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Generalized Metric Spaces:Completion, Topology, and Powerdomainsvia the Yoneda EmbeddingM.M. BonsangueVrije Universiteit AmsterdamDe Boelelaan 1081a, 1081 HV Amsterdam, The Netherlandsemail: marcello@cs.vu.nlF. van BreugelUniversit�a di PisaDipartimento di Informatica, Corso Italia 40, 56125 Pisa, Italyemail: franck@di.unipi.itJ.J.M.M. RuttenCWIP.O. Box 94079, 1090 GB Amsterdam, The Netherlandsemail: jan.rutten@cwi.nlAbstractGeneralized metric spaces are a common generalization of preorders and ordinary metricspaces (Lawvere 1973). Combining Lawvere's (1973) enriched-categorical and Smyth' (1988,1991) topological view on generalized metric spaces, it is shown how to construct 1. com-pletion, 2. topology, and 3. powerdomains for generalized metric spaces. Restricted to thespecial cases of preorders and ordinary metric spaces, these constructions yield, respectively:1. chain completion and Cauchy completion; 2. the Alexandro� and the Scott topology, andthe �-ball topology; 3. lower, upper, and convex powerdomains, and the hyperspace of com-pact subsets. All constructions are formulated in terms of (a metric version of) the Yoneda(1954) embedding.AMS Subject Classi�cation (1991): 68Q10, 68Q55CR Subject Classi�cation (1991): D.3.1, F.1.2, F.3.2Keywords & Phrases: preorder, quasimetric, generalized metric, metric, enriched category,Yoneda lemma, completion, topology, powerdomain.Note: This report extends the results of: M.M. Bonsangue, F. van Breugel, and J.J.M.M.Rutten. Generalized ultrametric spaces: completion, topologies, and powerdomains via theYoneda embedding. Report CS-R9560, CWI, 1995.
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1 OverviewA generalized metric space consists of a setX together with a distance functionX(�;�) : X�X ![0;1], satisfying X(x; x) = 0 and X(x; z) � X(x; y)+X(y; z), for all x, y, and z in X . The familyof generalized metric spaces contains all ordinary metric spaces (for which the distance is moreoversymmetric and di�erent elements cannot have distance 0) as well as all preordered spaces (becausea preorder relation can be viewed as a discrete distance function). Thus generalized metric spacesprovide a common generalization of both preordered spaces and ordinary metric spaces, which isthe main motivation for the present study.Our sources of inspiration are the work of Lawvere on V-categories and generalized metricspaces [Law73] and the work by Smyth on quasi metric spaces [Smy91], and we have been inuencedby recent work of Flagg and Kopperman [FK95] and Wagner [Wag94]. The present paper continuesearlier work [Rut95], in which part of the theory of generalized metric spaces has been developed.The guiding principle throughout is Lawvere's view of metric spaces as [0;1]-categories , bywhich they are structures that are formally similar to (ordinary) categories. As a consequence,insights from category theory can be adapted to the world of metric spaces. In particular, we shallgive the metric version of the famous Yoneda Lemma, which expresses, intuitively, that one mayidentify elements x of a generalized metric space X with a description of the distances between theelements of X and x (formally, the function that maps any y in X to X(y; x)). This elementaryinsight (with an easy proof) will be shown to be of fundamental importance for the theory ofgeneralized metric spaces (and, a fortiori, both for order-theoretic and metric domain theory aswell). Notably it will give rise to1. a de�nition of completion of generalized metric spaces, generalizing both chain completionof preordered spaces and metric Cauchy completion;2. a topology on generalized metric spaces generalizing both the Scott topology for arbitrarypreorders, and the metric �-ball topology;3. the de�nition and characterization of three powerdomains generalizing on the one hand thefamiliar lower, upper, and convex powerdomains from order-theory; and on the other handthe metric powerdomain of compact subsets.The present paper is a reworking of an earlier report [BBR95], in which generalized ultrametricspaces are considered, satisfying X(x; z) � maxfX(x; y); X(y; z)g, for all x, y, and z in X . Thereis but little di�erence between the two papers: as it turns out, none of the proofs about ultrametricsrelies essentially on the strong triangle inequality. (See also [BBR96], which contains part of thepresent paper.)As mentioned above, generalized metric spaces and the constructions that are given in thepresent paper both unify and generalize a substantial part of order-theoretic and metric domaintheory. Both disciplines play a central role in (to a large extent even came into existence becauseof) the semantics of programming languages (cf. recent textbooks such as [Win93] and [BV96],respectively). The use of generalized metric spaces in semantics, or more precisely, in the study oftransition systems, will be an important next step. The combination of results from [Rut95] (ondomain equations) and the present paper will lead to the construction of domains for quantitativeversions of simulation and bisimulation.The paper is organized as follows. Sections 2 and 3 give the basic de�nitions and facts ongeneralized metric spaces. After the Yoneda Lemma in Section 4, completion, topology andpowerdomains are discussed in Sections 5, 6, and 7. Finally Section 8 discusses related work, andthe appendix recalls some basic facts from topology, and contains some proofs.2 Generalized metric spaces as [0;1]-categoriesGeneralized metric spaces are introduced and the fact that they are [0;1]-categories is recalledfrom Lawvere's [Law73]. (For a brief recapitulation of Lawvere's enriched-categorical view of3



(ultra)metric spaces see [Rut95].) The section concludes with a few basic de�nitions and propertiesto be used in the sequel.A generalized metric space (gms for short) is a set X together with a mappingX(�;�) : X �X ! [0;1]which satis�es, for all x, y, and z in X ,1. X(x; x) = 0, and2. X(x; z) � X(x; y) +X(y; z),the so-called triangle inequality. The real number X(x; y) will be called the distance from x to y.Examples of generalized metric spaces are:1. The set A1 of �nite and in�nite words over some given set A with distance function, for vand w in A1,A1(v; w) = � 0 if v is a pre�x of w2�n otherwise,where n is the length of the longest common pre�x of v and w.2. Any preorder hP;�i (satisfying for all p, q, and r in P , p � p, and if p � q and q � r thenp � r) can be viewed as a gms, by de�ningP (p; q) = � 0 if p � q1 if p 6� q.By a slight abuse of language, any gms stemming from a preorder in this way will itself becalled a preorder.3. The set [0;1] with distance, for r and s in [0;1],[0;1](r; s) = � 0 if r � ss� r if r < s.Generalized metric spaces are [0;1]-enriched categories in the sense of [EK66, Law73, Kel82].As shown in [Law73], [0;1] is a complete and cocomplete symmetric monoidal closed category.It is a category because it is a preorder (objects are the non-negative real numbers includingin�nity; and for r and s in [0;1] there is a morphism from r to s if and only if r � s). It iscomplete and cocomplete: equalizers and coequalizers are trivial (because there is at most onearrow between any two elements of [0;1]), the product r � s of two elements r and s in [0;1] isgiven by max fr; sg, and their coproduct r q s by minfr; sg. More generally, products are given bysup, and coproducts are given by inf. Most important for what follows is the monoidal structureon [0;1], which is given by+ : [0;1]� [0;1]! [0;1];assigning to two real numbers their sum. (As usual, r +1 = 1 + r = 1, for all r 2 [0;1].)Let [0;1](�;�) be the (`internal hom-') functor that assigns to r and s in [0;1] the distance[0;1](r; s) as de�ned in the third example above. The following fundamental equivalence statesthat [0;1](t;�) is right-adjoint to t+�, for any t in [0;1]:Proposition 2.1 For all r, s, and t in [0;1],t+ s � r if and only if s � [0;1](t; r): 24



Many constructions and properties of generalized metric spaces are determined by the category[0;1]. Important examples are the de�nitions of limit and completeness, presented in Section 3.Also the category of all generalized metric spaces, which is introduced next, inherits much of thestructure of [0;1].Let Gms be the category with generalized metric spaces as objects, and non-expansive mapsas arrows: i.e., mappings f : X ! Y such that for all x and x0 in X ,Y (f(x); f(x0)) � X(x; x0):A map f is isometric if for all x and x0 in X ,Y (f(x); f(x0)) = X(x; x0):Two spacesX and Y are called isometric (isomorphic) if there exists an isometric bijection betweenthem. The product X � Y of two gms X and Y is de�ned as the Cartesian product of theirunderlying sets, together with distance, for hx; yi and hx0; y0i in X � Y ,X � Y (hx; yi; hx0; y0i) = maxfX(x; x0); Y (y; y0)g:The exponent of X and Y is de�ned byY X = ff : X ! Y j f is non-expansive g;with distance, for f and g in Y X ,Y X(f; g) = supfY (f(x); g(x)) j x 2 Xg:This section is concluded by a number of constructions and de�nitions for generalized metricspaces that will be used in the sequel.A gms generally does not satisfy3. if X(x; y) = 0 and X(y; x) = 0 then x = y,4. X(x; y) = X(y; x),5. X(x; y)<1,which are the additional conditions that hold for an ordinary metric space. Therefore it is some-times called a pseudo-quasi metric space. A quasi metric space (qms for short) is a gms whichsatis�es axioms 1, 2, and 3. Note that [0;1] is a quasi metric space. A gms satisfying 1, 2, and 4is called a pseudo metric space. Finally, if a gms satis�es the so-called strong triangle inequality2'. X(x; z) � maxfX(x; y); X(y; z)g,then it is called a generalized ultrametric space (cf. [BBR95]).The opposite Xop of a gms X is the set X with distanceXop(x; x0) = X(x0; x):With this de�nition, the distance function X(�;�) can be described as a mappingX(�;�) : Xop �X ! [0;1]:Using Proposition 2.1 one can easily show that X(�;�) is non-expansive.We saw that any preorder P induces a gms. (Note that a partial order induces a quasimetric and that the non-expansive mappings between preorders are precisely the monotone maps.)Conversely, any gms X gives rise to a preorder hX;�Xi, where �X , called the underlying orderingof X , is given, for x and y in X , byx �X y if and only if X(x; y) = 0: 5



Any (pseudo or quasi) metric space is a fortiori a gms. Conversely, any gms X induces a pseudometric space Xs, the symmetrization of X , with distanceXs(x; y) = max fX(x; y); Xop(x; y)g:For instance, the ordering that underlies A1 is the usual pre�x ordering, and (A1)s is a naturalmetric on words. The generalized metric on [0;1] induces the reverse of the usual ordering: forr and s in [0;1],r �[0;1] s if and only if s � r;and the symmetric version of [0;1] is de�ned by[0;1]s(r; s) = � 0 if r = sjr � sj if r 6= s.Any gms X induces a quasi metric space [X ] de�ned as follows. Let � be the equivalence relationon X de�ned, for x and y in X , byx � y i� (X(x; y) = 0 and X(y; x) = 0):Let [x] denote the equivalence class of x with respect to �, and [X ] the collection of all equivalenceclasses. De�ning [X ]([x]; [y]) = X(x; y) turns [X ] into a quasi metric space. It has the followinguniversal property: for any non-expansive mapping f : X ! Y from X to a quasi metric space Ythere exists a unique non-expansive mapping f 0 : [X ]! Y with f 0([x]) = f(x), for x 2 X .3 Cauchy sequences, limits, and completenessThe notion of Cauchy sequence is introduced, followed by the de�nition of metric limit, �rst forCauchy sequences in [0;1] and then for Cauchy sequences in arbitrary generalized metric spaces.Furthermore the notions of completeness, �niteness, and algebraicity are introduced.A sequence (xn)n in a gms X is forward-Cauchy if8� > 0 9N 8n � m � N; X(xm; xn) � �:Since our metrics need not be symmetric, the following variation exists: a sequence (xn)n isbackward-Cauchy if8� > 0 9N 8n � m � N; X(xn; xm) � �:If X is an ordinary metric space then forward-Cauchy and backward-Cauchy both mean Cauchyin the usual sense. And if X is a preorder then Cauchy sequences are eventually increasing: thereexists an N such that for all n � N , xn � xn+1. (Increasing sequences in a preorder are alsocalled chains .) Similarly backward-Cauchy sequences are eventually decreasing.The forward-limit of a forward-Cauchy sequence (rn)n in [0;1] is de�ned bylim! rn = supn infk�n rk :Dually, the backward-limit of a backward-Cauchy sequence (rn)n in [0;1] islim rn = infn supk�n rk :These numbers are what one intuitively would consider as metric limits of Cauchy sequences. If[0;1] is taken with the standard symmetric Euclidian metric: [0;1]s(r; r0) = jr � r0j, for r andr0 in [0;1], then all bounded forward-Cauchy and backward-Cauchy sequences are Cauchy withrespect to [0;1]s, and the forward-limit and backward-limit de�ned above coincide with the usualnotion of limit with respect to [0;1]s (cf. [Smy91]).The following proposition shows how forward-limits and backward-limits in [0;1] are related.6



