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1 OverviewA generalized ultrametric space consists of a set X together with a distance function X(�;�) :X �X ! [0; 1], satisfying X(x; x) = 0 and X(x; z) � max fX(x; y); X(y; z)g, for all x, y, and zin X . The family of generalized ultrametric spaces contains all ordinary ultrametric spaces (forwhich the distance is moreover symmetric and di�erent elements cannot have distance 0) as well asall preordered spaces (because a preorder relation is simply a discrete distance function mappinginto the set f0; 1g). Thus generalized ultrametric spaces provide a common generalization of bothpreordered spaces and ordinary ultrametric spaces, which is the main motivation for the presentstudy.Our sources of inspiration are the work of Lawvere on V-categories and generalized metricspaces [Law73] and the work by Smyth on quasi metric spaces [Smy91], and we have been inuencedby recent work of Flagg and Kopperman [FK95] and Wagner [Wag94]. The present paper continuesearlier work [Rut95], in which some of the basic theory of generalized ultrametric spaces has beendeveloped.The guiding principle throughout is Lawvere's view of ultrametric spaces as [0; 1]-categories ,by which they are structures that are formally similar to (ordinary) categories. As a consequence,insights from category theory can be adapted to the world of ultrametric spaces. In particular, weshall give the ultrametric version of the famous Yoneda Lemma, which expresses, intuitively, thatone may identify elements x of a generalized ultrametric spaceX with a description of the distancesbetween the elements of X and x (formally, the function that maps any y in X to X(y; x)). Thiselementary insight (with an easy proof) will be shown to be of fundamental importance for thetheory of generalized ultrametric spaces (and, a fortiori, both for order-theoretic and ultrametricdomain theory as well). Notably it will give rise to1. a de�nition of completion of generalized ultrametric spaces, generalizing both chain comple-tion of preordered spaces and metric Cauchy completion;2. a topology on generalized ultrametric spaces generalizing both the Scott topology for arbi-trary preorders, and the metric �-ball topology;3. the de�nition and characterization of three powerdomains generalizing on the one hand thefamiliar lower, upper, and convex powerdomains from order-theory; and on the other handthe ultrametric powerdomain of compact subsets.Our main motivation for considering generalized ultrametric spaces rather than generalizedmetric spaces (where one would have X(x; z) � X(x; y) +X(y; z), for all x, y, and z in X) is theabove mentioned fact that the distance induced by a preorder is indeed a generalized ultrametric.Generalized ultrametric spaces seem to arise moreover naturally in the semantics of programminglanguages, notably when dealing with transition systems (cf. [Rut95]). Finally, because of thestrong triangle inequality ultrametric spaces are|from a computational point of view| betterbehaved than metric spaces. However, the results presented here on completion and topologyof generalized ultrametric spaces apply equally well to generalized metric spaces. It is to beinvestigated whether the various characterization theorems for the powerdomains would still holdin the generalized metric case.As mentioned above, generalized ultrametric spaces and the constructions that are given inthe present paper both unify and generalize a substantial part of order-theoretic and ultrametricdomain theory. Both disciplines play a central role in (to a large extent even came into existencebecause of) the semantics of programming languages (cf. recent textbooks such as [Win93] and[BV95], respectively). The use of generalized ultrametric spaces in semantics, or more precisely,in the study of transition systems, will be an important next step. The combination of resultsfrom [Rut95] (on domain equations) and the present paper is expected, for instance, to lead todomains that are suitable for simulation and bisimulation.The paper is organized as follows. Sections 2 and 3 give the basic de�nitions and facts ongeneralized ultrametric spaces. After the Yoneda Lemma in Section 4, completion, topology andpowerdomains are discussed in Sections 5, 6, and 7. Finally Section 8 discusses related work.3



2 Generalized ultrametric spaces as [0; 1]-categoriesGeneralized ultrametric spaces are introduced and shown to be [0; 1]-categories in the sense ofLawvere. In order to see this, a brief recapitulation of Lawvere's enriched-categorical view ofmetric spaces is presented. The section concludes with a few basic de�nitions and properties tobe used in the sequel. (The reader not familiar with category theory might want to skip thebrief summary of enriched categories, and only look at the special case of generalized ultrametricspaces.)A generalized ultrametric space (gum for short) is a set X together with a mappingX(�;�) : X �X ! [0; 1]which satis�es, for all x, y, and z in X ,1. X(x; x) = 0, and2. X(x; z) � maxfX(x; y); X(y; z)g,the so-called strong triangle inequality. The real number X(x; y) will be called the distance fromx to y. (Note that it is bounded by 1.) Examples of generalized ultrametric spaces are:1. The set A1 of �nite and in�nite words over some given set A with distance function, for vand w in A1,A1(v; w) = � 0 if v is a pre�x of w2�n otherwise,where n is the length of the longest common pre�x of v and w.2. Any preorder hP;�i (satisfying for all p, q, and r in P , p � p, and if p � q and q � r thenp � r) can be viewed as a generalized ultrametric space, by de�ningP (p; q) = � 0 if p � q1 if p 6� q.By a slight abuse of language, any gum stemming from a preorder in this way will itself becalled a preorder.3. The set [0; 1] with distance, for r and s in [0; 1],[0; 1](r; s) = � 0 if r � ss if r < s.We briey review Lawvere's [Law73] conception of metric spaces as V-categories [EK65, Kel82].Then we shall follow and further elaborate his approach for the special case of generalized ultra-metric spaces, which will be shown to be [0; 1]-categories. The main point is that, in general, manyproperties of V-categories derive from the structure on the underlying category V . In our case,therefore, many properties of generalized ultrametric spaces are determined by properties of [0; 1].The starting point is a category V together with a functor
 : V � V ! Vwhich is symmetric and associative, and has a unit k. This de�nes a so-called symmetric monoidalstructure on V . The category V is required to be complete and cocomplete (i.e., all limits andcolimits in V should exist), and its monoidal structure should be closed: that is, there exists an(internal hom) functorHom : Vop � V ! V 4



such that for all a in V , the functor Hom(a;�) (mapping b in V to Hom(a; b)) is right adjoint tothe functor a
� (which maps b in V to a
 b). A V-category , or a category enriched in V , is anyset (more generally, class) X together with the assignment of an object X(x; y) of V to every pairof elements hx; yi in X ; the assignment of a V-morphismX(x; y)
X(y; z)! X(x; z)to every triple hx; y; zi of elements in X ; and the assignment of a V-morphismk ! X(x; x)to every element x in X , satisfying a number of naturality conditions (omitted here since they aretrivial in the particular case we are interested in).For instance, the category of all sets is a (complete and cocomplete) symmetric monoidal closedcategory (where 
 is given by the Cartesian product, and any one element set is a unit). Thecorresponding V-categories are just ordinary categories: X(x; y) is given by the homset of allmorphisms between two objects x and y in a category X , and the V-morphisms that are requiredto exist are just mappings de�ning the composition of morphisms, and giving identity morphisms.Generalized ultrametric spaces can now be seen to be [0; 1]-enriched categories as follows. Firstof all, [0; 1] is shown to be a complete and cocomplete symmetric monoidal closed category. It is acategory because it is a preorder (objects are the real numbers between 0 and 1; and for r and s in[0; 1] there is a morphism from r to s if and only if r � s). It is complete and cocomplete: equalizersand coequalizers are trivial (because there is at most one arrow between any two elements of [0; 1]),the product r� s of two elements r and s in [0; 1] is given by max fr; sg, and their coproduct r+ sby minfr; sg. More generally, products are given by sup, and coproducts are given by inf. Themonoidal structure on [0; 1] is given bymax : [0; 1]� [0; 1]! [0; 1];assigning to two real numbers their maximum, which is symmetric and associative, and for which0 is the unit element. (Note that in this case the monoidal product is identical to the categoricalproduct. In general this need not be the case.) Consider the following (`internal hom-') functor[0; 1](�;�) : [0; 1]op � [0; 1]! [0; 1];which assigns to r and s in [0; 1] the distance [0; 1](r; s) as de�ned in the third example above. Thefollowing fundamental equivalence states that [0; 1](t;�) is right-adjoint to max ft;�g, for any rin [0; 1]:Proposition 2.1 For all r, s, and t in [0; 1],max ft; sg � r if and only if s � [0; 1](t; r): 2As a consequence, [0; 1] is a (complete and cocomplete symmetric) monoidal closed category. (Infact, since the monoidal structure is given by the categorical product on [0; 1], it is even Cartesianclosed.)The [0; 1]-categories are precisely the generalized ultrametric spaces introduced at the begin-ning of this section: sets X together with a mapping assigning to x and y in X an object, i.e.,a real number X(x; y) in [0; 1]. The existence of a [0; 1]-morphism from X(x; y) 
 X(y; z) =max fX(x; y); X(y; z)g to X(x; z) gives the second, and the existence of a morphism from k = 0to X(x; x) gives the �rst of the axioms for generalized ultrametric spaces.As mentioned above, many constructions and properties of generalized ultrametric spaces aredetermined by the category [0; 1]. Important examples are the de�nitions of limit and complete-ness, presented in Section 3. Also the category of all gums, which is introduced next, inheritsmuch of the structure of [0; 1].Let Gums be the category with generalized ultrametric spaces as objects, and non-expansivemaps as arrows: i.e., mappings f : X ! Y such that for all x and x0 in X ,5



Y (f(x); f(x0)) � X(x; x0):A map f is isometric if for all x and x0 in X ,Y (f(x); f(x0)) = X(x; x0):Two spacesX and Y are called isometric (isomorphic) if there exists an isometric bijection betweenthem. The product X � Y of two gums X and Y is de�ned as the Cartesian product of theirunderlying sets, together with distance, for hx; yi and hx0; y0i in X � Y ,X � Y (hx; yi; hx0; y0i) = max fX(x; x0); Y (y; y0)g:Note that this de�nition uses the product (max) of [0; 1]. The exponent of X and Y is de�ned byY X = ff : X ! Y j f is non-expansive g;with distance, for f and g in Y X ,Y X(f; g) = supfY (f(x); g(x)) j x 2 Xg:The fact that the category [0; 1] is monoidal closed implies that the category Gums is monoidalclosed as well: i.e., for all gums X , Y , and Z,ZX�Y �= (ZY )X :This section is concluded by a number of constructions and de�nitions for generalized ultra-metric spaces that will be used in the sequel.A generalized ultrametric space generally does not satisfy3. if X(x; y) = 0 and X(y; x) = 0 then x = y,4. X(x; y) = X(y; x),which are the additional conditions that hold for an ordinary ultrametric space. Therefore it issometimes called a pseudo-quasi ultrametric space. A quasi ultrametric space is a gum whichsatis�es axioms 1, 2, and 3. Note that [0; 1] is a quasi ultrametric space. A gum satisfying 1, 2,and 4 is called a pseudo ultrametric space.The opposite Xop of a gum X is the set X with distanceXop(x; x0) = X(x0; x):With this de�nition, the distance function X(�;�) can be described as a mappingX(�;�) : Xop �X ! [0; 1]:Using Proposition 2.1 one can easily show that X(�;�) is non-expansive.We saw that any preorder P induces a gum. (Note that a partial order induces a quasiultrametric and that the non-expansive mappings between preorders are precisely the monotonemaps.) Conversely, any gum X gives rise to a preorder hX;�Xi, where �X , called the underlyingordering of X , is given, for x and y in X , byx �X y if and only if X(x; y) = 0:Any (pseudo or quasi) ultrametric space is a fortiori a gum. Conversely, any gum X induces apseudo ultrametric space Xs, the symmetrization of X , with distanceXs(x; y) = max fX(x; y); Xop(x; y)g:For instance, the ordering that underlies A1 is the usual pre�x ordering, and (A1)s is the stan-dard ultrametric on words. The generalized ultrametric on [0; 1] induces the reverse of the usualordering: for r and s in [0; 1], 6



