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Solving Domain Equations in a Category ofCompact Metric SpacesFranck van Breugel1;2 and Jeroen Warmerdam11CWIP.O. Box 94079, 1090 GB Amsterdam, The Netherlands2Vrije UniversiteitP.O. Box 7161, 1007 MC Amsterdam, The NetherlandsAbstractIn order to solve domain equations over 1-bounded compact metric spaces, �xed points of functors on categoriesof 1-bounded compact metric spaces are studied. Two categories of 1-bounded compact metric spaces areconsidered: KMS and KMSE. In both categories, objects are isomorphic if and only if they are isometric. Asa consequence, provided that the operation of a domain equation can be extended to a functor, if the functorhas a �xed point then this �xed point is a solution of the domain equation and vice versa.It is shown that so-called locally contractive functors on KMS and contractive functors on KMSE have�xed points. Furthermore, it is shown that locally contractive functors on KMS and KMSE have at mostone �xed point (up to isomorphism). Hence, locally contractive functors on KMS and contractive and locallycontractive functors on KMSE have unique �xed points.Examples are presented of extensions of various operations to functors, a simple operation which cannot beextended to a functor, and a functor not having a �xed point.Most of the results in this report are based on similar - already known - results for 1-bounded completemetric spaces.AMS Subject Classi�cation (1991): 54E50, 68Q55CR Subject Classi�cation (1991): D.3.1, F.3.2Keywords & Phrases: domain equation, 1-bounded complete metric space, 1-bounded compact metric space,category, functor, �xed pointNote: Both authors were (partially) supported by the Netherlands Nationale Faciliteit Informatica pro-gramme, project Research and Education in Concurrent Systems (REX). Current address of the second authoris PTT Research, P.O. Box 421, 2260 AK Leidschendam, The Netherlands.IntroductionIn the denotational approach to programming language semantics, domains speci�ed by (recursive)equations play an important role. As domains, structures like complete partial orders, complete metricspaces, nonwellfounded sets, and wellfounded sets are used. In this report, we will focus on completemetric spaces. (For a detailed overview of the use of complete metric spaces in denotational semanticswe refer the reader to [BR92].)Solving domain equations over complete metric spaces has been studied by De Bakker and Zucker([BZ82]), America and Rutten ([AR89]), Majster-Cederbaum and Zetzsche ([MC88, MC89, MCZ91]),and Rutten and Turi ([RT92]).In this report, we restrict our attention to compact metric spaces. The compactness of a completemetric space is frequently exploited in semantics.� In [GR83], Golson and Rounds introduce a complete pseudometric space of Milner's rigid syn-chronization trees ([Mil80]). From the compactness of the space, the compactness theorem forHennessy Milner logic ([HM80]) can be derived.



2 Introduction� In [Llo87], Lloyd studies the semantics of nonterminating logic programs. The complete Her-brand universe and base are both turned into a complete metric space. Because of the compact-ness of these spaces, a richer set of properties of the immediate consequence operator can beproved.� Two denotational semantics for a simple language are proved to be equivalent by De Bakkerand Meyer in [BM87]. The �rst model is order-theoretic and the second model uses a completemetric space. The equivalence proof relies on the compactness of the complete metric space usedin the second model.