Proposition 3.1 For a forward-Cauchy sequence (rn)n in [0;1], and all r in [0;1],1. [0;1](r; lim! rn) = lim! [0;1](r; rn);2. [0;1](lim! rn; r) = lim [0;1](rn; r):For a backward-Cauchy sequence (rn)n in [0;1], and all r in [0;1],3. [0;1](r; lim rn) = lim [0;1](r; rn);4. [0;1](lim rn; r) = lim! [0;1](rn; r): 2A proof follows easily using the following elementary facts:Lemma 3.2 For all non-empty subsets V � [0;1] and r in [0;1],1. [0;1](r; supV ) = supv2V [0;1](r; v);2. [0;1](r; inf V ) = infv2V [0;1](r; v);3. [0;1](supV; r) = infv2V [0;1](v; r);4. [0;1](inf V; r) = supv2V [0;1](v; r): 2Forward-limits in an arbitrary gms X can now be de�ned in terms of backward-limits in [0;1]:an element x is a forward-limit of a forward-Cauchy sequence (xn)n in X ,x = lim! xn i� 8y 2 X; X(x; y) = lim X(xn; y):This is well de�ned because of the following.Proposition 3.3 Let (xn)n be a forward Cauchy sequence in X. Let x 2 X.1. The sequence (X (x; xn))n is forward Cauchy in [0;1].2. The sequence (X (xn; x))n is backward Cauchy in [0;1].Note that our earlier de�nition of the forward-limit of forward-Cauchy sequences in [0;1] isconsistent with this de�nition for arbitrary generalized metric spaces: this follows from Proposition3.1(2).Further note that Cauchy sequences may have more than one limit. Therefore one has to becareful with an argument like:if x = lim! xn and y = lim! xn then x = y;which in general is not correct. All one can deduce from the assumptions is that X(x; y) = 0 andX(y; x) = 0. The conclusion x = y is justi�ed only in quasi metric spaces where as a consequence,limits are unique. For instance, limits in [0;1] are unique.In spite of the fact that in an arbitrary gms X limits are not uniquely determined, we shallnevertheless use expressions (for instance, in Proposition 3.4 below) such asX(lim! xn; y)(for a Cauchy sequence (xn)n and an element y in X), because the value they denote does notdepend on the particular choice of a limit. This is an immediate consequence of the fact that alllimits have distance 0. 7



For ordinary metric spaces, the above de�nes the usual notion of limit:x = lim! xn if and only if 8� > 0 9N 8n � N; X(xn; x)< �:If X is a partial order and (xn)n is a chain in X thenx = lim! xn if and only if 8y 2 X; x �X y , 8n � 0; xn �X y;i.e., x = Fxn, the least upperbound of the chain (xn)n.One could also consider backward-limits for arbitrary gms. Since these will not play a role in therest of this paper, this is omitted. For simplicity, we shall use Cauchy instead of forward-Cauchy.Similarly, we shall writelimxn rather than lim! xn;and use limit instead of forward-limit.Note that subsequences of a Cauchy sequence are Cauchy again. If a Cauchy sequence has alimit x, then all its subsequences have limit x as well.The following fact will be useful in the future:Proposition 3.4 For a Cauchy sequence (xn)n and an element x in a gms X,X (x; limn xn) � limnX (x; xn):Proof: The inequality follows from[0;1](limnX (x; xn); X (x; limn xn))= lim n [0;1](X (x; xn); X (x; limn xn))� lim nX(xn; limn xn) [the mapping X(x;�) : X ! [0;1] is non-expansive]= X(limn xn; limn xn)= 0: 2A gms X is complete if every Cauchy sequence in X has a limit. A subset V � X is complete ifevery Cauchy sequence in V has a limit in V . For instance, [0;1] is complete. If X is a partialorder completeness means that X is a complete partial order, cpo for short: all !-chains havea least upperbound. For ordinary metric spaces this de�nition of completeness is the usual one.There is the following fact (cf. Theorem 6.5 of [Rut95]).Proposition 3.5 Let X and Y be generalized metric spaces. If Y is complete then Y X is com-plete. Moreover, limits are pointwise: let (fn)n be a Cauchy sequence in Y X and f an element inY X . Then lim fn = f if and only if for all x 2 X, lim fn(x) = f(x). Furthermore, if Y is a quasimetric space then Y X is a quasi metric space as well. 2A mapping f : X ! Y between gms X and Y is continuous if it preserves Cauchy sequencesand their limits: if (xn)n is Cauchy and x = limxn in X , then (f(xn))n is again Cauchy andf(x) = lim f(xn) in Y . For ordinary metric spaces, this is the usual de�nition. For partial ordersit amounts to preservation of least upperbounds of !-chains.An element b in a gms X is �nite if the mappingX(b;�) : X ! [0;1]; x 7! X(b; x)is continuous. (So for �nite elements, the inequality in Proposition 3.4 actually is an equality.) IfX is a partial order this means that for any chain (xn)n in X ,X(b;Gxn) = lim X(b; xn); 8



or, equivalently,b �X Gxn i� 9n; b �X xn;which is the usual de�nition of �niteness in ordered spaces. If X is an ordinary metric space thenX(b;�) is continuous for any b in X , hence all elements are �nite.A basis for a gms X is a subset B � X consisting of �nite elements such that every element xin X is the limit x = lim bn of a Cauchy sequence (bn)n of elements in B. A gms X is algebraicif there exists a basis for X . Note that such a basis is in general not unique. If X is algebraicthen the collection BX of all �nite elements of X is the largest basis. Further note that algebraicdoes not imply complete. (Take any ordinary metric space which is not complete.) If there existsa countable basis then X is !-algebraic.For instance, the gms A1 from Section 2 is algebraic with basis A�, the set of all �nite wordsover A. If A is countable then A1 is !-algebraic. Also the space [0;1] is algebraic: by Proposition3.1(1), all elements are �nite. (It is even !-algebraic, with the set of rational numbers as a basis.)This fact is somewhat surprising, since [0;1] is not algebraic as a partial order.4 The Yoneda LemmaThe following lemma turns out to be of great importance for the theory of generalized metricspaces. It is the [0;1]-categorical version of the famous Yoneda Lemma [Yon54] from categorytheory. We shall see in the subsequent sections that it gives rise to elegant de�nitions and charac-terizations of completion, topology, and powerdomains. A general proof of the Yoneda Lemma forarbitrary enriched categories can be found in [Kel82]. For generalized metric spaces, it is provedin [Law86].The following notation will be used throughout the rest of this paper:X̂ = [0;1]Xop ;i.e., the set of all non-expansive functions from Xop to [0;1].Lemma 4.1 (Yoneda Lemma) Let X be a gms. For any x 2 X letX(�; x) : Xop ! [0;1]; y 7! X(y; x):This function is non-expansive and hence an element of X̂. For any other element � in X̂,X̂(X(�; x); �) = �(x).Proof: Because X(�;�) : Xop � X ! [0;1] is non-expansive, so is X(�; x), for any x in X .Now let � 2 X̂. On the one hand,�(x) = [0;1](X(x; x); �(x))� supy2X [0;1](X(y; x); �(y))= X̂(X(�; x); �):On the other hand, non-expansiveness of � gives, for any y in X ,[0;1](�(x); �(y)) � Xop(x; y) = X(y; x);which is equivalent by Proposition 2.1 to [0;1](X(y; x); �(y)) � �(x): It follows thatX̂(X(�; x); �) � �(x): 2The following corollary is immediate. 9



Corollary 4.2 The Yoneda embedding y : X ! X̂, de�ned for x in X by y(x) = X(�; x) isisometric: for all x and x0 in X,X(x; x0) = X̂(y(x);y(x0)): 2The following fact will be of use when de�ning completion.Lemma 4.3 For any x in X, y(x) is �nite in X̂.Proof: We have to show that X̂(y(x);�) : X̂ ! [0;1] is continuous: for any Cauchy sequence(�n)n in X̂,X̂(y(x); lim �n) = (lim �n)(x) [the Yoneda Lemma]= lim �n(x) [Proposition 3.5]= lim X̂(y(x); �n) [the Yoneda Lemma]: 25 Completion via YonedaThe completion of gms's is de�ned by means of the Yoneda embedding. It yields for ordinarymetric spaces Hausdor�'s standard Cauchy completion (as introduced in [Hau14]), for preordersthe chain completion, and for qms's a completion given by Smyth (see [Smy91, page 214]).Let X be a gms. Because [0;1] is a complete qms (cf. Section 2 and 3), it follows from Propo-sition 3.5 that bX is a complete qms as well. According to Corollary 4.2, the Yoneda embedding yisometrically embeds X in bX. The completion of X can now be de�ned as the smallest completesubspace of bX which contains the y-image of X .De�nition 5.1 The completion of a gms X is de�ned by�X =\ fV � bX j y (X) � V and V is a complete subspace of bX g:The collection of which the intersection is taken is nonempty, since it contains bX . Because �X is acomplete subspace of the complete qms bX, also �X is a complete qms, and, as a consequence, forany Cauchy sequence in �X , its limits in �X and bX coincide.As with preorders, completion is not idempotent, that is, the completion of the completion ofX is in general not isomorphic to the completion of X . An interesting question is to characterizethe family of gms's for which completion is idempotent (it contains at least all ordinary metricspaces). (Cf. [FS96].)Completion for ordinary metric spaces is usually de�ned by means of (equivalence classes of)Cauchy sequences. The same applies to countable preorders: there the most common form ofcompletion, ideal completion, is isomorphic to chain completion, and we have seen that chains are(special cases of) Cauchy sequences. It will be shown next that the completion introduced abovecan be expressed in terms of Cauchy sequences as well. This will at the same time enable us toprove its equivalence with the de�nition of the completion of qms's by Smyth.Note that a sequence (xn)n is Cauchy in a gms X if and only if (y (xn))n is Cauchy in bX,because the Yoneda embedding y is isometric. This is used in the following.Proposition 5.2 For any gms X,�X = f limn y (xn) j (xn)n is a Cauchy sequence in X g:Proof: The inclusion from right to left is immediate from the fact that the set on the right iscontained in any complete subspace V of bX which contains y (X). The reverse inclusion followsfrom the fact that the set on the right contains y (X), which is trivial, and the fact that it is acomplete subspace of bX : this is a consequence of Lemma 4.3 and Proposition B.3 in the appendix.210



The elements of �X can be seen to represent equivalence classes of Cauchy sequences. To thisend, let CS (X) denote the set of all Cauchy sequences in X , and let � : CS (X) ! �X map aCauchy sequence (vn)n in X to limn y (vn). This mapping induces a generalized metric structureon CS (X) by putting, for Cauchy sequences (vm)m and (wn)n,CS (X) ((vm)m; (wn)n) = �X (� ((vm)m); � ((wn)n)):This metric can be characterized as follows.CS (X) ((vm)m; (wn)n)= �X (� ((vm)m); � ((wn)n))= �X (limm y (vm); limn y (wn))= bX (limm y (vm); limn y (wn))= lim m bX (y (vm); limn y (wn))= lim m limn bX (y (vm);y (wn)) [y (vn) is �nite in bX ]= lim m limnX (vm; wn) [y is isometric]:The latter formula is what Smyth has used for a de�nition of the distance between Cauchy se-quences of qms's. In his approach, the completion of a qms is de�ned as [CS (X)], which is the qmsobtained from CS (X) by identifying all Cauchy sequences with distance 0 in both directions (cf.Section 2). Such sequences can be considered to represent the same limit. Both ways of de�ningcompletion are equivalent.Proposition 5.3 For any gms X, �X �= [CS (X)].Proof: Because �X is a qms, the non-expansive mapping � : CS (X)! �X induces a non-expansivemapping �0 : [CS (X)]! �X (cf. Section 2). Because � is isometric by the de�nition of the metricon CS (X), �0 is injective. Because � is surjective by Proposition 5.2, �0 is also surjective. 2A corollary of this theorem is that the completion of gms's generalizes Cauchy completion ofordinary metric spaces and chain completion of preorders.Recall that the category Gms has gms's as objects and non-expansive functions as arrows.Let Acq be the category with algebraic complete qms's as objects, and with non-expansive andcontinuous functions as arrows. We will show that completion can be extended to a functor fromGms to Acq , which is a left adjoint to the forgetful functor from Acq to Gms . First of all, thecompletion of a gms X is an object in Acq .Theorem 5.4 For any gms X, �X is an algebraic complete qms.Proof: Since �X is a complete subspace of the complete qms bX , also �X is a complete qms.Because all elements of y (X) are �nite in bX according to Lemma 4.3, they are also �nite in �X.From Proposition 5.2 we can conclude that every element of �X is the limit of a Cauchy sequencein y (X). Consequently �X is algebraic. 2The next theorem is the key to the extension of completion to a functor. It says that completionis a so-called free construction.Theorem 5.5 For any complete qms Y and non-expansive function f : X ! Y there exists aunique non-expansive and continuous function f# : �X ! Y such that f# � y = f .X //y   f @@@@@@@@ �X�� f#Y 11



