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Abstract

Generalized ultrametric spaces are a common generalization of preorders and ordinary
ultrametric spaces (Lawvere 1973, Rutten 1995). Combining Lawvere’s (1973) enriched-
categorical and Smyth’ (1987, 1991) topological view on generalized (ultra)metric spaces,
it is shown how to construct 1. completion, 2. topology, and 3. powerdomains for general-
ized ultrametric spaces. Restricted to the special cases of preorders and ordinary ultrametric
spaces, these constructions yield, respectively: 1. chain completion and Cauchy completion; 2.
the Alexandroff and the Scott topology, and the e-ball topology; 3. lower, upper, and convex
powerdomains, and the powerdomain of compact subsets. Interestingly, all constructions are
formulated in terms of (an ultrametric version of) the Yoneda (1954) lemma.
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1 Overview

A generalized ultrametric space consists of a set X together with a distance function X(—,—) :
X x X — [0,1], satisfying X (z,z) = 0 and X(z, z) < max{X(z,y), X(y,2)}, for all z, y, and =
in X. The family of generalized ultrametric spaces contains all ordinary ultrametric spaces (for
which the distance is moreover symmetric and different elements cannot have distance 0) as well as
all preordered spaces (because a preorder relation is simply a discrete distance function mapping
into the set {0,1}). Thus generalized ultrametric spaces provide a common generalization of both
preordered spaces and ordinary ultrametric spaces, which is the main motivation for the present
study.

Our sources of inspiration are the work of Lawvere on V-categories and generalized metric
spaces [Law73] and the work by Smyth on quasi metric spaces [Smy91], and we have been influenced
by recent work of Flagg and Kopperman [FK95] and Wagner [Wag94]. The present paper continues
earlier work [Rut95], in which some of the basic theory of generalized ultrametric spaces has been
developed.

The guiding principle throughout is Lawvere’s view of ultrametric spaces as [0, 1]-categories,
by which they are structures that are formally similar to (ordinary) categories. As a consequence,
insights from category theory can be adapted to the world of ultrametric spaces. In particular, we
shall give the ultrametric version of the famous Yoneda Lemma, which expresses, intuitively, that
one may identify elements x of a generalized ultrametric space X with a description of the distances
between the elements of X and z (formally, the function that maps any y in X to X(y,z)). This
elementary insight (with an easy proof) will be shown to be of fundamental importance for the
theory of generalized ultrametric spaces (and, a fortiori, both for order-theoretic and ultrametric
domain theory as well). Notably it will give rise to

1. a definition of completion of generalized ultrametric spaces, generalizing both chain comple-
tion of preordered spaces and metric Cauchy completion;

2. a topology on generalized ultrametric spaces generalizing both the Scott topology for arbi-
trary preorders, and the metric e-ball topology;

3. the definition and characterization of three powerdomains generalizing on the one hand the
familiar lower, upper, and convex powerdomains from order-theory; and on the other hand
the ultrametric powerdomain of compact subsets.

Our main motivation for considering generalized wultrametric spaces rather than generalized
metric spaces (where one would have X (z,z) < X(z,y) + X(y, z), for all z, y, and z in X) is the
above mentioned fact that the distance induced by a preorder is indeed a generalized ultrametric.
Generalized ultrametric spaces seem to arise moreover naturally in the semantics of programming
languages, notably when dealing with transition systems (cf. [Rut95]). Finally, because of the
strong triangle inequality ultrametric spaces are from a computational point of view  better
behaved than metric spaces. However, the results presented here on completion and topology
of generalized ultrametric spaces apply equally well to generalized metric spaces. It is to be
investigated whether the various characterization theorems for the powerdomains would still hold
in the generalized metric case.

As mentioned above, generalized ultrametric spaces and the constructions that are given in
the present paper both unify and generalize a substantial part of order-theoretic and ultrametric
domain theory. Both disciplines play a central role in (to a large extent even came into existence
because of) the semantics of programming languages (cf. recent textbooks such as [Win93] and
[BV95], respectively). The use of generalized ultrametric spaces in semantics, or more precisely,
in the study of transition systems, will be an important next step. The combination of results
from [Rut95] (on domain equations) and the present paper is expected, for instance, to lead to
domains that are suitable for simulation and bisimulation.

The paper is organized as follows. Sections 2 and 3 give the basic definitions and facts on
generalized ultrametric spaces. After the Yoneda Lemma in Section 4, completion, topology and
powerdomains are discussed in Sections 5, 6, and 7. Finally Section 8 discusses related work.



2 Generalized ultrametric spaces as [0, 1]-categories

Generalized ultrametric spaces are introduced and shown to be [0, 1]-categories in the sense of
Lawvere. In order to see this, a brief recapitulation of Lawvere's enriched-categorical view of
metric spaces is presented. The section concludes with a few basic definitions and properties to
be used in the sequel. (The reader not familiar with category theory might want to skip the
brief summary of enriched categories, and only look at the special case of generalized ultrametric
spaces.)

A generalized ultrametric space (gum for short) is a set X together with a mapping

X(—,—): X xX —10,1]
which satisfies, for all z, y, and z in X,
1. X(z,z) =0, and
2. X(s,2) < max{X(z,y), Xy, 2)},

the so-called strong triangle inequality. The real number X (z,y) will be called the distance from
z to y. (Note that it is bounded by 1.) Examples of generalized ultrametric spaces are:

1. The set A* of finite and infinite words over some given set A with distance function, for v
and w in A%,
0 if v is a prefix of w
A = .
(v, w) { 27"  otherwise,

where n is the length of the longest common prefix of v and w.

2. Any preorder (P, <) (satisfying for all p, ¢, and 7 in P, p < p, and if p < ¢ and ¢ < 7 then
p < 1) can be viewed as a generalized ultrametric space, by defining

_J 0 ifp<gq
P(p,Q)—{l if p<q.

By a slight abuse of language, any gum stemming from a preorder in this way will itself be
called a preorder.

3. The set [0,1] with distance, for 7 and s in [0, 1],

0 ifr>s
[0’1](T’5)_{ s ifr<s.

We briefly review Lawvere’s [Law73] conception of metric spaces as V-categories [EK65, Kel82].
Then we shall follow and further elaborate his approach for the special case of generalized ultra-
metric spaces, which will be shown to be [0, 1]-categories. The main point is that, in general, many
properties of V-categories derive from the structure on the underlying category V. In our case,
therefore, many properties of generalized ultrametric spaces are determined by properties of [0, 1].

The starting point is a category V together with a functor

R :VxV-YV

which is symmetric and associative, and has a unit k. This defines a so-called symmetric monoidal
structure on V. The category V is required to be complete and cocomplete (i.e., all limits and
colimits in V should exist), and its monoidal structure should be closed: that is, there exists an
(internal hom) functor

Hom :V? xV —V



such that for all @ in V, the functor Hom(a, —) (mapping b in V to Hom(a, b)) is right adjoint to
the functor a ® — (which maps bin V to a ® b). A V-category, or a category enriched in V), is any
set (more generally, class) X together with the assignment of an object X (z,y) of V to every pair
of elements (z,y) in X; the assignment of a V-morphism

X(z,y) ® X(y,2) - X(z, 2)
to every triple (z,y, z) of elements in X; and the assignment of a V-morphism
k— X(z,z)

to every element z in X, satisfying a number of naturality conditions (omitted here since they are
trivial in the particular case we are interested in).

For instance, the category of all sets is a (complete and cocomplete) symmetric monoidal closed
category (where ® is given by the Cartesian product, and any one element set is a unit). The
corresponding V-categories are just ordinary categories: X (z,y) is given by the homset of all
morphisms between two objects x and y in a category X, and the V-morphisms that are required
to exist are just mappings defining the composition of morphisms, and giving identity morphisms.

Generalized ultrametric spaces can now be seen to be [0, 1]-enriched categories as follows. First
of all, [0, 1] is shown to be a complete and cocomplete symmetric monoidal closed category. It is a
category because it is a preorder (objects are the real numbers between 0 and 1; and for r and s in
[0, 1] there is a morphism from 7 to s if and only if 7 > s). It is complete and cocomplete: equalizers
and coequalizers are trivial (because there is at most one arrow between any two elements of [0, 1]),
the product r x s of two elements r and s in [0, 1] is given by max {r, s}, and their coproduct r + s
by min{r,s}. More generally, products are given by sup, and coproducts are given by inf. The
monoidal structure on [0, 1] is given by

max : [0,1] x [0,1] — [0, 1],

assigning to two real numbers their maximum, which is symmetric and associative, and for which
0 is the unit element. (Note that in this case the monoidal product is identical to the categorical
product. In general this need not be the case.) Counsider the following (‘internal hom-’) functor

[0,1](—,—) : [0,1]°P x [0,1] — [0,1]

which assigns to r and s in [0, 1] the distance [0, 1](r, s) as defined in the third example above. The
following fundamental equivalence states that [0, 1](¢, —) is right-adjoint to max {¢, —}, for any r
in [0,1]:

Proposition 2.1 For allr, s, and t in [0, 1],

max {t,s} > r if and only if s > [0,1](¢,r).
O

As a consequence, [0,1] is a (complete and cocomplete symmetric) monoidal closed category. (In
fact, since the monoidal structure is given by the categorical product on [0, 1], it is even Cartesian
closed.)

The [0, 1]-categories are precisely the generalized ultrametric spaces introduced at the begin-
ning of this section: sets X together with a mapping assigning to z and y in X an object, i.e.,
a real number X (z,y) in [0,1]. The existence of a [0,1]-morphism from X(z,y) ® X(y,z) =
max { X (z,y), X(y, 2)} to X(z, z) gives the second, and the existence of a morphism from k£ =0
to X (z,x) gives the first of the axioms for generalized ultrametric spaces.

As mentioned above, many constructions and properties of generalized ultrametric spaces are
determined by the category [0,1]. Important examples are the definitions of limit and complete-
ness, presented in Section 3. Also the category of all gums, which is introduced next, inherits
much of the structure of [0, 1].

Let Gums be the category with generalized ultrametric spaces as objects, and non-expansive
maps as arrows: i.e., mappings f : X — Y such that for all z and z' in X,



Y(f(2),f(a") < X(z,2").

A map f is isometric if for all z and z' in X,
Y(f(x), f(a')) = X(z,2").

Two spaces X and Y are called isometric (isomorphic) if there exists an isometric bijection between
them. The product X x Y of two gums X and Y is defined as the Cartesian product of their
underlying sets, together with distance, for (z,y) and (z’,y') in X x Y,

X xY((z,y), (2',y') = max {X(z,2'), Y(y,9")}.

Note that this definition uses the product (max) of [0,1]. The ezponent of X and Y is defined by
Y¥ ={f:X — Y| fis non-expansive },

with distance, for f and g in Y X,

Y¥(f,9) = sup{Y (f(2),9(2)) | z € X}.

The fact that the category [0, 1] is monoidal closed implies that the category Gums is monoidal
closed as well: i.e., for all gums X, Y, and Z,

This section is concluded by a number of constructions and definitions for generalized ultra-
metric spaces that will be used in the sequel.
A generalized ultrametric space generally does not satisfy

3. if X(z,y) =0 and X(y,z) =0 then z =y,
4 X(ay) = X(y.2)

which are the additional conditions that hold for an ordinary ultrametric space. Therefore it is
sometimes called a pseudo-quasi ultrametric space. A quasi ultrametric space is a gum which
satisfies axioms 1, 2, and 3. Note that [0,1] is a quasi ultrametric space. A gum satisfying 1, 2,
and 4 is called a pseudo ultrametric space.

The opposite X°P of a gum X is the set X with distance

XP(x,2') = X(2', z).
With this definition, the distance function X (—, —) can be described as a mapping
X(—,—): X" x X —[0,1].

Using Proposition 2.1 one can easily show that X (—, —) is non-expansive.

We saw that any preorder P induces a gum. (Note that a partial order induces a quasi
ultrametric and that the non-expansive mappings between preorders are precisely the monotone
maps.) Conversely, any gum X gives rise to a preorder (X, <x), where <x, called the underlying
ordering of X, is given, for z and y in X, by

z <x y if and only if X (z,y) = 0.

Any (pseudo or quasi) ultrametric space is a fortiori a gum. Conversely, any gum X induces a
pseudo ultrametric space X*, the symmetrization of X, with distance

X*(z,y) = max{X(z,y), X*(z,y)}.

For instance, the ordering that underlies A> is the usual prefix ordering, and (A°)* is the stan-
dard ultrametric on words. The generalized ultrametric on [0, 1] induces the reverse of the usual
ordering: for r and s in [0, 1],



7 <[p,1] $ if and only if s < r;
and the symmetric version of [0,1] is defined by
s |0 ifr=s
[0,1]%(r,8) = { max {r,s} if r #s.