r �[0;1] s if and only if s � r;and the symmetric version of [0; 1] is de�ned by[0; 1]s(r; s) = � 0 if r = smax fr; sg if r 6= s.Any gum X induces a quasi ultrametric space [X ] de�ned as follows. Let � be the equivalencerelation on X de�ned, for x and y in X , byx � y i� (X(x; y) = 0 and X(y; x) = 0):Let [x] denote the equivalence class of x with respect to �, and [X ] the collection of all equivalenceclasses. De�ning [X ]([x]; [y]) = X(x; y) turns [X ] into a quasi ultrametric space. It has thefollowing universal property: for any non-expansive mapping f : X ! Y from X to a quasiultrametric space Y there exists a unique non-expansive mapping f 0 : [X ]! Y with f 0([x]) = f(x),for x 2 X .3 Cauchy sequences, limits, and completenessCauchy sequences are introduced. It is explained how such sequences look like in [0; 1], and howto de�ne in [0; 1] the notion of metric limit. This will give rise to a de�nition of metric limit forarbitrary generalized ultrametric spaces. Furthermore the notions of completeness, �niteness, andalgebraicity are introduced.A sequence (xn)n in a generalized ultrametric space X is forward-Cauchy if8� > 0 9N 8n � N; X(xn; xn+1) � �:Note that this is equivalent to the more familiar condition:8� > 0 9N 8n � m � N; X(xm; xn) � �;because of the strong triangle inequality. Since our metrics need not be symmetric, the followingvariation exists: a sequence (xn)n is backward-Cauchy if8� > 0 9N 8n � N; X(xn+1; xn) � �:If X is an ordinary ultrametric space then forward-Cauchy and backward-Cauchy both meanCauchy in the usual sense. And if X is a preorder then Cauchy sequences are eventually increasing:there exists an N such that for all n � N , xn � xn+1. (Increasing sequences in a preorder arealso called chains .) Similarly backward-Cauchy sequences are eventually decreasing.Cauchy sequences in [0; 1], with the generalized ultrametric of Section 2, are particularly simple:every forward-Cauchy sequence either converges to 0 or is eventually decreasing; dually, everybackward-Cauchy sequence either converges to 0 or is eventually increasing.Proposition 3.1 A sequence (rn)n in [0; 1] is forward-Cauchy if and only ifeither: 8� > 0 9N 8n � N; rn � �; or: 9N 8n � N; rn � rn+1:Dually, it is backward-Cauchy if and only ifeither: 8� > 0 9N 8n � N; rn � �; or: 9N 8n � N; rn � rn+1:Proof: We prove only the �rst statement, the second being dual. Sequences that converge to 0or that are eventually decreasing are easily seen to be forward-Cauchy. Conversely, let (rn)n beforward-Cauchy in [0; 1]. Suppose there exists � > 0 such that8N 9n � N; rn > �:We claim that there exists an N such that for all n � N , rn > �; for suppose not:7



8N 9n � N; rn � �:Because (rn)n is forward-Cauchy, there exists M such that for all m � M , [0; 1](rm; rm+1) � �.Consider n1 �M with rn1 � �, and consider n2 � n1 with rn2 > �. Then� < rn2= [0; 1](rn1 ; rn2) [de�nition distance on [0; 1]]� �;a contradiction. Therefore let N be such that for all n � N , rn > �. Let M � N such that forall m � M , [0; 1](rm; rm+1) � �, which is equivalent to rm+1 � max f�; rmg by Proposition 2.1.Because rm > �, for all m �M , this implies rm+1 � rm. 2Because Cauchy sequences in [0; 1] are that simple, the following de�nitions are easy as well: theforward-limit of a forward-Cauchy sequence (rn)n in [0; 1] is given bylim! rn = supn infk�n rk :Dually, the backward-limit of a backward-Cauchy sequence (rn)n in [0; 1] islim rn = infn supk�n rk :These numbers are what one intuitively would consider as metric limits of Cauchy sequences. If[0; 1] is taken with the standard Euclidian metric: d(r; r0) = jr�r0j, for r and r0 in [0; 1], then bothforward-Cauchy and backward-Cauchy sequences are Cauchy with respect to d, and the forward-limit and backward-limit de�ned above coincide with the usual notion of limit with respect tod. The following proposition shows how forward-limits and backward-limits in [0; 1] are related(cf. [Wag95]).Proposition 3.2 For a forward-Cauchy sequence (rn)n in [0; 1], and all r in [0; 1],[0; 1](lim! rn; r) = lim [0; 1](rn; r):For a backward-Cauchy sequence (rn)n in [0; 1], and all r in [0; 1],[0; 1](r; lim rn) = lim [0; 1](r; rn): 2A proof follows easily from the following elementary facts:Lemma 3.3 For all V � [0; 1] and r in [0; 1],1. [0; 1](inf V; r) = supv2V [0; 1](v; r);2. [0; 1](r; supV ) = supv2V [0; 1](r; v);3. [0; 1](r; inf V ) � infv2V [0; 1](r; v):If V is �nite then the latter inequality is in fact an equality. 2Forward-limits in an arbitrary generalized ultrametric space X can now be de�ned in terms ofbackward-limits in [0; 1]: an element x is a forward-limit of a forward-Cauchy sequence (xn)n inX , x = lim! xn i� 8y 2 X; X(x; y) = lim X(xn; y):8



This is well de�ned because of the following.Proposition 3.4 Let (xn)n be a forward Cauchy sequence in X. Let x 2 X.1. The sequence (X (x; xn))n is forward Cauchy in [0; 1].2. The sequence (X (xn; x))n is backward Cauchy in [0; 1].Note that our earlier de�nition of the forward-limit of forward-Cauchy sequences in [0; 1] is con-sistent with this de�nition for arbitrary gums: this follows from the �rst statement of Proposition3.2.For ordinary ultrametric spaces, the above de�nes the usual notion of limit:x = lim! xn if and only if 8� > 0 9N 8n � N; X(xn; x)< �:If X is a preorder and (xn)n is a chain in X thenx = lim! xn if and only if 8y 2 X; x �X y , 8n � 0; xn �X y;i.e., x = Fxn, the least upperbound of the chain (xn)n.One could also consider backward-limits for arbitrary gums. Since these will not play a rolein the rest of this paper, this is omitted. For simplicity, we shall use Cauchy instead of forward-Cauchy. Similarly, we shall writelimxn rather than lim! xn:Note that subsequences of a Cauchy sequence are Cauchy again. If a Cauchy sequence has alimit x, then all its subsequences have limit x as well. Cauchy sequences may have more than onelimit. All limits have distance 0, however. As a consequence, limits are unique in quasi ultrametricspaces.The following fact will be useful in the future:Proposition 3.5 Let (xn)n be a forward Cauchy sequence in X. Let x 2 X.X (x; limn xn) � limnX (x; xn):Proof The inequality follows from[0; 1](limnX (x; xn); X (x; limn xn))= lim n [0; 1](X (x; xn); X (x; limn xn))� lim nX(xn; limn xn) [the mapping X(x;�) : X ! [0; 1] is non-expansive]= X(limn xn; limn xn)= 0: 2A generalized ultrametric space X is complete if every Cauchy sequence in X has a limit. A subsetV � X is complete if every Cauchy sequence in V has a limit in V . For instance, [0; 1] is complete.If X is a partial order completeness means that X is a complete partial order, cpo for short: all!-chains have a least upperbound. For ordinary ultrametric spaces this de�nition of completenessis the usual one. There is the following fact (cf. Theorem 6.5 of [Rut95]).Proposition 3.6 Let X and Y be generalized ultrametric spaces. If Y is complete then Y X iscomplete. Moreover, limits are pointwise: let (fn)n be a Cauchy sequence in Y X and f an elementin Y X . Then lim fn = f if and only if for all x 2 X, lim fn(x) = f(x). Furthermore, if Y is aquasi ultrametric space then Y X is a quasi ultrametric space as well. 29



A mapping f : X ! Y between gums X and Y is continuous if it preserves limits: if x = limxnin X then f(x) = lim f(xn) in Y . For ordinary ultrametric spaces, this is the usual de�nition. Forpreorders it means preservation of least upperbounds of !-chains.An element a in a generalized ultrametric space X is �nite if the mappingX(a;�) : X ! [0; 1]; x 7! X(a; x)is continuous. (So for �nite elements, the inequality in Proposition 3.5 actually is an equality.) IfX is a preorder this means that for any chain (xn)n in X ,X(a;Gxn) = lim X(a; xn);or, equivalently,a �X Gxn i� 9n; a �X xn;which is the usual de�nition for ordered spaces. If X is an ordinary ultrametric space then X(a;�)is continuous for any a in X , hence all elements are �nite.A basis for a generalized ultrametric space X is a subset B � X consisting of �nite elementssuch that every element x in X is the limit x = lim an of a Cauchy sequence (an)n of elementsin B. A gum X is algebraic if there exists a basis for X . Note that such a basis is in generalnot unique. If X is algebraic then the collection BX of all �nite elements of X is the largestbasis. Further note that algebraic does not imply complete. (Take any ordinary ultrametric spacewhich is not complete.) If there exists a countable basis then X is !-algebraic. For instance, thegeneralized ultrametric space A1 from Section 2 is algebraic with basis A�, the set of all �nitewords over A. If A is countable then A1 is !-algebraic.4 The Yoneda LemmaThe following lemma turns out to be of great importance for the theory of generalized ultrametricspaces. It is the [0; 1]-categorical version of the famous Yoneda Lemma [Yon54] from categorytheory. We shall see in the subsequent sections that it gives rise to elegant de�nitions and char-acterizations of completion, topology, and powerdomains. A general proof of the Yoneda Lemmafor arbitrary V-categories can be found in [Kel82]. For generalized metric spaces, it is proved in[Law86].The following notation will be used throughout the rest of this paper:X̂ = [0; 1]Xop ;i.e., the set of all non-expansive functions from Xop to [0; 1].Lemma 4.1 (Yoneda Lemma) Let X be a generalized ultrametric space. For any x 2 X letX(�; x) : Xop ! [0; 1]; y 7! X(y; x):This function is non-expansive and hence an element of X̂. For any other element � in X̂,X̂(X(�; x); �) = �(x).Proof: Because X(�;�) : Xop�X ! [0; 1] is non-expansive, so is X(�; x), for any x in X . Nowlet � 2 X̂. On the one hand,�(x) = [0; 1](X(x; x); �(x))� supy2X[0; 1](X(y; x); �(y))= X̂(X(�; x); �):On the other hand, non-expansiveness of � gives, for any y in X ,10



[0; 1](�(x); �(y)) � Xop(x; y) = X(y; x);which is equivalent by Proposition 2.1 to [0; 1](X(y; x); �(y)) � �(x): 2The following corollary is immediate.Corollary 4.2 The Yoneda embedding y : X ! X̂, de�ned for x in X by y(x) = X(�; x) isisometric: for all x and x0 in X,X(x; x0) = X̂(y(x);y(x0)): 2The following fact will be of use when de�ning completion.Lemma 4.3 For any x in X, y(x) is �nite in X̂.Proof: We have to show that X̂(y(x);�) : X̂ ! [0; 1] is continuous: for any Cauchy sequence(�n)n in X̂,X̂(y(x); lim �n) = (lim �n)(x) [the Yoneda Lemma]= lim �n(x) [Proposition 3.6]= lim X̂(y(x); �n) [the Yoneda Lemma]: 25 Completion via YonedaThe completion of generalized ultrametric spaces is de�ned by means of the Yoneda embedding. Ityields for ordinary ultrametric spaces Hausdor�'s standard Cauchy completion (as introduced in[Hau14]), for preorders the chain completion, and for quasi ultrametric spaces a completion givenby Smyth (see page 214 of [Smy91]).Let X be a generalized ultrametric space. Because [0; 1] is a complete quasi ultrametric space(cf. Section 2 and 3), it follows from Proposition 3.6 that bX is a complete quasi ultrametric spaceas well. According to Corollary 4.2, the Yoneda embedding y isometrically embeds X in bX. Thecompletion of X can now be de�ned as the smallest complete subspace of bX which contains they-image of X .De�nition 5.1 The completion of a generalized ultrametric space X is de�ned by�X =\ fV is a complete subspace of bX j y (X) � V g:The collection of which the intersection is taken is nonempty, since it contains bX . Because �Xis a complete subspace of the complete quasi ultrametric space bX, also �X is a complete quasiultrametric space, and, as a consequence, for any Cauchy sequence in �X , its limits in �X and X̂coincide.As with preorders, completion is not idempotent, that is, the completion of the completion ofX is in general not isomorphic to the completion of X . An interesting question is to characterizethe family of generalized ultrametric spaces for which completion is idempotent (it contains atleast all ordinary ultrametric spaces).Completion for ordinary (ultra)metric spaces is usually de�ned by means of (equivalence classesof) Cauchy sequences. The same applies to countable preorders: there the most common form ofcompletion, ideal completion, is isomorphic to chain completion, and we have seen that chains are(special cases of) Cauchy sequences. It will be shown next that the completion introduced abovecan be expressed in terms of Cauchy sequences as well. This will at the same time enable us toprove its equivalence with the de�nition of the completion of quasi metric spaces by Smyth.Note that a sequence (xn)n is Cauchy in a generalized ultrametric space X if and only if(y (xn))n is Cauchy in bX , because the Yoneda embedding y is isometric. This is used in thefollowing. 11



