VisAbe B.inf{yg(v)(h) | veV}.

Before turning to the characterizations of Py (X), let us first show how this adjunction induces a
distance on P(X): for subsets V and W of X, define

P(X)(V,W) = B(p(V), p(W)).

Identifying yp(v) with v, and observing that the infimum of a set of functions is taken pointwise,
the function p can also be described as

p(V)=intV,
by which the distance P(X)(V, W) can be written as
P(X)(V,W) = B(inf V, inf W).
It satisfies the following equation.
Theorem 7.1 For all V and W in P(X),
PX)V,W)=inf{e>0|Vbe BYv eV Iwe W, X(bw)<e+ X(b,v)}.
For ordinary metric spaces, where all elements are finite, the above equality is equivalent with
PX)V, W) =inf{e>0|Vo eV Fw e W, X(v,w) < €}

Therefore the distance above is called the generalized Hausdorff distance.

Proof: First note that it follows from Theorem 5.6 that

X(b,z) = Blys(b), ys(z))
B

(b,z) [our convention]

for every b € B and z € X. Thus we have to prove:
P(X)(V,W) =inf{e>0|Vbe BYo eV Iwe W, B(b,w) < e+ B(b,v)}.

Let I denote the set on the right of the equality. In order to show that P(X)(V, W) < inf I consider
ec€I. (If I =0 then inf I = oo, and we are done.) If V= ) then P(X)(V,W) = 0 < inf I. Next
let v = lim b,, be an element of V', with b, in B, for all n. Because € € I there exists for every n
an element w € W such that

B(b,,w) < €+ B(by,v).
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Therefore

B(bn,ian) = (inf W)(b,,) [Yoneda lemma]
< w(by)
= é(bn,w) [Yoneda lemma]
< e+ B(by,v),

whence

B(v,inf W)

= E(yB(’U), inf W)  [our convention]

= B(limyp(by),inf W) [Theorem 5.6]

= lim B(yg(by),inf W)

= lim B(bn, inf W)  [our convention]

< lim €+ B(by,v)

€+ B(v,v)

€.
It follows that

P(X)(V, W) B(inf V,inf W)
sup B(v,inf W)
veV

€.

IN

Hence P(X)(V, W) <inf I.
For the reverse let 6 > 0 be arbitrary and define

e = P(X)(V, W) +6.

We shall show that e € I, which implies that inf I <

P
)

€ + lim é(bn, v) [one easily shows that + preserves backward-limits]

[see Lemma 7.2 below]

(X)(V,W). Consider b € B and v € V.

The existence of w € W such that B(b,w) < € + B(b, v) follows from

2y P
= E(b,inf W) [Yoneda lemma]
< B(b,v) + B(v,inf W)
< B(b,v) + sup B(u,inf W)

ueV
(b,v) + B(inf V, inf W)
(b, v) + P(X)(V, W)
(b,v) +e.

o o

[see Lemma 7.2 below]

The following lemma, used above, is an immediate consequence of Lemma 3.2.

Lemma 7.2 For any V C X and ¢ € B, B(inf V,¢) = sup, ¢y B(v, ?).
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Proof: For V C X and ¢ € B,

B(inf V, ¢)
= s [0, 00 ((inf V)(2), ¢(x))
= sup sup [0, oc|(v(a), 9(x)) [Lemma 3.2
= sup sup [0, co](v(z), ¢(z))
veV zeB
= sup B(v,gb)
veV

O

The restriction of the distance on P(X) to subsets of B gives the familiar (non-symmetric) Haus-
dorff distance (cf. [Law86]). More precisely:

Theorem 7.3 For all V C X and W C X such that either V. C B or W is finite,

P(X)V,W)=sup inf X(v,w).
veV weW

Proof: Applying the Yoneda lemma twice gives, for all v in B, inf,cw E(v,w) = B(v, inf W). If
W is finite the same equality holds for arbitrary v € X (by an extension of Lemma 7.2 similar to
Lemma 3.2). Therefore, if either V' C B or W is finite,

sup inf B(v,w) = sup B(v,inf W)

veV WEW veV
= B(ian,ian) [Lemma 7.2
= PX)(V,W).

For a complete partial order X with basis B, the above amounts to
VSP(X) Wit Vv e Vaw e W, v <x w,

which is the usual Hoare ordering. More generally, for a gms X, there is the following characteri-
zation of the order induced by P(X).

Lemma 7.4 For subsets V and W of X, if W is gS-closed then
V <pxy W if and only if V. C W .