Proof: For all Cauchy sequences (vn)n and (wm)m in X ,Y (limn f (vn); limm f (wm))= lim nY (f (vn); limm f (wm))� lim n limm Y (f (vn); f (wm)) [Proposition 3.4]� lim n limmX (vn; wm) [f is non-expansive]= lim n limm bX (y (vn);y (wm)) [y is isometric]= lim n bX (y (vn); limm y (wm)) [y (vn) is �nite in bX ]= bX (limn y (vn); limm y (wm)):Consequently,limn y (vn) = limm y (wm)) bX (limn y (vn); limm y (wm)) = 0 ^ bX (limm y (wm); limn y (vn)) = 0) Y (limn f (vn); limm f (wm)) = 0 ^ Y (limm f (wm); limn f (vn)) = 0) limn f (vn) = limm f (wm):According to Proposition 5.2, for all �x in �X , there exists a Cauchy sequence (xn)n in X , such that�x = limn y (xn). Since f is non-expansive, the sequence (f (xn))n is also Cauchy. Because Y is acomplete qms, limn f (xn) exists. Hence, we can de�ne f# : �X ! Y byf# (limn y (xn)) = limn f (xn):Since, for all Cauchy sequences (vn)n and (wm)m in X ,Y (f# (limn y (vn)); f# (limm y (wm)))= Y (limn f (vn); limn f (wm))� bX (limn y (vn); limm y (wm)) [see above]the function f# is non-expansive.Next we prove that f# is continuous. Let (�xn)n be a Cauchy sequence in �X. Without loss ofgenerality we can assume that8n; �X (�xn; �xn+1) � 13n2n : (1)Because y is isometric, we can conclude from Proposition 5.2 that�X = f limn y (xn) j (y (xn))n is a Cauchy sequence in y (X) g:Because y (X) is a subspace of the complete qms bX, and all elements of y (X) are �nite in bXaccording to Lemma 4.3, we can conclude from Lemma B.1 and B.2 that there exist Cauchysequences (wmn )m in y (X) satisfying8m8n;y (X) (wmn ; wmn+1) � 1n ;8n8m;y (X) (wmn ; wm+1n ) � 1m ;8n; limm wmn = �xn;limk wkk = limn �xn:Since y is isometric, there exist Cauchy sequences (xmn )m in X satisfying8m8n;X (xmn ; xmn+1) � 1n ; (2)12



8n8m;X (xmn ; xm+1n ) � 1m ; (3)8n; limm y (xmn ) = �xn; (4)limk y (xkk) = limn �xn: (5)As we have seen above, f# is non-expansive. Consequently, (f# (�xn))n is a Cauchy sequence inY . Since f is non-expansive, we can derive from (2) and (3) that8m8n; Y (f (xmn ); f (xmn+1)) � 1n ; (6)8n8m;Y (f (xmn ); f (xm+1n )) � 1m : (7)From (4) we can deduce that8n; limm f (xmn ) = f# (�xn): (8)Since Y is a complete qms, it follows from (6), (7), (8), and Lemma B.2 that the sequence (f (xkk))kis Cauchy andlimk f (xkk) = limn f# (�xn):From (5) we can derive thatf# (limn �xn) = limk f (xkk):Hence f# is continuous.Let g : �X ! Y be a non-expansive and continuous function such that g � y = f . For all Cauchysequences (xn)n in X ,g (limn y (xn))= limn g (y (xn)) [g is continuous]= limn f (xn) [g � y = f ]= f# (limn y (xn)):This proves the unicity of f#. 2Completion can be extended to a functor (�) : Gms ! Acq , by de�ning its action on arrows inGms in the following standard way: for gms's X and Y and a non-expansive mapping f : X ! Y ,let �f : �X ! �Y be de�ned by �f = (y � f)#.X //f��y Y�� y�X //(y�f)# _____ �YAccording to Theorem 5.5, the function �f is non-expansive and continuous, and hence an arrowin Acq . One can easily verify that we have extended completion to a functor. It is an immediateconsequence of Theorem 5.5 that it is left adjoint to the forgetful functor from Acq to Gms (cf.[ML71, Chapter 4]). The Yoneda embedding y is the unit of the adjunction.For every complete qms X with basis B, X �= �B. More generally:Theorem 5.6 Let X be a complete qms. Let B � X. Then the following three conditions areequivalent.1. B is a basis for X. 13



2. The function yB : X ! bB de�ned, for x 2 X, byyB (x) = �b 2 B : X (b; x);i.e., the restriction of y(x) 2 bX to B, is isometric and continuous.3. The inclusion function i : B ! X induces an isomorphism i# : �B ! X.Proof:1. ) 2. According to Corollary 4.2, y is isometric. Consequently, yB is non-expansive. Because,for all Cauchy sequences (xn)n in X ,limn yB (xn)= limn �b 2 B : X (b; xn)= �b 2 B : limnX (b; xn) [Proposition 3.5]= �b 2 B : X (b; limn xn [b is �nite in X]= yB (limn xn);yB is continuous. Consider the following diagram:B
�� y���������������� ��y :::::::::::::::::��_� iXyy yBssssssssssssbB �Boo _?j ee i#KKKKKKKKKKKKwhere j is the inclusion of �B in bB. One can easily verify that yB � i# � y = y andj � y = y. Therefore by Theorem 5.5,yB � i# = j: (9)Since B is a basis for X , i# is surjective. Because i# is furthermore non-expansive andj is isometric, yB is isometric.2. ) 3. For all Cauchy sequences (bn)n in B,(yB � i#) (limn y (bn))= yB (limn i# � y (bn)) [i# is continuous]= yB (limn i (bn))= limn yB � i (bn) [yB is continuous]= limn y (bn);from which (9) follows. Thus yB actually maps into �B. Because yB is isometric it isinjective. As a consequence, i# � yB = 1X follows fromyB � (i# � yB) = (yB � i#) � yB = yB = yB � 1X ;where 1X is the identity on X . Thus i# is an isomorphism with yB as inverse.3. ) 1. As we have already seen in the proof of Theorem 5.4, all elements of y (B) are �nite in �B.Since i# is isometric and surjective, all elements in (i# � y) (B) are �nite in X . Becausei = i# �y, all elements of B are �nite in X . Since i# is surjective, every element of X isthe limit of a Cauchy sequence in B. Hence, B is a basis for X . 2
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A subset B of a gms X for which the function yB of the second clause above is isometric, is calledadequate in [Law73, page 154].This section is concluded by the introduction of the notion of adjoint pairs of mappings betweengms's, and a characterization of completeness in terms thereof. This will not be used in the restof the paper.Let X and Y be gms's. A pair of non-expansive mappings f : X ! Y and g : Y ! X form anadjunction, with f left adjoint to g denoted by f a g, if8x 2 X8y 2 Y; Y (f (x); y) = X (x; g (y)):An equivalent condition is that XX (1X ; g � f) = 0 and Y Y (f � g; 1Y ) = 0. Expressed in terms ofthe underlying orderings, this can be read as 1X � g � f and f � g � 1Y , saying that f and g forman adjunction as monotone maps between the underlying preorders hX;�Xi and hY;�Y i.The following lemma was suggested to us by Bart Jacobs.Lemma 5.7 Let X be a qms. Consider the (corestriction of the) Yoneda embedding y : X ! �X.The space X is complete if and only if there exists a non-expansive and continuous mappingf : �X ! X with f a y.Proof: Suppose X is complete. By Theorem 5.5, there exists a unique non-expansive andcontinuous extension 1#X : �X ! X of the identity mapping on X , de�ned, for � = limn y (xn) in�X with (xn)n a Cauchy sequence in X , by1#X (�) = limn xn:For any x 2 X ,X (1#X (�); x) = X (limn xn; x)= lim nX (xn; x)= lim n �X (y (xn);y (x)) [the Yoneda embedding is isometric]= �X (limn y (xn);y (x))= �X (�;y (x));showing that 1#X a y. For the converse suppose we are given a non-expansive and continuousmapping f : �X ! X with f a y. For any Cauchy sequence (xn)n in X and x 2 X ,X (f (limn y (xn)); x) = �X (limn y (xn);y (x))= lim n �X (y (xn);y (x))= lim nX (xn; x) [the Yoneda embedding is isometric];proving that limn xn = f (limn y (xn)). 26 Topology via YonedaLet X be a gms. Recall that X̂ is a gms with the supremum distance, and that it contains as asubset an isometric copy of X via the Yoneda embedding. The Yoneda embedding of a gms Xinto X̂ gives rise to two topological closure operators. Their corresponding topologies are shownto generalize both the �-ball topology of ordinary metric spaces and the Alexandro� and Scotttopologies of preordered spaces.The main idea (stemming from [Law86]) is to interpret an element � of X̂ as a `fuzzy' predicate(or `fuzzy' subset) on X : the value that � assigns to an element x in X is thought of as a measurefor `the extent to which x is an element of �'. The smaller this number is, the more x should be15