Proposition 5.2 For any generalized ultrametric space X,�X = f limn y (xn) j (xn)n is a Cauchy sequence in X g:Proof The inclusion from right to left is immediate from the fact that the set on the right iscontained in any complete subspace V of bX which contains y (X). The reverse inclusion followsfrom the fact that the set on the right contains y (X), which is trivial, and the fact that it is acomplete subspace of bX : this is a consequence of Lemma 4.3 and Proposition B.3 in the appendix.2The elements of �X can be seen to represent equivalence classes of Cauchy sequences. To this end,let CS (X) denote the set of all Cauchy sequences in X , and let � : CS(X) ! �X map a Cauchysequence (vn)n in X to limn y (vn). This mapping induces a generalized ultrametric structure onCS(X) by putting, for Cauchy sequences (vn)n and (wn)n,CS(X)((vn)n; (wn)n) = �X(�((vn)n); �((wn)n)):This metric can be characterized as follows:CS(X)((vn)n; (wn)n)= �X(�((vn)n); �((wn)n))= �X (limn y (vn); limm y (wm))= bX (limn y (vn); limm y (wm))= lim n bX (y (vn); limm y (wm))= lim n limm bX (y (vn);y (wm)) [y (vn) is �nite in bX ]= lim n limmX (vn; wm) [y is isometric]:The latter formula is what Smyth has used for a de�nition of the distance between Cauchy se-quences of quasi metric spaces. In his approach, the completion of a quasi metric space is de�nedas [CS(X)], which is the quasi metric space obtained from CS(X) by identifying all Cauchy se-quences with distance 0 in both directions (cf. Section 2). Such sequences can be considered torepresent the same limit. Both ways of de�ning completion are equivalent:Proposition 5.3 For any generalized ultrametric space X, �X �= [CS (X)].Proof Because �X is a quasi ultrametric space, the mapping � : CS(X) ! �X induces a non-expansive mapping �0 : [CS (X)] ! �X (cf. Section 2). Because � is isometric by the de�nitionof the metric on CS(X), �0 is injective. Because � is surjective by Proposition 5.2, �0 is alsosurjective. 2A corollary of this theorem is that the completion of generalized ultrametric spaces generalizesCauchy completion of ordinary ultrametric spaces and chain completion of preorders.Recall that the categoryGums has generalized ultrametric spaces as objects and non-expansivefunctions as arrows. Let Acq be the category with algebraic complete quasi ultrametric spaces asobjects, and with non-expansive and continuous functions as arrows. We will show that completioncan be extended to a functor from Gums to Acq , which is a left adjoint to the forgetful functorfrom Acq to Gums. First of all, the completion of a generalized ultrametric space X is an objectin Acq :Theorem 5.4 For any generalized ultrametric space X, �X is an algebraic complete quasi ultra-metric space.Proof Since �X is a complete subspace of the complete quasi ultrametric space bX, also �X isa complete quasi ultrametric space. Because all elements of y (X) are �nite in bX according toLemma 4.3, they are also �nite in �X. From Proposition 5.2 we can conclude that every elementof �X is the limit of a Cauchy sequence in y (X). Consequently �X is algebraic. 212



The next theorem is the key to the extension of completion to a functor. It says that completionis a so-called free construction:Theorem 5.5 For any complete quasi ultrametric space Y and non-expansive function f : X ! Ythere exists a unique non-expansive and continuous function f# : �X ! Y such that f# � y = f .X //y   f @@@@@@@@ �X�� f#YProof For all Cauchy sequences (vn)n and (wm)m in X ,Y (limn f (vn); limm f (wm))= lim nY (f (vn); limm f (wm))� lim n limm Y (f (vn); f (wm)) [Proposition 3.5]� lim n limmX (vn; wm) [f is non-expansive]= lim n limm bX (y (vn);y (wm)) [y is isometric]= lim n bX (y (vn); limm y (wm)) [y (vn) is �nite in bX ]= bX (limn y (vn); limm y (wm)):Consequently,limn y (vn) = limm y (wm)) bX (limn y (vn); limm y (wm)) = 0 ^ bX (limm y (wm); limn y (vn)) = 0) Y (limn f (vn); limm f (wm)) = 0 ^ Y (limm f (wm); limn f (vn)) = 0) limn f (vn) = limm f (wm):According to Proposition 5.2, for all �x 2 �X, there exists a Cauchy sequence (xn)n in X , such that�x = limn y (xn). Since f is non-expansive, the sequence (f (xn))n is also Cauchy. Because Y is acomplete quasi ultrametric space, limn f (xn) exists. Hence, we can de�ne f# : �X ! Y byf# (limn y (xn)) = limn f (xn):Since, for all Cauchy sequences (vn)n and (wm)m in X ,Y (f# (limn y (vn)); f# (limm y (wm)))= Y (limn f (vn); limn f (wm))= bX (limn y (vn); limm y (wm)) [see above]the function f# is non-expansive.Next we prove that f# is continuous. Let (�xn)n be a Cauchy sequence in �X. Without loss ofgenerality we can assume that8n : �X (�xn; �xn+1) � 13n : (1)According to Proposition 5.2, we have that�X = f limn y (xn) j (xn)n is a Cauchy sequence in X g:Because y (X) is a subspace of the complete quasi ultrametric space bX, and all elements of y (X)are �nite in bX according to Lemma 4.3, we can conclude from Lemma B.1 and B.2 that there13



exist Cauchy sequences (wmn )m in y (X) satisfying8m : 8n : y (X) (wmn ; wmn+1) � 1n ;8n : 8m : y (X) (wmn ; wm+1n ) � 1m ;8n : limm wmn = �xn;limk wkk = limn �xn:Since y is isometric, there exist Cauchy sequences (xmn )m in X satisfying8m : 8n : X (xmn ; xmn+1) � 1n ; (2)8n : 8m : X (xmn ; xm+1n ) � 1m ; (3)8n : limm y (xmn ) = �xn; (4)limk y (xkk) = limn �xn: (5)As we have seen above, f# is non-expansive. Consequently, (f# (�xn))n is a Cauchy sequence inY . From (1) we can conclude that8n : Y (f# (�xn); f# (�xn+1)) � 13n . (6)Since f is non-expansive, we can derive from (2) and (3) that8m : 8n : Y (f (xmn ); f (xmn+1)) � 1n ; (7)8n : 8m : Y (f (xmn ); f (xm+1n )) � 1m : (8)From (4) we can deduce that8n : limm f (xmn ) = f# (�xn): (9)Since Y is a complete quasi ultrametric space, it follows from (6), (7), (8), (9), and Lemma B.2that the sequence (f (xkk))k is Cauchy andlimk f (xkk) = limn f# (�xn):From (5) we can derive thatf# (limn �xn) = limk f (xkk):Hence f# is continuous.Let g : �X ! Y be a non-expansive and continuous function such that g � y = f . For all Cauchysequences (xn)n in X ,g (limn y (xn))= limn g (y (xn)) [g is continuous]= limn f (xn) [g � y = f ]= f# (limn y (xn)):This proves the unicity of f#. 2Completion can be extended to a functor (�) : Gums ! Acq , by de�ning its action on arrowsin Gums in the following standard way: for generalized ultrametric spaces X and Y and a non-expansive mapping f : X ! Y , let �f : �X ! �Y be de�ned by �f = (y � f)#:
14



X //f��y Y�� y�X //(y�f)# _____ �YAccording to Theorem 5.5, the function �f is non-expansive and continuous, and hence an arrowin Acq . One can easily verify that we have extended completion to a functor. It is an immediateconsequence of Theorem 5.5 that it is left adjoint to the forgetful functor from Acq to Gums (cf.Chapter 4 of [ML71]). The Yoneda embedding y is the unit of the adjunction.For every complete quasi ultrametric space X with basis A, X �= �A. More generally:Theorem 5.6 Let X be a complete quasi ultrametric space. Let A � X. Then the following threeconditions are equivalent.1. A is a basis for X.2. The function yA : X ! bA de�ned, for x 2 X, byyA (x) = �a 2 A : X (a; x)(i.e., the restriction of y(x) 2 X̂ to A) is isometric and continuous.3. The inclusion function i : A! X induces an isomorphism i# : �A! X.Proof1. ) 2. According to Corollary 4.2, y is isometric. Consequently, yA is non-expansive. Because,for all Cauchy sequences (xn)n in X ,limn yA (xn)= limn �a 2 A : X (a; xn)= �a 2 A : limnX (a; xn) [Proposition 3.6]= �a 2 A : X (a; limn xn) [a is �nite in X]= yA (limn xn);yA is continuous. Consider the following diagram:A
�� y���������������� ��y :::::::::::::::::��_� iXyy yAssssssssssssbA �Aoo _?j ee i#KKKKKKKKKKKKwhere j is the inclusion of �A in Â. One can easily verify that yA�i#�y = y and j�y = y:Therefore by Theorem 5.5,yA � i# = j: (10)Since A is a basis for X , i# is surjective. Because i# is furthermore non-expansive andj is isometric, yA is isometric.
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2. ) 3. For all Cauchy sequences (an)n in A,(yA � i#) (limn y (an))= yA (limn i# � y (an)) [i# is continuous]= yA (limn i (an))= limn yA � i (an) [yA is continuous]= limn y (an);from which (10) follows. Thus yA actually maps into �A. Because yA is isometric it isinjective. As a consequence, i# � yA = 1X follows fromyA � (i# � yA) = (yA � i#) � yA = yA = yA � 1X(where 1X is the identity on X). Thus i# is an isomorphism with yA as inverse.3. ) 1. As we have already seen in the proof of Theorem 5.4, all elements of y (A) are �nite in �A.Since i# is isometric and surjective, all elements in (i# � y) (A) are �nite in X . Becausei = i# � y, all elements of A are �nite in X . Since i# is surjective, every element of X isthe limit of a Cauchy sequence in A. Hence, A is a basis for X . 2A subset A of a generalized ultrametric space X for which the function yA of the second clauseabove is isometric, is called adequate in [Law73] (p. 154).This section is concluded by the introduction of the notion of adjoint pairs of mappings betweengum's, and a characterization of completeness in terms thereof. This will not be used in the restof the paper.Let X and Y be generalized ultrametric spaces. A pair of non-expansive mappings f : X ! Yand g : Y ! X is adjoint , denoted by f a g, if8x 2 X 8y 2 Y; Y (f(x); y) = X(x; g(y)):An equivalent condition is that XX(1X ; g � f) = 0 and Y Y (f � g; 1Y ) = 0. Expressed in terms ofthe underlying orderings, this can be read as 1X � g � f and f � g � 1Y , saying that f and g areadjoint as monotone maps between the underlying preorders hX;�Xi and hY;�Y i. For instanceconsider A1 with distance as de�ned in Section 2. Let � : A1 ! (A1 � A1) map v in A1 tohv; vi, and let ^ : (A1 �A1)! A1 map hv; wi to the longest common pre�x of the words v andw. Then � is left adjoint to ^: for all v, w, and u in A1,max fA1(u; v); A1(u;w)g = A1(u; v ^ w):(This de�nes a|[0; 1]-enriched|product on A1.)The following lemma was suggested to us by Bart Jacobs.Lemma 5.7 Let X be a quasi ultrametric space. Consider the (corestriction of the) Yonedaembedding y : X ! �X. The space X is complete if and only if there exists a non-expansive andcontinuous mapping f : �X ! X with f a y.Proof: Suppose X is complete. By Theorem 5.5, there exists a unique non-expansive and contin-uous extension 1# : �X ! X of the identity mapping on X , de�ned, for � = limy(xn) in �X with(xn)n a Cauchy sequence in X , by1#(�) = lim xn:For any x 2 X ,X(1#(�); x) = X(limxn; x)= lim X(xn; x)= lim �X(y(xn);y(x)) [the Yoneda embedding is isometric]= �X(limy(xn);y(x))= �X(�;y(x)); 16



showing that 1# a y. For the converse suppose we are given a non-expansive and continuousmapping f : �X ! X with f a y. For any Cauchy sequence (xn)n in X and x 2 X ,X(f(limy(xn)); x) = �X(limy(xn);y(x))= lim �X(y(xn);y(x))= lim X(xn; x) [the Yoneda embedding is isometric];proving that limxn = f(limy(xn)). 26 Topology via YonedaThe Yoneda embedding of a generalized ultrametric space X into X̂ gives rise to two topologicalclosure operators. Their corresponding topologies are shown to generalize both the �-ball topologyof ordinary metric spaces and the Alexandro� and Scott topologies of preordered spaces.Let X be a generalized ultrametric space. Recall that X̂ is a generalized ultrametric space withthe supremum distance, and that it contains as a subset an isometric copy of X via the Yonedaembedding. The fact that the Yoneda embedding is isometric justi�es the following convention:we shall sometimes simply write x for y(x).The main idea (stemming from [Law86]) is to interpret an element � of X̂ as a `fuzzy' predicate(or `fuzzy' subset) on X : the value that � assigns to an element x in X is thought of as a measurefor `the extent to which x is an element of �'. The smaller this number is, the more x should beviewed as an element. In fact, the only real elements are the ones where � is 0, which gives riseto the de�nition of the extension RA� of a predicate � (the subscript A stands for `Alexandro�'and will be explained below):RA� = fx 2 X j �(x) = 0g:For instance, for x in X , RAy(x) = RAX(�; x) = fz 2 X j X(z; x) = 0g = x#. More generally, forany � in X̂,RA� = fx 2 X j �(x) = 0g= fx 2 X j X̂(X(�; x); �) = 0g [the Yoneda Lemma 4.1]= fx 2 X j X̂(x; �) = 0g [our convention]= �# \X;where �# is the downset of � in X̂ with respect to the underlying ordering. Any subset V � Xde�nes, conversely, a predicate �A(V ) : Xop ! [0; 1] which is referred to as the character of thesubset V . It is de�ned, for x 2 X by�A(V )(x) = inffX(x; v) j v 2 V g;i.e., the distance from x to the set V . Note that under the identi�cation of elements x in X withX(�; x), this is equivalent to�A(V ) = inf V:These two constructions de�ne mappings RA : X̂ ! P(X) and �A : P(X) ! X̂, which can benicely related by considering X̂ with the underlying preorder �X̂ , and P(X) ordered by subsetinclusion (cf. [Law86]):Proposition 6.1 The mappings RA : hX̂;�X̂i ! hP(X);�i and �A : hP(X);�i ! hX̂;�X̂i aremonotone. Moreover �A is left adjoint to RA. 17