Any gum X induces a quasi ultrametric space [X] defined as follows. Let = be the equivalence
relation on X defined, for  and y in X, by

z =~y iff (X(z,y) =0 and X(y,z)=0).

Let [z] denote the equivalence class of z with respect to &, and [X] the collection of all equivalence
classes. Defining [X]([z],[y]) = X(z,y) turns [X] into a quasi ultrametric space. It has the
following universal property: for any non-expansive mapping f : X — Y from X to a quasi
ultrametric space Y there exists a unique non-expansive mapping f’ : [X] — Y with f'([z]) = f(=),
for z € X.

3 Cauchy sequences, limits, and completeness

Cauchy sequences are introduced. It is explained how such sequences look like in [0, 1], and how
to define in [0, 1] the notion of metric limit. This will give rise to a definition of metric limit for
arbitrary generalized ultrametric spaces. Furthermore the notions of completeness, finiteness, and
algebraicity are introduced.

A sequence (z,), in a generalized ultrametric space X is forward-Cauchy if

VYe>03INVn >N, X(zn,Tni1) <e.
Note that this is equivalent to the more familiar condition:
Ve>03INVn>m >N, X(zm,zn) <e¢,

because of the strong triangle inequality. Since our metrics need not be symmetric, the following
variation exists: a sequence (z,,), is backward-Cauchy if

VYe>03INVn >N, X(zni1,2n) <e.

If X is an ordinary ultrametric space then forward-Cauchy and backward-Cauchy both mean
Cauchy in the usual sense. And if X is a preorder then Cauchy sequences are eventually increasing;:
there exists an N such that for all n > N, z,, < x,41. (Increasing sequences in a preorder are
also called chains.) Similarly backward-Cauchy sequences are eventually decreasing.

Cauchy sequences in [0, 1], with the generalized ultrametric of Section 2, are particularly simple:
every forward-Cauchy sequence either converges to 0 or is eventually decreasing; dually, every
backward-Cauchy sequence either converges to 0 or is eventually increasing.

Proposition 3.1 A sequence (1), in [0,1] is forward-Cauchy if and only if
either: Ve >0 AN Vn > N, r, <e€, or: ANVYn > N, r, > rpy1.
Dually, it is backward-Cauchy if and only if

either: Ve >0 AN Vn > N, r, <e€, or: ANVn > N, r, < rpyq.

Proof: We prove only the first statement, the second being dual. Sequences that converge to 0
or that are eventually decreasing are easily seen to be forward-Cauchy. Conversely, let (r,), be
forward-Cauchy in [0, 1]. Suppose there exists € > 0 such that

VN dn > N, r, >e.

We claim that there exists an N such that for all n > N, r,, > €; for suppose not:



VN dn >N, r, <e.

Because (r,,), is forward-Cauchy, there exists M such that for all m > M, [0, 1](ry, Tmi1) < €.
Consider ny > M with r,,, <, and consider ny > n; with r,, > €. Then

€ < Ty,
= [0,1)(rn,,7n,) [definition distance on [0, 1]]
< €

3

a contradiction. Therefore let N be such that for all n > N, r, >e. Let M > N such that for
all m > M, [0,1)(rm,"m+1) < €, which is equivalent to r,,,41 < max {e,7,,} by Proposition 2.1.
Because 1, > €, for all m > M, this implies 7,41 < 7. O

Because Cauchy sequences in [0, 1] are that simple, the following definitions are easy as well: the
forward-limit of a forward-Cauchy sequence (ry,), in [0,1] is given by

limr,, = sup inf 7.
b n k>n

Dually, the backward-limit of a backward-Cauchy sequence (r,), in [0,1] is

limr,, = inf sup 7g.
— n k>n

These numbers are what one intuitively would consider as metric limits of Cauchy sequences. If
[0, 1] is taken with the standard Euclidian metric: d(r,r') = |r —¢'|, for r and 7’ in [0, 1], then both
forward-Cauchy and backward-Cauchy sequences are Cauchy with respect to d, and the forward-
limit and backward-limit defined above coincide with the usual notion of limit with respect to
d.

The following proposition shows how forward-limits and backward-limits in [0, 1] are related
(cf. [Wag95]).

Proposition 3.2 For a forward-Cauchy sequence (1), in [0,1], and all v in [0,1],
[0, 1](lim ry,, r) = Hm]0, 1](rp, 7).
For a backward-Cauchy sequence (1), in [0,1], and all v in [0,1],

[0, 1](r, l’gn Tn) = l'gn[O, 1(r,ry).

O
A proof follows easily from the following elementary facts:
Lemma 3.3 For oll V C [0,1] and r in [0,1],
1. [0,1](inf V,r) = sup|0, 1](v, r);
veV
2. [0,1)(r, sup V) = sup|0, 1](r, v);
veV
3. [0,1](r,inf V) < iné[O, 1](r, v).
vE
If V is finite then the latter inequality is in fact an equality. O

Forward-limits in an arbitrary generalized ultrametric space X can now be defined in terms of
backward-limits in [0, 1]: an element z is a forward-limit of a forward-Cauchy sequence (z,,), in

X

3

z=limz, iff Vy € X, X(z,y) =lim X(z,,y).



This is well defined because of the following.

Proposition 3.4 Let (z,)n be a forward Cauchy sequence in X. Let © € X.
1. The sequence (X (z,xy,))n is forward Cauchy in [0,1].

2. The sequence (X (zn,x))n s backward Cauchy in [0,1].

Note that our earlier definition of the forward-limit of forward-Cauchy sequences in [0, 1] is con-
sistent with this definition for arbitrary gums: this follows from the first statement of Proposition
3.2.

For ordinary ultrametric spaces, the above defines the usual notion of limit:

z =limz, if and only if Ve >03IN Vn > N, X(z,,z) <e.

If X is a preorder and (z,), is a chain in X then

x =limz, ifand only if Vy € X, 2z <xy<Vn>0, z, <x v,

ie., z = | |x,, the least upperbound of the chain (z,,),.

One could also consider backward-limits for arbitrary gums. Since these will not play a role
in the rest of this paper, this is omitted. For simplicity, we shall use Cauchy instead of forward-
Cauchy. Similarly, we shall write

lim z,, rather than lim z,,.

Note that subsequences of a Cauchy sequence are Cauchy again. If a Cauchy sequence has a
limit xz, then all its subsequences have limit z as well. Cauchy sequences may have more than one
limit. All limits have distance 0, however. As a consequence, limits are unique in quasi ultrametric
spaces.

The following fact will be useful in the future:

Proposition 3.5 Let (z,), be a forward Cauchy sequence in X. Let z € X.
X (z,lim, z,) < lim, X (z,z,).
Proof The inequality follows from

[0,1](lim,, X (z,z,), X (z,lim, z,))
= lim, [0,1(X (2, z,), X (z,limy, 2,))
< l;annX(xm lim, ©,) [the mapping X(z,—): X — [0, 1] is non-expansive]
= X(lim, 2y, lim, z,)

= 0.

A generalized ultrametric space X is complete if every Cauchy sequence in X has a limit. A subset
V C X is complete if every Cauchy sequence in V has a limit in V. For instance, [0, 1] is complete.
If X is a partial order completeness means that X is a complete partial order, cpo for short: all
w-chains have a least upperbound. For ordinary ultrametric spaces this definition of completeness
is the usual one. There is the following fact (cf. Theorem 6.5 of [Rut95]).

Proposition 3.6 Let X and Y be generalized ultrametric spaces. If Y is complete then Y is
complete. Moreover, limits are pointwise: let (f,), be a Cauchy sequence in Y and f an element
in YX. Then lim f,, = f if and only if for all x € X, lim f,(x) = f(x). Furthermore, if Y is a
quasi ultrametric space then Y is a quasi ultrametric space as well. O



A mapping f : X — Y between gums X and Y is continuous if it preserves limits: if z = lim z,,
in X then f(z) = lim f(z,) in Y. For ordinary ultrametric spaces, this is the usual definition. For
preorders it means preservation of least upperbounds of w-chains.

An element a in a generalized ultrametric space X is finite if the mapping

X(a,—): X —-10,1], z— X(a,z)

is continuous. (So for finite elements, the inequality in Proposition 3.5 actually is an equality.) If
X is a preorder this means that for any chain (z,), in X,

X (a, |_| Tn) = lim X (a, z,),
or, equivalently,
a SX |_|1:n iff 3"7 a SX Ln,

which is the usual definition for ordered spaces. If X is an ordinary ultrametric space then X (a, —)
is continuous for any a in X, hence all elements are finite.

A basis for a generalized ultrametric space X is a subset B C X consisting of finite elements
such that every element z in X is the limit # = lima, of a Cauchy sequence (a,), of elements
in B. A gum X is algebraic if there exists a basis for X. Note that such a basis is in general
not unique. If X is algebraic then the collection Bx of all finite elements of X is the largest
basis. Further note that algebraic does not imply complete. (Take any ordinary ultrametric space
which is not complete.) If there exists a countable basis then X is w-algebraic. For instance, the
generalized ultrametric space A from Section 2 is algebraic with basis A*, the set of all finite
words over A. If A is countable then A>° is w-algebraic.

4 The Yoneda Lemma

The following lemma turns out to be of great importance for the theory of generalized ultrametric
spaces. It is the [0, 1]-categorical version of the famous Yoneda Lemma [Yon54] from category
theory. We shall see in the subsequent sections that it gives rise to elegant definitions and char-
acterizations of completion, topology, and powerdomains. A general proof of the Yoneda Lemma
for arbitrary V-categories can be found in [Kel82]. For generalized metric spaces, it is proved in

[Law86].
The following notation will be used throughout the rest of this paper:

X =1[0,1]%7,
i.e., the set of all non-expansive functions from X°P to [0, 1].

Lemma 4.1 (Yoneda Lemma) Let X be a generalized ultrametric space. For any x € X let

X(—,z): XP? - 1[0,1], y+— X(y,z).

This function is non-expansive and hence an element of X. For any other element ¢ in X,

X(X(—,2), ¢) = ¢(z).

Proof: Because X(—,—): X°? x X — [0, 1] is non-expansive, so is X(—,z), for any z in X. Now
let ¢ € X. On the one hand,

¢(z) = [0,1(X(z,2), ¢(x))

< sup[0,1](X (y, 2), ¢(y))
yeX

= X(X(~,2), 9).

On the other hand, non-expansiveness of ¢ gives, for any y in X,

10



[0,1)(6(2), d(y)) < XP(z,y) = X(y,2),
which is equivalent by Proposition 2.1 to [0, 1](X (y, ), ¢(y)) < é(z). |

The following corollary is immediate.

Corollary 4.2 The Yoneda embedding y : X — X, defined for z in X by y(z) = X(—,x) is
isometric: for all x and ' in X,

X(z,a') = X(y(2), y(a")).

The following fact will be of use when defining completion.
Lemma 4.3 For any x in X, y() is finite in X.

Proof: We have to show that X(y(z), —): X - [0,1] is continuous: for any Cauchy sequence
(n)n in X,
X(y(z),lim¢,) = (lim¢,)(z) [the Yoneda Lemmal
= lim¢,(z) [Proposition 3.6]
= lim X(y(x), ¢n) [the Yoneda Lemma].

5 Completion via Yoneda

The completion of generalized ultrametric spaces is defined by means of the Yoneda embedding. It
yields for ordinary ultrametric spaces Hausdorft’s standard Cauchy completion (as introduced in
[Haul4]), for preorders the chain completion, and for quasi ultrametric spaces a completion given
by Smyth (see page 214 of [Smy91]).

Let X be a generalized ultrametric space. Because [0, 1] is a complete quasi ultrametric space
(cf. Section 2 and 3), it follows from Proposition 3.6 that Xisa complete quasi ultrametric space
as well. According to Corollary 4.2, the Yoneda embedding y isometrically embeds X in X. The
completion of X can now be defined as the smallest complete subspace of X which contains the
y-image of X.

Definition 5.1 The completion of a generalized ultrametric space X is defined by

X = ﬂ {V is a complete subspace of X ly (X)CV}

The collection of which the intersection is taken is nonempty, since it contains X. Because X
is a complete subspace of the complete quasi ultrametric space X, also X is a complete quasi
ultrametric space, and, as a consequence, for any Cauchy sequence in X, its limits in X and X
coincide.

As with preorders, completion is not idempotent, that is, the completion of the completion of
X is in general not isomorphic to the completion of X. An interesting question is to characterize
the family of generalized ultrametric spaces for which completion is idempotent (it contains at
least all ordinary ultrametric spaces).