Proof: If V.C W then P(X)(V,W) = 0 by Theorem 7.1. Conversely, assume P(X)(V,W) =0
and let v € V. We shall prove that v € W. Recall from Section 6 (17) that W is closed if and
only if

W={zeX|Vbe BYe>03w e W, X(b,w) <e+ X(b,z)}.
Therefore it is sufficient to show that v satisfies

Ve>0Vbe B3Iwe W, X(byw) <e+ X(b,v).
This follows from P(X)(V, W) = 0 by Theorem 7.1. |
Because V' C clg(V), for every V. C X, the above lemma implies P(X)(V,clg(V)) = 0. Also

P(X)(els(V), V) = 0: this follows from Theorem 7.1 and the characterization of the generalized
Scott closure operator (17). This leads to the following.
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Lemma 7.5 For subsets V and W of X,
PX)V, W) =P(X)(clg(V),W) and P(X)(V,W) = P(X)(V,clg(W)).

Proof: Immediate from the fact that P(X)(V,clg(V)) =0 = P(X)(clg(V),V), and the triangle
inequality. O

Characterizing P, (X) as a completion

Let P, (B) be the gms consisting of all non-empty and finite subsets of B with the non-symmetric
Hausdorff distance defined above: for V and W in Pys(B),

Pus(B)(V,W) = B(p(V), p(W))

= max 15%1‘/1‘1/ X(v,w) [by Theorem 7.3].

Its completion P, s(B) will be shown to be isomorphic to Pg;(X). We shall need two lemmas and
a theorem.

The following lemma generalizes Lemma 4.3.

Lemma 7.6 For any V in P,y (B), p(V) is finite in B.

Proof: We only treat the case that V = {v,v2} (the general case follows by induction on the

number of elements of V). For any Cauchy sequence (¢, ), in B,

B(p(V), lim ¢,,)
= B(min {vy,vse}, lim ¢,,)
max {B(v1, lim ¢,,), B(vs, lim ¢,)}  [Lemma 7.2
max {lim B(v1, ¢,), lim B(vy, ¢,,)} [Lemma 4.3]
lim max {B(v1, ¢n), B(vs, ¢p)} [max is continuous]

= lim B(min {v1, 02}, ¢,) [Lemma 7.2]
= lim B(p(V), ¢n).

The lemma above is used in the proof of the following.
Lemma 7.7 Pop(B) = {lim p(V,,) | Vi, € Pny(B), for all n, and (p(V,))n is Cauchy in B}.

Proof: Let us denote the set on the right by R. Because the quasi metric space B is complete,
the isometric, and hence non-expansive, function p : P,y (B) — B induces a non-expansive and

continuous function p# : P, s (B) — B according to Theorem 5.5, making the following diagram
commute:

Pus (B) —=P,/ (B)

L #
\ép
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It follows from Proposition 5.2 that the image of p# is precisely R. Furthermore p# is isometric:
for all Cauchy sequences (V,,),, and (W), in Py (B),
B (p* (lim, y (Vo)) p# (limp y (Win)))
= B(lim, p(Vp), limy p (Wyn))
= l;ann lim,, B (p(Vi),p(Wi))  [p(Va) is finite in B by Lemma 7.6]
= l;ann lim,, Ppy (B) (Vo,Wy)  [p is isometric]

—

= l;ann limy, Pry (B) (y (Va),y (W) [y is isometric]

— —

= Pns(B)(limpy (Va),limy, y (W) [y (Vn) is finite in P, (B)]
= Puy (B) (limp y (Va),limy, y (Win)).

Thus p# is injective and hence an isomorphism from P, s (B) to R. O

The following theorem will be often used in the sequel.
Theorem 7.8 Po(X) = {lim p(V,,) | Vo € Pus(B), for all n, and (p(Vy,))n is Cauchy in B}.

Proof: Let R again denote the righthand side. The set R contains yg(X), because yg is contin-
uous. Moreover, R is complete (by Lemma 7.7), and is closed under 1:
lim p(V;,) 1 lim p(W,,) lim(p(V,,) m p(W,,)) [u is continuous on B]
lim p(V,, UW,,),
for Cauchy sequences (p(V,,))n and (p(W,)),. It follows that P, (X) C R.
For the converse note that any subset V' of B which is closed under 1 and contains yu(X),
also contains p(V') for any V € Pps(B). If V is moreover complete than lim p(V;,) is in V, for any

Cauchy sequence (p(V,))n in B with V,, € Pns(B), for all n. Consequently, R is contained in any
V having all three properties. Thus R C Py (X). |

Combining Lemma 7.7 and Theorem 7.8 yields the following.

Corollary 7.9 Py (X) = Pns(B). O

The above description of the generalized lower powerdomain can be used to give the following
categorical characterization. Let a metric lower semi-lattice be an algebraic complete quasi metric
space S together with a non-expansive and continuous operation & : § x § — S such that, for all
z,y, and z in S,

ezwWez=z, (czWy=yWz, (i) (zWy)¥z=zW(yWz), (iv)z<xzWy.

For example, (Py(X), 1) is a metric lower semi-lattice because Py (X) is an algebraic complete
quasi metric space by the above corollary, and 11 is continuous and non-expansive.