Proof: Monotonicity of RA and �A follows directly from their de�nitions. We will hence concen-trate on the second part of the proposition by proving for all V 2 P(X) and � 2 X̂,V � RA�A(V ) and �A(RA�) �X̂ �;which is equivalent to �A being left adjoint to RA, cf. [GHK+80]. For V 2 P(X) we haveRA�A(V ) = inf V # \X � V;because inf V �X̂ y(x) for every x 2 V . For � 2 X̂,�A(RA�) = inf(�# \X) = inff 2 X̂ j  �X̂ �g �X̂ �: 2The above fundamental adjunction relates character of subsets and extension of predicates andis often referred to as the comprehension schema (cf. [Law73, Ken87]). As with any adjoint pairbetween preorders (cf. Theorem 0.3.6 of [GHK+80]), the composition RA ��A is a closure operatoron X . It satis�es, for V � X ,RA � �A(V ) = (inf V )# \X= fx 2 X j X̂(y(x); inf V ) = 0g= fx 2 X j 8z 2 X; [0; 1](y(x)(z); (inf V )(z)) = 0g= fx 2 X j 8z 2 X; y(x)(z) � (inf V )(z)g= fx 2 X j 8� > 0 8z 2 X; y(x)(z) < �) (9v 2 V; X(z; v)< �)g= fx 2 X j 8� > 0 8z 2 X; X(z; x)< �) (9v 2 V; X(z; v)< �)g (11)[the Yoneda Lemma 4.1]:As a consequence, there is the following lemma.Lemma 6.2 For a generalized ultrametric space X, the closure operator RA � �A : P(X)! P(X)is a topological closure operator.Proof: It is an immediate consequence of (11) that RA � �A(;) = ;. Moreover, for V;W � X ,RA � �A(V [W ) � RA � �A(V ) [ RA � �A(W );because RA � �A is a closure operator. For the reverse inclusion, let x 2 RA � �A(V [W ). Supposex 62 RA � �A(V ). We will show x 2 RA � �A(W ): consider �1 > 0 and z1 2 X with X(z1; x) < �1.We should �nd y 2 W with X(z1; y)< �1. Because x 62 RA � �A(V ) there exist �0 > 0 and z0 2 Xsuch thatX(z0; x)< �0 & (8y 2 V; X(z0; y) � �0): (12)Let � = minf�0; �1g. Because x 2 R � �(V [W ) and X(x; x) = 0< �, there exists y 2 V [W withX(x; y)< �. The assumption that y 2 V contradicts (12), becauseX(z0; y) � maxfX(z0; x); X(x; y)g<maxf�0; �g = �0:Thus y 2W . Furthermore,X(z1; y) � maxfX(z1; x); X(x; y)g<maxf�1; �g = �1: 2The above lemma implies that the closure operator RA � �A induces a topology on X , which inProposition 6.3 below is proved equivalent to the following generalized �-ball topology: For x 2 Xand � > 0 de�ne the �-ball centered in x byB�(x) = fz 2 X j X(x; z)< �g: 18



A subset o � X of a generalized ultrametric space X is generalized Alexandro� open (gA-open)if for all x 2 Xx 2 o ) 9� > 0 B�(x) � o:The set of all gA-open subsets of X is denoted by OgA(X). For instance, for every x 2 X the�-ball B�(x) is a generalized Alexandro� open set. The pair hX;OgA(X)i can be shown to betopological space with B�(x), for every � > 0 and x 2 X , as basic open sets (cf. [FK95]). For asubset V of X we write clA(V ) for the closure of V in the generalized Alexandro� topology.Proposition 6.3 For every subset V of a gum X, clA(V ) = RA � �A(V ):Proof: It follows from the characterization (11) of RA � �A that it is su�cient to proveclA(V ) = fx 2 X j 8� > 0 8z 2 X; X(z; x)< � ) (9v 2 V; X(z; v)< �)g:Because clA(V ) = V [ V d, where V d is the so-called derived set of V (cf. Section A of theappendix), it follows from the de�nition of derived set and the fact that the set of all �-balls is abasis for the generalized Alexandro� topology, that for every x 2 X ,x 2 V d () 8o 2 OgA(X); x 2 o ) o \ (V n fxg) 6= ;() 8� > 0 8z 2 X; x 2 B�(z) ) B�(z) \ (V n fxg) 6= ;() 8� > 0 8z 2 X; X(z; x)< � ) 9v 2 (V n fxg); X(z; v)< �:Therefore,clA(V ) = V [ V d = fx 2 X j 8� > 0 8z 2 X; X(z; x)< � ) (9v 2 V; X(z; v)< �)g: 2For ordinary ultrametric spaces, gA-open sets are just the usual open sets. For preorders, a set isgA-open precisely when it is Alexandro� open (upper closed) because if X is a preorder then for� � 1,B�(x) = fy 2 X j X(x; y)< �g= fy 2 X j X(x; y) = 0g= fy 2 X j x �X yg= x":(In case � > 1 then B�(x) = X which is clearly upper closed).For computational reasons we are interested in complete spaces, in which one can model in�nitebehaviors by means of limits. A topology for a complete space X can then be considered satis-factory if limits in X are topological limits. This is not the case for the generalized Alexandro�topology: for instance, for complete partial orders OgA(X) coincides with the standard Alexan-dro� topology, for which the coincidence of the least upperbounds of chains and their topologicallimits does not hold. Therefore the Scott topology is usually considered to be preferable: it isthe coarsest topology re�ning the Alexandro� topology, in which least upper bounds of chains aretopological limits (cf. Section II-1 of [GHK+80] and [Smy92]). Also for generalized ultrametricspaces, a suitable re�nement of the generalized Alexandro� topology exists. A key step towards itsde�nition is to compare fuzzy subsets � in X̂ with subsets of �X, the completion of X , rather thanwith subsets of X . To this end, the extension and the character functions of above are extendedas follows:R : X̂ ! P( �X) and � : P( �X)! X̂;� 7! �# \ �X V 7! inf V:Again we have a comprehension schema: as in Proposition 6.1, the mappings R : hX̂;�X̂i !hP( �X);�i and � : hP( �X);�i ! hX̂;�X̂i are monotone and � is left adjoint to R . And again weobtain a closure operator, this time of type 19



R � � : P( �X)! P( �X);which can, in a way similar to (11), be characterized as follows: for V � �X,R � �(V ) = (inf V )# \ �X= f� 2 �X j X̂(�; inf V ) = 0g= f� 2 �X j 8a 2 X; [0; 1](�(a); (inf V )(a)) = 0g= f� 2 �X j 8a 2 X; �(a) � (inf V )(a)g= f� 2 �X j 8� > 0 8a 2 X; �(a) < �) (9 2 V;  (a)< �)g= f� 2 �X j 8� > 0 8a 2 X; �X(a; �)< �) (9 2 V; �X(a;  )< �)g[the Yoneda Lemma 4.1]:Also this closure operator is topological:Lemma 6.4 For a generalized ultrametric space X, the closure operator R � � : P( �X)! P( �X) istopological.Proof: This lemma is proved along the same lines as Lemma 6.2, but one needs the followingadditional observation: For any z0 and z1 in X , �0; �1 > 0, and � in �X , such that�X(z0; �)< �0 and �X(z1; �)< �1;there exists b 2 X such that�X(z0; b)< �0; �X(z1; b)< �1; and �X(b; �)<minf�0; �1g(� is now playing the role of x). This fact can be proved as follows. Because �X is an algebraiccomplete quasi ultrametric space with (the image of the yoneda embedding of) X as basis, thereexists a Cauchy sequence (bn)n in X with � = lim bn. Since z0 2 X , it is �nite in �X. Hence,�X(z0; �) = �X(z0; lim(bn))<�0 implies the existence of N0 such that for all n � N0, �X(z0; bn)<�0:Similarly, there exists N1 such that for all n � N1, �X(z1; bn) < �1: Furthermore, there exists,by de�nition of limit, N2 such that for all n � N2, �X(bn; �) < minf�0; �1g. By taking M =maxfN0; N1; N2g, and putting b = bM , we have found the element in X we were looking for. 2Thus the closure operator above induces a topology on �X which we will call the generalized Scotttopology. Indeed, if we start out with an algebraic complete quasi ultrametric space X , then Xis isomorphic to the completion of its basis BX (by Proposition 5.6), and therefore the abovecharacterization of R � � will take the form, for subsets V � X ,R � �(V ) = f� 2 X j 8� > 0 8a 2 BX ; X(a; �)< �) (9 2 V; X(a;  )< �)g: (13)In the special case that X is an algebraic complete partial order, this is equivalent toR � �(V ) = fx 2 X j 8a 2 BX ; a �X x) (9v 2 V; a �X v)g;which we recognize as the closure operator induced by the Scott topology on X .Next an alternative de�nition of the generalized Scott topology is given by specifying the opensets (this time starting with a complete generalized ultrametric space X). In Theorem 6.8 below,it will be shown that the closure operator induced by this second de�nition coincides with R � �whenever X is algebraic.A subset o � X of a complete generalized ultrametric space X is generalized Scott open (gS-open) if for all Cauchy sequences (xn)n in X ,limxn 2 o) 9N 9� > 0 8n � N; B�(xn) � o:The set of all gS-open subsets of X is denoted by OgS(X). Below it will be shown that this de�nesa topology indeed. Note that every gS-open set o � X is gA-open because every point x 2 X is thelimit of the constant Cauchy sequence (x)n in X . Therefore this topology re�nes the generalizedAlexandro� topology. Furthermore it will be shown to20