Completion for ordinary (ultra)metric spaces is usually defined by means of (equivalence classes
of) Cauchy sequences. The same applies to countable preorders: there the most common form of
completion, ideal completion, is isomorphic to chain completion, and we have seen that chains are
(special cases of) Cauchy sequences. It will be shown next that the completion introduced above
can be expressed in terms of Cauchy sequences as well. This will at the same time enable us to
prove its equivalence with the definition of the completion of quasi metric spaces by Smyth.

Note that a sequence (@), is Cauchy in a generalized ultrametric space X if and only if
(¥ (2))n is Cauchy in X, because the Yoneda embedding y is isometric. This is used in the
following.
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Proposition 5.2 For any generalized ultrametric space X,
X ={lim,y (z,)| (z.)n is a Cauchy sequence in X }.

Proof The inclusion from right to left is immediate from the fact that the set on the right is
contained in any complete subspace V of X which contains y (X). The reverse inclusion follows
from the fact that the set on the right contains y (X), which is trivial, and the fact that it is a

complete subspace of X: thisisa consequence of Lemma 4.3 and Proposition B.3 in the appendix.
O

The elements of X can be seen to represent equivalence classes of Cauchy sequences. To this end,
let CS (X) denote the set of all Cauchy sequences in X, and let A : CS(X) — X map a Cauchy
sequence (v, ), in X to lim, y (v,). This mapping induces a generalized ultrametric structure on
CS(X) by putting, for Cauchy sequences (vy,), and (wy,)n,

CS(X)((va)n, (wn)n) = X()‘((Un)n)v)‘((wn)n))

This metric can be characterized as follows:

CS(X)(('UTL)"’ (wn)n)

= X(A((vn)n)s AM(wn)n))

Py P

[y (vn) is finite in )/(:]
= lgnn lim,, X (vn, wn,) [y is isometric].

The latter formula is what Smyth has used for a definition of the distance between Cauchy se-
quences of quasi metric spaces. In his approach, the completion of a quasi metric space is defined
as [CS(X)], which is the quasi metric space obtained from CS(X) by identifying all Cauchy se-
quences with distance 0 in both directions (cf. Section 2). Such sequences can be considered to
represent the same limit. Both ways of defining completion are equivalent:

Proposition 5.3 For any generalized ultrametric space X, X = [CS (X)].

Proof Because X is a quasi ultrametric space, the mapping A : CS(X) — X induces a non-
expansive mapping A : [CS (X)] — X (cf. Section 2). Because ) is isometric by the definition
of the metric on CS(X), A is injective. Because A is surjective by Proposition 5.2, A" is also
surjective. O

A corollary of this theorem is that the completion of generalized ultrametric spaces generalizes
Cauchy completion of ordinary ultrametric spaces and chain completion of preorders.

Recall that the category Gums has generalized ultrametric spaces as objects and non-expansive
functions as arrows. Let Acg be the category with algebraic complete quasi ultrametric spaces as
objects, and with non-expansive and continuous functions as arrows. We will show that completion
can be extended to a functor from Gums to Acgq, which is a left adjoint to the forgetful functor
from Acq to Gums. First of all, the completion of a generalized ultrametric space X is an object
in Acq:

Theorem 5.4 For any generalized ultrametric space X, X is an algebraic complete quasi ultra-
metric space.

Proof Since X is a complete subspace of the complete quasi ultrametric space )2, also X is
a complete quasi ultrametric space. Because all elements of y (X) are finite in X according to
Lemma 4.3, they are also finite in X. From Proposition 5.2 we can conclude that every element
of X is the limit of a Cauchy sequence in y (X ). Consequently X is algebraic. O

12



The next theorem is the key to the extension of completion to a functor. It says that completion
is a so-called free construction:

Theorem 5.5 For any complete quasi ultrametric space Y and non-expansive function f : X —» Y
there exists a unique non-expansive and continuous function f# : X — Y such that f¥ oy = f.

Y%

o

Y

Proof For all Cauchy sequences (vy,), and (w,)m in X,

Y (lim,, f (vn), lim,, f (wp,))
l(iLn" Y (f (vn), limy, f (wm))

< lim, limy Y (f (vn), f (wpm))  [Proposition 3.5]
< lim, Jimpy X (0p,wm)  [f is non-expansive]
= lim, lim,, X (y (v5),y (wm)) [y is isometric]
= lim, X (y (vp), limp y (wm)) [y (va) is finite in X]
= X (limy y (vn), limp, y (w)).

Consequently,

limy y (v) = limp y (wim)
= X (limyy (0n),limp ¥ (w5n)) = 0A X (limg, y (wi), limg y (0n)) = 0
= Y (limy f (vn),limm, f (wm)) = 0AY (limp, f (wm),lim, f (vn)) =0
= lim, f (v,) = lim,, f (w,).
According to Proposition 5.2, for all # € X, there exists a Cauchy sequence (), in X, such that

z = lim, y (z,). Since f is non-expansive, the sequence (f (z,))n is also Cauchy. Because Y is a
complete quasi ultrametric space, lim,, f (z,) exists. Hence, we can define f# : X — Y by

F# (limy y (2,)) = lim, f (2,).
Since, for all Cauchy sequences (vy,), and (w.,)m in X,

Y (f# (limn y (vn)), f# (limp, y (wn)))
= Y (lim, f (v,),lim, f (wy,))

~

= X (lim,y (vn),lim,, y (w.,)) [see above]

the function f# is non-expansive.

Next we prove that f# is continuous. Let (Z,), be a Cauchy sequence in X. Without loss of
generality we can assume that

Vi : X (Zn, Tng1) < 3% (1)
According to Proposition 5.2, we have that
X ={lim,y (z,)| (2n)n is a Cauchy sequence in X }.

Because y (X) is a subspace of the complete quasi ultrametric space )/f, and all elements of y (X)

~

are finite in X according to Lemma 4.3, we can conclude from Lemma B.1 and B.2 that there
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y
Vm :Vn:y (X) (wy', wytq) < %:
Vi Vi y (X) (w1 < L
Vo @ lim,, w)' = Z,,

limy, wf = lim,, T,,.

Since y is isometric, there exist Cauchy sequences (z1"), in X satisfying

Vm:Vn:X(x?,I21+1)§%a (2)
Vn:Vm:X(x;",IZH_l)S%: (3)
Vo :lim, y (2]) = Z,, (4)
limy y (zf) = lim,, Z,. (5)

As we have seen above, f# is non-expansive. Consequently, (f# (Z,)), is a Cauchy sequence in
Y. From (1) we can conclude that

Vo Y (f# (2n), f7 (#041)) < 35 - (6)

Since f is non-expansive, we can derive from (2) and (3) that

Vm :Vn Y (f (23), f (z041)) <
Vo :VYm Y (f (), f (271)) < % (8)

From (4) we can deduce that
Vo : limy, f (™) = f# (2,). (9)

Since Y is a complete quasi ultrametric space, it follows from (6), (7), (8), (9), and Lemma B.2
that the sequence (f (z}))x is Cauchy and

limy, f () = limn 7 (25).
From (5) we can derive that
f# (limy, 2,,) = limy, f (27).

Hence f# is continuous.

Let g : X — Y be a non-expansive and continuous function such that g oy = f. For all Cauchy
sequences (Tn)n in X,

g (limy y (zn))
= lim, g(y (2,.)) [gis continuous]
= lim, f(zn) [goy = f]
F# (limy y ().

This proves the unicity of f#. O

Completion can be extended to a functor (7) : Gums — Acq, by defining its action on arrows
in Gums in the following standard way: for generalized ultrametric spaces X and Y and a non-

expansive mapping f: X — Y, let f: X — Y be defined by f = (y o f)¥.
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According to Theorem 5.5, the function f is non-expansive and continuous, and hence an arrow
in Acq. One can easily verify that we have extended completion to a functor. It is an immediate
consequence of Theorem 5.5 that it is left adjoint to the forgetful functor from Acq to Gums (cf.
Chapter 4 of [ML71]). The Yoneda embedding y is the unit of the adjunction.

For every complete quasi ultrametric space X with basis A, X = A. More generally:

Theorem 5.6 Let X be a complete quasi ultrametric space. Let A C X. Then the following three
conditions are equivalent.

1. A is a basis for X.

2. The functionys: X — A defined, for x € X, by
va(z) =Xda€e A. X (a,x)

(i.e., the restriction of y(z) € X to A) is isometric and continuous.

3. The inclusion function i : A — X induces an isomorphism i# : A — X.

Proof
1. = 2. According to Corollary 4.2, y is isometric. Consequently, y 4 is non-expansive. Because,
for all Cauchy sequences (z,), in X,
lim, ya (z,)
= lim,da€A.X (a,z,)
= Aa € A.lim, X (a,z,) [Proposition 3.6
Aa € A. X (a,lim, x,) [ais finite in X]
= YA (limn mn)a

Yy 4 is continuous. Consider the following diagram:

where j is the inclusion of A in A. One can easily verify that y s0i# oy = y and joy = y.
Therefore by Theorem 5.5,

yao0i? =j. (10)

ince A is a basis for 17 is surjective. Because 1% is furthermore non-expansive an
Si A is a basis for X, i# i ti B i# is furth i d
J is isometric, y 4 is isometric.
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2. = 3. For all Cauchy sequences (a,), in A,
(yaoi®) (lim,y (an))
= ya (llmn oy (ay)) [i# is continuous]
= ya(lim,i(a,))
= lim,yaso01 (an) [yA is continuous]
= lim,y (a,),
from which (10) follows. Thus y actually maps into A. Because y4 is isometric it is
injective. As a consequence, i¥ oy 4 = 1x follows from

yao(i*oys)=(yaoi*)oys=yas=yaolyx

(where 1x is the identity on X). Thus i# is an isomorphism with y 4 as inverse.
3. = 1. As we have already seen in the proof of Theorem 5.4, all elements of y (A) are finite in A.
Since i# is isometric and surjective, all elements in (i# oy) (A) are finite in X. Because

i =i# oy, all elements of A are finite in X. Since i# is surjective, every element of X is
the limit of a Cauchy sequence in A. Hence, A is a basis for X. O

A subset A of a generalized ultrametric space X for which the function y 4 of the second clause
above is isometric, is called adequate in [Law73] (p. 154).

This section is concluded by the introduction of the notion of adjoint pairs of mappings between
gum’s, and a characterization of completeness in terms thereof. This will not be used in the rest
of the paper.

Let X and Y be generalized ultrametric spaces. A pair of non-expansive mappings f: X —» Y
and g : Y — X is adjoint, denoted by f 4 g, if

Vee XVy€eY, Y(f(z),y) = X(z,9(y))
An equivalent condition is that XX (1x,go f) =0 and YY(fog,1y) = 0. Expressed in terms of
the underlying orderings, this can be read as 1x < go f and fog < ly, saying that f and g are
adjoint as monotone maps between the underlying preorders (X, <x) and (Y, <y). For instance
consider A* with distance as defined in Section 2. Let A : A® — (A% x A) map v in A® to

(v,v), and let A : (A% x A>®) — A map (v, w) to the longest common prefix of the words v and
w. Then A is left adjoint to A: for all v, w, and u in A%,

max {A%(u,v), A% (u,w)} = A% (u,v A w).
(This defines a—[0, 1]-enriched—product on A>.)

The following lemma was suggested to us by Bart Jacobs.

Lemma 5.7 Let X be a quasi ultrametric space. Consider the (corestriction of the) Yoneda
embedding y : X — X. The space X is complete if and only if there exists a non-expansive and
continuous mapping f : X — X with f 1y.

Proof: Suppose X is complete. By Theorem 5.5, there exists a unique non-expansive and contin-
uous extension 1# : X — X of the identity mapping on X, defined, for ¢ = lim y(z,) in X with
(zn)n a Cauchy sequence in X, by

1#(4) = lim x,,.
For any =z € X,
X(1#(¢),z) = X(limz,,z
= lim X (zn,

—

)
)

= lim X( (zn),y(z)) [the Yoneda embedding is isometric]
)

= X(limy(z,),y(z))
= X(¢,y(z)),
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showing that 1#¥ H y. For the converse suppose we are given a non-expansive and continuous
mapping f : X — X with f 4y. For any Cauchy sequence (z,), in X and z € X,

X(f(imy(z,), ) = X(imy(ra),y(z)
lim X (y (). y ()

= lim X(z,,z) [the Yoneda embedding is isometric|,

proving that lim z,, = f(limy(z,)). |

6 Topology via Yoneda

The Yoneda embedding of a generalized ultrametric space X into X gives rise to two topological
closure operators. Their corresponding topologies are shown to generalize both the e-ball topology
of ordinary metric spaces and the Alexandroff and Scott topologies of preordered spaces.