� In [Bre93], Van Breugel proves three complete metric spaces of so-called processes to be iso-metric. These processes are frequently used in semantics (see, e.g., [BBKM84]) and have thenice property of representing bisimilarity equivalence classes (see [GR89]). In the proof that thethree spaces are isometric, the compactness of the spaces is exploited.In order to conclude that a domain de�ned by a domain equation over complete metric spacesis compact, we will solve the domain equation restricted to compact metric spaces (instead of �rstsolving the domain equation and second proving that the solution is compact). The way we willsolve domain equations over compact metric spaces is based on ART: [AR89] and [RT92] (the parton solving domain equations over complete metric spaces of the latter paper being a reconstruction ofthe former paper along the lines of Smyth and Plotkin's standard work on solving domain equationsover complete partial orders [SP82]).Let F be an operation assigning to each compact metric space another compact metric space. ThenX �= F (X) is a domain equation over compact metric spaces. A solution of the equation is a compactmetric space which is isometric - isometry being the natural notion of equivalence of metric spaces - toits F -image. The solution of a domain equation can be viewed as a �xed point of F (up to isometry).In order to �nd such a solution we provide the collection of compact metric spaces with someadditional structure. We turn this collection of objects into the category KMS by de�ning a collectionof arrows between them: nonexpansive functions. Also the operation of the domain equation isprovided with some additional structure by extending it to a functor.Not every operation on compact metric spaces can be extended to a functor (see Example 3.6).However, various operations including the Cartesian product, the disjoint union, the nonempty andcompact power set, and the nonexpansive function space will be shown to be extensible to a functor.As we will see, in order to deal with the nonexpansive function space some additional machinery -including the more involved category KMSE - has to be introduced.Since a �xed point of a functor F is de�ned to be an object of the category being isomorphic to itsF -image, and objects in the above mentioned categories are isomorphic if and only if they are isometric(i.e. we have chosen the right type of arrows), we can derive the following important equivalence. Adomain equation has a solution if and only if the corresponding functor (if it exists) has a �xed point.Furthermore, a �xed point of the functor is a solution of the domain equation, and a solution of thedomain equation is a �xed point of the functor (provided that the operation of the domain equationcan be extended to a functor).Not every functor has a �xed point (see Example 4.1). For so-called locally contractive functors onKMS and so-called contractive functors on KMSE we will show that they have �xed points (in theTheorems 4.6 and 4.13). Furthermore, we will prove that locally contractive functors on KMS andKMSE have at most one �xed point up to isomorphism (in Theorem 4.14). Consequently, locallycontractive functors on KMS and contractive and locally contractive functors on KMSE have unique�xed points.We will introduce a so-called (locally) Lipschitz coe�cient for a functor and provide simple rules toapproximate a functor's (locally) Lipschitz coe�cient. This (locally) Lipschitz coe�cient is de�nedin such a way that a functor is (locally) contractive if and only if its (locally) Lipschitz coe�cient issmaller than 1.



1. Mathematical preliminaries 3The main part of this report concerns �xed points of functors on KMS and KMSE . Besides thework on �xed points of functors on categories of complete metric spaces mentioned above, �xed pointsof functors in various other related categories have been studied. In his PhD thesis [Mat86], Matthewsconsiders a category of compact agreement spaces - being topologically equivalent to 1-bounded com-pact ultrametric spaces - and continuous functions. In [Ken87], Kent focuses on a category of pseudo-quasimetric spaces and nonexpansive functions. Edalat and Smyth ([ES92]) use a category of compactmetric information systems, which is dual to the category KMS we use. In [Wag94], Wagner studiesa category of complete abstract preorders over 