1. coincide with the �-ball topology in case X is a complete ultrametric space; and to2. coincide with the Scott topology in case X is a complete partial order.The following proposition gives an example of gS-open sets:Proposition 6.5 For every complete generalized ultrametric space X, an element a 2 X is �niteif and only if for every � > 0, the set B�(a) is gS-open.Proof: Let a 2 X be �nite and �>0. Then the �-ball B�(a) is a gS-open set: let (xn)n be a Cauchysequence in X and assume limxn 2 B�(a). Because a is �nite, X(a; limxn) = limX(a; xn)<�, bywhich there exists �0 > 0 such that limX(a; xn) < � � �0. Take � < �0. Then there exists N � 0such that X(a; xn)< (�� �0) + �, for all n � N . Then B�(xn) � B�(a) for all n � N , because ify 2 B�(xn) for some n � N we have, by triangular inequality and by our choice of �,X(a; y) � max fX(a; xn); X(xn; y)g<max f((�� �0) + �); �g = (�� �0) + � < �;that is, y 2 B�(a).Conversely, assume B�(a) is a gS-open set for every �> 0. We need to prove, for every Cauchysequence (xn)n in X , thatlimX(a; xn) � X(a; limxn) (14)(the reverse inequality is given by Proposition 3.5). If limX(a; xn) = 0 then (14) is triviallytrue. Therefore suppose limX(a; xn) > 0 and, towards a contradiction, assume X(a; limxn) <limX(a; xn). Then there exists � > 0 such that X(a; limxn)< � < limX(a; xn). MoreoverX(a; limxn)< � ) limxn 2 B�(a)) 9N 9� > 0 8n � N; B�(xn) � B�(a) [B�(a) is a gS-open set]) 9N 8n � N;X(a; xn)< �() limX(a; xn)< �:But this contradicts � < limX(a; xn). Thus X(a; limxn) � limX(a; xn). 2Next we prove that the collection of all gS-open sets forms indeed a topology.Proposition 6.6 For every complete generalized ultrametric space X the pair hX; OgS(X)i is atopological space. If X is also algebraic with basis BX , then the set fB�(a) j a 2 BX & � > 0gforms a basis for the generalized Scott topology OgS(X).Proof: We �rst prove that OgS(X) is closed under �nite intersections and arbitrary unions. LetI be a �nite index set (possibly empty) and let o = TI oi with oi 2 OgS(X) for all i 2 I . Iflimxn 2 o for a Cauchy sequences (xn)n in X , then for every i 2 I there exist Ni � 0 and �i > 0such that B�i(xn) � oi for all n � Ni. Take N = maxI Ni and � = minI �i (here max; = 0 andmin; = 1). Then B�(xn) � o for all n � N , that is, o is gS-open.Next let I be an arbitrary index set and let o = SI oi with oi 2 OgS(X) for all i 2 I . Iflimxn 2 o for a Cauchy sequences (xn)n in X , then there exists i 2 I such that limxn 2 oi.Therefore there exists N � 0 and � > 0 such that B�(xn) � oi � o for all n � N , that is, o isgS-open.Finally assume that X is an algebraic complete gum with basis BX . We have already seenthat for every � > 0 and �nite element a 2 BX the set B�(a) is gS-open. We claim that everygS-open set o � X is the union of �-balls of �nite elements. Let x 2 o. Since X is algebraic thereis a Cauchy sequence (an)n in BX with x = lim an. Because o is gS-open, there exists �x > 0 andNx � 0 such that B�x(an) � o for all n � Nx and with x 2 B�x(an) for Nx big enough. Thereforeo � Sx2oB�x(aNx). Since the other inclusion trivially holds we have that the collection of all�-ball of �nite elements forms a basis for the generalized Scott topology. 221



Any ordinary complete ultrametric space X is an algebraic complete generalized ultrametric spacewhere all elements are �nite. Therefore, by the previous proposition, the basic open sets of thegeneralized Scott topology are all the �-balls B�(x), with x 2 X . Hence for ordinary completeultrametric spaces the generalized Scott topology coincides with the standard �-ball topology.For a complete partial order X , a set o � X is gS-open precisely when it is Scott open: ifo 2 OgS(X) then it is upper closed because the gS-topology re�nes the gA-topology. Moreover,if Fxn 2 o for an !-chain (xn)n in X then|because o is gS-open|there exists � > 0 and N � 0such that B�(xn) � o for all n � N . But xn 2 B�(xn) for all �, therefore o is an ordinary Scottopen set. Conversely, assume o is Scott open and let limxn 2 o. Because o is Scott open (andlimits are least upper bounds) there exists N � 0 such that xn 2 o for all n � N . By taking� = 1=2 we obtain that o is also gS-open because for every x 2 X , B1=2(x) = x".The specialization preorder on an algebraic complete generalized ultrametric space X inducedby its gS-topology coincides with the preorder underlying X :Proposition 6.7 For an algebraic complete generalized ultrametric space X and x and y in X,x �OgS y , x �X y (,def X(x; y) = 0):Proof: Let x �OgS y. Since X is algebraic there exists a Cauchy sequence (bn)n of �nite elementssuch that x = lim bn. By de�nition of limit, for every � > 0 there exists N � 0 such that for alln � N , X(bn; x) < �, that is x 2 B�(bn). But B�(bn) is gS-open because bn is �nite, thus alsoy 2 B�(bn) since x �OgS y. Therefore for every � > 0 there exists N � 0 such that for all n � N ,X(bn; y)< �, from which it follows thatX(x; y) = X(lim bn; y) = lim X(bn; y) = 0:Conversely, assume X(x; y) = 0 and let o be a gS-open set such that x 2 o. Then there exists� > 0 such that B�(x) � o. But y 2 B�(x) for every � because X(x; y) = 0, therefore y 2 o. 2Note that the specialization preorder is a partial order|or, equivalently the gS-topology is T0|ifand only if X is an algebraic complete quasi ultrametric space.As usual, a subset c of a complete gum X is gS-closed if its complement X n c is gS-open. Thisis equivalent to the following condition: for all Cauchy sequences (xn)n in X ,(8N 8� > 0 9n � N 9y 2 c; X(xn; y)< �) ) limxn 2 c: (15)For a subset V of X we write clS(V ) for the closure of V in the generalized Scott topology, thatis, clS(V ) is the smallest generalized Scott closed set containing V . From the de�nition of limitswe have that for any Cauchy sequence (xn)n in V , limxn 2 clS(V ). The latter implies that if Xis a generalized ultrametric space with basis B then B is dense in X , that is clS(B) = X . Indeed,B � X implies clS(B) � clS(X) = X . For the converse we use the fact that every element of X isthe limit of a Cauchy sequence in B. Since (the image under y of) every generalized ultrametricspace X is a basis for its completion �X it follows that every gum is dense in its completion.As promised above, it is shown that clS and R � � are equal.Theorem 6.8 Let X be an algebraic complete quasi ultrametric space X with basis BX . For allsubsets V � X, clS(V ) = R � �(V ):Proof: It follows from the characterization (13) of R � � that it is su�cient to prove thatclS(V ) = fx 2 X j 8� > 0 8a 2 BX ; X(a; x)< � ) (9v 2 V; X(a; v)< �)g:We use the fact that clS(V ) = V [ V d for V � X , where V d is the derived set with respect to thegS-topology. Since the �-balls of �nite elements form a basis for the generalized Scott topology,we have for every x 2 X :x 2 V d () 8o 2 OgS(X); x 2 o ) o \ (V n fxg) 6= ;() 8� > 0 8a 2 BX ; x 2 B�(a) ) B�(a) \ (V n fxg) 6= ;() 8� > 0 8a 2 BX ; X(a; x)< � ) 9v 2 (V n fxg); X(a; v)< �:22



Therefore,clS(V ) = V [ V d = fx 2 X j 8� > 0 8a 2 BX ; X(a; x)< � ) (9v 2 V; X(a; v)< �)g: 2This section is concluded with two observations relating metric limits and topological convergence(cf. Section A). We start by showing that in a complete generalized ultrametric space every Cauchysequence is topologically convergent to its limit. It is an open problem if the converse holds|without completeness it does not hold even for standard metric spaces (cf. [Dug66, ExampleXIV.I.1, pag 293]). First note that it is straightforward from the de�nition of convergence that asequence (xn)n in an algebraic complete generalized ultrametric space X converges (with respectto the gS-topology on X) to an element x in X , denoted by N ((xn)n)! x, if and only if8� > 0 8a 2 BX ; X(a; x)< � ) (9N 8n � N; X(a; xn)< �):Proposition 6.9 Let X be a complete generalized ultrametric space and (xn)n a Cauchy sequencein X. Then N ((xn)n) ! limxn. If X is moreover algebraic then for any y 2 X such thatN ((xn)n)! y it holds y �OgS limxn, that is, limits are maximal topological limits.Proof: Let (xn)n be a Cauchy sequence in the complete generalized ultrametric space X . Weneed to prove N (lim xn) � N ((xn)n). By de�nition of gS-open set,o 2 N (lim xn) () lim xn 2 o) 9N 9� > 0 8n � N; B�(xn) � o;from which o 2 N ((xn)n) follows immediately.Next assume that X is also algebraic with basis BX and let N ((xn)n) ! y for a Cauchysequence (xn)n in X and y 2 X . Since X is algebraic there exists a Cauchy sequence (am)m inBX with y = lim am. Therefore for every � > 0 there exists M � 0 such that X(am; y)< � for allm �M . Hence y 2 B�(am) which is a gS-open set and hence in N (y) � N ((xn)n). Thus8� > 0 9M � 0 8m �M9N � 0 8n � N; X(am; xn)< �;which implies 8� > 0 9M � 0 8m �M; limnX(am; xn) < �. Since all the am's are �nite we thenhave 8� > 0 9M � 0 8m �M; X(am; limxn)< �, which means limX(am; limxn) = 0. Finally, bythe de�nition of limit,0 = lim X(am; limxn) = X(lim am; limxn) = X(y; limxn);which implies, by Proposition 6.7, y �OgS limxn. 2Recall that a function f : X ! Y between two complete generalized ultrametric spaces is (metri-cally) continuous if f(limxn) = lim f(xn) for every Cauchy sequence (xn)n in X . It is topologicallycontinuous if the inverse image of a gS-open subset of Y is gS-open in X . The two notions arerelated as follows.Proposition 6.10 Let f : X ! Y be a non-expansive mapping between complete generalizedultrametric spaces. If f is metrically continuous then it is also topologically continuous. Moreover,if Y is an algebraic complete quasi ultrametric then the converse holds as well.Proof: Let f : X ! Y be a non-expansive and metrically continuous function and let o 2 OgS(Y ).We need to prove f�1(o) 2 OgS(X) in order to conclude that f is topologically continuous. Indeed,for any Cauchy sequence (xn)n in X we havelimxn 2 f�1(o) () f(limxn) 2 o() lim f(xn) 2 o [f is metrically continuous]) 9N 9� > 0 8n � N; B�(f(xn)) � o[f is non-expansive, (f(xn))n is a Cauchy sequence, o is gS-open]) 9N 9� > 0 8n � N; B�(xn) � f�1(o) [f is non-expansive]:23



For the converse assume Y to be an algebraic complete quasi ultrametric space and f : X !Y to be topologically continuous. Any Cauchy sequence (xn)n in X converges, by Proposi-tion 6.9 to limxn. Hence (f(xn))n converges to f(limxn) because f is topologically contin-uous. But, by Proposition 6.9, (f(xn))n converges also to lim f(xn) and since Y is algebraicthen f(limxn) �OgS lim f(xn). Therefore by Proposition 6.7, Y (f(limxn); lim f(xn)) = 0. AlsoY (lim f(xn); f(limxn)) = 0 because f is non-expansive:Y (lim f(xn); f(limxn)) = lim Y (f(xn); f(limxn))� lim X(xn; limxn)= X(limxn; limxn)= 0:Since Y is a quasi ultrametric and Y (f(limxn); lim f(xn)) = 0 = Y (lim f(xn); f(limxn)) we �nallyobtain lim f(xn) = f(limxn). 27 Powerdomains via YonedaA generalized lower (or Hoare) powerdomain for generalized ultrametric spaces is de�ned, again bymeans of the Yoneda embedding. Next this powerdomain is characterized in terms of completionand topology. Also the de�nition of generalized upper and convex powerdomains will be given.Their characterizations will be discussed elsewhere.Let � : [0; 1]� [0; 1]! [0; 1] map elements r and s in [0; 1] to (their coproduct) minfr; sg. Thismakes h[0; 1];�i a semi-lattice: for all r, s, and t in [0; 1],(i) r � r = r; (ii) r � s = s� r; (iii) (r � s)� t = r � (s� t):Furthermore, the following inequality holds for all r and s in [0; 1]:(iv) r �[0;1] r � s:Let X be a generalized ultrametric space. It is immediate that hX̂;�i is a semi-lattice as well,with � taken pointwise: for � and  in X̂ and x in X ,(��  )(x) =  (x)�  (x):Recalling the idea that elements in X̂ are fuzzy subsets of X , the semi-lattice operation � maybe viewed as fuzzy subset union. A generalized lower powerdomain on �X is now de�ned as thesmallest subset of X̂ which contains the image of X under the Yoneda embedding y : X ! X̂(Corollary 4.2); is metrically complete (i.e., contains limits of Cauchy sequences); and is closedunder the operation �. Formally,Pgl( �X) =\fV � X̂ j y(X) � V; V is a complete subspace of X̂, and V is closed under �g:This de�nition is very similar to the de�nition of completion in Section 5.Note that the above de�nition of a powerdomain applies to arbitrary algebraic complete quasiultrametric spaces Y , since for any basis A for Y , Y �= �A.A generalized Hausdor� distanceThe powerdomain Pgl( �X) can be described in a number of ways. The main tool will be theadjunction of Section 6:R : X̂ ! P( �X); � 7! �# \ �X; and � : P( �X)! X̂; V 7! inf V;24