As a consequence of Theorem 7.8, the lower powerdomain construction can be seen to be free.
First note that every  in X is mapped by yp : X — B to an element of Pgi(X). Thus we may
consider yp as a non-expansive and continuous map yp : X — Py (X).

Theorem 7.10 For every metric lower semi-lattice {(S,W), and non-expansive and continuous
function f : X — S there exists a unique non-expansive, continuous and additive mapping f* :

<Pgl(X);H> — (S, W) such that f*oyg = f:

y
X —B>Pgl(X)
L
N
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(This theorem can be proved similarly to Theorem 5.5.)

Now let Lsl(Acq) denote the category of metric lower semi-lattices with continuous, non-
expansive and additive functions as morphisms. There is a forgetful functor U : Lsl(Acq) — Acq
which maps every metric lower semi-lattices (S,W) to S. As a consequence of Theorem 7.10, the
lower powerdomain construction can be extended to a functor Py (—) : Acq — Lsl(Acq) which is
left adjoint to U. As usual, this implies that the functor U o Py(—) : Acqg — Acq is locally non-
expansive and locally continuous (cf. [Plo83, Rut95]), by which it can be used in the construction
of recursive domain equations.

Characterizing P, (X) topologically

In the rest of this section (in Theorem 7.12, to be precise), we shall make the following
assumption: the basis B of our gms X is countable.

(In other words, X is an w-algebraic complete gms.) The main result of this subsection is:
Par(X) = Pg(X),

where
P;'S(X) ={V C X | V is gS-closed and non-empty }.

The proof makes use of the adjunction p [ as follows. As with any adjunction between preorders,
the co-restrictions of p and [ give an isomorphism

p:Im([) = Im(p), [ :Im(p) — Im(][).

Recall that the gS-closed subsets of X are precisely the fixed points of f o p (Theorem 6.12).
Because [opo [ = [ (as with any adjunction between preorders), all elements of Im([) are
gS-closed. Thus

Pys(X) = {V CX|VisgS-closed }
— (VX [V=[onV))
= ().

In order to conclude that Pg(X) = ’P;LS (X), it is now sufficient to prove Py (X) = Im™(p), where

Im*(p) ={p(V) € B|V C X, V non-empty }.

The inclusion Py (X) C Im™(p) is an immediate consequence of Theorem 7.8 and the following.

Lemma 7.11 For all Cauchy sequences (p(Vyn))n in B such that V,, is a finite and non-empty
subset of B for all n, lim p(V,,) € Im™ (p).

Proof: Let (V,,), be a sequence of finite and non-empty subsets of B such that (p(V},)), is Cauchy
in B. We shall prove: lim p(V,,) = p({limv,, | v, € V,,, for all n, and (v,), is Cauchy in B}). (It
will follow from the proof below that the set on the right is non-empty.) Let (vy)n, with v, € V,,
be a Cauchy sequence in B. For all n, p(V,,) < v, (in B taken with the pointwise extension of
the standard ordering on [0, 00]). Therefore lim p(V,,) < limv,,. Because (v, ), is arbitrary, this
implies

lim p(V;,) < p({lim v, | v, € V,,, for all n, and (v,), is Cauchy in B}).

For the converse let b € B and € > 0. We shall construct a Cauchy sequence (v, ), in B such that
lim v, (b) < lim p(V,,)(b) + 2 - €.

Let N be such that for all n > N,

B(p(Vr), p(Va)) < €, and p(Vir)(b) < lim p(V)(b) +e.
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Choose v; in V; arbitrarily, for 0 < 7 < N. Because Vy is finite there exists vy € Vi such that
p(Vn)(b) = B(b,vn) = vn(b). Choose vy 41 in Vi such that

B(vy,vn41) = wén‘}J?+1 B(vy,w).

Because, by Theorem 7.3,

B(p(Vn), p(V41)) = max min  B(v,w),
vEVN WEVN 41

it follows that
B(un,vn41) < B(p(Viv), p(Vv41)) < e.

Continuing this way, we find a sequence (v, ), in B which is Cauchy because (p(V,,))n is. Now for
all n > N, [0, 00](vn (D), v, (b)) < €, or equivalently, v,(b) < vy (b) + €. Thus

limov,(b) < wn(b)+e
= p(Vn)(b) +e
< limp(V,)(b) + 2 - €.

The reverse inclusion: Im*(p) C Py (X), is a consequence of Theorem 7.8 and the following.

Theorem 7.12 Let B be countable. For any non-empty subset V' of X there exists a sequence
(Va)n of finite and non-empty subsets of B such that p(V) = lim p(V,,) in B.

Proof: Let V' C X be non-empty. We shall define a sequence (V;,),, of finite and (eventually)
non-empty subsets of B such that for any ¢ € B,

B(p(V),9) = lim B(p(Va), 9)-
The proof proceeds in five steps as follows.