Let X be a generalized ultrametric space. Recall that Xisa generalized ultrametric space with
the supremum distance, and that it contains as a subset an isometric copy of X via the Yoneda
embedding. The fact that the Yoneda embedding is isometric justifies the following convention:
we shall sometimes simply write = for y(z).

The main idea (stemming from [Law86]) is to interpret an element ¢ of X as a ‘fuzzy’ predicate
(or ‘fuzzy’ subset) on X: the value that ¢ assigns to an element x in X is thought of as a measure
for ‘the extent to which z is an element of ¢’. The smaller this number is, the more z should be
viewed as an element. In fact, the only real elements are the ones where ¢ is 0, which gives rise
to the definition of the extension quﬁ of a predicate ¢ (the subscript A stands for ‘Alexandroff’
and will be explained below):

ngb:{mEX\qﬁ(m):O}.
For instance, for x in X, fAy(m) = fAX(—,m) ={z€ X | X(z,2) =0} = z|. More generally, for
any ¢ in X,
[ = {zeX|d@)=0)
= {zeX| X(X(—,a:), ¢) =0} [the Yoneda Lemma 4.1]
= {m e X ‘ X(m, (]5) = 0} [our convention]
= ¢lNnX,

where ¢] is the downset of ¢ in X with respect to the underlying ordering. Any subset V' C X
defines, conversely, a predicate pa(V) : X°? — [0,1] which is referred to as the character of the
subset V. It is defined, for x € X by

pa(V)(@) = inf{X(z,v) | v € V},

i.e., the distance from z to the set V. Note that under the identification of elements z in X with
X (—,z), this is equivalent to

pa(V)=inf V.

These two constructions define mappings fA X - P(X) and pa : P(X) — X, which can be

nicely related by considering X with the underlying preorder <y, and P(X) ordered by subset
inclusion (cf. [Law86]):

Proposition 6.1 The mappings [, : <X>§X> — (P(X),C) and pa : (P(X),C) — <X7§f(> are
monotone. Moreover py is left adjoint to fA.
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Proof: Monotonicity of fA and p4 follows directly from their definitions. We will hence concen-

trate on the second part of the proposition by proving for all V- € P(X) and ¢ € X,
V C [4paV) and pa(f,0) <x ¢,

which is equivalent to p4 being left adjoint to fA, cf. [GHK'80]. For V € P(X) we have
Japa(V)=infViNnX DV,

because inf V' > ¢ y(x) for every 2 € V.. For ¢ € X,

pa(f,0) =inf(¢] N X) =inf{yy € X | <4 ¢} <y ¢.
O

The above fundamental adjunction relates character of subsets and extension of predicates and
is often referred to as the comprehension schema (cf. [Law73, Ken87]). As with any adjoint pair
between preorders (cf. Theorem 0.3.6 of [GHK80]), the composition fA op4 is a closure operator
on X. It satisfies, for V C X,

Joopa(V) = (nfV)InX
= {zeX|X(y(z),inf V) =0}
= {zeX|VzeX, [0,1)(y(z)(2), (inf V)(2)) = 0}
{re X |Vze X, y(z)(z) > (inf V)(2)}
{reX|Ve>0Vze X, y(z)(z)<e= (FveV, X(z,v)<e)}
= {zeX|Ve>0Vze X, X(z,z)<e= (v eV, X(z,v)<e)} (11)
[the Yoneda Lemma 4.1].

As a consequence, there is the following lemma.

Lemma 6.2 For a generalized ultrametric space X, the closure operator [, 0pa : P(X) — P(X)
1s a topological closure operator.

Proof: It is an immediate consequence of (11) that [, 0 p4(0) = 0. Moreover, for VW C X,

fAOPA(VUW) ) onpA(V)UonpA(W):

because fA o p4 is a closure operator. For the reverse inclusion, let = € fA opa(VUW). Suppose
& [,opa(V). We will show z € [, 0 pa(W): consider e; >0 and z; € X with X(z1,z) < €.
We should find y € W with X (z1,y) < €. Because z ¢ [, 0 pa(V) there exist ¢g >0 and zp € X
such that

X(z0,)<eg & (VyeV, X(z,y) > €)- (12)

Let € = min{eg, €1 }. Because # € [0 p(V UW) and X (z,2) = 0 <, there exists y € V UW with
X (z,y) < e. The assumption that y € V' contradicts (12), because

X(z0,y) < max{X(zg,z), X(z,y)} < max{eg, €} = €.
Thus y € W. Furthermore,

X(z1,y) < max{X(z1,z), X(z,y)} < max{er, e} = €.
O

The above lemma implies that the closure operator fA o pa induces a topology on X, which in
Proposition 6.3 below is proved equivalent to the following generalized e-ball topology: For z € X
and € > 0 define the e-ball centered in = by

B(z)={z€ X | X(z,2) <e€}.
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A subset 0 C X of a generalized ultrametric space X is generalized Alezandroff open (gA-open)
if forall z € X

z €0 =3e>0B(z)Co.

The set of all gA-open subsets of X is denoted by Oy4(X). For instance, for every z € X the
e-ball B.(z) is a generalized Alexandroff open set. The pair (X, O, 4(X)) can be shown to be
topological space with B¢(z), for every € >0 and = € X, as basic open sets (cf. [FK95]). For a
subset V of X we write ¢l4 (V') for the closure of V' in the generalized Alexandroff topology.

Proposition 6.3 For every subset V of a gum X, cla(V) = [, 0 pa(V).

Proof: It follows from the characterization (11) of [, o p that it is sufficient to prove
cda(V)={z e X |Ve>0Vze X, X(z,2)<e = (FweV, X(z,v)<e)}.

Because cls(V) = V U V?, where V? is the so-called derived set of V (cf. Section A of the
appendix), it follows from the definition of derived set and the fact that the set of all e-balls is a
basis for the generalized Alexandroff topology, that for every z € X,

eV = VYoe0,a(X), z€0 = on(V\{z}) #0
< Ve>0Vze X, € B(z) = Be(z)N(V\{z})#£ D
= Ve>0Vze X, X(z,2)<e = Fve (V\{z}), X(z,v)<e.
Therefore,
Ada(V)=VuvVi={zecX|Ve>0Vze X, X(z,z)<e = (veV, X(z,v)<e)}.
O

For ordinary ultrametric spaces, gA-open sets are just the usual open sets. For preorders, a set is

gA-open precisely when it is Alexandroff open (upper closed) because if X is a preorder then for

e<1,
Be(x) {ye X | X(z,y) <e}

{y e X | X(2,y) =0}

= {yeX|z<xy}

= zT.

(In case € > 1 then B.(z) = X which is clearly upper closed).

For computational reasons we are interested in complete spaces, in which one can model infinite
behaviors by means of limits. A topology for a complete space X can then be considered satis-
factory if limits in X are topological limits. This is not the case for the generalized Alexandroff
topology: for instance, for complete partial orders O,4(X) coincides with the standard Alexan-
droff topology, for which the coincidence of the least upperbounds of chains and their topological
limits does not hold. Therefore the Scott topology is usually considered to be preferable: it is
the coarsest topology refining the Alexandroff topology, in which least upper bounds of chains are
topological limits (cf. Section II-1 of [GHK™80] and [Smy92]). Also for generalized ultrametric
spaces, a suitable refinement of the generalized Alexandroff topology exists. A key step towards its
definition is to compare fuzzy subsets ¢ in X with subsets of X, the completion of X, rather than
with subsets of X. To this end, the extension and the character functions of above are extended
as follows:

[:X -P(X) and p:PX)— X,
p—olNX V - infV.
Again we have a comprehension schema: as in Proposition 6.1, the mappings [ : (X, <%) —

(P(X),C) and p : (P(X),C) — (X, <) are monotone and p is left adjoint to [. And again we
obtain a closure operator, this time of type
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Jop:P(X)—PX),
which can, in a way similar to (11), be characterized as follows: for V C X,

[op(V) = (infV)|NnX

= {peX|X(¢,infV)=0}
{p € X |Vae X, [0,1](¢(a), (inf V)(a)) =0}
{p€ X |Vae X, ¢(a) > (inf V)(a)}
{pe X |Ve>0Vae X, ¢la)<e= (Y eV, ¥(a)

= {peX|Ve>0Vae X, X(a,¢)<e= eV, X
[the Yoneda Lemma 4.1].

<e}
(a,9) <€)}

Also this closure operator is topological:

Lemma 6.4 For a generalized ultrametric space X, the closure operator [op:P(X) — P(X) is
topological.

Proof: This lemma is proved along the same lines as Lemma 6.2, but one needs the following
additional observation: For any zg and z; in X, €y, €; > 0, and ¢ in X, such that

X (z0,9) < € and X(z1,0) < €1,
there exists b € X such that
X (20,b) < €9, X(21,b) <er, and X (b, $) < min{eg, €1}

(¢ is now playing the role of z). This fact can be proved as follows. Because X is an algebraic
complete quasi ultrametric space with (the image of the yoneda embedding of) X as basis, there
exists a Cauchy sequence (b,), in X with ¢ = limb,,. Since zy € X, it is finite in X. Hence,

X (29,¢) = X(20,lim(b,,)) < €9 implies the existence of Ny such that for all n > Ny, X (2g,b,) < €.
Similarly, there exists N; such that for all n > Nj, X(21,b,) < €;. Furthermore, there exists,
by definition of limit, Ny such that for all n > Ny, X(b,,¢) < min{ey,e;}. By taking M =

max{Ng, N1, No}, and putting b = by, we have found the element in X we were looking for. O

Thus the closure operator above induces a topology on X which we will call the generalized Scott
topology. Indeed, if we start out with an algebraic complete quasi ultrametric space X, then X
is isomorphic to the completion of its basis Bx (by Proposition 5.6), and therefore the above
characterization of f o p will take the form, for subsets V C X,

Jop(V) = {p€X|Ve>0Va€ Bx, X(a,¢)<e= (I €V, X(a,¢)<e)}. (13)
In the special case that X is an algebraic complete partial order, this is equivalent to
Jop(V) = {ze€X|Va€eBx, a<xz=(weV, a<xn)}

which we recognize as the closure operator induced by the Scott topology on X.

Next an alternative definition of the generalized Scott topology is given by specifying the open
sets (this time starting with a complete generalized ultrametric space X). In Theorem 6.8 below,
it will be shown that the closure operator induced by this second definition coincides with [ o p
whenever X is algebraic.

A subset 0 C X of a complete generalized ultrametric space X is generalized Scott open (gS-
open) if for all Cauchy sequences (), in X,

limz, € o= 3IN 3e>0Vn >N, B.(z,)Co.

The set of all gS-open subsets of X is denoted by O,5(X). Below it will be shown that this defines
a topology indeed. Note that every gS-open set o C X is gA-open because every point z € X is the
limit of the constant Cauchy sequence (z), in X. Therefore this topology refines the generalized
Alexandroff topology. Furthermore it will be shown to
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1. coincide with the e-ball topology in case X is a complete ultrametric space; and to
2. coincide with the Scott topology in case X is a complete partial order.

The following proposition gives an example of gS-open sets:

Proposition 6.5 For every complete generalized ultrametric space X, an element a € X 1is finite
if and only if for every € >0, the set B.(a) is gS-open.

Proof: Let a € X be finite and €>0. Then the e-ball B.(a) is a gS-open set: let (z,), be a Cauchy
sequence in X and assume lim z,, € B.(a). Because a is finite, X (a,limz,,) = lim X (a, z,) <e¢, by
which there exists 6’ > 0 such that lim X (a,z,) < e —§'. Take § < §'. Then there exists N > 0
such that X (a,z,) < (e —¢') + 6, for all n > N. Then Bs(x,,) C B(a) for all n > N, because if
y € Bs(x,,) for some n > N we have, by triangular inequality and by our choice of §,

X(a,y) < max{X(a,z,), X (zn,y)} <max{((e —8)+8),6} =(e— &)+ 6 <e,

that is, y € B.(a).
Conversely, assume B.(a) is a gS-open set for every € > 0. We need to prove, for every Cauchy
sequence (T, ), in X, that

lim X (a,z,) < X(a,limz,) (14)

(the reverse inequality is given by Proposition 3.5). If lim X (a,z,) = 0 then (14) is trivially
true. Therefore suppose lim X (a,z,) > 0 and, towards a contradiction, assume X (a,limz,) <
lim X (a, x,). Then there exists € > 0 such that X (a,limz,) < € < lim X(a, z,). Moreover

X(a,imz,)<e = limz, € B/(a)
= AN 36 >0Vn > N, Bs(z,) C Be(a) [Be(a)is a gS-open set
= INVn>N,X(a,z,)<e
<~ lim X(a,z,) <e.