which relates X̂ to the collection of subsets of �X, the completion of X . Before turning to thecharacterizations of Pgl( �X), let us �rst show how this adjunction induces a distance on P( �X): forsubsets V and W of �X, de�neP( �X)(V;W ) = X̂(�(V ); �(W )):It satis�es the following equation.Theorem 7.1 For all V and W in P( �X),P( �X)(V;W ) = inff� > 0 j 8a 2 X 8v 2 V; X̂(a; v) < �) (9w 2W; X̂(a; w) < �)g:Proof: Let I denote the set on the right of the equality. In order to show that P( �X)(V;W ) � inf Iconsider � 2 I . If V = ; then P( �X)(V;W ) = 0 � inf I . Next let v = lim an be an element of V ,with an in X , for all n. Let � a real number with 0< � < �. It follows from v = lim an thatX̂(v; infW ) = lim X̂(an; infW ):Therefore there exists n > 0 such thatX̂(an; v)< � and X̂(v; infW ) � X̂(an; infW ) + �:Because � < �, it follows from X̂(an; v)<� that there exists w 2W with X̂(an; w)< �. Therefore,X̂(v; infW ) � X̂(an; infW ) + �� infW (an) + � [Yoneda lemma]= infu2W u(an) + �= infu2W X̂(an; u) + � [Yoneda lemma]� X̂(an; w) + �� �+ �:Since � was arbitrary this implies X̂(v; infW ) � �, from which it follows thatP( �X)(V;W ) = X̂(inf V; infW )= supv2V X̂(v; infW ) [see Lemma 7.2 below]� �:Hence P( �X)(V;W ) � inf I .For the reverse let � > 0 be arbitrary and de�ne� = P( �X)(V;W ) + �:We shall show that � 2 I . Because � is arbitrary this will imply that inf I � P( �X)(V;W ). Considera 2 X and v 2 V with X̂(a; v)<�. We have to prove that there exists w 2W such that X̂(a; w)<�:X̂(a; infW ) � max fX̂(a; v); X̂(v; infW )g� max fX̂(a; v); supu2V X̂(u; infW )g= max fX̂(a; v); X̂(inf V; infW )g [see Lemma 7.2 below]= max fX̂(a; v); P( �X)(V;W )g< �:As before, the Yoneda lemma implies X̂(a; infW ) = infw2W X̂(a; w). Thus there is w in W suchthat X̂(a; w) < �. 2The following lemma, used above, is an immediate consequence of Lemma 3.3.25



Lemma 7.2 For any V � �X and � 2 X̂, X̂(inf V; �) = supv2V X̂(v; �).Proof: For V � �X and � 2 X̂,X̂(inf V; �)= supx2X [0; 1]((inf V )(x); �(x))= supx2X [0; 1]( infv2V v(x); �(x))= supx2X supv2V [0; 1](v(x); �(x)) [Lemma 3.3]= supv2V supx2X [0; 1](v(x); �(x))= supv2V X̂(v; �): 2Another equivalent description of P( �X)(V;W ) can be obtained as a corollary of Theorem 7.1:P( �X)(V;W ) = X̂(inf V; infW )= supv2V X̂(v; infW ) [Lemma 7.2]= supv2V X̂(inffvg; infW )= supv2V P( �X)(fvg;W )= supv2V inff� > 0 j 8a 2 X; X̂(a; v)< �) (9w 2 W; X̂(a; w)< �)g[Theorem 7.1]:Therefore the above distance on P( �X) is called the generalized Hausdor� distance. The restrictionof the distance on P( �X) to subsets of X gives the familiar (non-symmetric) Hausdor� distance(cf. [Law86]). More precisely:Theorem 7.3 For all V � �X and W � �X such that either V � X or W is �nite,P( �X)(V;W ) = supv2V infw2W �X(v; w):Proof: Applying the Yoneda lemma twice gives, for all v in X , infw2W X̂(v; w) = X̂(v; infW ): IfW is �nite the same equality holds for arbitrary v 2 �X (by an extension of Lemma 7.2 similar toLemma 3.3). Therefore, if either V � X or W is �nite,supv2V infw2W X̂(v; w) = supv2V X̂(v; infW )= X̂(inf V; infW ) [Lemma 7.2]= P( �X)(V;W ): 2For preorders X , the above amounts toV �P( �X) W i� 8v 2 V 9w 2 W; v �X w;which is the usual Hoare ordering. More generally, for a gum X , there is the following character-ization of the order induced by P( �X).Lemma 7.4 For every gum X and subsets V and W of �X: if W is gS-closed then26



V �P( �X) W if and only if V �W :Proof: If V � W then P( �X)(V;W ) = 0 by Theorem 7.1. Conversely, assume P( �X)(V;W ) = 0and let x 2 V . Because x 2 �X, there exists a Cauchy sequence (bn)n in X with x = limy(bn).Thus for every � > 0 there exists N > 0 such that �X(y(bn); x) < � for all n � N . By, again,Theorem 7.1, and the fact that P( �X)(V;W ) = 0, we then obtain8� > 09N > 08n � N9w 2 W; �X(y(bn); w) < �;which implies8� > 08N > 09n � N9w 2 W; �X(y(bn); w) < �:By the characterization of closed sets given by formula (15) in Section 6, it follows that x =limy(bn) 2 W . 2Because V � clS(V ), for every V � �X , the above lemma implies P( �X)(V; clS(V )) = 0. AlsoP( �X)(clS(V ); V ) = 0: this follows from Theorem 7.1 and the characterization of the generalizedScott closure operator, which states that for every x 2 clS(V ), every �>0 and b 2 X , if X̂(b; x)<�then there exists v 2 V with X̂(b; v)< �. This leads to the following.Lemma 7.5 For every gum X, and subsets V;W of �X,P( �X)(V;W ) = P( �X)(clS(V );W ) and P( �X)(V;W ) = P( �X)(V; clS(W )):Proof: Immediate from the fact that P( �X)(V; clS(V )) = 0 = P( �X)(clS(V ); V ), and the triangularinequality. 2Characterizing Pgl( �X) as a completionLet Pnf (X) be the generalized ultrametric space consisting of all �nite and nonempty subsets ofX with the non-symmetric Hausdor� distance de�ned above: for V and W in Pnf (X),Pnf (X)(V;W ) = X̂(�(V ); �(W ))= maxv2V minw2W X(v; w) [by Theorem 7.3]:Its completion Pnf (X) will be shown to be isomorphic to Pgl( �X).Lemma 7.6 For any generalized ultrametric space X,Pnf (X) �= flim �(Vn) j Vn 2 Pnf (X); for all n, and (�(Vn))n is Cauchy in X̂g:Proof: Let us denote the set on the right by R. Because the quasi ultrametric space bX is complete,the isometric, and hence non-expansive, function � : Pnf (X) ! bX induces a non-expansive andcontinuous function �# : Pnf (X) ! bX according to Theorem 5.5, making the following diagramcommute:Pnf (X) //y %%� KKKKKKKKKKK Pnf (X)�� �#bX
27



It follows from Proposition 5.2 that the image of �# is precisely R. Furthermore �# is isometric:for all Cauchy sequences (Vn)n and (Wm)m in Pnf (X),bX (�# (limn y (Vn)); �# (limm y (Wm)))= bX (limn � (Vn); limm � (Wm))= lim n limm bX (� (Vn); � (Wm)) [� (Vn) is �nite in bX by Lemma 7.7 below]= lim n limm Pnf (X) (Vn;Wm) [� is isometric]= lim n limm dPnf (X) (y (Vn);y (Wm)) [y is isometric]= dPnf (X) (limn y (Vn); limm y (Wm)) [y (Vn) is �nite in dPnf (X)]= Pnf (X) (limn y (Vn); limm y (Wm)):Thus �# is injective and hence an isomorphism from Pnf (X) to R. 2The following lemma, used in the proof above, generalizes Lemma 4.3.Lemma 7.7 For any V in Pnf (X), � (V ) is �nite in bX.Proof We only treat the case that V = fv1; v2g (the general case follows by induction on thenumber of elements of V ). For any Cauchy sequence (�n)n in bX ,bX(�(V ); lim�n)= bX(min fy(v1);y(v2)g; lim�n)= max f bX(y(v1); lim�n); bX(y(v2); lim�n)g [Lemma 7.2]= max flim bX(y(v1); �n); lim bX(y(v2); �n)g [Lemma 4.3]= lim max f bX(y(v1); �n); bX(y(v2); �n)g= lim bX(min fy(v1);y(v2)g; �n)= lim bX(�(V ); �n): 2The following theorem will be often used in the sequel.Theorem 7.8 For any generalized ultrametric space X,Pgl( �X) = flim �(Vn) j Vn 2 Pnf (X); for all n, and (�(Vn))n is Cauchy in X̂g:Proof: Let R again denote the righthand side. Because R contains y(X), is complete (by Lemma7.6), and is closed under �:lim �(Vn)� lim �(Wn) = lim(�(Vn)� �(Wn)) [� is continuous on X̂ ]= lim �(Vn [Wn);for Cauchy sequences (�(Vn))n and (�(Wn))n, it follows that Pgl( �X) � R.For the converse note that any subset V of X̂ which is closed under � and contains y(X), alsocontains �(V ) for any V 2 Pnf (X). If V is moreover complete than lim �(Vn) is in V , for anyCauchy sequence (�(Vn))n in X̂ with Vn 2 Pnf (X), for all n. Consequently, R is contained in anyV having all three properties. Thus R � Pgl( �X). 2Combining Lemma 7.6 and Theorem 7.8 yields the following.Corollary 7.9 For any generalized ultrametric space X, Pgl( �X) �= Pnf (X). 228



The above description of the generalized lower powerdomain can be used to give the followingcategorical characterization. Let a metric lower semi-lattice be an algebraic complete quasi ultra-metric space X together with a non-expansive and continuous operation + : X � X ! X suchthat, for all x, y, and z in X ,(i) x+ x = x; (ii) x+ y = y + x; (iii) (x+ y) + z = x+ (y + z); (iv) x �X x+ y :For example, hPgl( �X);�i is a metric lower semi-lattice because Pgl( �X) is an algebraic completequasi ultrametric space by the above corollary, and � is continuous and non-expansive.As a consequence of Theorem 7.8, the lower powerdomain construction can be seen to befree. First note that every x in a gum X is mapped by y : X ! X̂ to an element of Pgl( �X).Thus we may consider y as a non-expansive map y : X ! Pgl( �X). Since Pgl( �X) is an algebraiccomplete quasi ultrametric space, Theorem 5.5 gives us a non-expansive and continuous functiony# : �X ! Pgl( �X). It is used in the following.Theorem 7.10 For any gum X, metric lower semi-lattice hY;+i, and non-expansive and con-tinuous function f : �X ! Y there exists a unique non-expansive, continuous and + preservingmapping f? : hPgl( �X);�i ! hY;+i such that f? � y# = f :�X //y# ##f FFFFFFFFF Pgl( �X)�� f?Y: 2(This theorem can be proved similarly to Theorem 5.5.)Now let Lsl(Acq) denote the category of metric lower semi-lattices with continuous, non-expansive and + preserving functions as morphisms. There is a forgetful functor U : Lsl(Acq) !Acq which maps every metric lower semi-lattices hY;+i to Y . As a consequence of Theorem 7.10,the lower powerdomain construction can be extended to a functor Pgl(�) : Acq ! Lsl(Acq) whichis left adjoint to U . As usual, this implies that the functor U � Pgl(�) : Acq ! Acq is locally non-expansive and locally continuous (cf. [Plo83, Rut95]), by which it can be used in the constructionof recursive domain equations.Characterizing Pgl( �X) topologicallyThe main result of this subsection is that for generalized ultrametric spaces X that are countable:Pgl( �X) �= P+gS( �X);whereP+gS( �X) = fV � �X j V is gS-closed and non-empty g:The proof makes use of the adjunction � ` R as follows. As with any adjunction between preorders,the co-restrictions of � and R give an isomorphism� : Im(R )! Im(�); R : Im(�)! Im(R ):Recall that the gS-closed subsets of �X are precisely the �xed points of R �� (Theorem 6.8). BecauseR � � � R = R (as with any adjunction between preorders), all elements of Im(R ) are gS-closed.Thus PgS( �X) = fV � �X j V is gS-closed g= fV � �X j V = R � �(V )g= Im(R ):In order to conclude that Pgl( �X) �= P+gS( �X), it is now su�cient to prove Pgl( �X) = Im+(�), where29