1. Let by,bs, ... be an enumeration of B. The sets V,, are defined by induction on n. They will
consist of elements of B which are approximations of elements of V. More precisely, they
will satisfy, for all n > 1,

Vb € Vi, Byjm2(b) NV # 0.

(Recall that B.(b) = {z € X | X(b,z) < €}.) For convenience, we start at n = 1. Let

0 otherwise.

" :{ {bi} i Bi(b)NV £0

Now suppose we have already defined V;,. We assume: for all b € V;,, By /n2(b) NV # 0. In
the construction of V11, we shall include for every element of the previously constructed
set V,, again an element (possibly the same), which will be a better approximation of the set
V. Moreover, we shall take into account b,41, the (n 4+ 1)-th element in the enumeration of

B. Let
Vi1 = {improve(b) | b € V,,} U {represent(by+1) | B1(bnt1) NV # 0},

where ‘improve(b)’ and ‘represent(b,11)’ are defined as follows:
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o If Byj(nt1)2(b) NV # () then put improve(b) = b: b is still ‘good enough’. Otherwise
consider y € V with B(b,y) < 1/n?, which exists by the inductive hypothesis that
Bijn2(b) NV # 0. Let y = limyg, with y; in B for all k. Because b is in B it is finite

in B, whence
B(b,y) = lim B(b, y).

Therefore we can choose a number k big enough such that
B(yk,y) < 1/(n+1)% and B(b,yi) < 1/n.

Define improve(b) = yx. Note that
B1j(nt1)2 (improve(b)) NV # () and B(b,improve(b)) < 1/n2.

e Suppose that Bj/(nq1)2(bngt1) NV # B. Then byyq is close enough to V, and we
define: represent(b,41) = b,q1. Otherwise let ¢ be the maximal natural number with
1 < <n+1such that By/p(bnyr) NV # 0 (if such a number does not exist, i.e.,
Bi(b,+1)NV = () then the second set in the definition of V,,1; is empty). Let y € V be
such that B(bn+1,y) < 1/i%. Let y = lim yj, with y; in B for all k. As before we can
choose a number k such that

B(yk,y) <1/(n+1)? and B(bny1,ys) < 1/i%,
and put: represent(b,41) = yx. Note that
B1(n+1)2 (represent(b, 1)) NV # @ and B(by, 41, represent(b,, 1)) < 1/i2.

For all b € Vi1, Bijng1)2(b) NV # 0. Because V is non-empty there exists N such that
for all n > N, V,, is non-empty.

. Some properties of (V,,)n: Because B(b,improve(b)) < 1/n?, for all n > 1 and b € V,,, it
follows that

B(p(Vn),p(Vay1)) = sup inf B(v,w) [Theorem 7.3]
veV, WEVni1
< 1/n%

Because By/,2(b)NV # 0, for all m > 1 and b € V,,, also

B(p(Va), p(V)) < 1/n”.
. As a consequence, (p(V},)), is a Cauchy sequence in B. Since for alln > 1 and ¢ € B,

B(p(Va), ) B(p(Va), p(V)) + B(p(V), ¢)

<
< 1/n*+ B(p(V). 9),

it follows that

lim B(p(Va), 8) < B(p(V), 6).

—

. Next we shall prove the converse:

B(p(V),¢) < lim B(p(Vz). ).
Note that by completeness of the quasi metric space B, lim p(V,,) always exists, and that

lim B(p(V,), ¢) = B(lim p(V,,), 6).
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Because E(p(V), ¢) = E(inf V,¢) = sup,cy E(y, ¢) it will be sufficient to prove for ally € V,

B(y, ¢) < B(lim p(Va,), 9)-
Let € >0 and y € V. We shall show that
B(y.#) < B(limp(Vy), ¢) +3 - €.

Consider a Cauchy sequence (ym)m in B with y = limy,,,. Let M be a natural number such
that

=1
Z m < €.
m=M

Choose m big enough such that

B(y.¢) = B(limyn,¢)
= lim B(ym, ¢)
‘B(ym7¢) +€7
and é(ym,y) < 1/M?. Let k > 1 be such that y,, = b. (Recall that B = {b;,bs,...}.) We

distinguish between the following two cases:

IN

(i) k < M: Because 1/M? < 1/k? it follows from the construction of (V,,), that by €
Vi, by, € Viy1,...,bg € Vpr. Therefore

B(Ym, )
= B(b, ¢)
< sup B(b,¢)
beVu
= B(inf Vi, ¢)
= B(p(Vu), )
< B(p(Vi),lim p(V,,)) + B(lim p(V,,), ¢)
< S L4 Blimp(v), 9)
m=M

< et Blimp(Va), )
(ii) M <k: If Byp2(br) NV = By p2(ym) NV # 0 then represent(by) = bg. Otherwise let
i be the maximal number below k such that By ;2 (br) NV # (. Because B(bi,y) =
B(ym,y) < 1/M? it follows that M < i, whence

B(by,, represent (b)) < 1/i% < e.
Thus whether By ;2(bx) NV is empty or non-empty,

B(by, represent(by)) < .
Consequently,

B(Ym, )

B(by, represent (by)) + B(represent(bg), ¢)
€ + B(represent(by), ¢)

e+ sup B(b, ¢)
beVy

IN AN IA
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< e+e+ B(limp(V,),¢) [since k> M].