But this contradicts € < lim X (a, ;). Thus X (a,limz,,) > lim X (a, z,). O
Next we prove that the collection of all gS-open sets forms indeed a topology.

Proposition 6.6 For every complete generalized ultrametric space X the pair (X, O,5(X)) is a
topological space. If X is also algebraic with basis Bx, then the set {B.(a) | a € Bx & € > 0}
forms a basis for the generalized Scott topology Oys(X).

Proof: We first prove that O,5(X) is closed under finite intersections and arbitrary unions. Let
I be a finite index set (possibly empty) and let o = ();0; with 0; € Oys(X) for all ¢ € I. If
lim z,, € o for a Cauchy sequences (z,), in X, then for every i € I there exist N; > 0 and ¢; > 0
such that B, (z,) C o; for all n > N;. Take N = max; N; and € = minj¢; (here maxg = 0 and
ming = 1). Then B.(z,) C o for all n > N, that is, o is gS-open.

Next let I be an arbitrary index set and let o = |J; 0; with 0; € Oy5(X) for all ¢ € I. If
limz, € o for a Cauchy sequences (z,), in X, then there exists i € I such that limz, € o;.
Therefore there exists N > 0 and € > 0 such that B.(z,) C 0; C o for all n > N, that is, o is
gS-open.

Finally assume that X is an algebraic complete gum with basis Bx. We have already seen
that for every € > 0 and finite element a € Bx the set B.(a) is gS-open. We claim that every
gS-open set o C X is the union of e-balls of finite elements. Let « € 0. Since X is algebraic there
is a Cauchy sequence (a,), in Bx with z = lim a,,. Because o is gS-open, there exists €, > 0 and
N, > 0 such that B (a,) C o for all n > N, and with z € B,_(a,) for N, big enough. Therefore
0 C Ugeo Beo(an,). Since the other inclusion trivially holds we have that the collection of all
e-ball of finite elements forms a basis for the generalized Scott topology. O

21



Any ordinary complete ultrametric space X is an algebraic complete generalized ultrametric space
where all elements are finite. Therefore, by the previous proposition, the basic open sets of the
generalized Scott topology are all the e-balls B.(z), with # € X. Hence for ordinary complete
ultrametric spaces the generalized Scott topology coincides with the standard e-ball topology.

For a complete partial order X, a set o C X is gS-open precisely when it is Scott open: if
0 € Oys(X) then it is upper closed because the gS-topology refines the gA-topology. Moreover,
if | |z, € o for an w-chain (z,), in X then because o is gS-open there exists e >0 and N > 0
such that Be(z,) C o for all n > N. But z,, € B(xz,) for all €, therefore o is an ordinary Scott
open set. Conversely, assume o is Scott open and let limz, € o. Because o is Scott open (and
limits are least upper bounds) there exists N > 0 such that =, € o for all n > N. By taking
€ = 1/2 we obtain that o is also gS-open because for every x € X, By/3(z) = zT.

The specialization preorder on an algebraic complete generalized ultrametric space X induced
by its gS-topology coincides with the preorder underlying X:

Proposition 6.7 For an algebraic complete generalized ultrametric space X and x and y in X,
€z Sogs Yy & <x Y (bdef X(li‘y) = 0)

Proof: Let 2 <o, y. Since X is algebraic there exists a Cauchy sequence (b,),, of finite elements
such that z = lim b,,. By definition of limit, for every € > 0 there exists N > 0 such that for all
n > N, X(b,,z) <e¢, that is z € B(b,). But B.(b,) is gS-open because b, is finite, thus also
y € Be(b,) since z <o, y. Therefore for every e > 0 there exists N > 0 such that for all n > N,
X (bn,y) <€, from which it follows that

X(z,y) = X(limb,,y) = lim X (b,,y) = 0.

Conversely, assume X (z,y) = 0 and let o be a gS-open set such that z € 0. Then there exists
€ > 0 such that B.(z) C 0. But y € B(z) for every e because X (z,y) = 0, therefore y € o. O

Note that the specialization preorder is a partial order or, equivalently the gS-topology is 7y if
and only if X is an algebraic complete quasi ultrametric space.

As usual, a subset ¢ of a complete gum X is gS-closed if its complement X \ ¢ is gS-open. This
is equivalent to the following condition: for all Cauchy sequences (), in X,

(VNVe>03In>N3Iye€e, X(zn,y)<e) = limz, €c. (15)

For a subset V of X we write clg(V') for the closure of V in the generalized Scott topology, that
is, clg(V) is the smallest generalized Scott closed set containing V. From the definition of limits
we have that for any Cauchy sequence (z,), in V, limz, € clg(V). The latter implies that if X
is a generalized ultrametric space with basis B then B is dense in X, that is ¢lg(B) = X. Indeed,
B C X implies clg(B) C ¢lg(X) = X. For the converse we use the fact that every element of X is
the limit of a Cauchy sequence in B. Since (the image under y of) every generalized ultrametric
space X is a basis for its completion X it follows that every gum is dense in its completion.
As promised above, it is shown that clg and f o p are equal.

Theorem 6.8 Let X be an algebraic complete quasi ultrametric space X with basis Bx. For all

subsets V C X, clg(V) = [op(V).
Proof: It follows from the characterization (13) of [ o p that it is sufficient to prove that
cs(V)={z € X |Ve>0Va € Bx, X(a,z)<e = (JveV, X(a,v)<e)}.

We use the fact that clg(V) =V UV for V C X, where V¢ is the derived set with respect to the
gS-topology. Since the e-balls of finite elements form a basis for the generalized Scott topology,
we have for every =z € X:

eV &= Voc0,5(X), €0 = on(V\{z})#0
< Ve>0Va€ Bx, z€ B(a) = Ba)N(V\{z})#0
< Ve>0Va€ Bx, X(a,z)<e = Fve (V\{z}), X(a,v)<e.
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Therefore,

cds(V)=VuVei={re X |Ve>0Va € Bx, X(a,2)<e = (weV, X(a,v)<e)}.
O

This section is concluded with two observations relating metric limits and topological convergence
(cf. Section A). We start by showing that in a complete generalized ultrametric space every Cauchy
sequence is topologically convergent to its limit. It is an open problem if the converse holds—
without completeness it does not hold even for standard metric spaces (cf. [Dug66, Example
XIV.I.1, pag 293]). First note that it is straightforward from the definition of convergence that a
sequence (z,), in an algebraic complete generalized ultrametric space X converges (with respect
to the gS-topology on X) to an element x in X, denoted by N ((z,),) — =z, if and only if

Ve>0Va € Bx, X(a,z)<e = (ANVn >N, X(a,z,) <e).

Proposition 6.9 Let X be a complete generalized ultrametric space and (z,)n a Cauchy sequence
in X. Then N((z,),) — limz,. If X is moreover algebraic then for any y € X such that
N((zn)n) = y it holds y <o, lim x,,, that is, limits are mazimal topological limits.

Proof: Let (z,), be a Cauchy sequence in the complete generalized ultrametric space X. We
need to prove N(lim z,,) C N((%)n). By definition of gS-open set,

o€ N(limz,) <= limz, € 0= 3IN Je >0Vn > N, B.(z,) C o,

from which o € N'((zy),) follows immediately.

Next assume that X is also algebraic with basis Bx and let N'((z,),) — y for a Cauchy
sequence (z,), in X and y € X. Since X is algebraic there exists a Cauchy sequence (@, ), in
Bx with y = lima,,. Therefore for every € > 0 there exists M > 0 such that X (a,,,y) < € for all
m > M. Hence y € B(a,,) which is a gS-open set and hence in N(y) C N((z,),). Thus

Ye>03IM >0Vm > M3IN >0Vn > N, X(am,z,) <E,

which implies Ve > 0 3M > 0Vm > M, lim,, X(a,, z,) < €. Since all the a,,’s are finite we then
have Ve >0 3IM > 0Vm > M, X(a,,limz,) <€, which means lim X (a,,limz,) = 0. Finally, by
the definition of limit,

0 =lim X(am,limz,) = X(lim a,,limz,) = X (y,lim z,,),

—

which implies, by Proposition 6.7, y <o, lim z,,. O

Recall that a function f : X — Y between two complete generalized ultrametric spaces is (metri-
cally) continuous if f(lim z,,) = lim f(z,,) for every Cauchy sequence (z,), in X. It is topologically
continuous if the inverse image of a gS-open subset of ¥ is gS-open in X. The two notions are
related as follows.

Proposition 6.10 Let f : X — Y be a non-expansive mapping between complete generalized
ultrametric spaces. If f is metrically continuous then it is also topologically continuous. Moreover,
if Y is an algebraic complete quasi ultrametric then the converse holds as well.

Proof: Let f : X — Y be a non-expansive and metrically continuous function and let o € O,5(Y).
We need to prove f (o) € O,5(X) in order to conclude that f is topologically continuous. Indeed,
for any Cauchy sequence (z,), in X we have

limz, € f '(0) <= f(limz,)€o
< lim f(z,) € 0 |[f is metrically continuous]
= AN 3e>0Vn > N, B.(f(zn)) Co

[f is non-expansive, (f(z.))n is a Cauchy sequence, o is gS-open]

= AN 3e>0Vn > N, B (z,) C fﬁl(o) [f is non-expansive].
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For the converse assume Y to be an algebraic complete quasi ultrametric space and f : X —
Y to be topologically continuous. Any Cauchy sequence (z,), in X converges, by Proposi-
tion 6.9 to limz,. Hence (f(z,))n converges to f(limz,) because f is topologically contin-
uous. But, by Proposition 6.9, (f(z,))n converges also to lim f(z,) and since Y is algebraic
then f(limz,) <o, lim f(z,). Therefore by Proposition 6.7, Y (f(lim z,),lim f(z,)) = 0. Also
Y (lim f(z,), f(limz,)) = 0 because f is non-expansive:

Y(lim f(z,), f(limz,)) = liin Y(f(zn), f(limz,))

< lim X(z,,limz,)

—

X (lim z,,, lim z,,)
= 0

Since Y is a quasi ultrametric and Y (f(lim z,,), lim f(z,)) = 0 = Y (lim f(z,), f(lim z,)) we finally
obtain lim f(z,) = f(limz,). |

7 Powerdomains via Yoneda

A generalized lower (or Hoare) powerdomain for generalized ultrametric spaces is defined, again by
means of the Yoneda embedding. Next this powerdomain is characterized in terms of completion
and topology. Also the definition of generalized upper and convex powerdomains will be given.
Their characterizations will be discussed elsewhere.

Let @ :[0,1] x [0,1] — [0, 1] map elements 7 and s in [0, 1] to (their coproduct) min{r, s}. This
makes ([0, 1], ®) a semi-lattice: for all r, s, and ¢ in [0, 1],

Drer=r, (li)rds=sr, (i) (rEs)Dt=r®(sdt).
Furthermore, the following inequality holds for all r and s in [0, 1]:
(iv) r <o) T D s

Let X be a generalized ultrametric space. It is immediate that <X, @) is a semi-lattice as well,
with & taken pointwise: for ¢ and ¥ in X and z in X,

(¢ @ Y)(z) = ¥(z) & ().

Recalling the idea that elements in X are fuzzy subsets of X, the semi-lattice operation & may
be viewed as fuzzy subset union. A generalized lower powerdomain on X is now defined as the
smallest subset of X which contains the image of X under the Yoneda embedding y : X — X
(Corollary 4.2); is metrically complete (i.e., contains limits of Cauchy sequences); and is closed
under the operation @. Formally,

Pu(X) = ﬂ{V C X |y(X) CV, Vis a complete subspace of X, and V is closed under @}.

This definition is very similar to the definition of completion in Section 5.
Note that the above definition of a powerdomain applies to arbitrary algebraic complete quasi
ultrametric spaces Y, since for any basis A for Y, Y = A.

A generalized Hausdorff distance

The powerdomain P, (X) can be described in a number of ways. The main tool will be the
adjunction of Section 6:

f:X—»P(X), b — ol N X; andp:'P(X)—n)z', V> infV,



which relates X to the collection of subsets of X, the completion of X. Before turning to the
characterizations of Py (X), let us first show how this adjunction induces a distance on P(X): for
subsets V and W of X, define

PX)(V, W) = X(p(V), p(W).
It satisfies the following equation.