, with 
 a quantale. For a particular choice for 
one obtains the category studied by Kent. Wagner also studies compactness in his setting.Most of the results of this report are obtained from results of [AR89] and [RT92] using some theoremsfrom (metric) topology. To our knowledge, the Examples 3.6 and 4.1, and the Theorems 4.6, 4.13 -the main result of the report - and 4.14 - a generalization of Theorem 5.5 of [RT92] - are new.In the �rst section, we present some (nonstandard) notions on metric spaces. In the second section,completeness and compactness of metric spaces are considered. In the third section, we show howvarious operations on compact metric spaces can be extended to functors. Furthermore, we give anexample of an operation which cannot be extended to a functor. In the fourth section, we discuss �xedpoints of functors. We also develop the additional machinery to deal with the nonexpansive functionspace. We conclude this section and this report with discussing the (locally) Lipschitz coe�cient of afunctor.AcknowledgementsThe authors would like to thank Jan Rutten, coauthor of the papers [AR89] and [RT92] on which thepresent report is based, and Fer-Jan de Vries for numerous discussions. Furthermore, the authors aregrateful to Jaco de Bakker, Marcello Bonsangue, Abbas Edalat, Bart Jacobs, Steve Matthews, M.A.Maurice, Daniele Turi and Herbert Wiklicky for their comments on the work presented in this report.1. Mathematical preliminariesIn the rest of this report, the reader is assumed to be familiar with some standard notions of metricspaces. In this �rst section, only some nonstandard notions of metric spaces, i.e. notions which arenot found in the main text of [Eng89], are introduced. The notions of category theory we use in thisreport are introduced in footnotes. In order not to burden the presentation, we will not present thenotions in their most general form, but in a way which suits our purposes best. For more details oncategories the reader is referred to [ML71].In this report, �-Lipschitz functions will play an important role.Definition 1.1 Let (X; dX) and (Y; dY ) be metric spaces. A function f : X ! Y is called �-Lipschitzif, for all x, x0 2 X,dY (f (x); f (x0)) � � � dX (x; x0):A function is called nonexpansive if it is 1-Lipschitz. A function is called contractive if it is �-Lipschitzfor some 0 � � < 1.In the next de�nition, several (metrics inducing) operations on 1-bounded metric spaces are pre-sented. These operations are used in domain equations.Definition 1.2 Let (X; dX) and (Y; dY ) be 1-bounded metric spaces. Let Z be a set.1. For all �, with 0 < � � 1, a new metric on X is de�ned by(� � d)X (x; x0) = � � dX (x; x0):



4 Mathematical preliminaries2. The Hausdor� metric on the set of nonempty and compact (with respect to the metric dX)subsets of X, Pnk (X), is de�ned bydPnk (X) (A;B) = max f sup f inf f dX (a; b) j b 2 B g j a 2 A g;sup f inf f dX (b; a) j a 2 A g j b 2 B g g:3. A metric on the Cartesian product of X and Y , X � Y , is de�ned bydX�Y ((x; y); (x0; y0)) = max f dX (x; x0); dY (y; y0) g:4. A metric on the disjoint union of X and Y , X + Y , is de�ned bydX+Y (z; z0) = 8<: dX (z; z0) if z 2 X and z0 2 XdY (z; z0) if z 2 Y and z0 2 Y1 otherwise5. A metric on the functions from Z to X, Z ! X, is de�ned bydZ!X (f; f 0) = sup f dX (f (z); f 0 (z)) j z 2 Z g:6. A metric on the nonexpansive functions from X to Y , X !1 Y , is de�ned bydX!1Y (f; f 0) = sup f dY (f (x); f 0 (x)) j x 2 X g:In 2, 5, and 6 of the above de�nition, the boundedness of the original metrics is needed for the de�nedmetrics to be well-de�ned. We restrict ourselves to 1-bounded bounded spaces, because consideringbounded spaces naturally gives rise to the addition of 1 to the codomain of a metric (cf. [Law73])and