It follows that in both cases

B(y, ¢)

< B(ym,¢) +1/M?

< B(ym, o) +¢

< B(limp(Vn),¢)+3-e.

5. We have shown:

B(p(V),¢) = lim B(p(Vn), ¢).

—

Lemma 7.11 and Theorem 7.12, together with Theorem 7.8, imply:

Corollary 7.13 P, (X) = Im*(p). O

All in all, we have:

Theorem 7.14 For an w-algebraic complete gms X, Py(X) = 'Pg+S(X).

Proof: The isomorphism Pyg(X) = I'm(p) restricts to an isomorphism P;S(X) = I'm*(p). By
Corollary 7.13, P,i(X) = Im*(p). Therefore, Py (X) = 'Pg+S(X). m

Using the characterization of P, (X) as a completion, it follows that P, (X) is an w-algebraic
complete quasi metric space with as (countable) basis the set

{cls(V) [V € Pny(B)}-

The collection of closed sets of a given topological space X often comes with the lower topology
[Mic51, Nad78]. Recall that given a topological space (X, O(X)), the lower topology O (S) on a
collection of subset S C P(X) is defined by taking the collection of sets of the form

L,={VeS|Vno#0}

for all 0 € O(X), as a subbasis. This subsection is concluded by showing that for an w-algebraic
complete quasi metric space X, the lower topology on P,5(X) and the generalized Scott topology
on P,s(X) coincide.

Theorem 7.15 For an w-algebraic complete quasi metric space X,
OL(Pys(X)) = Ogs(Pys (X))

Proof: Let B be a countable basis for X. Let o € Oy5(X) and consider the sub-basic open set
L, € OL(Pys(X)). A gS-closed set V is in L, if and only if V N o # 0 or, equivalently, V Z X \ o.
Because X \ o is gS-closed, it follows from Lemma 7.4 that P(X)(V, X \ 0) # 0. Therefore,

Lo = {W € Pys(X) | P(X)(W, X \ 0) #0}.
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But the rightmost set is open in the gS-topology of P,s(X) because it is the complement of the
gS-closed set
cs({X \o}) ={W € Pys(X) | P(X)(W, X \ 0) = 0}

(the latter equality being a consequence of Lemma 6.8 and Lemma 7.4). This proves O (Pys(X)) C
Oy5(Pys(X)).
For the converse, let V' be a finite subset of B and consider, for some € > 0, the basic open set
B(cls(V)) of the gS-topology on P,s(X). For any W € P,s(X),
W e B.(cls(V))
P(X)(clg(V), W) <e
P(X)(V,W)<e [Lemma 7.5

sup inf X (b,z) <e [Theorem 7.3, V C B
bev z€W

VbeV, inf X(b,z)<e
zeW
VbeV, WnNB(b) #0

W e ﬂ Lp sy [Be(b) is basic open in Oys(X)].
beV

A

Since V is finite, the above proves that every basic open set of Og5(Py5(X)) can be expressed
as the intersection of finitely many sub-basic open sets of Op(Pys(X)). Thus Ogg(Pys(X)) C
Or(Pys(X)). O

Generalized upper and convex powerdomains

We briefly sketch the construction of a generalized upper and convex powerdomain. They will be
treated in detail elsewhere.

Let X be an algebraic complete gms with basis B. A generalized upper powerdomain on X
can be defined dually to Py (X) as follows. First [0, 00] is considered again as a semi-lattice, now
with 1 : [0, 00] % [0, 00] — [0, 0] sending elements r and s in [0, 00] to (their product) max {r, s}.
Next let

B = ([0, 0] ).
It can be turned into a semi-lattice (B,H) by taking the pointwise extension of 11. There is the
following dual version of the Yoneda embedding:
¥:X — B, z— B(z,—),
where B(z,—) maps b in B to B(z,b). Now the generalized upper powerdomain is given by
Pyu(X) = ﬂ{V CB | y5(X) CV, Vis a complete subspace of B, and V is closed under m}.

Also this powerdomain can be characterized in a number of ways, one of which is via completion:
Consider again P, s(B), this time with distance, for all V and W in P,f(B),

Pnr(B)(V,W) = sup inf B(v,w).
wEW”EV

Then the completion of P, ¢(B) is isomorphic to Py, (X). In the special case that X is a preorder,
this amounts to the standard definition of the upper, or Smyth, powerdomain.