viewed as an element of the fuzzy subset �. In fact, the only real elements are the ones where �is 0. By taking only its real elements we obtain its extension,RA� = fx 2 X j �(x) = 0g;where the subscript A stands for Alexandro�. For instance, for x in X , RAy(x) = RAX(�; x) =fz 2 X j X(z; x) = 0g = x#. More generally, for any � in X̂ ,RA� = fx 2 X j �(x) = 0g= fx 2 X j X̂(X(�; x); �) = 0g [the Yoneda Lemma 4.1]= fx 2 X j X̂(y(x); �) = 0g [de�nition of the Yoneda embedding]= fx 2 X j y(x) �X̂ �g:Any subset V � X de�nes, conversely, a predicate �A(V ) : Xop ! [0;1] which is referred to asthe character of the subset V . It is de�ned, for x 2 X , by�A(V )(x) = inffX(x; v) j v 2 V g;i.e., the distance from x to the set V . Note that, by de�nition of the Yoneda embedding, this isequivalent to�A(V ) = �x 2 X: inffy(v)(x) j v 2 V g:The mappings RA : X̂ ! P(X) and �A : P(X)! X̂ can be nicely related by considering X̂ withthe underlying preorder �X̂ , and P(X) ordered by subset inclusion (cf. [Law86]):Proposition 6.1 Let X be a gms. The maps RA : hX̂;�X̂i ! hP(X);�i and �A : hP(X);�i !hX̂;�X̂i are monotone. Moreover �A is left adjoint to RA.Proof: Monotonicity of RA and �A follows directly from their de�nitions. We will hence concen-trate on the second part of the proposition by proving for all V 2 P(X) and � 2 X̂,V � RA�A(V ) and �A(RA�) �X̂ �;which is equivalent to �A being left adjoint to RA, (cf. Theorem 0.3.6 of [GHK+80]). Because,for all V 2 P(X) and v in V , y(v) �X̂ �A(V ), we have thatV � fx 2 X j y(x) �X̂ �A(V )g = RA�A(V ):Furthermore, for � 2 X̂ and x 2 X ,�A(RA�)(x) = inffX(x; y) j y 2 X & y(y) �X̂ �g= inffy(y)(x) j y 2 X & 8z 2 X; y(y)(z) � �(z)g� inffy(y)(x) j y 2 X & y(y)(x) � �(x)g� �(x):Consequently, �A(RA�) �X̂ � (note that the ordering underlying [0;1] is the reverse of the usualone). 2The above fundamental adjunction relates character of subsets and extension of predicates andis often referred to as the comprehension schema (cf. [Law73, Ken88]). As with any adjoint
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pair between preorders, the composition RA � �A is a closure operator on X (cf. Theorem 0.3.6of [GHK+80]). It satis�es, for V � X ,(RA � �A)(V ) = fx 2 X j �A(V )(x) = 0g= fx 2 X j X̂(y(x); �A(V )) = 0g [the Yoneda Lemma 4.1]= fx 2 X j 8y 2 X; [0;1](y(x)(y); �A(V )(y)) = 0g= fx 2 X j 8y 2 X; y(x)(y) � �A(V )(z)g= fx 2 X j 8� > 0 8y 2 X; y(x)(y) < �) (9v 2 V; X(y; v)< �)g= fx 2 X j 8� > 0 8y 2 X; X(y; x)< �) (9v 2 V; X(y; v)< �)g (10)[the Yoneda Lemma 4.1]:By using the above characterization (10) we can prove the following lemma.Lemma 6.2 For a gms X, the closure operator RA � �A on X is topological.Proof: It is an immediate consequence of (10) that RA � �A(;) = ;. Moreover, for V;W � X ,RA � �A(V [W ) � RA � �A(V ) [ RA � �A(W );because RA � �A is a closure operator. For the reverse inclusion, let x 2 RA � �A(V [W ). Supposex 62 RA � �A(V ). We will show x 2 RA � �A(W ). Let yW in X and �W > 0 with X(yW ; x) < �W .We should �nd a w in W with X(yW ; w) < �W . Because x not in RA � �A(V ) there exist a yV inX and an �V > 0 such thatX(yV ; x) < �V & (8v 2 V; X(yV ; v) � �V ): (11)Let � = minf�V �X(yV ; x); �W �X(yW ; x)g. Because x in RA ��A((V [W ) and X(x; x)<�, thereexists a w in V [W with X(x;w) < �. The assumption that w in V contradicts (11) becauseX(yV ; w) � X(yV ; x) +X(x;w)< �V :Thus y 2W . Furthermore,X(yW ; w) � X(yW ; x) +X(x;w)< �W : 2The above lemma implies that the closure operator RA � �A induces a topology on X , which inProposition 6.3 below is proved equivalent to the following generalized �-ball topology: For x 2 Xand � > 0 de�ne the �-ball centered in x byB�(x) = fz 2 X j X(x; z)< �g:A subset o � X of a gms X is generalized Alexandro� open (gA-open, for short) if, for all x 2 X ,x 2 o ) 9� > 0; B�(x) � o:The set of all gA-open subsets of X is denoted by OgA(X). For instance, for every x 2 X the�-ball B�(x) is a gA-open set. The pair hX;OgA(X)i can be shown to be topological space withB�(x), for every � > 0 and x 2 X , as basic open sets (cf. [FK95]). For a subset V of X we writeclA(V ) for the closure of V in the generalized Alexandro� topology.Proposition 6.3 For every subset V of a gms X, clA(V ) = RA � �A(V ):
17



Proof: It follows from the characterization (10) of RA � �A that it is su�cient to proveclA(V ) = fx 2 X j 8� > 0 8z 2 X; X(z; x)< � ) (9v 2 V; X(z; v)< �)g:Because clA(V ) = V [ V d, where V d is the so-called derived set of V (cf. Section A of theappendix), it follows from the de�nition of derived set and the fact that the set of all �-balls is abasis for the generalized Alexandro� topology, that for every x 2 X ,x 2 V d () 8o 2 OgA(X); x 2 o ) o \ (V n fxg) 6= ;() 8� > 0 8z 2 X; x 2 B�(z) ) B�(z) \ (V n fxg) 6= ;() 8� > 0 8z 2 X; X(z; x)< � ) 9v 2 (V n fxg); X(z; v)< �:Therefore,clA(V ) = V [ V d = fx 2 X j 8� > 0 8z 2 X; X(z; x)< � ) (9v 2 V; X(z; v)< �)g: 2For ordinary metric spaces, gA-open sets are just the usual open sets. For preorders, a set isgA-open precisely when it is Alexandro� open (upper closed) because if X is a preorder then forevery � > 0,B�(x) = fy 2 X j X(x; y)< �g= fy 2 X j X(x; y) = 0g= fy 2 X j x �X ygThe specialization preorder on a gms X induced by its generalized Alexandro� topology coin-cides with the preorder underlying X .Proposition 6.4 Let X be a gms. For all x and y in X, x �OgA y if and only if x �X y.Proof: For any gA-open set V , if x in V and X(x; y) = 0 then y in V . From this observation theimplication from right to left is clear. For the converse, suppose x �OgA y. Then, for every � > 0,x 2 B�(x) implies y 2 B�(x), because generalized �-balls are gA-open sets. Hence X(x; y) < �.Since � was arbitrary, X(x; y) = 0, that is x �X y. 2The above proposition tells us that the underlying preorder of a gms can be reconstructed fromits generalized Alexandro� topology. Note that the specialization preorder �OgA is a partialorder|this is equivalent to the generalized Alexandro� topology being T0|if and only if X is aqms.For computational reasons we are interested in complete spaces, in which one can model in�nitebehaviors by means of limits. A topology for a complete space X can then be considered satis-factory if limits in X are topological limits. This is not the case for the generalized Alexandro�topology: for instance, for complete partial orders OgA(X) coincides with the standard Alexan-dro� topology, for which the coincidence of the least upperbounds of chains and their topologicallimits does not hold. Therefore the Scott topology is usually considered to be preferable: it isthe coarsest topology re�ning the Alexandro� topology, in which least upper bounds of chainsare topological limits (cf. Section II-1 of [GHK+80]. See also [Mel89, Smy92]). Also for gms's, asuitable re�nement of the generalized Alexandro� topology exists.This topology will be introduced, �rst, by de�ning which sets are open, and next|for algebraicgms's|by means of the Yoneda embedding.A subset o � X of a gms X is generalized Scott open (gS-open, for short) if for all Cauchysequences (xn)n in X and x 2 X with x = limxn,x 2 o) 9N 9� > 0 8n � N; B�(xn) � o:The set of all gS-open subsets of X is denoted by OgS(X). Below it will be shown that this de�nesa topology indeed. Note that every gS-open set o � X is gA-open because every point x 2 X is thelimit of the constant Cauchy sequence (x)n in X . Therefore this topology re�nes the generalizedAlexandro� topology. Furthermore it will be shown to18



1. coincide with the �-ball topology in case X is a metric space; and to2. coincide with the Scott topology in case X is a complete partial order.The following proposition gives an example of gS-open sets:Proposition 6.5 For every gms X, an element b 2 X is �nite if and only if for every � > 0, theset B�(b) is gS-open.Proof: Let b be �nite in X and � > 0. We have to show that the generalized �-ball B�(b) isgS-open. Let (xn)n be a Cauchy sequence in X and assume x 2 B�(b) with x = limxn. It su�cesto prove that9� > 0 9N 8n � N; X(b; xn)< �� �: (12)Because x in B�(b), we have that there exists � > 0 such that X(b; x)< �� �. Since�� � > X(b; x)= limX(b; xn) [b is �nite in X]and the sequence (X(b; xn))n is Cauchy, we can conclude (12).Conversely, assume that, for all � > 0, the set B�(b) is gS-open. We need to prove, for everyCauchy sequence (xn)n in X and x 2 X with x = limxn, thatlimX(b; xn) � X(b; x) (13)(the reverse inequality is given by Proposition 3.4). We have8� > 0; x 2 BX(b;x)+�(b):Because the set BX(b;x)+�(b) is gS-open,8� > 0 9� > 0 9N 8n � N; B�(xn) � BX(b;x)+�(b):Hence, limX(b; xn) � X(b; x). 2Next we prove that the collection of all gS-open sets forms indeed a topology.Proposition 6.6 For every gms X the pair hX; OgS(X)i is a topological space. If X is alsoalgebraic with basis B, then the set fB�(b) j b 2 B & � > 0g forms a basis for the generalized Scotttopology OgS(X).Proof: We �rst prove that OgS(X) is closed under �nite intersections and arbitrary unions. LetI be a �nite index set (possibly empty) and let o = TI oi with oi 2 OgS(X) for all i 2 I . If x 2 ofor a Cauchy sequence (xn)n in X and x 2 X with x = limxn, then for every i 2 I there existNi � 0 and �i> 0 such that B�i(xn) � oi for all n � Ni. Take N = maxI Ni and � = minI �i (heremax; = 0 and min; =1). Then B�(xn) � o for all n � N , that is, o is gS-open.Next let I be an arbitrary index set and let o = SI oi with oi 2 OgS(X) for all i 2 I . If x 2 ofor a Cauchy sequence (xn)n in X and x 2 X with x = limxn, then there exists i 2 I such thatx 2 oi. Therefore there exists N � 0 and � > 0 such that B�(xn) � oi � o for all n � N , that is, ois gS-open.Finally assume that X is an algebraic gms with basis B. We have already seen that for every�>0 and �nite element b 2 B the set B�(b) is gS-open. We claim that every gS-open set o � X is theunion of �-balls of �nite elements. Let x 2 o. Since X is algebraic there is a Cauchy sequence (bn)nin B with x = lim bn. Because o is gS-open, there exists �x> 0 and Nx � 0 such that B�x(bn) � ofor all n � Nx and with x 2 B�x(bn) for Nx big enough. Therefore o � Sx2oB�x(bNx). Since theother inclusion trivially holds we have that the collection of all �-balls of �nite elements forms abasis for the generalized Scott topology. 219



Any ordinary metric space X is an algebraic gms where all elements are �nite. Therefore, by theprevious proposition, the basic open sets of the generalized Scott topology are all the �-balls B�(x),with x 2 X . Hence for ordinary metric spaces the generalized Scott topology coincides with thestandard �-ball topology.For a complete partial order X , a set o � X is gS-open precisely when it is Scott open: ifo 2 OgS(X) then it is upper closed because the gS-topology re�nes the gA-topology. Moreover,if Fxn 2 o for an !-chain (xn)n in X then|because o is gS-open|there exists � > 0 and N � 0such that B�(xn) � o for all n � N . But xn 2 B�(xn) for all �, therefore o is an ordinary Scottopen set. Conversely, assume o is Scott open and let x 2 o, for a Cauchy sequence (xn)n in X andx 2 X with x = limxn. Because o is Scott open (and limits are least upper bounds) there existsN � 0 such that xn 2 o for all n � N . This is enough to prove that o is also gS-open because forevery x 2 X and � > 0, B�(x) = x".As usual, a subset c of a gmsX is gS-closed if its complementXnc is gS-open. This is equivalentto the following condition: for all Cauchy sequences (xn)n in X and x 2 X with x = limxn,(8N 8� > 0 9n � N 9y 2 c; X(xn; y)< �) ) x 2 c: (14)For a subset V of X we write clS(V ) for the closure of V in the generalized Scott topology, thatis, clS(V ) is the smallest generalized Scott closed set containing V . From the de�nition of limitswe have that for any Cauchy sequence (xn)n in V and x 2 X with x = limxn, x 2 clS(V ). Thelatter implies that if X is an algebraic gms with basis B then B is dense in X , that is clS(B) = X .Indeed, B � X implies clS(B) � clS(X) = X . For the converse we use the fact that every elementof X is the limit of a Cauchy sequence in B. Since (the image under y of) every gms X is a basisfor its completion �X it follows that every gms is dense in its completion.The following lemma, suggested to us by Flagg and S�underhauf, gives an example of gS-closedsets.Lemma 6.7 Let X be a gms. For all x in X and � � 0, the set �Bop� (x) = fy 2 X j X(y; x) � �gis gS-closed.Proof Let (zn)n be a Cauchy sequence in X and let z 2 X , with z = lim zn, be such that8N 8� > 0 9n � N 9y 2 �Bop� (x); X(zn; y)< �:Then 8N 8� > 0 9n � N; X(zn; x)< �+ �:Because the sequence (zn)n is Cauchy,8� > 0 9N 8n � N; X(zn; x)< �+ �:Consequently, lim X(zn; x) � �, and hence X(z; x) � �. 2Like for the generalized Alexandro� topology, the specialization preorder on a gms X induced byits gS-topology coincides with the preorder underlying X .Proposition 6.8 Let X be a gms. For all x and y in X, x �OgS y if and only if x �X y.Proof: For any gS-open set o, if x 2 o and X(x; y) = 0, then also y 2 o. From this observation,the implication from right to left is clear. For the converse, suppose X(x; y) 6= 0. Then x 62 �Bop0 (y)but y 2 �Bop0 (y). Since, by Lemma 6.7, the set X n �Bop0 (y) is gS-open it follows that x 6�OgS y. 2As promised above, next we show that the generalized Scott topology also encodes all informationabout convergence.Proposition 6.9 Let X be a gms, (xn)n a Cauchy sequence in X, and let x 2 X be such thatx = limxn. For all y 2 X, N ((xn)n) ! y if and only if y �OgS x, that is, limits are maximaltopological limits. 20