Im+(�) = f�(V ) 2 X̂ j V � �X; V nonempty g:This will be a consequence of the following lemma and theorem.The inclusion Pgl( �X) � Im+(�) is an immediate consequence of Theorem 7.8 and the following.Lemma 7.11 For all Cauchy sequences (�(Vn))n in X̂ such that Vn is a �nite and nonemptysubset of X for all n, lim �(Vn) 2 Im+(�).Proof: Let (Vn)n be a sequence of �nite and nonempty subsets of X such that (�(Vn))n is Cauchyin X̂. We shall prove: lim �(Vn) = �(flim vn j vn 2 Vn; for all n; and (vn)n is Cauchy in Xg): (Itwill follow from the proof below that the set on the right is nonempty.) Let (vn)n, with vn 2 Vnbe a Cauchy sequence in X . For all n, �(Vn) � vn (in X̂ taken with the pointwise extension of thestandard ordering on [0; 1]). Therefore lim �(Vn) � lim vn. Because (vn)n is arbitrary, this implieslim �(Vn) � �(flim vn j vn 2 Vn; for all n; and (vn)n is Cauchy in Xg):For the converse let x 2 X and �> 0. We shall construct a Cauchy sequence (vn)n in X such thatlim vn(x) � lim �(Vn)(x) + 2 � �:Let N be such that for all n � N ,X̂(�(VN ); �(Vn)) � �; and �(VN )(x) � lim �(Vn)(x) + �:Choose vi in Vi arbitrarily, for 0 � i < N . Because VN is �nite there exists vN 2 VN such that�(VN )(x) = X(x; vN ) = vN (x). Choose vN+1 in VN+1 such thatX(vN ; vN+1) = minw2VN+1X(vN ; w):Because, by Theorem 7.3,X̂(�(VN ); �(VN+1)) = maxv2VN minw2VN+1X(v; w);it follows thatX(vN ; vN+1) � X̂(�(VN ); �(VN+1)) � �:Continuing this way, we �nd a sequence (vn)n in X which is Cauchy because (�(Vn))n is. Now forall n � N , [0; 1](vN (x); vn(x)) � �, or equivalently, vn(x) � max f�; vN (x)g. Thuslim vn(x) � max f�; vN(x)g� vN (x) + �= �(VN )(x) + �� lim �(Vn)(x) + 2 � �: 2The reverse inclusion: Im+(�) � Pgl( �X), is a consequence of Theorem 7.8 and the following.Theorem 7.12 Let X be countable. For any subset nonempty V of �X there exists a sequence(Vn)n of �nite and nonempty subsets of X such that �(V ) = lim �(Vn) in X̂.Proof: Let V � �X, nonempty. We shall de�ne a sequence (Vn)n of �nite and (eventually)nonempty subsets of X such that for any � 2 X̂ ,X̂(�(V ); �) = lim X̂(�(Vn); �):The proof proceeds in �ve steps as follows. 30



1. Let x1; x2; : : : be an enumeration of X . The sets Vn are de�ned by induction on n. Theywill consist of elements of X which are approximations of elements of V . More precisely,they will satisfy, for all n � 1,8x 2 Vn; B1=n(x) \ V 6= ;:For convenience, we start at n = 1. LetV1 = � fx1g if B1(x1) \ V 6= ;; otherwise.Now suppose we have already de�ned Vn. We assume: for all x 2 Vn, B1=n(x) \ V 6= ;. Inthe construction of Vn+1, we shall include for every element of the previously constructedset Vn again an element (possibly the same), which will be a better approximation of the setV . Moreover, we shall take into account xn+1, the (n+1)-th element in the enumeration ofX . LetVn+1 = fimprove(x) j x 2 Vng [ frepresent(xn+1) j B1(xn+1) \ V 6= ;g;where `improve(x)' and `represent(xn+1)' are de�ned as follows:� If B1=n+1(x) \ V 6= ; then put improve(x) = x: x is still `good enough'. Otherwiseconsider y 2 V with X̂(x; y) < 1=n, which exists by the inductive hypothesis thatB1=n(x) \ V 6= ;. Let y = lim yk, with yk in X for all k. Because x is in X it is �nitein X̂, whenceX̂(x; y) = lim X̂(x; yk):Therefore we can choose a number k big enough such thatX̂(yk; y)< 1=(n+ 1) and X̂(x; yk)< 1=n:De�ne improve(x) = yk. Note thatB1=(n+1)(improve(x)) \ V 6= ; and X̂(x; improve(x)) < 1=n:� Suppose B1(xn+1) \ V 6= ;. (If this does not hold the second set in the de�nition ofVn+1 is empty.) If B1=(n+1)(xn+1)\V 6= ; then xn+1 is close enough to V , and we put:represent(xn+1) = xn+1. Otherwise let i be the maximal natural number smaller thann + 1 such that B1=i(xn+1) \ V 6= ;. Let y 2 V be such that X̂(xn+1; y) < 1=i. Lety = lim yk, with yk in X for all k. As before we can choose a number k such thatX̂(yk; y)< 1=(n+ 1) and X̂(xn+1; yk)< 1=i;and put: represent(xn+1) = yk. Note thatB1=(n+1)(represent(xn+1)) \ V 6= ; and X̂(xn+1; represent(xn+1))< 1=i:For all x 2 Vn+1, B1=(n+1)(x) \ V 6= ;. Because V is nonempty there exists N such that forall n � N , Vn is nonempty.2. Some properties of (Vn)n: Because X̂(x; improve(x)) < 1=n, for all n � 1 and x 2 Vn, itfollows thatX̂(�(Vn); �(Vn+1)) = supv2Vn infw2Vn+1 X̂(v; w) [Theorem 7.3]< 1=n:Because B1=n(x) \ V 6= ;, for all n � 1 and x 2 Vn, alsoX̂(�(Vn); �(V ))< 1=n: 31



3. As a consequence, (�(Vn))n is a Cauchy sequence in X̂. Since for all n � 1 and � 2 X̂ ,X̂(�(Vn); �) � max fX̂(�(Vn); �(V )); X̂(�(V ); �)g� X̂(�(V ); �) + 1=n;it follows thatlim X̂(�(Vn); �) � X̂(�(V ); �):4. Next we shall prove the converse:X̂(�(V ); �) � lim X̂(�(Vn); �):Because X̂(�(V ); �) = X̂(inf V; �) = supv2V X̂(v; �) it will be su�cient to prove for ally 2 V ,̂X(y; �) � lim X̂(�(Vn); �):So let y = lim ym be in V with ym 2 X for all m. Let M � 1 be arbitrary. Choose m bigenough such thatX̂(y; �) = X̂(lim ym; �)= lim X̂(ym; �)� X̂(ym; �) + 1=M;and X̂(ym; y)< 1=M . Let k � 1 be such that ym = xk . (Recall that X = fx1; x2; : : :g.) Wedistinguish between the following two cases:(i) k � M : Because 1=M � 1=k it follows from the construction of (Vn)n that xk 2Vk; xk 2 Vk+1; : : : ; xk 2 VM . ThereforeX̂(ym; �) = X̂(xk; �)� supx2VM X̂(x; �)= X̂(inf VM ; �)= X̂(�(VM ); �):Because X̂(�(VN ); lim �(Vn)) � 1=M , for N �M big enough,X̂(�(VM ); �) � max fX̂(�(VM ); �(VN )); X̂(�(VN ); lim �(Vn)); X̂(lim �(Vn); �)g� X̂(lim �(Vn); �) + 1=M= lim X̂(�(Vn); �) + 1=M;which impliesX̂(ym; �) � lim X̂(�(Vn); �) + 1=M:(ii) M < k: If B1=k(xk) \ V = B1=k(ym) \ V 6= ; then represent(xk) = xk . Otherwise leti be the maximal number below k such that B1=i(xk) \ V 6= ;. Because X̂(xk ; y) =X̂(ym; y)< 1=M it follows that M � i, whenceX̂(xk ; represent(xk))< 1=i � 1=M:
32



Therefore we have, whether B1=k(xk) \ V is empty or nonempty,X̂(ym; �) = X̂(xk; �)� max fX̂(xk; represent(xk)) X̂(represent(xk); �)g� X̂(represent(xk); �) + 1=M� supx2Vk X̂(x; �) + 1=M= X̂(�(Vk); �) + 1=M:Because, as in case (i),X̂(�(Vk); �) � lim X̂(�(Vn); �) + 1=k;and 1=k < 1=M , this impliesX̂(ym; �) � lim X̂(�(Vn); �) + 2=M:It follows that in both casesX̂(y; �) � X̂(ym; �) + 1=M � lim X̂(�(Vn); �) + 3=M:Because M is arbitrary, this impliesX̂(y; �) � lim X̂(�(Vn); �):5. We have shown:X̂(�(V ); �) = lim X̂(�(Vn); �): 2Lemma 7.11 and Theorem 7.12, together with Theorem 7.8, imply:Corollary 7.13 For a countable generalized ultrametric space X, Pgl( �X) = Im+(�). 2All in all, we have:Theorem 7.14 For a countable generalized ultrametric space X, Pgl( �X) �= P+gS( �X).Proof: The isomorphism PgS( �X) �= Im(�) restricts to an isomorphism P+gS( �X) �= Im+(�). ByCorollary 7.13, Pgl( �X) = Im+(�). Therefore, Pgl( �X) �= P+gS( �X). 2It follows that if we start with an !-algebraic complete quasi ultrametric space X with basis BX(for which X �= BX), thenPgl(X) �= fV � X j V is gS-closed and nonempty g:Using the characterization of Pgl(X) as a completion, it follows that Pgl(X) is an !-algebraiccomplete quasi ultrametric space with as (countable) basis the setfclS(V ) j V 2 Pnf (BX)g:The collection of closed sets of a given topological space X often comes with the lower topology[Mic51, Nad78]. Recall that given a topological space hX;O(X)i, the lower topology OL(S) on acollection of subset S � P(X) is de�ned by taking the collection of sets of the formLo = fV 2 S j V \ o 6= ;g; 33



for all o 2 O(X), as a subbasis. This subsection is concluded by showing that for an !-algebraiccomplete quasi ultrametric space X , the lower topology on PgS(X) and the generalized Scotttopology on PgS(X) coincide.Theorem 7.15 For an !-algebraic complete quasi ultrametric space X,OL(PgS(X)) = OgS(PgS(X)):Proof: Let BX be a countable basis for X . Let o 2 OgS(X) and consider the sub-basic open setLo 2 OL(PgS(X)). A gS-closed set V is in Lo if and only if V \ o 6= ; or, equivalently, V 6� X n o.Because X n o is gS-closed, it follows from Lemma 7.4 that P(X)(V;X n o) 6= 0. Therefore,V 2 Lo () V 2 fW 2 PgS(X) j P(X)(W;X n o) 6= 0g:But the rightmost set is open in the gS-topology of PgS(X) because it is the complement of thegS-closed setclS(fX n og) = fV 2 PgS(X) j P(X)(W;X n o) = 0g(the latter equality being a consequence of Lemma 6.7 and Lemma 7.4). This provesOL(PgS(X)) �OgS(PgS(X)).For the converse, let V be a �nite subset of BX and consider, for some � > 0, the basic openset B�(clS(V )) of the gS-topology on PgS(X). For any W 2 PgS(X),W 2 B�(clS(V ))() P(X)(clS(V );W )< �() P(X)(V;W )< � [Lemma 7.5]() supb2V infx2W X(b; x)< � [Theorem 7.3, V � BX ]() 8b 2 V; infx2W X(b; x)< �:() 8b 2 V; W \ B�(b) 6= ;() W 2 \b2V LB�(b) [B�(b) is basic open in OgS(X)]:Since V is �nite, the above proves that every basic open set of OgS(PgS(X)) can be expressedas the intersection of �nitely many sub-basic open sets of OL(PgS(X)). Thus OgS(PgS(X)) �OL(PgS(X)). 2Generalized upper and convex powerdomainsWe briey sketch the construction of a generalized upper and convex powerdomain. They will betreated in detail elsewhere.Let X be a generalized ultrametric space. A generalized upper powerdomain on �X can bede�ned dually to Pgl( �X) as follows. First [0; 1] is considered again as a semi-lattice, now with
 : [0; 1]� [0; 1]! [0; 1] sending elements r and s in [0; 1] to (their product) max fr; sg. Next let�X = ([0; 1]X)op:It can be turned into a semi-lattice h �X;
i by taking the pointwise extension of 
. There is thefollowing dual version of the Yoneda embedding:�y : X ! �X; x 7! X(x;�);where X(x;�) maps y in X to X(x; y). Now the generalized upper powerdomain is given byPgu( �X) =\fV � �X j �y(X) � V; V is a complete subspace of �X, and V is closed under 
g:34