bring us outside standard (metric) topology.The 1-bounded metrics introduced above induce operations on 1-bounded metric spaces. For ex-ample, the disjoint union of the 1-bounded metric spaces (X; dX) and (Y; dY ), (X; dX) + (Y; dY ), isthe 1-bounded metric space (X + Y; dX+Y ).Another operation one encounters frequently in domain equations is taking the set of nonempty andclosed subsets of a given 1-bounded metric space and endowing it with the induced Hausdor� metric.We do not consider this operation, since on the spaces we are interested in - 1-bounded compactmetric spaces - the operation coincides with the second operation of the above de�nition.Besides the metric on the Cartesian product introduced in De�nition 1.2.3 we will employ anothermetric on the Cartesian product.Definition 1.3 Let (X; dX) and (Y; dY ) be metric spaces. A metric on the Cartesian product of Xand Y , this time denoted by X 
 Y , is de�ned bydX
Y ((x; y); (x0; y0)) = dX (x; x0) + dY (y; y0):We will not use the Cartesian product 
 in domain equations, since it does not preserve1-boundedness, but use it to turn function composition into a nonexpansive operation.We conclude this section with Banach's unique �xed point theorem. The uniqueness of �xed pointsof certain functors will be proved by means of this theorem.Theorem 1.4 Let (X; dX) be a complete metric space. If f : X ! X is contractive then f has aunique �xed point �x (f).Proof See Theorem II.6 of [Ban22]. ut



2. From completeness to compactness 52. From completeness to compactnessMost results of this report on 1-bounded compact metric spaces have already been proved for 1-boundedcomplete metric spaces. To prove the results for 1-bounded compact metric spaces, the following the-orem - due to Fr�echet ([Fr�e10]) - will turn out to be very useful.Theorem 2.1 A metric space is compact if and only if it is complete and totally bounded.Completeness of a metric space is de�ned in terms of sequences, viz a metric space (X; dX) is calledcomplete if every Cauchy sequence (xn)n in (X; dX) converges to some x in X. Also compactness andtotally boundedness can be expressed using sequences. A subsequence of the sequence (xn)n will bedenoted by (xs(n))n, where s is a strictly increasing mapping from IN to IN.Theorem 2.2 A metric space (X; dX) is compact if and only if for every sequence (xn)n in X thereexists a converging subsequence (xs(n))n.Theorem 2.3 A metric space (X; dX) is totally bounded if and only if for every sequence (xn)n inX and for every �, with � > 0, there exists a subsequence (xs(n))n satisfying, for all m and n,dX (xs(m); xs(n)) � �:The operations introduced in De�nition 1.2 preserve completeness.Theorem 2.4 Let (X; dX) and (Y; dY ) be 1-bounded metric spaces. Let Z be a set. If (X; dX) and(Y; dY ) are complete, then1. for all �, with 0 < � � 1, � � (X; dX),2. Pnk (X; dX),3. (X; dX)� (Y; dY ),4. (X; dX) + (Y; dY ),5. Z ! (X; dX), and6. (X; dX)!1 (Y; dY )are complete.Proof The second case is proved in Lemma 3 of [Kur56]. The other cases are easy to prove. utOf the operations all but ! preserve totally boundedness.Theorem 2.5 Let (X; dX) and (Y; dY ) be 1-bounded metric spaces. Let Z be a set. If (X; dX) and(Y; dY ) are totally bounded, then1. for all �, with 0 < � � 1, � � (X; dX),2. Pnk (X; dX),3. (X; dX)� (Y; dY ),4. (X; dX) + (Y; dY ), and5. (X; dX)!1 (Y; dY )are totally bounded.