Proof: By de�nition of gS-open sets, N ((xn)n) ! x. Hence y �OgS x implies N ((xn)n) ! y.For the converse, let N ((xn)n)! y and assume y 6�OgS x. According to Proposition 6.8 there is a� > 0 such that X(y; x) 6� �. Hence, y 2 X n �Bop� (x), which is a gS-open set by Lemma 6.5. SinceN ((xn)n)! y,9N 8n � N; xn 2 X n �Bop� (x):But 0 = X(x; x) = lim X(xn; x)so there exists M such that for all m �M , X(xm; x) � �. This gives a contradiction. Therefore,y �OgS x. 2From the above proposition we can conclude that in a complete gms every Cauchy sequencetopologically converges to its metric limits. However, not every topologically convergent sequenceis Cauchy. For example, provide the set X = f1; 2; : : : ; !g with the distance functionX(x; y) =8><>: 0 if x = y1n if x = ! and y = n1 otherwiseThen X is an algebraic complete qms with X itself as basis, since there are no non-trivial Cauchysequences. The sequence (n)n topologically converges to ! but is not Cauchy.For an algebraic gms X with basis B, topological convergence (with respect to the gS-topologyon X) is easily characterized: a sequence (xn)n in X converges to x 2 X if and only if8� > 0 8b 2 B; X(b; x)< � ) (9N 8n � N; X(b; xn)< �):Continuity is also encoded by the generalized Scott topology.Proposition 6.10 Let X and Y be two complete gms's. A non-expansive function f : X ! Y ismetrically continuous if and only if it is topologically continuous.Proof: Let f : X ! Y be a non-expansive and metrically continuous function and let o � Y begS-open. We need to prove f�1(o) � X in order to conclude that f is topologically continuous.Indeed, for any Cauchy sequence (xn)n in X and x 2 X with x = limxn we havex 2 f�1(o) () f(x) 2 o() lim f(xn) 2 o [f is metrically continuous]) 9N 9� > 0 8n � N; B�(f(xn)) � o[f is non-expansive, (f(xn))n is a Cauchy sequence, o is gS-open]) 9N 9� > 0 8n � N; B�(xn) � f�1(o) [f is non-expansive]:For the converse assume f : X ! Y to be non-expansive and topologically continuous. Let (xn)nbe a Cauchy sequence in X and x 2 X with x = limxn. Since f is non-expansive, (f(xn))n is aCauchy sequence in Y . Let y = lim f(xn). According the de�nition of metric limit, it su�ces toprove, that Y (y; f(x)) = 0 and Y (f(x); y) = 0. We have thatY (y; f(x)) = lim Y (f(xn); f(x))� lim X(xn; x) [f is non-expansive]= X(x; x) [x = limxn]= 0: 21



Since f is topologically continuous and, by Proposition 6.9, (xn)n converges to x, also (f(xn))nconverges to f(x). By Proposition 6.9 again, f(x) �OgS y. Therefore, by Proposition 6.8,Y (f(x); y) = 0. 2This section is concluded with a characterization of the generalized Scott topology for algebraiccomplete metric spaces in term of the Yoneda embedding. A key step towards the de�nition of atopological closure operator for the generalized Scott topology is to compare the fuzzy subsets ofa basis B of an algebraic complete gms X , rather than the fuzzy subsets of X as we have done forthe generalized Alexandro� topology, with the ordinary subsets of X . To this end, the previouslyde�ned extension and character functions are extended as follows:R : B̂ ! P(X) and � : P(X)! B̂; (15)� 7! fx 2 X j yB(x) �B̂ �g V 7! �b 2 B: inffyB(v)(b) j v 2 V g;where yB : X ! B̂ is the restriction of the Yoneda embedding as de�ned in Theorem 5.6.Similar to Proposition 6.1 we have that the mappings R : hB̂;�B̂i ! hP(X);�i and � :hP(X);�i ! hB̂;�X̂i are monotone, and � is left adjoint to R . Thus, R � � is a closure operatoron X . Since a basis is generally not unique, one might think that its de�nition depends on thechoice of the basis. In Theorem 6.12 below we will demonstrate that this is not the case.In a way similar to (10), the closure operator R � � can be characterized, for an algebraiccomplete gms X with basis B and V � X , by(R � �)(V ) = fx 2 X j 8b 2 B 8� > 0; X(b; x)< �) (9v 2 V; X(b; v)< �)g: (16)An alternative characterization of R � �, which will be useful in the next section, is the following.For an algebraic complete gms X with basis B and V � X ,(R � �)(V ) = fx 2 X j yB(x) �B̂ �(V )g= fx 2 X j B̂(yB(x); �(V )) = 0g= fx 2 X j 8b 2 B; [0;1](yB(x)(b); �(V )(b)) = 0g= fx 2 X j 8b 2 B; infv2V yB(v)(b) � yB(x)(b)g= fx 2 X j 8b 2 B; infv2V X(b; v) � X(b; x)g= fx 2 X j 8b 2 B 8� > 0 9v 2 V; X(b; v) � X(b; x) + �g: (17)The closure operator R � � is topological.Lemma 6.11 Let X be an algebraic complete gms. The closure operator R �� on X is topological.Proof: This lemma is proved using the characterization (16) along the same lines as Lemma 6.2,but one needs the following additional observation. If B is a basis for X then, for any bV and bWin B, �V , �W >0, and x 2 X , such that X(bV ; x)<�V and X(bW ; x)<�W , there exists a b in B suchthat X(bV ; b)<�V , X(bW ; b)<�W , and X(b; x)<�, where � = minf�V �X(bV ; b); �W �X(bW ; b)g.This fact can be proved as follows. Because X is an algebraic complete gms with B as basis, thereexists a Cauchy sequence (bn)n in B with x = lim bn. Because�V > X(bV ; x)= limX(bV ; bn) [x = lim bn, bV is �nite in X]there exists an NV such that, for all n � NV , X(bV ; bn)< �V . Similarly, there exists an NW suchthat, for all n � NW , X(bW ; bn)< �W . Since0 = X(x; x)= lim X(bn; x) [x = lim bn] 22



there exists an N such that, for all n � N , X(bn; x)< �. The element bmaxfNV ;NW ;Ng in B is theone we were looking for. 2Thus, the closure operator R � � induces a topology on algebraic complete gms's. According to(17), a subset V of an algebraic complete gms X with basis B is closed in this topology if andonly ifV = (R � �)(V ) = fx 2 X j 8b 2 B 8� > 0 9v 2 V; X(b; v) � X(b; x) + �g: (18)In the case that X is an algebraic complete partial order with basis B it follows from characteri-zation (16) that for every V � X ,(R � �)(V ) = fx 2 X j 8b 2 B; b �X x) 9v 2 V; b �X vg;which we recognize as the closure operator induced by the ordinary Scott topology.Next we show that the topology induced by R � � on an algebraic complete gms coincides withthe generalized Scott topology. Recall that, for V � X , we write clS(V ) for the closure of V inthe generalized Scott topology.Theorem 6.12 Let X be an algebraic complete gms with basis B. For all V � X, clS(V ) =(R � �)(V ).Proof: This theorem can be proved along the same lines as Theorem 6.3. It follows from charac-terization (16) of R � � and the fact that the generalized �-balls of �nite elements form a basis forthe generalized Scott topology. 2Since the de�nition of the closure operator clS does not use the basis, the above theorem impliesthat the choice of the basis is irrelevant for the de�nition of the closure operator R � �.7 Powerdomains via YonedaA generalized lower (or Hoare) powerdomain for algebraic complete generalized metric spaces is de-�ned, again by means of the Yoneda embedding. Next this powerdomain is characterized in termsof completion and topology. Also the de�nition of generalized upper and convex powerdomainswill be given. Their characterizations will be discussed elsewhere.For the rest of this section let X be an algebraic complete gms and let B be a basis for X .Recall (Theorem 5.6) that yB : X ! bB, de�ned for x 2 X byyB (x) = �b 2 B : X (b; x);is continuous and isometric. This fact justi�es the followingconvention: yB (x) will often be denoted by x.We shall de�ne a powerdomain on X as a subspace of B̂, using the Yoneda embedding yB . Letq : [0;1] � [0;1] ! [0;1] map elements r and s in [0;1] to (their coproduct) minfr; sg. Thismakes h[0;1];qi a semi-lattice: for all r, s, and t in [0;1],(i) r q r = r; (ii) r q s = s q r; (iii) (r q s) q t = r q (s q t):Furthermore, the following inequality holds for all r and s in [0;1]:(iv) r �[0;1] r q s:It is immediate that hB̂;qi is a semi-lattice as well, with q taken pointwise: for � and  in B̂ andb in B,(� q  )(b) = �(b) q  (b): 23



Recalling the idea that elements in B̂ are fuzzy subsets of B, the semi-lattice operation q maybe viewed as fuzzy subset union. A generalized lower powerdomain on X is now de�ned as thesmallest subset of B̂ which contains the image of X under the Yoneda embedding yB ; is metricallycomplete (i.e., contains limits of Cauchy sequences); and is closed under the operation q. Formally,Pgl(X) =\fV � B̂ j yB(X) � V; V is a complete subspace of B̂, and V is closed under qg:This de�nition is very similar to the de�nition of completion in Section 5. It will be a consequenceof Theorem 7.14 below that this de�nition is independent of the choice of the basis B.A generalized Hausdor� distanceThe powerdomain Pgl(X) can be described in a number of ways. The main tool will be theadjunction (15) of Section 6:R : B̂ ! P(X); � 7! fx 2 X j yB(x) �B̂ �g;� : P(X)! B̂; V 7! �b 2 B: inffyB(v)(b) j v 2 V g:Before turning to the characterizations of Pgl(X), let us �rst show how this adjunction induces adistance on P(X): for subsets V and W of X , de�neP(X)(V;W ) = B̂(�(V ); �(W )):Identifying yB(v) with v, and observing that the in�mum of a set of functions is taken pointwise,the function � can also be described as�(V ) = inf V;by which the distance P(X)(V;W ) can be written asP(X)(V;W ) = B̂(inf V; infW ):It satis�es the following equation.Theorem 7.1 For all V and W in P(X),P(X)(V;W ) = inff� > 0 j 8b 2 B 8v 2 V 9w 2W; X(b; w) � �+X(b; v)g:For ordinary metric spaces, where all elements are �nite, the above equality is equivalent withP(X)(V;W ) = inff� > 0 j 8v 2 V 9w 2 W; X(v; w) � �g:Therefore the distance above is called the generalized Hausdor� distance.Proof: First note that it follows from Theorem 5.6 thatX(b; x) = B̂(yB(b); yB(x))= B̂(b; x) [our convention];for every b 2 B and x 2 X . Thus we have to prove:P(X)(V;W ) = inff� > 0 j 8b 2 B 8v 2 V 9w 2W; B̂(b; w) � �+ B̂(b; v)g:Let I denote the set on the right of the equality. In order to show that P(X)(V;W ) � inf I consider� 2 I . (If I = ; then inf I = 1, and we are done.) If V = ; then P(X)(V;W ) = 0 � inf I . Nextlet v = lim bn be an element of V , with bn in B, for all n. Because � 2 I there exists for every nan element w 2W such thatB̂(bn; w) � �+ B̂(bn; v): 24