A generalized convex powerdomain is obtained by combining the constructions of the general-
ized lower and upper powerdomains (thus using both the Yoneda embedding and its dual). It can
again be easily described as the completion of P,¢(B), now taken with distance

Pns(B)(V,W) = max {sup inf B(v,w), sup inf B(v,w)}.
veV weW wew veV

For a preorder X, the convex powerdomain coincides with the standard convex, or Plotkin, pow-
erdomain; for an ordinary metric space, it yields the powerdomain of compact subsets.
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8 Related work

The thesis that fundamental structures are categories has been the main motivation for Lawvere
in his study of generalized metric spaces as enriched categories [Law73|. Lawvere’s work together
with the more topological perspective of Smyth [Smy88] have been our main source of inspiration
for the present paper which continues the work of Rutten [Rut95]. Generalized metric spaces are a
special instance of Lawvere’s V-categories. The non-symmetric metric for [0, oo] is also described
and studied in his paper. The notion of forward Cauchy sequence for a non-symmetric metric
space is from [Smy88] as well as the notion of limit. A purely enriched categorical definition of
forward Cauchy sequences and of limits can be found in Wagner’s [Wag94, Wag95, Rut95]. In
[Rut95] and [Rut96], the definitions of forward limit and backward limit are shown to be special
instances of the enriched-categorical notions of weighted limit and weighted colimit. The notion
of finiteness and algebraicity for a generalized metric space are from [Rut95].

Clearly we are working in the tradition of domain theory, for which Plotkin’s [Plo83] has been
our main source of information.

Completion and topology of non-symmetric metric spaces have been extensively studied in
[Smy88]|, seeking to reconcile metric spaces and complete partial orders as topological spaces by
considering quasi-uniformities. Smyth gives criteria for the appropriateness of a topology for a
quasi-uniform space. Also a completion by means of Cauchy sequences is present in his work. The
main difference with our work is the simplicity of the theory of generalized metric spaces obtained
by the enriched categorical perspective, in particular by the use of the Yoneda Lemma. Indeed,
both the categorical perspective of Lawvere and the topological one of Smyth have been combined
in our approach to obtain a reconciliation of complete metric spaces with complete partial orders.

The fact that the Yoneda lemma gives rise to completion is well known for many mathemat-
ical structures such as groups, lattices, and categories. In [Wag95], an enriched version of the
Dedekind-MacNeille completion of lattices is given. In [SMM95], the Yoneda lemma is used in
the definition of a completion of monoidal closed categories. The use of the Yoneda lemma for
the completion of generalized metric spaces is new, but it is suggested by an embedding theorem
of Kuratowski [Kur35] and the definition of completion as in [Eng89, Theorems 4.3.13-4.3.19] for
standard metric spaces. A metric version of the Yoneda lemma also occurs, though not under that
name, in [JMP86, Lemma 11-2.8].

The comprehension schema as a comparison between predicates and subsets has been studied
in the context of generalized metric spaces by Lawvere [Law73] and Kent [Ken88]. The defi-
nition of the generalized Scott topology via the Yoneda embedding seems to be new while the
direct definition by specifying the open sets is briefly mentioned in the conclusion of [Smy88].
Recently, Flagg and Siinderhauf [FS96] have proved that our generalized Scott topology of an al-
gebraic complete qms arises as the sobrification of its basis taken with the generalized Alexandroff
topology. A generalized Scott topology is also given in [Wag95]. However his notion of topology
does not coincide with the standard one: for example it is not the e-ball topology in the case of
standard metric spaces.

Another important topological approach to quasi metric spaces which needs to be mentioned
is that of, again, Smyth [Smy91] and Flagg and Kopperman [FK95]. They consider quasi metric
spaces equipped with the generalized Alexandroff topology. In order to reconcile metric spaces
with complete partial orders they assign to partial orders a distance function which, in general,
is not discrete. Their approach to topology, completion and powerdomains is much simpler than
ours because many of the standard metric topological theorems can be adapted. The price to be
paid for such simplicity is that this approach only works for a restricted class of spaces: they have
to be spectral. Hence a full reconciliation between metric spaces and partial orders is not possible
(e.g., only algebraic cpo’s which are so-called 2/3 SFP are spectral in their Scott topology). Also
the work of Stinderhauf on quasi-uniformities [Siin94] is along the same lines.

The study of powerdomains for complete generalized metric spaces is new. Some results on
the restricted class of totally bounded quasi metric spaces are due to Smyth [Smy91] and Flagg
and Kopperman [FK95]. The lower powerdomain has also been studied by Kent [Ken88] but for
generalized metric spaces which need not be complete. Our use of the Yoneda embedding for
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defining the powerdomains and for their topological characterization is new. It is inspired by the
work of Lawvere [Law73, Law86].