6 From completeness to compactnessProof We only treat the second and the �fth case. The other three cases are easy to prove and areleft to the reader.Let us �rst deal with the second case. We will show that for all sequences (An)n in Pnk (X) andfor all �, with � > 0, there exists a subsequence (As(n))n satisfying, for all m and n,dPnk (X) (As(m); As(n)) � �: (2.1)Having shown this we can conclude that (Pnk (X); dPnk (X)) is totally bounded according to Theo-rem 2.3.Let (An)n be a sequence in Pnk (X). Let � > 0. Because (X; dX) is totally bounded, there exists a�nite subset F of X satisfying8x 2 X : 9f 2 F : dX (x; f) < �2 : (2.2)Let (Fn)n be the sequence obtained from (An)n and F by de�ningFn = f f 2 F j 9a 2 An : dX (a; f) < �2 g:Because the set F is �nite, there exist only �nitely many di�erent Fn's. Consequently, there exists aconstant subsequence (Fs(n))n of (Fn)n. In order to prove (2.1), it su�ces to prove that, for all n,dPnk (X) (As(n); Fs(n)) � �2 ; (2.3)since thendPnk (X) (As(m); As(n))� dPnk (X) (As(m); Fs(m)) + dPnk (X) (Fs(m); Fs(n)) + dPnk (X) (Fs(n); As(n))� �2 + 0 + �2 :We �nish the proof of the second case by proving (2.3). From the de�nition of Fn we can derive that8f 2 Fs(n) : 9a 2 As(n) : dX (f; a) < �2 :Consequently,sup f inf f dX (f; a) j a 2 As(n) g j f 2 Fs(n) g � �2 : (2.4)From (2.2) we can conclude that8a 2 As(n) : 9f 2 F : dX (a; f) < �2 :From the de�nition of Fn we can derive that f 2 Fn, and hence8a 2 As(n) : 9f 2 Fs(n) : dX (a; f) < �2 :Consequently,sup f inf f dX (a; f) j f 2 Fs(n) g j a 2 As(n) g � �2 : (2.5)From (2.4) and (2.5) we can conclude (2.3), sincedPnk (X) (As(n); Fs(n))= max fsup f inf f dX (f; a) j a 2 As(n) g j f 2 Fs(n)g;sup f inf f dX (a; f) j f 2 Fs(n) g j a 2 As(n) g g� max f �2 ; �2g:Next, we treat the �fth case. As in the previous case, totally boundedness of the space is provedusing Theorem 2.3. That is, we will show that for all sequences (fn)n in X !1 Y and for all �, with� > 0, there exists a subsequence (fs(n))n satisfying, for all m and n,dX!1Y (fs(m); fs(n)) � �: (2.6)Let (fn)n be a sequence in X !1 Y . Let � > 0. Because (X; dX) is totally bounded, there exists a�nite subset A of X satisfying8x 2 X : 9a 2 A : dX (x; a) < �3 : (2.7)



From completeness to compactness 7Since (fn � A)n, where fn � A denotes the restriction of fn to A, is a sequence in A! Y and A! Yis totally bounded (immediate consequence of the facts that the set A is �nite and the metric space(Y; dY ) is totally bounded), there exists a subsequence (fs(n) � A)n satisfying, for all m and n,dA!Y (fs(m) � A; fs(n) � A) � �3 (2.8)according to Theorem 2.3. Consequently, for all m, n, and x,dY (fs(m) (x); fs(n) (x))� dY (fs(m) (x); fs(m) (a)) + dY (fs(m) (a); fs(n) (a)) + dY (fs(n) (a); fs(n) (x))� dX (x; a) + dA!Y (fs(m) � A; fs(n) � A) + dX (a; x) [fs(m) and fs(n) are nonexpansive]� �3 + �3 + �3 [(2.7) and (2.8)]From the above we can conclude (2.6), since, for all m and n,dX!1Y (fs(m); fs(n))= sup f dY (fs(m) (x); fs(n) (x)) j x 2 X g� �: utThe operation ! does not preserve totally boundedness as is shown inExample 2.6 Consider the setX = f 1n j n 2 IN g [ f0gendowed with the Euclidean metric. The obtained metric space is totally bounded. Let fn : X ! Xbe de�ned byfn (x) = � 1 if x = 1nx otherwiseBecause, for all m and n, with m 6= n, we have thatdX!X (fm; fn) � 12 ;the space X ! X is not totally bounded. Because fn is continuous, also if we restrict ourselves tocontinuous functions we do not obtain a totally bounded metric space.Combining the Theorems 2.1, 2.4, and 2.5 we obtainTheorem 2.7 Let (X; dX) and (Y; dY ) be 1-bounded metric spaces. Let Z be a set. If (X; dX) and(Y; dY ) are compact, then1. for all �, with 0 < � � 1, � � (X; dX),2. Pnk (X; dX),3. (X; dX)� (Y; dY ),4. (X; dX) + (Y; dY ), and5. (X; dX)!1 (Y; dY )are compact.We conclude this section with some remarks on the above theorem. None of the results listed inthe theorem are new. The results can also be proved directly, i.e. without splitting compactness intocompleteness and totally boundedness. Also in that case, all but the second and the �fth case areeasy to prove. A direct proof of the second case is presented in, e.g., Theorem 4.2 of [Mic51]. The�fth case is a consequence of the theorem of Arzel�a-Ascoli (see, e.g., page 267 of [Dug66]). We havechosen for splitting compactness into completeness and totally boundedness, since this will turn outto be fruitful in the sequel.