ThereforeB̂(bn; infW ) = (infW )(bn) [Yoneda lemma]� w(bn)= B̂(bn; w) [Yoneda lemma]� �+ B̂(bn; v);whencêB(v; infW )= B̂(yB(v); infW ) [our convention]= B̂(limyB(bn); infW ) [Theorem 5.6]= lim B̂(yB(bn); infW )= lim B̂(bn; infW ) [our convention]� lim �+ B̂(bn; v)= �+ lim B̂(bn; v) [one easily shows that + preserves backward-limits]= �+ B̂(v; v)= �:It follows thatP(X)(V;W ) = B̂(inf V; infW )= supv2V B̂(v; infW ) [see Lemma 7.2 below]� �:Hence P(X)(V;W ) � inf I .For the reverse let � > 0 be arbitrary and de�ne� = P(X)(V;W ) + �:We shall show that � 2 I , which implies that inf I � P(X)(V;W ). Consider b 2 B and v 2 V .The existence of w 2 W such that B̂(b; w)< �+ B̂(b; v) follows frominfw2W B̂(b; w)= B̂(b; infW ) [Yoneda lemma]� B̂(b; v) + B̂(v; infW )� B̂(b; v) + supu2V B̂(u; infW )= B̂(b; v) + B̂(inf V; infW ) [see Lemma 7.2 below]= B̂(b; v) + P(X)(V;W )< B̂(b; v) + �: 2The following lemma, used above, is an immediate consequence of Lemma 3.2.Lemma 7.2 For any V � X and � 2 B̂, B̂(inf V; �) = supv2V B̂(v; �).
25



Proof: For V � X and � 2 B̂,B̂(inf V; �)= supx2B [0;1]((inf V )(x); �(x))= supx2B [0;1]( infv2V v(x); �(x))= supx2B supv2V [0;1](v(x); �(x)) [Lemma 3.2]= supv2V supx2B [0;1](v(x); �(x))= supv2V B̂(v; �): 2The restriction of the distance on P(X) to subsets of B gives the familiar (non-symmetric) Haus-dor� distance (cf. [Law86]). More precisely:Theorem 7.3 For all V � X and W � X such that either V � B or W is �nite,P(X)(V;W ) = supv2V infw2W X(v; w):Proof: Applying the Yoneda lemma twice gives, for all v in B, infw2W B̂(v; w) = B̂(v; infW ): IfW is �nite the same equality holds for arbitrary v 2 X (by an extension of Lemma 7.2 similar toLemma 3.2). Therefore, if either V � B or W is �nite,supv2V infw2W B̂(v; w) = supv2V B̂(v; infW )= B̂(inf V; infW ) [Lemma 7.2]= P(X)(V;W ): 2For a complete partial order X with basis B, the above amounts toV �P(X) W i� 8v 2 V 9w 2 W; v �X w;which is the usual Hoare ordering. More generally, for a gms X , there is the following characteri-zation of the order induced by P(X).Lemma 7.4 For subsets V and W of X, if W is gS-closed thenV �P(X) W if and only if V �W :Proof: If V � W then P(X)(V;W ) = 0 by Theorem 7.1. Conversely, assume P(X)(V;W ) = 0and let v 2 V . We shall prove that v 2 W . Recall from Section 6 (17) that W is closed if andonly ifW = fx 2 X j 8b 2 B 8� > 0 9w 2W; X(b; w) � �+X(b; x)g:Therefore it is su�cient to show that v satis�es8� > 0 8b 2 B 9w 2W; X(b; w) � �+X(b; v):This follows from P(X)(V;W ) = 0 by Theorem 7.1. 2Because V � clS(V ), for every V � X , the above lemma implies P(X)(V; clS(V )) = 0. AlsoP(X)(clS(V ); V ) = 0: this follows from Theorem 7.1 and the characterization of the generalizedScott closure operator (17). This leads to the following.26



Lemma 7.5 For subsets V and W of X,P(X)(V;W ) = P(X)(clS(V );W ) and P(X)(V;W ) = P(X)(V; clS(W )):Proof: Immediate from the fact that P(X)(V; clS(V )) = 0 = P(X)(clS(V ); V ), and the triangleinequality. 2Characterizing Pgl(X) as a completionLet Pnf (B) be the gms consisting of all non-empty and �nite subsets of B with the non-symmetricHausdor� distance de�ned above: for V and W in Pnf (B),Pnf (B)(V;W ) = B̂(�(V ); �(W ))= maxv2V minw2W X(v; w) [by Theorem 7.3]:Its completion Pnf (B) will be shown to be isomorphic to Pgl(X). We shall need two lemmas anda theorem.The following lemma generalizes Lemma 4.3.Lemma 7.6 For any V in Pnf (B), � (V ) is �nite in bB.Proof: We only treat the case that V = fv1; v2g (the general case follows by induction on thenumber of elements of V ). For any Cauchy sequence (�n)n in bB,bB(�(V ); lim�n)= bB(min fv1; v2g; lim �n)= max f bB(v1; lim�n); bB(v2; lim �n)g [Lemma 7.2]= max flim bB(v1; �n); lim bB(v2; �n)g [Lemma 4.3]= lim max f bB(v1; �n); bB(v2; �n)g [max is continuous]= lim bB(min fv1; v2g; �n) [Lemma 7.2]= lim bB(�(V ); �n): 2The lemma above is used in the proof of the following.Lemma 7.7 Pnf (B) �= flim �(Vn) j Vn 2 Pnf (B); for all n, and (�(Vn))n is Cauchy in B̂g:Proof: Let us denote the set on the right by R. Because the quasi metric space bB is complete,the isometric, and hence non-expansive, function � : Pnf (B) ! bB induces a non-expansive andcontinuous function �# : Pnf (B) ! bB according to Theorem 5.5, making the following diagramcommute:Pnf (B) //y %%� KKKKKKKKKKK Pnf (B)�� �#bB
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It follows from Proposition 5.2 that the image of �# is precisely R. Furthermore �# is isometric:for all Cauchy sequences (Vn)n and (Wm)m in Pnf (B),bB (�# (limn y (Vn)); �# (limm y (Wm)))= bB (limn � (Vn); limm � (Wm))= lim n limm bB (� (Vn); � (Wm)) [� (Vn) is �nite in bB by Lemma 7.6]= lim n limm Pnf (B) (Vn;Wm) [� is isometric]= lim n limm dPnf (B) (y (Vn);y (Wm)) [y is isometric]= dPnf (B) (limn y (Vn); limm y (Wm)) [y (Vn) is �nite in dPnf (B)]= Pnf (B) (limn y (Vn); limm y (Wm)):Thus �# is injective and hence an isomorphism from Pnf (B) to R. 2The following theorem will be often used in the sequel.Theorem 7.8 Pgl(X) = flim �(Vn) j Vn 2 Pnf (B); for all n, and (�(Vn))n is Cauchy in B̂g:Proof: Let R again denote the righthand side. The set R contains yB(X), because yB is contin-uous. Moreover, R is complete (by Lemma 7.7), and is closed under q:lim �(Vn) q lim �(Wn) = lim(�(Vn) q �(Wn)) [q is continuous on B̂]= lim �(Vn [Wn);for Cauchy sequences (�(Vn))n and (�(Wn))n. It follows that Pgl(X) � R.For the converse note that any subset V of B̂ which is closed under q and contains yB(X),also contains �(V ) for any V 2 Pnf (B). If V is moreover complete than lim �(Vn) is in V , for anyCauchy sequence (�(Vn))n in B̂ with Vn 2 Pnf (B), for all n. Consequently, R is contained in anyV having all three properties. Thus R � Pgl(X). 2Combining Lemma 7.7 and Theorem 7.8 yields the following.Corollary 7.9 Pgl(X) �= Pnf (B). 2The above description of the generalized lower powerdomain can be used to give the followingcategorical characterization. Let a metric lower semi-lattice be an algebraic complete quasi metricspace S together with a non-expansive and continuous operation ] : S � S ! S such that, for allx, y, and z in S,(i) x ] x = x; (ii) x ] y = y ] x; (iii) (x ] y) ] z = x ] (y ] z); (iv) x �X x ] y :For example, hPgl(X);qi is a metric lower semi-lattice because Pgl(X) is an algebraic completequasi metric space by the above corollary, and q is continuous and non-expansive.As a consequence of Theorem 7.8, the lower powerdomain construction can be seen to be free.First note that every x in X is mapped by yB : X ! B̂ to an element of Pgl(X). Thus we mayconsider yB as a non-expansive and continuous map yB : X ! Pgl(X).Theorem 7.10 For every metric lower semi-lattice hS;]i, and non-expansive and continuousfunction f : X ! S there exists a unique non-expansive, continuous and additive mapping f? :hPgl(X);qi ! hS;]i such that f? � yB = f :X //yB ##f FFFFFFFFF Pgl(X)�� f?S: 228



(This theorem can be proved similarly to Theorem 5.5.)Now let Lsl(Acq) denote the category of metric lower semi-lattices with continuous, non-expansive and additive functions as morphisms. There is a forgetful functor U : Lsl(Acq) ! Acqwhich maps every metric lower semi-lattices hS;]i to S. As a consequence of Theorem 7.10, thelower powerdomain construction can be extended to a functor Pgl(�) : Acq ! Lsl(Acq) which isleft adjoint to U . As usual, this implies that the functor U � Pgl(�) : Acq ! Acq is locally non-expansive and locally continuous (cf. [Plo83, Rut95]), by which it can be used in the constructionof recursive domain equations.Characterizing Pgl(X) topologicallyIn the rest of this section (in Theorem 7.12, to be precise), we shall make the followingassumption: the basis B of our gms X is countable.(In other words, X is an !-algebraic complete gms.) The main result of this subsection is:Pgl(X) �= P+gS(X);whereP+gS(X) = fV � X j V is gS-closed and non-empty g:The proof makes use of the adjunction � ` R as follows. As with any adjunction between preorders,the co-restrictions of � and R give an isomorphism� : Im(R )! Im(�); R : Im(�)! Im(R ):Recall that the gS-closed subsets of X are precisely the �xed points of R � � (Theorem 6.12).Because R � � � R = R (as with any adjunction between preorders), all elements of Im(R ) aregS-closed. ThusPgS(X) = fV � X j V is gS-closed g= fV � X j V = R � �(V )g= Im(R ):In order to conclude that Pgl(X) �= P+gS(X), it is now su�cient to prove Pgl(X) = Im+(�), whereIm+(�) = f�(V ) 2 B̂ j V � X; V non-empty g:The inclusion Pgl(X) � Im+(�) is an immediate consequence of Theorem 7.8 and the following.Lemma 7.11 For all Cauchy sequences (�(Vn))n in B̂ such that Vn is a �nite and non-emptysubset of B for all n, lim �(Vn) 2 Im+(�).Proof: Let (Vn)n be a sequence of �nite and non-empty subsets of B such that (�(Vn))n is Cauchyin B̂. We shall prove: lim �(Vn) = �(flim vn j vn 2 Vn; for all n; and (vn)n is Cauchy in Bg): (Itwill follow from the proof below that the set on the right is non-empty.) Let (vn)n, with vn 2 Vnbe a Cauchy sequence in B. For all n, �(Vn) � vn (in B̂ taken with the pointwise extension ofthe standard ordering on [0;1]). Therefore lim �(Vn) � lim vn. Because (vn)n is arbitrary, thisimplieslim �(Vn) � �(flim vn j vn 2 Vn; for all n; and (vn)n is Cauchy in Bg):For the converse let b 2 B and � > 0. We shall construct a Cauchy sequence (vn)n in B such thatlim vn(b) � lim �(Vn)(b) + 2 � �:Let N be such that for all n � N ,B̂(�(VN ); �(Vn)) � �; and �(VN )(b) � lim �(Vn)(b) + �:29