Theorem 7.1 For all V and W in P(X),
PX)(V,W)=inf{e>0|Vaec X Yo eV, X(a,v) <e= 3w e W, X(a,w) <e)}.

Proof: Let I denote the set on the right of the equality. In order to show that P(X)(V, W) < inf I
consider € € I. If V. = ) then P(X)(V,W) = 0 < inf I. Next let v = lima,, be an element of V,
with a,, in X, for all n. Let § a real number with 0 < 6 < e. It follows from v = lim a,, that

X(v,inf W) = lim X (a,,, inf W).
Therefore there exists n > 0 such that
X(an,v) <6 and X (v,inf W) < X (ay,inf W) + 6.

Because 6 < ¢, it follows from X(an, v) < 6 that there exists w € W with X(an, w) < €. Therefore,

X (v,inf W) X(apn,inf W) +6
inf W(a,)+ 6 [Yoneda lemma]

inf u(a,)+46
ueW

= inf X(an, u) 4+ 6 [Yoneda lemmal
ueW

X(an,w)+6
€+ 0.

INIA

IN N

Since § was arbitrary this implies X(v, inf W) <'¢, from which it follows that

P(X)(V,W) = X(infV,inf W)

= sup X(’U, inf W) [see Lemma 7.2 below]
veV

€.

IN

Hence P(X)(V,W) < inf I.
For the reverse let 6 > 0 be arbitrary and define

e = P(X)(V, W) +6.

We shall show that e € I. Because 6 is arbitrary this will imply that inf I < P(X)(V,W). Consider
a € X and v € V with X (a,v)<e. We have to prove that there exists w € W such that X (a,w)<e:

X(a,inf W) max {X(a,v), X(v,ian)}

max { X (a,v), sup X (u,inf W)}
ueV

= max {X(a,’v), X(inf V,inf W)} [see Lemma 7.2 below]
max {X(a,v), P(X)(V, W)}

€.

VANPAN

As before, the Yoneda lemma implies X(a,inf W) =inf,ew X(a, w). Thus there is w in W such
that X (a,w) <e. O

The following lemma, used above, is an immediate consequence of Lemma 3.3.

25



Lemma 7.2 For any V C X and ¢ € X, X(inf V,¢) = sup,cy X(v,¢)

Proof: For VC X and ¢ € X,

X(inf V, ¢)
= sup [0,1]((inf V))(z), ¢(2))

rzeX

= sup sup [0, 1](v(z), ¢(z)) [Lemma 3.3
reX veV

= sup sup [0, 1](v(x), ¢(z))
veV zeX

= sup X(v,9).
veV

Another equivalent description of P(X)(V,W) can be obtained as a corollary of Theorem 7.1:

P(X)(V,W) = X(infV,inf W)

= sup X(v,inf W) [Lemma 7.2]
veV

= sup X(inf{v},inf W)
veV

= sup P(X)({o}, W)
veV

= supinf{e>0|Vae X, X(a,v) <e= (Gw e W,X(a,w) <€)}
veV
[Theorem 7.1].

Therefore the above distance on P(X) is called the generalized Hausdorff distance. The restriction
of the distance on P(X) to subsets of X gives the familiar (non-symmetric) Hausdorff distance
(cf. [Law86]). More precisely:

Theorem 7.3 For all V C X and W C X such that either V. .C X or W is finite,

P(X)(V,W) = sup inf X(v,w).
UGV“’EW

Proof: Applying the Yoneda lemma twice gives, for all v in X, inf,ew X(v, w) = X(v, inf W). If
W is finite the same equality holds for arbitrary v € X (by an extension of Lemma 7.2 similar to
Lemma 3.3). Therefore, if either V C X or W is finite,

sup inf X(v,w) = sup X(v,inf W)

veV weW veV
= X(ian,ian) [Lemma 7.2]
= PX)(V,W).

For preorders X, the above amounts to
VS’P(X) Wit Vo e V3w e W, v <x w,

which is the usual Hoare ordering. More generally, for a gum X, there is the following character-
ization of the order induced by P(X).

Lemma 7.4 For every gum X and subsets V and W of X: if W is gS-closed then
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V <pxyW if and only if V. C W .

Proof: If V C W then P(X)(V,W) = 0 by Theorem 7.1. Conversely, assume P(X)(V,W) = 0
and let z € V. Because = € X, there exists a Cauchy sequence (b,), in X with = = limy(b,).
Thus for every € > 0 there exists N > 0 such that X (y(b,),z) < € for all n > N. By, again,
Theorem 7.1, and the fact that P(X)(V,W) = 0, we then obtain

Ve > 03N > 0Vn > Ndw € W, X(y(bn), w) <,
which implies
Ve > O0VN > 03n > Ndw € W, X(y(bn), w) < e.

By the characterization of closed sets given by formula (15) in Section 6, it follows that = =
limy(b,) € W. |

Because V' C clg(V), for every V C X, the above lemma implies P(X)(V,cls(V)) = 0. Also

P(X)(cls(V),V) = 0: this follows from Theorem 7.1 and the characterization of the generalized
Scott closure operator, which states that for every = € clg(V),every e>0and b € X, if X(b,z)<e
then there exists v € V with X (b,v) < e. This leads to the following.

Lemma 7.5 For every gum X, and subsets V,W of X,

P(X)(V, W) =P(X)(clg(V), W) and P(X)(V,W) = P(X)(V,clg(W)).

Proof: Immediate from the fact that P(X)(V,cls(V)) = 0 = P(X)(cls(V), V), and the triangular
inequality. O

Characterizing P,(X) as a completion

Let Pps(X) be the generalized ultrametric space consisting of all finite and nonempty subsets of
X with the non-symmetric Hausdorff distance defined above: for V and W in P,(X),
Pag(X)(V.W) = X(p(V). p(W))

= max min X(v,w) [by Theorem 7.3].

Its completion P, ;(X) will be shown to be isomorphic to Py (X).
Lemma 7.6 For any generalized ultrametric space X,

Pop(X) = {lim p(Vy,) | Vi € Pnp(X), for all n, and (p(Vy))n is Cauchy in X}

Proof: Let us denote the set on the right by R. Because the quasi ultrametric space X is complete,
the isometric, and hence non-expansive, function p : P, (X) — X induces a non-expansive and

continuous function p# : Py (X) — X according to Theorem 5.5, making the following diagram
commute:

Pay (X) =Py (X)

P #
\EP

Y
X
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It follows from Proposition 5.2 that the image of p# is precisely R. Furthermore p# is isometric:
for all Cauchy sequences (V,,), and (Wy,)m in Py (X),

X (p* (limn y (Va)), p% (limm y (Win)))
= )?(limnp(Vn),limmp(W )
= 1<i£nn lim,, X (p(V),p (W) [p(Va) is finite in X by Lemma 7.7 below]
= 1<i£nn lim, Pry (X) (Vi, Wi) [ is isometric]

= limy, limp, Pay (X) (y (V). y (Win)) [y is isometric]

= Pur (X) (limny (V) limpy (Wi)) [y (Va) is finite in Poy (X)]
= Por(X) (limp, y (Va), lime, y (Wi)).

Thus p# is injective and hence an isomorphism from P,; (X) to R. O

The following lemma, used in the proof above, generalizes Lemma 4.3.
Lemma 7.7 For any V in Pny (X), p(V) is finite in X.

Proof We only treat the case that V' = {v;,v2} (the general case follows by induction on the

number of elements of V). For any Cauchy sequence (¢, ), in )?,

X(p(V), lim ,)
= X(mln{}’(vl)>Y(7)2)} hm¢n)
max{X(y(vl),hmgbn) ( (v2), lim¢,,)} [Lemma 7.2
max {lim X (y(v1), ¢), th( (v2), #n)} [Lemma 4.3]
lim max {X(y(v1), én), X(y(va), én)}
= lim X (min {y(v1), y(v2)}, ¢n)
= lim X(p(V), ¢n).

The following theorem will be often used in the sequel.

Theorem 7.8 For any generalized ultrametric space X,
Pou(X) = {limp(Vy,) | Vo € Pry(X), for all n, and (p(V,,))n is Cauchy in X1

Proof: Let R again denote the righthand side. Because R contains y(X), is complete (by Lemma
7.6), and is closed under &:

lim p(V,,) @ lim p(W,,) = lim(p(V,,) @ p(W,)) [@ is continuous on X]
= lim p(Vn U Wn)a

for Cauchy sequences (p(V,,))n and (p(W,,))n, it follows that Py (X) C R.

For the converse note that any subset V' of X which is closed under & and contains y(X), also
contains p(V) for any V € P,p(X). If V is moreover complete than lim p(V;,) is in V, for any
Cauchy sequence (p(V,,))n in X with V, € Prns(X), for all n. Consequently, R is contained in any
V having all three properties. Thus R C Py (X). |

Combining Lemma 7.6 and Theorem 7.8 yields the following.

Corollary 7.9 For any generalized ultrametric space X, Py(X) = P,s(X). |
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The above description of the generalized lower powerdomain can be used to give the following
categorical characterization. Let a metric lower semi-lattice be an algebraic complete quasi ultra-
metric space X together with a non-expansive and continuous operation + : X x X — X such
that, for all z, y, and z in X,

(Yao+a=a, (i)at+y=y+ao, (i) (@+y)+2=a+(y+2), (@) a<xo+y.

For example, (P,(X),®) is a metric lower semi-lattice because P,(X) is an algebraic complete
quasi ultrametric space by the above corollary, and & is continuous and non-expansive.

As a consequence of Theorem 7.8, the lower powerdomain construction can be seen to be
free. First note that every z in a gum X is mapped by y : X — X to an element of Pgl(X).
Thus we may consider y as a non-expansive mapy : X — Pgl(X). Since Pgl(X) is an algebraic
complete quasi ultrametric space, Theorem 5.5 gives us a non-expansive and continuous function
y# 1 X — Py(X). It is used in the following.

Theorem 7.10 For any gum X, metric lower semi-lattice (Y,4), and non-ezxpansive and con-
tinuous function f : X — Y there exists a unique non-expansive, continuous and + preserving
mapping f* : (Pu(X), ®) — (Y, +) such that f*oy# = f:

_y* -
X ——Pu(X)

-
\;

Y
Y.

(This theorem can be proved similarly to Theorem 5.5.)

Now let Lsl(Acq) denote the category of metric lower semi-lattices with continuous, non-
expansive and + preserving functions as morphisms. There is a forgetful functor U : Lsl(Acq) —
Acq which maps every metric lower semi-lattices (Y, +) to Y. As a consequence of Theorem 7.10,
the lower powerdomain construction can be extended to a functor Py (—) : Acg — Lsl(Acgq) which
is left adjoint to U. As usual, this implies that the functor U o Py(—) : Acg — Acq is locally non-
expansive and locally continuous (cf. [Plo83, Rut95]), by which it can be used in the construction
of recursive domain equations.

Characterizing P, (X) topologically

The main result of this subsection is that for generalized ultrametric spaces X that are countable:
Pgl(X) = ’P;—S(X)a

where
P;'S(X) ={V C X | V is gS-closed and non-empty }.

The proof makes use of the adjunction p f as follows. As with any adjunction between preorders,
the co-restrictions of p and [ give an isomorphism

p:Im([) = Im(p), [ :Im(p) — Im([).

Recall that the gS-closed subsets of X are precisely the fixed points of [op (Theorem 6.8). Because
[opo [ = [ (as with any adjunction between preorders), all elements of Im( ) are gS-closed.
Thus

P,s(X) = {V CX |V isgS-closed }
= {VCX|V=[op(V)}
Im([).

In order to conclude that P, (X) = 'P;'S(X), it is now sufficient to prove Py (X) = Im™(p), where
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Im*(p) ={p(V) e X |V C X, V nonempty }.

This will be a consequence of the following lemma and theorem.
The inclusion P, (X) C Im™ (p) is an immediate consequence of Theorem 7.8 and the following.

Lemma 7.11 For all Cauchy sequences (p(V,))n in X such that V, is a finite and nonempty
subset of X for all n, lim p(V,,) € Im™ (p).

Proof: Let (V,,),, be a sequence of finite and nonempty subsets of X such that (p(V,)), is Cauchy
in X. We shall prove: lim p(V;,) = p({lim v, | v, € V,,, for all n, and (v,), is Cauchy in X}). (It
will follow from the proof below that the set on the right is nonempty.) Let (vy,)n, with v, € V,,
be a Cauchy sequence in X. For all n, p(V,,) < v, (in X taken with the pointwise extension of the
standard ordering on [0, 1]). Therefore lim p(V,,) < lim v,,. Because (v, ), is arbitrary, this implies

lim p(V,,) < p({lim vy, | v,, € V,,, for all n, and (v,), is Cauchy in X}).