Other papers on reconciling complete partial orders and metric spaces are [WS81, CD85,
Mat94]. In [RSV82] seven distinct notions of Cauchy sequences can be found. For one of these
notions of Cauchy sequence—but different from ours—completion has been studied in [Doi88].
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A Topological preliminaries

A topology O(X) on a set X is a collection of subsets of X that is closed under finite intersections
and arbitrary unions. The pair (X, O(X)) is called a topological space and every o € O(X) is
called an open set of the space X. A set is closed if its complement is open. A base of a topology
O(X) on X is a set B C O(X) such that every open set is the union of elements of B. A subbase
of O(X) is a set S C O(X) such that the collection of finite intersections of elements in S is a
basis of O(X).

Every topology O(X) on a set X induces a preorder on X called the specialization preorder:
for any z and y in X, z <@ y if and only if

Yoe O(X), t€o=yE€o.

A topology is called 7 if the specialization preorder is a partial order.
A closure operator on a set X is a function ¢l : P(X) — P(X) such that, for all S and S’ in

P(X),

(i) SCdS) (ii) cl(S) = cl(cl(S))

(iii) if S € S’ then cl(S) C cl(S")
A closure operator is strict if ¢l(B) = 0. A topological closure operator is a strict closure operator
¢l that moreover is finitely additive: cl(SUS') = cl(S)Ucl(S’). Every topological closure operator
induces a topology: the closed sets are the fixed points of the closure operator. Conversely, every
topology O(X) on X defines a topological closure operator, which maps a subset S of X to the
intersection of all closed sets containing S. This closure operator can also be characterized as
follows: Let S be a subset of X. An element z in X is a cluster point of S if for every open set

0€ O(X), z € oimplies 0N (S \ {z}) # 0; that is, z cannot be separated from S using open sets.
Let S? be the collection of all cluster points of S (it is called the derived set). Then

cl(S)=Su S
Let (X, O(X)) be a topological space. A non-empty subset F C O(X) is a filter if it satisfies
1. if 0y € F and 07 C 09 then o € F; and
2. if o € F and 0y € F then 0y Noy € F.

For instance, every element z in X induces a filter N'(z) = {0 € O(X) | € 0o}. More generally,
any sequence (), in X induces a filter

N(zp)n) ={0€ O(X)|IN >0VYn > N, =z, € o}.

A filter F converges to an element x, denoted by F — =z, if N(z) C F. A sequence (z,), is said
to converge to an element z if N ((z,)n) — z.

A function f : X — Y between two topological spaces X and Y is topologically continuous if
the inverse image f'(0) = {z € X | f(z) € o} of any 0in O(Y) isin O(X). If f : X — Y is

topologically continuous then for every sequence (), in X and z € X

N((@n)n) =2 = (N((f(zn)n) = f(=).

The standard topology associated with an ordinary metric space X is the e-ball topology: a set
o C X is open if

Vz € 03¢ >0, Bx) Co,

where B.(z) = {y € X | X(z,y) < €}. The set {B.(z) | x € X & € >0} is a basis for e-ball
topology.

The standard topology associated with a preorder X is the Alexandroff topology, for which a set
o C X is open if, for  and y in X,

r€oandzx <y = y € o,
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that is, o is upper-closed. If the preorder has a least upper bound for every w-chain, then the
Scott topology is more appropriate. It consists of those upper closed subsets o C X that moreover
satisfy, for any w-chain (z,), in X,

|_|acn€o = INVn>N, =z, €o.

Clearly, every Scott open set is also Alexandroff open. The converse is generally not true if the
preorder X is not finite. If X is an w-algebraic cpo with basis By then the set {b7 | b € Bx},
with b7 = {z € X | b <z}, is a basis for the Scott topology.

B Sequences of sequences

The following two lemmas express that the limit of a Cauchy sequence which consists of the limits
of Cauchy sequences of finite elements, can be obtained as the limit of a (kind of) diagonal sequence

of finite elements.

Lemma B.1 Let X be a subspace of a complete gms Y . Let all elements of X be finite in Y. For
every m, let (ul')m be a Cauchy sequence in X with limit

lim,, u,," = Yn. (19)
Assume that (yn)n is a Cauchy sequence in Y satisfying
V'IL, Y (ynyyn+1) < :3,1% (20)

Then there exist subsequences (z)m of (ul)y, in X satisfying

m m 1
vanaX (mn 7$n+1) < n (2]‘)
m m—+1 1
VnVm, X (2", 27" ) < — (22)
Vn,lim, 2" =y, (23)
1 1 1
6 24 72 .
Y1 Y2 Y3 e lim,, yn,
1 1 1
3 3 3
1 1 1
3 3_ 2 3_3
xy x; x5
1 1 1
2 2 2
L 1 1
2 2 2 3
Ly Lo L3
1 1 1
1 1 1
1 12 1_3
Ty Ly L3

Proof: Because the sequences (ul*),, are Cauchy, there exist subsequences (v1*),, of (u7)n,
satisfying
VnVm, X (v, o™t < 1o (24)

n m2m

We will construct subsequences (z),, of (v*),, satisfying

VmVn, X (2,2, ) < 2. (25)
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Since, for all n,

1<1£[lm Y (v;na yn+1)
=Y (hmm 'U:Lna yn+1)
=Y (yna yn+1) [(19)]
< e [(20)]

3n2™

we can conclude that

‘v’nEanVm > MTL7Y (v;nayn+l) < 3n22 .