Choose vi in Vi arbitrarily, for 0 � i < N . Because VN is �nite there exists vN 2 VN such that�(VN )(b) = B(b; vN ) = vN (b). Choose vN+1 in VN+1 such thatB(vN ; vN+1) = minw2VN+1B(vN ; w):Because, by Theorem 7.3,B̂(�(VN ); �(VN+1)) = maxv2VN minw2VN+1B(v; w);it follows thatB(vN ; vN+1) � B̂(�(VN ); �(VN+1)) � �:Continuing this way, we �nd a sequence (vn)n in B which is Cauchy because (�(Vn))n is. Now forall n � N , [0;1](vN (b); vn(b)) � �, or equivalently, vn(b) � vN (b) + �. Thuslim vn(b) � vN (b) + �= �(VN )(b) + �� lim �(Vn)(b) + 2 � �: 2The reverse inclusion: Im+(�) � Pgl(X), is a consequence of Theorem 7.8 and the following.Theorem 7.12 Let B be countable. For any non-empty subset V of X there exists a sequence(Vn)n of �nite and non-empty subsets of B such that �(V ) = lim �(Vn) in B̂.Proof: Let V � X be non-empty. We shall de�ne a sequence (Vn)n of �nite and (eventually)non-empty subsets of B such that for any � 2 B̂,B̂(�(V ); �) = lim B̂(�(Vn); �):The proof proceeds in �ve steps as follows.1. Let b1; b2; : : : be an enumeration of B. The sets Vn are de�ned by induction on n. They willconsist of elements of B which are approximations of elements of V . More precisely, theywill satisfy, for all n � 1,8b 2 Vn; B1=n2(b) \ V 6= ;:(Recall that B�(b) = fx 2 X j X(b; x)< �g.) For convenience, we start at n = 1. LetV1 = � fb1g if B1(b1) \ V 6= ;; otherwise.Now suppose we have already de�ned Vn. We assume: for all b 2 Vn, B1=n2(b) \ V 6= ;. Inthe construction of Vn+1, we shall include for every element of the previously constructedset Vn again an element (possibly the same), which will be a better approximation of the setV . Moreover, we shall take into account bn+1, the (n+ 1)-th element in the enumeration ofB. LetVn+1 = fimprove(b) j b 2 Vng [ frepresent(bn+1) j B1(bn+1) \ V 6= ;g;where `improve(b)' and `represent(bn+1)' are de�ned as follows:30



� If B1=(n+1)2(b) \ V 6= ; then put improve(b) = b: b is still `good enough'. Otherwiseconsider y 2 V with B̂(b; y) < 1=n2, which exists by the inductive hypothesis thatB1=n2(b) \ V 6= ;. Let y = lim yk, with yk in B for all k. Because b is in B it is �nitein B̂, whenceB̂(b; y) = lim B̂(b; yk):Therefore we can choose a number k big enough such thatB̂(yk; y)< 1=(n+ 1)2 and B̂(b; yk)< 1=n2:De�ne improve(b) = yk. Note thatB1=(n+1)2(improve(b)) \ V 6= ; and B̂(b; improve(b))< 1=n2:� Suppose that B1=(n+1)2(bn+1) \ V 6= ;. Then bn+1 is close enough to V , and wede�ne: represent(bn+1) = bn+1. Otherwise let i be the maximal natural number with1 � i < n + 1 such that B1=i2(bn+1) \ V 6= ; (if such a number does not exist, i.e.,B1(bn+1)\V = ; then the second set in the de�nition of Vn+1 is empty). Let y 2 V besuch that B̂(bn+1; y) < 1=i2. Let y = lim yk, with yk in B for all k. As before we canchoose a number k such thatB̂(yk; y)< 1=(n+ 1)2 and B̂(bn+1; yk)< 1=i2;and put: represent(bn+1) = yk. Note thatB1=(n+1)2(represent(bn+1)) \ V 6= ; and B̂(bn+1; represent(bn+1))< 1=i2:For all b 2 Vn+1, B1=(n+1)2(b) \ V 6= ;. Because V is non-empty there exists N such thatfor all n � N , Vn is non-empty.2. Some properties of (Vn)n: Because B̂(b; improve(b)) < 1=n2, for all n � 1 and b 2 Vn, itfollows thatB̂(�(Vn); �(Vn+1)) = supv2Vn infw2Vn+1 B̂(v; w) [Theorem 7.3]< 1=n2:Because B1=n2(b) \ V 6= ;, for all n � 1 and b 2 Vn, alsoB̂(�(Vn); �(V ))< 1=n2:3. As a consequence, (�(Vn))n is a Cauchy sequence in B̂. Since for all n � 1 and � 2 B̂,B̂(�(Vn); �) � B̂(�(Vn); �(V )) + B̂(�(V ); �)� 1=n2 + B̂(�(V ); �);it follows thatlim B̂(�(Vn); �) � B̂(�(V ); �):4. Next we shall prove the converse:B̂(�(V ); �) � lim B̂(�(Vn); �):Note that by completeness of the quasi metric space B̂, lim �(Vn) always exists, and thatlim B̂(�(Vn); �) = B̂(lim �(Vn); �): 31



Because B̂(�(V ); �) = B̂(inf V; �) = supy2V B̂(y; �) it will be su�cient to prove for all y 2 V ,B̂(y; �) � B̂(lim �(Vn); �):Let � > 0 and y 2 V . We shall show thatB̂(y; �) � B̂(lim �(Vn); �) + 3 � �:Consider a Cauchy sequence (ym)m in B with y = lim ym. Let M be a natural number suchthat 1Xm=M 1m2 < �:Choose m big enough such thatB̂(y; �) = B̂(lim ym; �)= lim B̂(ym; �)� B̂(ym; �) + �;and B̂(ym; y)< 1=M2. Let k � 1 be such that ym = bk. (Recall that B = fb1; b2; : : :g.) Wedistinguish between the following two cases:(i) k � M : Because 1=M2 � 1=k2 it follows from the construction of (Vn)n that bk 2Vk; bk 2 Vk+1; : : : ; bk 2 VM . ThereforeB̂(ym; �)= B̂(bk; �)� supb2VM B̂(b; �)= B̂(inf VM ; �)= B̂(�(VM ); �)� B̂(�(VM ); lim �(Vn)) + B̂(lim �(Vn); �)� 1Xm=M 1m2 + B̂(lim �(Vn); �)� �+ B̂(lim �(Vn); �):(ii) M < k: If B1=k2(bk) \ V = B1=k2(ym) \ V 6= ; then represent(bk) = bk. Otherwise leti be the maximal number below k such that B1=i2 (bk) \ V 6= ;. Because B̂(bk; y) =B̂(ym; y)< 1=M2 it follows that M � i, whenceB̂(bk; represent(bk))< 1=i2 � �:Thus whether B1=k2(bk) \ V is empty or non-empty,B̂(bk; represent(bk)) � �:Consequently,B̂(ym; �)= B̂(bk; �)� B̂(bk; represent(bk)) + B̂(represent(bk); �)� �+ B̂(represent(bk); �)� �+ supb2Vk B̂(b; �) 32



= �+ B̂(�(Vk); �)� �+ B̂(�(Vk); lim �(Vn)) + B̂(lim �(Vn); �)� �+ 1Xm=k 1m2 + B̂(lim �(Vn); �)� �+ �+ B̂(lim �(Vn); �) [since k >M ]:It follows that in both casesB̂(y; �)� B̂(ym; �) + 1=M2� B̂(ym; �) + �� B̂(lim �(Vn); �) + 3 � �:5. We have shown:B̂(�(V ); �) = lim B̂(�(Vn); �): 2Lemma 7.11 and Theorem 7.12, together with Theorem 7.8, imply:Corollary 7.13 Pgl(X) = Im+(�). 2All in all, we have:Theorem 7.14 For an !-algebraic complete gms X, Pgl(X) �= P+gS(X).Proof: The isomorphism PgS(X) �= Im(�) restricts to an isomorphism P+gS(X) �= Im+(�). ByCorollary 7.13, Pgl(X) = Im+(�). Therefore, Pgl(X) �= P+gS(X). 2Using the characterization of Pgl(X) as a completion, it follows that Pgl(X) is an !-algebraiccomplete quasi metric space with as (countable) basis the setfclS(V ) j V 2 Pnf (B)g:The collection of closed sets of a given topological space X often comes with the lower topology[Mic51, Nad78]. Recall that given a topological space hX;O(X)i, the lower topology OL(S) on acollection of subset S � P(X) is de�ned by taking the collection of sets of the formLo = fV 2 S j V \ o 6= ;g;for all o 2 O(X), as a subbasis. This subsection is concluded by showing that for an !-algebraiccomplete quasi metric space X , the lower topology on PgS(X) and the generalized Scott topologyon PgS(X) coincide.Theorem 7.15 For an !-algebraic complete quasi metric space X,OL(PgS(X)) = OgS(PgS(X)):Proof: Let B be a countable basis for X . Let o 2 OgS(X) and consider the sub-basic open setLo 2 OL(PgS(X)). A gS-closed set V is in Lo if and only if V \ o 6= ; or, equivalently, V 6� X n o.Because X n o is gS-closed, it follows from Lemma 7.4 that P(X)(V;X n o) 6= 0. Therefore,Lo = fW 2 PgS(X) j P(X)(W;X n o) 6= 0g:33



But the rightmost set is open in the gS-topology of PgS(X) because it is the complement of thegS-closed setclS(fX n og) = fW 2 PgS(X) j P(X)(W;X n o) = 0g(the latter equality being a consequence of Lemma 6.8 and Lemma 7.4). This provesOL(PgS(X)) �OgS(PgS(X)).For the converse, let V be a �nite subset of B and consider, for some � > 0, the basic open setB�(clS(V )) of the gS-topology on PgS(X). For any W 2 PgS(X),W 2 B�(clS(V ))() P(X)(clS(V );W )< �() P(X)(V;W )< � [Lemma 7.5]() supb2V infx2W X(b; x)< � [Theorem 7.3, V � B]() 8b 2 V; infx2W X(b; x)< �() 8b 2 V; W \ B�(b) 6= ;() W 2 \b2V LB�(b) [B�(b) is basic open in OgS(X)]:Since V is �nite, the above proves that every basic open set of OgS(PgS(X)) can be expressedas the intersection of �nitely many sub-basic open sets of OL(PgS(X)). Thus OgS(PgS(X)) �OL(PgS(X)). 2Generalized upper and convex powerdomainsWe briey sketch the construction of a generalized upper and convex powerdomain. They will betreated in detail elsewhere.Let X be an algebraic complete gms with basis B. A generalized upper powerdomain on Xcan be de�ned dually to Pgl(X) as follows. First [0;1] is considered again as a semi-lattice, nowwith � : [0;1]� [0;1]! [0;1] sending elements r and s in [0;1] to (their product) max fr; sg.Next let�B = ([0;1]B)op:It can be turned into a semi-lattice h �B;�i by taking the pointwise extension of �. There is thefollowing dual version of the Yoneda embedding:�yB : X ! �B; x 7! B(x;�);where B(x;�) maps b in B to B(x; b). Now the generalized upper powerdomain is given byPgu(X) =\fV � �B j �yB(X) � V; V is a complete subspace of �B, and V is closed under �g:Also this powerdomain can be characterized in a number of ways, one of which is via completion:Consider again Pnf (B), this time with distance, for all V and W in Pnf (B),Pnf (B)(V;W ) = supw2W infv2V B(v; w):Then the completion of Pnf (B) is isomorphic to Pgu(X). In the special case that X is a preorder,this amounts to the standard de�nition of the upper, or Smyth, powerdomain.A generalized convex powerdomain is obtained by combining the constructions of the general-ized lower and upper powerdomains (thus using both the Yoneda embedding and its dual). It canagain be easily described as the completion of Pnf (B), now taken with distancePnf (B)(V;W ) = max fsupv2V infw2W B(v; w); supw2W infv2V B(v; w)g:For a preorder X , the convex powerdomain coincides with the standard convex, or Plotkin, pow-erdomain; for an ordinary metric space, it yields the powerdomain of compact subsets.34