For the converse let € X and e > 0. We shall construct a Cauchy sequence (v,), in X such that
lim v, (z) <lim p(V,)(z) + 2 - €.

Let N be such that for all n > N,
X(p(Viv), p(Va)) < €, and p(Viy)(w) < lim p(V,)) () + €.

Choose v; in V; arbitrarily, for 0 < 7 < N. Because Vy is finite there exists vy € Vi such that
p(Vn)(z) = X(z,vn) = vn(z). Choose vy41 in Vy4q such that
X(vn,vn41) = min X(vy,w).
wEVN 41

Because, by Theorem 7.3,

X(p(Vn), p(Viv+1)) = max L0 X(v,w),

it follows that

X(vn,on41) S X(p(VN), p(VN11)) <

Continuing this way, we find a sequence (v,), in X which is Cauchy because (p(V,,))n is. Now for
all n > N, [0,1](vn(z),vn(2)) < €, or equivalently, v,(z) < max{e,vn(z)}. Thus

limv,(z) < max{evy(z)}
< opn(z)+e
= p(VNn)(z) +e
< limp(Vp)(z) +2 - €.

The reverse inclusion: Im™(p) C Py (X), is a consequence of Theorem 7.8 and the following.

Theorem 7.12 Let X be countable. For any subset nonempty V of X there exists a sequence
(Vi)n of finite and nonempty subsets of X such that p(V) =lim p(V,,) in X.

Proof: Let V C X, nonempty. We shall define a sequence (V,)n of finite and (eventually)
nonempty subsets of X such that for any ¢ € X,

X(p(V), ) = lim X (p(Va), 6)-

The proof proceeds in five steps as follows.
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1. Let z1,x2,... be an enumeration of X. The sets V,, are defined by induction on n. They
will consist of elements of X which are approximations of elements of V. More precisely,
they will satisfy, for all n > 1,

Ve € Vi, Byjn(z) 0V #£0.
For convenience, we start at n = 1. Let

V1:{ éml} 1fB1(ac1)ﬂV7é@

otherwise.

Now suppose we have already defined V,,. We assume: for all 2 € V,,, Byjn(z) NV # 0. In
the construction of V11, we shall include for every element of the previously constructed
set V,, again an element (possibly the same), which will be a better approximation of the set
V. Moreover, we shall take into account #,1, the (n + 1)-th element in the enumeration of

X. Let
Vi1 = {improve(z) | z € V,,} U {represent(z,,41) | Bi(nt1) NV # B},

where ‘improve(z)’ and ‘represent(z,11)’ are defined as follows:

o If Byjpy1(x) NV # 0 then put improve(z) = x: = is still ‘good enough’. Otherwise

consider y € V with X(m,y) < 1/n, which exists by the inductive hypothesis that
Bi/n(z) NV # 0. Let y = limyy, with g, in X for all k. Because z is in X it is finite

in X, whence
X(z,y) = lim X (z, yx).

Therefore we can choose a number k big enough such that
X(yg,y) <1/(n+1) and X (z,yz) < 1/n.

Define improve(z) = yi. Note that
B1/(n+1)(improve(z)) NV # () and X (¢, improve(z)) < 1/n.

e Suppose Bi(zn1) NV # @. (If this does not hold the second set in the definition of
Vo is empty.) If By jq1)(2n41) NV # @ then 2,44 is close enough to V', and we put:
represent(z,41) = @p41. Otherwise let ¢ be the maximal natural number smaller than
n + 1 such that By;(zn1) NV # 0. Let y € V be such that X(@ni1,y) < 1/i. Let
y = lim yg, with y; in X for all k. As before we can choose a number &k such that

X(yr,y) <1/(n+1) and X (zni1,yx) < 1/,
and put: represent(z,+1) = yr. Note that
B1(n41)(represent(z, 1)) NV # () and X (@py1, represent(zn41)) < 1/i.

For all € Viiy1, Bijn41)() NV # 0. Because V' is nonempty there exists N such that for
all n > N, V,, is nonempty.

2. Some properties of (V,,),: Because X (z,improve(z)) < 1/n, for all n > 1 and z € V,, it
follows that

X(p(Vp), p(Vay1)) = sup inf X(v,w) [Theorem 7.3]
veV, WEVnt1
< 1/n.

Because By/,(z) NV # 0, for all n > 1 and = € V,,, also

X(p(Va), p(V)) <1/n.
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3. As a consequence, (p(V,,))n is a Cauchy sequence in X. Since foralln > 1 and ¢ € X,
X(p(Va),0) < max{X(p(Va),p(V)), X(p(V), )}
< X(p(V),9) +1/n,

it follows that

lim X (p(Va), 6) < X ((V), 6).

—

4. Next we shall prove the converse:

X(p(V),8) < lim X (p(V2), 6).

Because X (p(V),¢) = X(inf V,¢) = sup,cy X(v, ) it will be sufficient to prove for all
yev,

X(y, ¢) <lim X (p(Va), ).

So let y = limy,, be in V with y,, € X for all m. Let M > 1 be arbitrary. Choose m big
enough such that

X(y, 6) X (lim Yo, ¢)

= liinf((ym,fzﬁ)
X (Y, ¢) + 1/M,

and X(ym,y) <1/M. Let k > 1 be such that y,, = z. (Recall that X = {z1,z,,...}.) We
distinguish between the following two cases:

IN

(i) & < M: Because 1/M < 1/k it follows from the construction of (V,,), that z; €
Vi, ¢k € Vigi1,...,x, € Var. Therefore

X(ym7¢) = X("Ek?)
< sup X(z,9)
€V

= X(inf Vi, )

Because X (p(Vy),lim p(V,,)) < 1/M, for N > M big enough,

X(p(Vi),¢) < max{X(p(Vi), p(Viv)), X (p(Viv),lim p(V,)), X (lim p(Vi.), )}
< X(limp(Va), ¢) + 1/M
lim X (p(Va), ¢) +1/M,

which implies
X(ym, @) <lim X (p(Va), ¢) + 1/M.

(ii) M <k: If Byjp(2zx) NV = By/g(ym) NV # 0 then represent(xy) = xx. Otherwise let
i be the maximal number below k such that By ;(zx) NV # (). Because X(zp,y) =

X(ym,y) < 1/M it follows that M < i, whence

X (zy,represent(zy)) < 1/i < 1/M.
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Therefore we have, whether By i (x) NV is empty or nonempty,
X (Ym, 0)

X(mka ¢)
max { X (zt, represent(z,)) X (represent(zy,), ¢)}

X (represent(zy), ¢) + 1/M

sup X(m, ¢)+1/M
zeVi

INIACIA

X(p(Vk),¢) +1/M.

Because, as in case (i),

X(p(Va), ¢) < lim X (p(V), @) + 1/k,
and 1/k < 1/M, this implies

X (Y, ¢) < lim X (p(Va), ¢) + 2/M.

It follows that in both cases

X(y,9) < X(Ym, @) + 1/M < lim X (p(Van), ¢) + 3/M.
Because M is arbitrary, this implies

X(y, ¢) <lim X(p(Va), ).

5. We have shown:

. O
Lemma 7.11 and Theorem 7.12, together with Theorem 7.8, imply:
Corollary 7.13 For a countable generalized ultrametric space X, Py(X) = Im™(p). |

All in all, we have:

Theorem 7.14 For a countable generalized ultrametric space X, Py (X) = P;S(X).

Proof: The isomorphism P,s(X) = I'm(p) restricts to an isomorphism P;S(X) = I'm*(p). By
Corollary 7.13, Py (X) = Im™ (p). Therefore, P,(X) = P;S(X). m

It follows that if we start with an w-algebraic complete quasi ultrametric space X with basis Bx
(for which X = Bx), then

Pau(X) = {V C X |V is gS-closed and nonempty }.

Using the characterization of Pg(X) as a completion, it follows that Pg(X) is an w-algebraic
complete quasi ultrametric space with as (countable) basis the set

{CIS(V) ‘ Ve Pnf(Bx)}

The collection of closed sets of a given topological space X often comes with the lower topology
[Mic51, Nad78]. Recall that given a topological space (X, O(X)), the lower topology O (S) on a
collection of subset S C P(X) is defined by taking the collection of sets of the form

Lo={VeS|Vno#0),
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for all 0 € O(X), as a subbasis. This subsection is concluded by showing that for an w-algebraic
complete quasi ultrametric space X, the lower topology on P,s(X) and the generalized Scott
topology on Pyg(X) coincide.

Theorem 7.15 For an w-algebraic complete quasi ultrametric space X,
OL(Pygs(X)) = Oys(Pys (X))

Proof: Let Bx be a countable basis for X. Let o € Oy5(X) and consider the sub-basic open set
L, € Op(Pys(X)). A gS-closed set V' is in L, if and only if V N o # 0 or, equivalently, V Z X \ o.
Because X \ o is gS-closed, it follows from Lemma 7.4 that P(X)(V, X \ 0) # 0. Therefore,

VeL, < Ve{WeP,s(X)|PX)W,X\o)+#0}.

But the rightmost set is open in the gS-topology of P,s(X) because it is the complement of the
gS-closed set

els({X \ 0}) = {V € P,s(X) | P(X)(W, X \ o) = 0}

(the latter equality being a consequence of Lemma 6.7 and Lemma 7.4). This proves O (Pys(X)) C
OgS(PgS(X))'
For the converse, let V be a finite subset of Bx and consider, for some € > 0, the basic open

set Be(clg(V)) of the gS-topology on Pyg(X). For any W € Pys(X),

W e B.(cls(V))
P(X)(cls(V), W) < e
P(X)(V,W)<e [Lemma 7.5

sup inf X(b,z) <e [Theorem 7.3, V C Bx]
bev 2€W

VbeV, inf X(b,z)<e.
zeW
VbeV, WNB.b)#0

W e ﬂ Lp sy [Be(b) is basic open in Oys(X)].
beV

rrrone

Since V is finite, the above proves that every basic open set of Og5(Py5(X)) can be expressed
as the intersection of finitely many sub-basic open sets of O (Pys(X)). Thus Ogg(Pys(X)) C
OL(Pys(X)). |
Generalized upper and convex powerdomains

We briefly sketch the construction of a generalized upper and convex powerdomain. They will be
treated in detail elsewhere.

Let X be a generalized ultrametric space. A generalized upper powerdomain on X can be
defined dually to P,(X) as follows. First [0,1] is considered again as a semi-lattice, now with
® :[0,1] x [0,1] — [0, 1] sending elements r and s in [0, 1] to (their product) max {r,s}. Next let

X = (o, I}X)op-

It can be turned into a semi-lattice ()”( ®) by taking the pointwise extension of ®. There is the
following dual version of the Yoneda embedding:

S/’:X_>Xa QTHX($,*)7
where X (z,—) maps y in X to X(z,y). Now the generalized upper powerdomain is given by

Pou(X) = ﬂ{V cX | ¥(X) CV, V is a complete subspace of X, and V is closed under ®}.
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Also this powerdomain can be characterized in a number of ways, one of which is via completion:
Consider again P, s(X), this time with distance, for all V and W in P,;(X),

Prp(X)(V,W) = sup inf X(v,w).
weW veEV
Then the completion of P, (X) is isomorphic to Py, (X). In the special case that X is a preorder,
this amounts to the standard definition of the upper, or Smyth, powerdomain.

A generalized convex powerdomain is obtained by combining the constructions of the general-
ized lower and upper powerdomains (thus using both the Yoneda embedding and its dual). It can
again be easily described as the completion of P, (X ), now taken with distance

Prr(X)(V,W) = max {sup inf X(v,w), sup inf X(v,w).}
veV weW wew veV
For a preorder X, the convex powerdomain coincides with the standard convex, or Plotkin, pow-
erdomain; for an ordinary ultrametric space, it yields the powerdomain of compact subsets.

8 Related work

The thesis that fundamental structures are categories has been the main motivation for Lawvere
in his study of generalized metric spaces as enriched categories [Law73]. Lawvere’s work together
with the more topological perspective of Smyth [Smy87] have been our main source of inspiration
for the present paper which continues the work of Rutten [Rut95]. Generalized ultrametric spaces
are a special instance of Lawvere’s V-categories. The non-symmetric ultrametric for [0, 1] is also
described and studied in his paper. The notion of forward Cauchy sequence for a non-symmetric
metric space is from [Smy87] as well as the notion of limit. A purely enriched categorical definition
of forward Cauchy sequences and of limits can be found in Wagner’s [Wag94, Wag95]. The notion
of finiteness and algebraicity for a generalized ultrametric space are from [Rut95].