Also this powerdomain can be characterized in a number of ways, one of which is via completion:Consider again Pnf (X), this time with distance, for all V and W in Pnf (X),Pnf (X)(V;W ) = supw2W infv2V X(v; w):Then the completion of Pnf (X) is isomorphic to Pgu( �X). In the special case that X is a preorder,this amounts to the standard de�nition of the upper, or Smyth, powerdomain.A generalized convex powerdomain is obtained by combining the constructions of the general-ized lower and upper powerdomains (thus using both the Yoneda embedding and its dual). It canagain be easily described as the completion of Pnf (X), now taken with distancePnf (X)(V;W ) = max fsupv2V infw2W X(v; w); supw2W infv2V X(v; w):gFor a preorder X , the convex powerdomain coincides with the standard convex, or Plotkin, pow-erdomain; for an ordinary ultrametric space, it yields the powerdomain of compact subsets.8 Related workThe thesis that fundamental structures are categories has been the main motivation for Lawverein his study of generalized metric spaces as enriched categories [Law73]. Lawvere's work togetherwith the more topological perspective of Smyth [Smy87] have been our main source of inspirationfor the present paper which continues the work of Rutten [Rut95]. Generalized ultrametric spacesare a special instance of Lawvere's V-categories. The non-symmetric ultrametric for [0; 1] is alsodescribed and studied in his paper. The notion of forward Cauchy sequence for a non-symmetricmetric space is from [Smy87] as well as the notion of limit. A purely enriched categorical de�nitionof forward Cauchy sequences and of limits can be found in Wagner's [Wag94, Wag95]. The notionof �niteness and algebraicity for a generalized ultrametric space are from [Rut95].Clearly we are working in the tradition of domain theory, for which Plotkin's [Plo83] has beenour main source of information.Completion and topology of non-symmetric metric spaces have been extensively studied in[Smy87], seeking to reconcile metric spaces and complete partial orders as topological spaces byconsidering quasi-uniformities. Smyth gives criteria for the appropriateness of a topology for aquasi-uniform space. Also a completion by means of Cauchy sequences is present in his work. Themain di�erence with our work is the simplicity of the theory of generalized metric spaces obtainedby the enriched categorical perspective, in particular by the use of the Yoneda Lemma. Indeed,both the categorical perspective of Lawvere and the topological one of Smyth have been combinedin our approach to obtain a reconciliation of complete metric spaces with complete partial orders.The fact that the Yoneda lemma gives rise to completion is well known for many mathemat-ical structures such as groups, lattices, and categories. In [Wag95], an enriched version of theDedekind-MacNeille completion of lattices is given. In [SMM95], the Yoneda lemma is used inthe de�nition of a completion of monoidal closed categories. The use of the Yoneda lemma forthe completion of generalized metric spaces is new, but it is suggested by an embedding theoremof Kuratowski [Kur35] and the de�nition of completion as in [Eng89, Theorems 4.3.13-4.3.19] forstandard metric spaces. A metric version of the Yoneda lemma also occurs, though not under thatname, in [JMP86, Lemma II-2.8]. The comprehension schema as a comparison between predicatesand subsets has been studied in the context of generalized metric spaces by Lawvere [Law73] andKent [Ken87]. The de�nition of the generalized Scott topology via the Yoneda embedding seemsto be new while the direct de�nition|by specifying the open sets|is briey mentioned in theconclusion of [Smy87]. A generalized Scott topology is also given in [Wag95]. However his notionof topology does not coincide with the standard one: for example it is not the �-ball topology inthe case of standard metric spaces.Another important topological approach to quasi metric spaces which needs to be mentionedis that of, again, Smyth [Smy91] and Flagg and Kopperman [FK95]. They consider quasi metricspaces equipped with the generalized Alexandro� topology. In order to reconcile metric spaces35
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A Topological preliminariesA topology O(X) on a set X is a collection of subsets of X that is closed under �nite intersectionsand arbitrary unions. The pair hX;O(X)i is called a topological space and every o 2 O(X) iscalled an open set of the space X . A set is closed if its complement is open. A base of a topologyO(X) on X is a set B � O(X) such that every open set is the union of elements of B. A subbaseof O(X) is a set S � O(X) such that the collection of �nite intersections of elements in S is abasis of O(X).Every topology O(X) on a set X induces a preorder on X called the specialization preorder:for any x and y in X , x �O y if and only if8o 2 O(X); x 2 o) y 2 o:A topology is called T0 if the specialization preorder is a partial order.A closure operator on a set X is a function cl : P(X) ! P(X) such that, for all S and S0 inP(X), (i) S � cl(S) (ii) cl(S) = cl(cl(S))(iii) if S � S0 then cl(S) � cl(S0)A closure operator is strict if cl(;) = ;. A topological closure operator is a strict closure operatorcl that moreover is �nitely additive: cl(S[S0) = cl(S)[ cl(S0). Every topological closure operatorinduces a topology: the closed sets are the �xed points of the closure operator. Conversely, everytopology O(X) on X de�nes a topological closure operator, which maps a subset S of X to theintersection of all closed sets containing S. This closure operator can also be characterized asfollows: Let S be a subset of X . An element x in X is a cluster point of S if for every open seto 2 O(X), x 2 o implies o \ (S n fxg) 6= ;; that is, x cannot be separated from S using open sets.Let Sd be the collection of all cluster points of S (it is called the derived set). Thencl(S) = S [ Sd:Let hX;O(X)i be a topological space. A non-empty subset F � O(X) is a �lter if it satis�es1. if o1 2 F and o1 � o2 then o2 2 F ; and2. if o1 2 F and o2 2 F then o1 \ o2 2 F .For instance, every element x in X induces a �lter N (x) = fo 2 O(X) j x 2 og. More generally,any sequence (xn)n in X induces a �lterN ((xn)n) = fo 2 O(X) j 9N � 0 8n � N; xn 2 og:A �lter F converges to an element x, denoted by F ! x, if N (x) � F . A sequence (xn)n is saidto converge to an element x if N ((xn)n)! x.A function f : X ! Y between two topological spaces X and Y is topologically continuous ifthe inverse image f�1(o) = fx 2 X j f(x) 2 og of any o in O(Y ) is in O(X). If f : X ! Y istopologically continuous then for every sequence (xn)n in X and x 2 XN ((xn)n)! x ) (N ((f(xn)n)! f(x):The standard topology associated with an ordinary (ultra)metric space X is the �-ball topology:a set o � X is open if8x 2 o 9� > 0; B�(x) � o;where B�(x) = fy 2 X j X(x; y) < �g. The set fB�(x) j x 2 X & � > 0g is a basis for �-balltopology.The standard topology associated with a preorder X is the Alexandro� topology, for which a seto � X is open if, for x and y in X , 39



x 2 o and x � y ) y 2 o;that is, o is upper-closed. If the preorder has a least upper bound for every !-chain, then theScott topology is more appropriate. It consists of those upper closed subsets o � X that moreoversatisfy, for any !-chain (xn)n in X ,Gxn 2 o ) 9N 8n � N; xn 2 o:Clearly, every Scott open set is also Alexandro� open. The converse is generally not true if thepre-order X is not �nite. If X is an !-algebraic cpo with basis BX then the set f" b j b 2 BXg,with " b = fx 2 X j b � xg, is a basis for the Scott topology.B Sequences of sequencesThe following two lemmas express that the limit of a Cauchy sequence which consists of the limitsof Cauchy sequences of �nite elements, can be obtained as the limit of a (kind of) diagonal sequenceof �nite elements.Lemma B.1 Let X be a subspace of a complete quasi ultrametric space Y . Let all elements of Xbe �nite in Y . For every n � 0 let (vmn )m be a Cauchy sequence in X with limitlimm vmn = yn: (16)Assume that (yn)n is a Cauchy sequence in Y satisfying8n : Y (yn; yn+1) � 13n : (17)Then there exist subsequences (xmn )m of (vmn )m in X satisfying8m : 8n : X (xmn ; xmn+1) � 1n (18)8n : 8m : X (xmn ; xm+1n ) � 1m (19)8n : limm xmn = yn (20)y1 //13 y2 //16 y3 //19 � � � // limn yn...OO ...OO ...OO
x31OO13 //1 x32OO13 //12 x33OO13 //13 � � �x21OO12 //1 x22OO12 //12 x23OO12 //13 � � �x11OO1 //1 x12OO1 //12 x13OO1 //13 � � �Proof Without loss of generality we can assume that8n : 8m : X (vmn ; vm+1n ) � 1m :We will construct subsequences (xmn )m of (vmn )m satisfying (18). Because a subsequence of aCauchy sequence is again Cauchy and has the same limit, these subsequences also satisfy (19) and(20). 40



Since, for all n,lim mY (vmn ; yn+1)= Y (limm vmn ; yn+1)= Y (yn; yn+1) [(16)]� 13n [(17)]we can conclude, according to Proposition 3.1 that8n : 9Mn : 8m �Mn : Y (vmn ; yn+1) � 23n :By removing from each sequence (vmn )m the �rst Mn elements we obtain the subsequences(wmn )m = (vMn+mn )m satisfying8n : 8m : Y (wmn ; yn+1) � 23n : (21)Since, for all n and m,limk Y (wmn ; wkn+1)= Y (wmn ; limk wkn+1) [wmn is �nite in Y ]= Y (wmn ; yn+1) [(16)]� 23n [(21)]we have, according to Proposition 3.1 that8n : 8m : 9Kmn : 8k � Kmn : Y (wmn ; wkn+1) � 1n :Without loss of generality we can assume that the sequences (Kmn )m are strictly increasing. Thesubsequences (xmn )m = (wLmnn )m whereLmn = ( m if n = 1KLmn�1n�1 if n > 1satisfy (18). 2The above proof shows some resemblance with the proof of Theorem 2 of [Smy87]. Thecompleteness of Y ensures the existence of the limits of the Cauchy sequences (vmn )m. If we dropthe condition that all elements of X are �nite in Y , then the above lemma does not hold any more.Lemma B.2 Let X be a subspace of a complete quasi ultrametric space Y . Let (yn)n be a Cauchysequence in Y satisfying8n : Y (yn; yn+1) � 13n : (22)Let (xmn )m be Cauchy sequences in X satisfying8m : 8n : X (xmn ; xmn+1) � 1n (23)8n : 8m : X (xmn ; xm+1n ) � 1m (24)8n : limm xmn = yn (25)Then (xkk)k is a Cauchy sequence in X and limk xkk = limn yn.
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y1 //13 y2 //16 y3 //19 � � � // limk xkk = limn yn...OO ...OO ...OO . . . ??����x31OO13 //1 x32OO13 //12 x33OO13 //13 @@���� � � �x21OO12 //1 x22OO12 //12 ??���� x23OO12 //13 � � �x11OO1 //1 ??���� x12OO1 //12 x13OO1 //13 � � �Proof Because, for all k,X (xkk; xk+1k+1)� max fX (xkk ; xkk+1); X (xkk+1; xk+1k+1)g� 1k [(23) and (24)]the sequence (xkk)k is Cauchy.For all n, m, and k, with k � max fn;mg,Y (xmn ; xkk)� max fY (xmn ; xkn); Y (xkn; xkk)g� max f 1m ; 1ng [(23) and (24)]Consequently,Y (limn yn; limk xkk)= lim nY (yn; limk xkk)= lim nY (limm xmn ; limk xkk) [(25)]= lim n lim mY (xmn ; limk xkk)� lim n lim m limk Y (xmn ; xkk) [Proposition 3.5]� lim n lim m limk max f 1m ; 1ng [see above]= 0 [Proposition 3.1]:For all n, m, and k, with n � k and m � k,Y (xkk ; xmn )� max fY (xkk; xmk ); Y (xmk ; xmn )g� 1k [(23) and (24)]Hence,Y (limk xkk ; limn yn)= lim k Y (xkk ; limn yn)� lim k limn Y (xkk; yn) [Proposition 3.5]42



= lim k limn Y (xkk; limm xmn ) [(25)]� lim k limn limm Y (xkk ; xmn ) [Proposition 3.5]� lim k limn limm 1k [see above]= 0 [Proposition 3.1]:From the above we can conclude that limk xkk = limn yn. 2From the above two lemmas we can conclude the following.Proposition B.3 Let X be a subspace of a complete quasi ultrametric space Y . Let all elementsof X be �nite in Y . Thenf limxn j (xn)n is a Cauchy sequence in X gis a complete subspace of Y .Proof Let R = f limxn j (xn)n is a Cauchy sequence in X g. Clearly R is a subspace of Y .Let (yn)n be a Cauchy sequence in R. We have to show that its limit limn yn is an element ofR. Without loss of generality we can assume that 8n : Y (yn; yn+1) � 13n . From Lemma B.1 andB.2 we can conclude that there exists a Cauchy sequence (xkk)k in X satisfying limk xkk = limn yn.Consequently, limn yn 2 R. 2
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