8 Related workThe thesis that fundamental structures are categories has been the main motivation for Lawverein his study of generalized metric spaces as enriched categories [Law73]. Lawvere's work togetherwith the more topological perspective of Smyth [Smy88] have been our main source of inspirationfor the present paper which continues the work of Rutten [Rut95]. Generalized metric spaces are aspecial instance of Lawvere's V-categories. The non-symmetric metric for [0;1] is also describedand studied in his paper. The notion of forward Cauchy sequence for a non-symmetric metricspace is from [Smy88] as well as the notion of limit. A purely enriched categorical de�nition offorward Cauchy sequences and of limits can be found in Wagner's [Wag94, Wag95, Rut95]. In[Rut95] and [Rut96], the de�nitions of forward limit and backward limit are shown to be specialinstances of the enriched-categorical notions of weighted limit and weighted colimit. The notionof �niteness and algebraicity for a generalized metric space are from [Rut95].Clearly we are working in the tradition of domain theory, for which Plotkin's [Plo83] has beenour main source of information.Completion and topology of non-symmetric metric spaces have been extensively studied in[Smy88], seeking to reconcile metric spaces and complete partial orders as topological spaces byconsidering quasi-uniformities. Smyth gives criteria for the appropriateness of a topology for aquasi-uniform space. Also a completion by means of Cauchy sequences is present in his work. Themain di�erence with our work is the simplicity of the theory of generalized metric spaces obtainedby the enriched categorical perspective, in particular by the use of the Yoneda Lemma. Indeed,both the categorical perspective of Lawvere and the topological one of Smyth have been combinedin our approach to obtain a reconciliation of complete metric spaces with complete partial orders.The fact that the Yoneda lemma gives rise to completion is well known for many mathemat-ical structures such as groups, lattices, and categories. In [Wag95], an enriched version of theDedekind-MacNeille completion of lattices is given. In [SMM95], the Yoneda lemma is used inthe de�nition of a completion of monoidal closed categories. The use of the Yoneda lemma forthe completion of generalized metric spaces is new, but it is suggested by an embedding theoremof Kuratowski [Kur35] and the de�nition of completion as in [Eng89, Theorems 4.3.13-4.3.19] forstandard metric spaces. A metric version of the Yoneda lemma also occurs, though not under thatname, in [JMP86, Lemma II-2.8].The comprehension schema as a comparison between predicates and subsets has been studiedin the context of generalized metric spaces by Lawvere [Law73] and Kent [Ken88]. The de�-nition of the generalized Scott topology via the Yoneda embedding seems to be new while thedirect de�nition|by specifying the open sets|is briey mentioned in the conclusion of [Smy88].Recently, Flagg and S�underhauf [FS96] have proved that our generalized Scott topology of an al-gebraic complete qms arises as the sobri�cation of its basis taken with the generalized Alexandro�topology. A generalized Scott topology is also given in [Wag95]. However his notion of topologydoes not coincide with the standard one: for example it is not the �-ball topology in the case ofstandard metric spaces.Another important topological approach to quasi metric spaces which needs to be mentionedis that of, again, Smyth [Smy91] and Flagg and Kopperman [FK95]. They consider quasi metricspaces equipped with the generalized Alexandro� topology. In order to reconcile metric spaceswith complete partial orders they assign to partial orders a distance function which, in general,is not discrete. Their approach to topology, completion and powerdomains is much simpler thanours because many of the standard metric topological theorems can be adapted. The price to bepaid for such simplicity is that this approach only works for a restricted class of spaces: they haveto be spectral. Hence a full reconciliation between metric spaces and partial orders is not possible(e.g., only algebraic cpo's which are so-called 2=3 SFP are spectral in their Scott topology). Alsothe work of S�underhauf on quasi-uniformities [S�un94] is along the same lines.The study of powerdomains for complete generalized metric spaces is new. Some results onthe restricted class of totally bounded quasi metric spaces are due to Smyth [Smy91] and Flaggand Kopperman [FK95]. The lower powerdomain has also been studied by Kent [Ken88] but forgeneralized metric spaces which need not be complete. Our use of the Yoneda embedding for35
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A Topological preliminariesA topology O(X) on a set X is a collection of subsets of X that is closed under �nite intersectionsand arbitrary unions. The pair hX;O(X)i is called a topological space and every o 2 O(X) iscalled an open set of the space X . A set is closed if its complement is open. A base of a topologyO(X) on X is a set B � O(X) such that every open set is the union of elements of B. A subbaseof O(X) is a set S � O(X) such that the collection of �nite intersections of elements in S is abasis of O(X).Every topology O(X) on a set X induces a preorder on X called the specialization preorder:for any x and y in X , x �O y if and only if8o 2 O(X); x 2 o) y 2 o:A topology is called T0 if the specialization preorder is a partial order.A closure operator on a set X is a function cl : P(X) ! P(X) such that, for all S and S0 inP(X), (i) S � cl(S) (ii) cl(S) = cl(cl(S))(iii) if S � S0 then cl(S) � cl(S0)A closure operator is strict if cl(;) = ;. A topological closure operator is a strict closure operatorcl that moreover is �nitely additive: cl(S[S0) = cl(S)[ cl(S0). Every topological closure operatorinduces a topology: the closed sets are the �xed points of the closure operator. Conversely, everytopology O(X) on X de�nes a topological closure operator, which maps a subset S of X to theintersection of all closed sets containing S. This closure operator can also be characterized asfollows: Let S be a subset of X . An element x in X is a cluster point of S if for every open seto 2 O(X), x 2 o implies o \ (S n fxg) 6= ;; that is, x cannot be separated from S using open sets.Let Sd be the collection of all cluster points of S (it is called the derived set). Thencl(S) = S [ Sd:Let hX;O(X)i be a topological space. A non-empty subset F � O(X) is a �lter if it satis�es1. if o1 2 F and o1 � o2 then o2 2 F ; and2. if o1 2 F and o2 2 F then o1 \ o2 2 F .For instance, every element x in X induces a �lter N (x) = fo 2 O(X) j x 2 og. More generally,any sequence (xn)n in X induces a �lterN ((xn)n) = fo 2 O(X) j 9N � 0 8n � N; xn 2 og:A �lter F converges to an element x, denoted by F ! x, if N (x) � F . A sequence (xn)n is saidto converge to an element x if N ((xn)n)! x.A function f : X ! Y between two topological spaces X and Y is topologically continuous ifthe inverse image f�1(o) = fx 2 X j f(x) 2 og of any o in O(Y ) is in O(X). If f : X ! Y istopologically continuous then for every sequence (xn)n in X and x 2 XN ((xn)n)! x ) (N ((f(xn)n)! f(x):The standard topology associated with an ordinary metric space X is the �-ball topology: a seto � X is open if8x 2 o 9� > 0; B�(x) � o;where B�(x) = fy 2 X j X(x; y) < �g. The set fB�(x) j x 2 X & � > 0g is a basis for �-balltopology.The standard topology associated with a preorder X is the Alexandro� topology, for which a seto � X is open if, for x and y in X ,x 2 o and x � y ) y 2 o; 39



that is, o is upper-closed. If the preorder has a least upper bound for every !-chain, then theScott topology is more appropriate. It consists of those upper closed subsets o � X that moreoversatisfy, for any !-chain (xn)n in X ,Gxn 2 o ) 9N 8n � N; xn 2 o:Clearly, every Scott open set is also Alexandro� open. The converse is generally not true if thepreorder X is not �nite. If X is an !-algebraic cpo with basis BX then the set fb" j b 2 BXg,with b" = fx 2 X j b � xg, is a basis for the Scott topology.B Sequences of sequencesThe following two lemmas express that the limit of a Cauchy sequence which consists of the limitsof Cauchy sequences of �nite elements, can be obtained as the limit of a (kind of) diagonal sequenceof �nite elements.Lemma B.1 Let X be a subspace of a complete qms Y . Let all elements of X be �nite in Y . Forevery n, let (umn )m be a Cauchy sequence in X with limitlimm umn = yn: (19)Assume that (yn)n is a Cauchy sequence in Y satisfying8n; Y (yn; yn+1) � 13n2n : (20)Then there exist subsequences (xmn )m of (umn )m in X satisfying8m8n;X (xmn ; xmn+1) � 1n (21)8n8m;X (xmn ; xm+1n ) � 1m (22)8n; limm xmn = yn (23)y1 //16 y2 //124 y3 //172 � � � // limn yn...OO ...OO ...OO
x31OO13 //1 x32OO13 //12 x33OO13 //13 � � �x21OO12 //1 x22OO12 //12 x23OO12 //13 � � �x11OO1 //1 x12OO1 //12 x13OO1 //13 � � �Proof: Because the sequences (umn )m are Cauchy, there exist subsequences (vmn )m of (umn )msatisfying8n8m;X (vmn ; vm+1n ) � 1m2m : (24)We will construct subsequences (xmn )m of (vmn )m satisfying8m8n;X (xmn ; xmn+1) � 1n2n : (25)40



Since, for all n,lim mY (vmn ; yn+1)= Y (limm vmn ; yn+1)= Y (yn; yn+1) [(19)]� 13n2n [(20)]we can conclude that8n9Mn8m �Mn; Y (vmn ; yn+1) � 23n2n :By removing from each sequence (vmn )m the �rstMn elements we obtain the subsequences (wmn )m =(vMn+mn )m satisfying8n8m;Y (wmn ; yn+1) � 23n2n : (26)Since, for all n and m,limk Y (wmn ; wkn+1)= Y (wmn ; limk wkn+1) [wmn is �nite in Y ]= Y (wmn ; yn+1) [(19)]� 23n2n [(26)]we have that8n8m9Kmn 8k � Kmn ; Y (wmn ; wkn+1) � 1n2n :Without loss of generality we can assume that the sequences (Kmn )m are strictly increasing. Thesubsequences (xmn )m = (wLmnn )m whereLmn = ( m if n = 1KLmn�1n�1 if n > 1satisfy (25).Because the subsequences (xmn )m of the Cauchy sequences (umn )m are again Cauchy and have thesame limits, these subsequences also satisfy (23). Since for all m, n, and i, with i � n,X (xmn ; xmi )� i�1Xh=n X (xmh ; xmh+1)� i�1Xh=n 1h2h [(25)]� 1n :Hence the subsequences (xmn )m satisfy (21). Similarly we can show that (24) implies (22). 2The above proof shows some resemblance with the proof of Theorem 2 of [Smy88]. Thecompleteness of Y ensures the existence of the limits of the Cauchy sequences (umn )m. If we dropthe condition that all elements of X are �nite in Y , then the above lemma does not hold any more.41



Lemma B.2 Let X be a subspace of a complete qms Y . Let (yn)n be a Cauchy sequence in Y .Let (xmn )m be Cauchy sequences in X satisfying8m8n8i� n;X (xmn ; xmi ) � 1n (27)8n8m8j � m;X (xmn ; xjn) � 1m (28)8n; limm xmn = yn (29)Then (xkk)k is a Cauchy sequence in X and limk xkk = limn yn.y1 // y2 // y3 // � � � // limk xkk = limn yn...OO ...OO ...OO . . . ??����x31OO13 //1 x32OO13 //12 x33OO13 //13 @@���� � � �x21OO12 //1 x22OO12 //12 ??���� x23OO12 //13 � � �x11OO1 //1 ??���� x12OO1 //12 x13OO1 //13 � � �Proof: Because, for all n and m, with m � n,X (xnn; xmm)� X (xnn; xnm) +X (xnm; xmm)� 2n [(27) and (28)]the sequence (xkk)k is Cauchy.For all n, m, and k, with k � n and k � m,Y (xmn ; xkk)� Y (xmn ; xmk ) + Y (xmk ; xkk)� 1n + 1m [(27) and (28)]Consequently,Y (limn yn; limk xkk)= lim nY (yn; limk xkk)= lim nY (limm xmn ; limk xkk) [(29)]= lim n lim mY (xmn ; limk xkk)� lim n lim m limk Y (xmn ; xkk) [Proposition 3.4]� lim n lim m limk 1n + 1m [see above]= 0:For all n, m, and k, with n � k and m � k,Y (xkk ; xmn )� Y (xkk; xmk ) + Y (xmk ; xmn )� 2k [(27) and (28)] 42



Hence,Y (limk xkk ; limn yn)= lim k Y (xkk ; limn yn)� lim k limn Y (xkk; yn) [Proposition 3.4]= lim k limn Y (xkk; limm xmn ) [(29)]� lim k limn limm Y (xkk ; xmn ) [Proposition 3.4]� lim k limn limm 2k [see above]= 0:From the above we can conclude that limk xkk = limn yn. 2From the above two lemmas we can conclude the following.Proposition B.3 Let X be a subspace of a complete qms Y . Let all elements of X be �nite inY . Thenlim CS (X) = f limn xn j (xn)n is a Cauchy sequence in X gis a complete subspace of Y .Proof: Clearly lim CS (X) is a subspace of Y . Let (yn)n be a Cauchy sequence in lim CS (X).We have to show that its limit limn yn is an element of lim CS (X). Without loss of generality wecan assume that 8n; Y (yn; yn+1) � 13n2n . From Lemma B.1 and B.2 we can conclude that thereexists a Cauchy sequence (xkk)k in X satisfying limk xkk = limn yn. Consequently, limn yn is anelement of lim CS (X). 2
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