Clearly we are working in the tradition of domain theory, for which Plotkin’s [Plo83] has been
our main source of information.

Completion and topology of non-symmetric metric spaces have been extensively studied in
[Smy87], seeking to reconcile metric spaces and complete partial orders as topological spaces by
considering quasi-uniformities. Smyth gives criteria for the appropriateness of a topology for a
quasi-uniform space. Also a completion by means of Cauchy sequences is present in his work. The
main difference with our work is the simplicity of the theory of generalized metric spaces obtained
by the enriched categorical perspective, in particular by the use of the Yoneda Lemma. Indeed,
both the categorical perspective of Lawvere and the topological one of Smyth have been combined
in our approach to obtain a reconciliation of complete metric spaces with complete partial orders.

The fact that the Yoneda lemma gives rise to completion is well known for many mathemat-
ical structures such as groups, lattices, and categories. In [Wag95], an enriched version of the
Dedekind-MacNeille completion of lattices is given. In [SMM95], the Yoneda lemma is used in
the definition of a completion of monoidal closed categories. The use of the Yoneda lemma for
the completion of generalized metric spaces is new, but it is suggested by an embedding theorem
of Kuratowski [Kur35] and the definition of completion as in [Eng89, Theorems 4.3.13-4.3.19] for
standard metric spaces. A metric version of the Yoneda lemma also occurs, though not under that
name, in [JMP86, Lemma II-2.8]. The comprehension schema as a comparison between predicates
and subsets has been studied in the context of generalized metric spaces by Lawvere [Law73] and
Kent [Ken87]. The definition of the generalized Scott topology via the Yoneda embedding seems
to be new while the direct definition—by specifying the open sets—is briefly mentioned in the
conclusion of [Smy87]. A generalized Scott topology is also given in [Wag95]. However his notion
of topology does not coincide with the standard one: for example it is not the e-ball topology in
the case of standard metric spaces.

Another important topological approach to quasi metric spaces which needs to be mentioned
is that of, again, Smyth [Smy91] and Flagg and Kopperman [FK95]. They consider quasi metric
spaces equipped with the generalized Alexandroff topology. In order to reconcile metric spaces
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with complete partial orders they assign to partial orders a distance function which, in general,
is not discrete. Their approach to topology, completion and powerdomains is much simpler than
ours because much of the standard metric topological theorems can be adapted. The price to be
paid for such simplicity is that this approach only works for a restricted class of spaces: they have
to be spectral. Hence a full reconciliation between metric spaces and partial orders is not possible
(e.g., only algebraic cpo’s which are so-called 2/3 SFP are spectral in their Scott topology). Also
the work of Siinderhauf on quasi-uniformities [Siin94] is along the same lines.

The study of powerdomains for complete generalized metric spaces is new. Some results on
the restricted class of totally bounded quasi metric spaces are due to Smyth’s [Smy91] and Flagg
and Kopperman’s [FK95]. The lower powerdomain has also been studied by Kent [Ken87] but
for generalized metric spaces which need not be complete. Our use of the Yoneda embedding for
defining the powerdomains and for their topological characterization is new. It is inspired by the
work of Lawvere [Law73, Law86].

Other papers on reconciling complete partial orders and metric spaces are [WS81, CD85,
Mat94]. In [RSV82] seven distinct notions of Cauchy sequences can be found. For one of these
notions of Cauchy sequence—but different from ours—completion has been studied in [Doi88].
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A Topological preliminaries

A topology O(X) on a set X is a collection of subsets of X that is closed under finite intersections
and arbitrary unions. The pair (X, O(X)) is called a topological space and every o € O(X) is
called an open set of the space X. A set is closed if its complement is open. A base of a topology
O(X) on X is a set B C O(X) such that every open set is the union of elements of B. A subbase
of O(X) is a set S C O(X) such that the collection of finite intersections of elements in S is a
basis of O(X).

Every topology O(X) on a set X induces a preorder on X called the specialization preorder:
for any z and y in X, z <@ y if and only if

Yoe O(X), z€o=yE o

A topology is called 7 if the specialization preorder is a partial order.
A closure operator on a set X is a function ¢l : P(X) — P(X) such that, for all S and S’ in

P(X),

(i) SCcS) (ii) cl(S) = cl(cl(S))

(iii) if S € S’ then cl(S) C cl(S")
A closure operator is strict if ¢l(f) = 0. A topological closure operator is a strict closure operator
cl that moreover is finitely additive: cl(SUS') = cl(S)Ucl(S’). Every topological closure operator
induces a topology: the closed sets are the fixed points of the closure operator. Conversely, every
topology O(X) on X defines a topological closure operator, which maps a subset S of X to the
intersection of all closed sets containing S. This closure operator can also be characterized as
follows: Let S be a subset of X. An element z in X is a cluster point of S if for every open set

0€ O(X), z € oimplies 0N (S \ {z}) # 0; that is, z cannot be separated from S using open sets.
Let S be the collection of all cluster points of S (it is called the derived set). Then

cl(S) =SusS™
Let (X, O(X)) be a topological space. A non-empty subset F C O(X) is a filter if it satisfies
1. if oy € F and 07 C 0y then oy € F; and
2. if o € F and 09 € F then 0y Noy € F.

For instance, every element z in X induces a filter AN'(z) = {0 € O(X) | z € 0o}. More generally,
any sequence (Z,), in X induces a filter

N((zn)n) ={0€ O(X)|IN >0V¥n > N, =z, € o}.

A filter F converges to an element x, denoted by F — =z, if N (z) C F. A sequence (z,), is said
to converge to an element = if N'((z,)n) — =.

A function f : X — Y between two topological spaces X and Y is topologically continuous if
the inverse image f1(0) = {z € X | f(z) € o} of any 0in O(Y) isin O(X). If f : X — Y is

topologically continuous then for every sequence (zn), in X and z € X

N((@n)n) =2 = (N((f(zn)n) = f().

The standard topology associated with an ordinary (ultra)metric space X is the e-ball topology:
a set o C X is open if

Vz € 03¢ >0, B(x) Co,

where B(z) = {y € X | X(2,y) <€}. The set {B(z) | # € X & € > 0} is a basis for e-ball
topology.

The standard topology associated with a preorder X is the Alexandroff topology, for which a set
o C X is open if, for x and y in X,
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r€oandzx <y = yE€o,

that is, o is upper-closed. If the preorder has a least upper bound for every w-chain, then the
Scott topology is more appropriate. It consists of those upper closed subsets o C X that moreover
satisfy, for any w-chain (z,), in X,

|_|acn€o = INVYn>N, =z, €o.

Clearly, every Scott open set is also Alexandroff open. The converse is generally not true if the
pre-order X is not finite. If X is an w-algebraic cpo with basis Bx then the set {1 b| b € Bx},
with 1= {z € X | b <z}, is a basis for the Scott topology.

B Sequences of sequences

The following two lemmas express that the limit of a Cauchy sequence which consists of the limits
of Cauchy sequences of finite elements, can be obtained as the limit of a (kind of) diagonal sequence
of finite elements.

Lemma B.1 Let X be a subspace of a complete quasi ultrametric space Y. Let all elements of X
be finite in Y. For every n > 0 let (v*),, be a Cauchy sequence in X with limit

lim,, v]* = yp. (16)
Assume that (yn)n is a Cauchy sequence in Y satisfying
Vi Y (Yo, Ynt1) < 35 (17)

Then there exist subsequences (z0')m of (VI )m in X satisfying

Vm :Vn o X (a2t ) < - (18)
. . m m—+1 1
Vo :Vm: X (z, 27" ) < - (19)
Vo : lim, 2] =y, (20)
1 1 1
3 6 9 .
Y1 Yo Y3 e lim,, yn,
1 1 1
3 3 3
L 1 1
3 3_ 2 3_3
Ty Zy T3
1 1 1
2 2 2
| 1 1
2 2 _ 2 2 _ 8
Ty P T3
1 1 1
L 1 1
2 3
1 o5 w3

Proof Without loss of generality we can assume that

Vo :Vm: X (oo™t < %
We will construct subsequences (z1),, of (v*),, satisfying (18). Because a subsequence of a
Cauchy sequence is again Cauchy and has the same limit, these subsequences also satisfy (19) and

(20).
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Since, for all n,

1<1£[lm Y (vn ’ y’rH-l)

= Y (limp, 07", Ynt1)
=Y (yna yn+1) [(16)]
< 30 7))

we can conclude, according to Proposition 3.1 that
Vo :3dM, :Ym > M, : Y (v, ynt1) < 3%

By removing from each sequence (v]*),, the first M, elements we obtain the subsequences

(W) = (vMntm) . satisfying

vV Vm Y (™, ypr1) < 2. (21)

— 3n
Since, for all n and m,

limg Y (wi, wk ;)
= Y (w, limg w§+1) [w] is finite in Y]
= Y (wi',yns1) [(16)]
< g l2D)]

— 3n

we have, according to Proposition 3.1 that

n o

Vo :VYm 3K :Vk> K" Y (w) wa_l)S%.

m

" )m are strictly increasing. The

Without loss of generality we can assume that the sequences (K

subsequences (z™),, = (wﬁ"m)m where
om m ifn=1
" K a1
satisfy (18). O

The above proof shows some resemblance with the proof of Theorem 2 of [Smy87]. The

completeness of Y ensures the existence of the limits of the Cauchy sequences (vI"),,. If we drop

the condition that all elements of X are finite in Y, then the above lemma does not hold any more.

Lemma B.2 Let X be a subspace of a complete quasi ultrametric space Y. Let (y,)n be a Cauchy
sequence in Y satisfying

VY Y (yYn, Ynt1) < 3% (22)

Let (2),, be Cauchy sequences in X satisfying

Vm:Vn: X (2], zp ) <+ (23)
Vn:Vm: X (2], aptl) < L (24)
Vo lim,, 2" =y, (25)

Then (ac’,z)k is a Cauchy sequence in X and limyg ac’,z = lim,, y,.
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wl—
ol
o~

Y Y2 Y3 limy, z}
7
7/
7/
7/
7
1 1 1 /
3 3 3 /
y 1 /o1
3 3_ 2 3_3
Ty Lo L3
7
1 1 71
2 2 / 2
y /1 1
2 2 2 3
Ty Lo L3
7
1 P 1
- 1 1
1 1_2 1_3
T1 D) T3

Proof Because, for all k,

k .k
X (mkamkﬁ)
< max{X (IZ=$Z+1)7X ($k+1zmlzﬁ)}

< & [(23) and (24)]
the sequence (zF); is Cauchy.

For all n, m, and k, with k > max {n,m},

L-<
=

k)
max {Y (2}, 23,), Y (25, 2¢)}

n

<
< max{Z,L1} [(23) and (24)]
Consequently,

Y (limy, yn, limy z¥)

_ . . k
= lim, Y (yn,limg 2})

limn Y (limy, 7, limg [(25)]

n 3

IN

k)
lim, lim m Y (2™ limy, zF)
lim, lim, limy V" (27", zf)

L

IN

hm hm m limy max{ L } [see above]

0 [Proposition 3.1].

For all n, m, and k, with n > k and m > k,

Y (e, zp)
< max {Y (e, 2), Y (2, o))}
<

7 [(23) and (24)]

Hence,
Y (limy, xﬁ, lim,, yn)
T ko1
= lim, Y (2, limy yn)

< 1<i£nk lim, Y (m’,j, Yn) |Proposition 3.5
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= lim,, ¥,

[Proposition 3.5]



limy lim,, Y (2, limp, 7)) [(25)]

< 1<i£nk lim,, lim,, Y (m’,: ,x")  [Proposition 3.5]
< 1<i£nk lim,, lim,, % [see above]
= 0 [Proposition 3.1].
From the above we can conclude that limy xllz = lim, y,. O

From the above two lemmas we can conclude the following.

Proposition B.3 Let X be a subspace of a complete quasi ultrametric space Y. Let all elements
of X be finite in' Y. Then

{limz, | (z,)n is a Cauchy sequence in X }

is a complete subspace of Y.

Proof Let R = { limz, | (#,)n is a Cauchy sequence in X }. Clearly R is a subspace of Y.
Let (yn)n be a Cauchy sequence in R. We have to show that its limit lim, y, is an element of
R. Without loss of generality we can assume that Vn : Y (yn, yni1) < 3%1 From Lemma B.1 and
B.2 we can conclude that there exists a Cauchy sequence (mﬁ)k in X satisfying limy mz = lim,, ¥,.

Consequently, lim,, y,, € R. O
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