3

By removing from each sequence (v*),, the first M,, elements we obtain the subsequences (w*),, =
(vMntm) | satisfying

anmay(w;nayn+l) < 3n22 . (26)

3

Since, for all n and m,
limg Y (w]), wa_l)
= Y (w], limg w§+1) [w] is finite in Y]
= Y (w; yns1) [(19)]
< gaw [(26)]

we have that
VaVm3IKTVE > K7 Y (', wh, ) < L.

Without loss of generality we can assume that the sequences (K"),, are strictly increasing. The

subsequences (z™),, = (wﬁ"m)m where
om m ifn=1
" KE a1

satisfy (25).

Because the subsequences (z),, of the Cauchy sequences (u"*),, are again Cauchy and have the
same limits, these subsequences also satisfy (23). Since for all m, n, and i, with i > n,

m
n

X (2, 2i")
1

’
1

< Q0 X tat)
h=n
i1
< D (29)
h=n
< L
Hence the subsequences (z7),, satisfy (21). Similarly we can show that (24) implies (22). O

The above proof shows some resemblance with the proof of Theorem 2 of [Smy88]. The
completeness of Y ensures the existence of the limits of the Cauchy sequences (ul"),,. If we drop

the condition that all elements of X are finite in Y, then the above lemma does not hold any more.
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Lemma B.2 Let X be a subspace of a complete qms Y. Let (yn)n

Let (2),, be Cauchy sequences in X satisfying
VYmVnVi > n, X (z;', x]") < %
Vn¥mVj > m, X (™, 27) <

m __

Vn,lim,, z;; =y,

1
m

Then (ac’,z)k is a Cauchy sequence in X and limy ac’,z = lim,, y,.

hn Y2 Y3 e limy z§ = lim, y,
7
7/
7/
7/
7
1 1 1 /
3 3 3 7
y 1 /1
3 3_ 2 3_3
Ty Lo L3
7
1 1 71
2 2 V2 2
L /o1 1
2 2 _ 2 2 _ 3
T1 Lo T3
7
1 P! 1
- 1 1
1 1_ 2 1_3
Ty Lo L3

T
X (o) + X (27, 2)
[(27) and (28)]

S [

the sequence (z¥)x is Cauchy.

For all n, m, and k, with K > n and &k > m,

Y (a3, 2})
<Y (aptat) +Y (2 2p)
< 4+ o [(27) and (28)]
Consequently,

Y (lim,, yn, limg zF)

- L : k
= lim, Y (yn,limg 2})

. . m q k
1(1Lnn Y (lim,, 277, limy ) [(29)]

mn’

. . m - k
lim, limp, ¥ (a7, limy )

< l;ann l(ian limg Y (27", .’EZ) [Proposition 3.4]
< l;ann l(ian limy, % + % [see above]

0.

For all n, m, and k, with n > k and m > k,
b
Y (af, o) +Y (af 27))

2 [(27) and (28)]

Y

—
8

VAVAN
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be a Cauchy sequence in Y .



Hence,

Y (limy, z¥, lim,, y,,)

_ . k 1-
— l(ankY(xk711mn yn)

< l;ank lim, Y (m’,:, Yn) |Proposition 3.4]
= limglim, Y (zy, limp, 27*) - [(29)]
< l;ank lim, lim,, Y (1:’,: ,z')  [Proposition 3.4]
< 1<i£nk lim,, lim,, % [see above]
= 0.
From the above we can conclude that limy xi = lim, y,. O

From the above two lemmas we can conclude the following.

Proposition B.3 Let X be a subspace of a complete qms Y. Let all elements of X be finite in
Y. Then

lim CS (X) = {lim,, z,, | (z,)n is a Cauchy sequence in X }
is a complete subspace of Y.

Proof: Clearly lim CS (X) is a subspace of Y. Let (y,)n be a Cauchy sequence in lim CS (X).
We have to show that its limit lim,, y,, is an element of lim CS (X). Without loss of generality we

can assume that Vn,Y (yn, yni1) < % From Lemma B.1 and B.2 we can conclude that there

— 3n
exists a Cauchy sequence (xﬁ)k in X satisfying limy, mz = lim, y,. Consequently, lim, y,, is an

element of lim CS (X). O
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