8 From operations to functors3. From operations to functorsAs already mentioned in the introduction, in this report we will focus on �xed points of functorsin order to �nd solutions of domain equations. In this section, we will point out our limitationsby showing that, although the operations of De�nition 1.2 which preserve compactness can all beextended to a functor, there exists a simple example of an operation which cannot be extended to afunctor.We introduce the category1 KMS inDefinition 3.1 The category KMS has 1-bounded compact metric spaces as objects and nonexpan-sive functions as arrows. The domain and codomain of arrows are the domain and codomain of thefunctions. The composition of arrows is the function composition of the functions. The identity arrowsare the identity functions.Note that in this category objects are isomorphic2 if and only if they are isometric. This is also thecase for the closely related category CMS used in [AR89] and [RT92].Definition 3.2 The category CMS has 1-bounded complete metric spaces as objects and nonex-pansive functions as arrows. The domain and codomain of arrows are the domain and codomain ofthe functions. The composition of arrows is the function composition of the functions. The identityarrows are the identity functions.The operations �� and Pnk introduced in De�nition 1.2 are extended to a functor3 by de�ning howthese operations act on arrows.Definition 3.3 Let (X; dX) and (Y; dY ) be 1-bounded compact metric spaces. Letf 2 (X; dX)!1 (Y; dY ).� For all �, with 0 < � � 1, the function � � f : � � (X; dX)! � � (Y; dY ) is de�ned by1 A category consists of� a class of objects,� a class of arrows,� a function dom assigning to each arrow an object, called domain,� a function cod assigning to each arrow an object, called codomain,� We will write f : X ! Y to denote that dom (f) = X and cod (f) = Y . The arrow f is a so-called arrow from Xto Y . The set of all arrows from X to Y , called homset, is denoted by hom (X;Y ). We will call a pair of arrows(f; g) composable if cod (f) = dom (g).� a function � assigning to each pair of composable arrows (f; g) an arrow g � f : dom (f) ! cod (g), called thecomposition of f and g, which is associative, i.e. for all pairs of composable arrows (f; g) and (g; h),h � (g � f) = (h � g) � f;� We can also introduce the function � in terms of homsets: for all objects X, Y , and Z, a function� : hom (Y; Z)� hom (X;Y )! hom (X;Z):� for each object X, an arrow idX : X ! X, called the identity of X, which satis�es the unit law, i.e. for all arrowsf : X ! Y , we have thatf � idX = f and idY � f = f:2 Let C be a category. Two objects X and Y are called isomorphic if there exist arrows f : X ! Y and g : Y ! X in Cforming an isomorphism, i.e.g � f = idX and f � g = idY :3 Let C and D be categories. A functor F : C ! D is a function assigning to each object in C an object in D and assigningto each arrow f : X ! Y in C an arrow F (f) : F (X) ! F (Y ) in D such that� it preserves identities, i.e. for each object X in C,F (idX ) = idF (X);� it preserves compositions, i.e. for all pairs of composable arrows (f; g) in C,F (g � f) = F (g) � F (f):



From operations to functors 9� � f = f:� The function Pnk (f) : Pnk (X; dX)! P (Y; dY ) is de�ned byPnk (f)(A) = f f (a) j a 2 A g:In order to conclude that we have extended the operations to functors, we have to check that if fis an arrow in KMS then � � f and Pnk (f) are arrows in KMS , and that �� and Pnk preserve identitiesand compositions. This is easy and left to the reader (cf. Lemma 5.2 of [AR89]).Furthermore, for each 1-bounded compact metric space (X; dX), the operation assigning to each1-bounded compact metric space the space (X; dX) can be extended to a functor on KMS : everyarrow is assigned to the identity arrow of (X; dX).The operations � and + are extended to functors from the product category4 KMS �KMS - in thesequel abbreviated to KMS2 - to the category KMS as follows.Definition 3.4 Let (U; dU), (V; dV ), (X; dX), and (Y; dY ) be 1-bounded compact metric spaces. Letf 2 (U; dU)!1 (X; dX) and g : (V; dV )!1 (Y; dY ).� The function f � g : ((U; dU)� (V; dV ))! ((X; dX)� (Y; dY )) is de�ned by(f � g) (u; v) = (f (u); g (v)):� The function f + g : ((U; dU) + (V; dV ))! ((X; dX) + (Y; dY )) is de�ned by(f + g) (w) = � f (w) if w 2 Ug (w) if w 2 VOne can easily verify that the operations � and + map arrows in KMS2 to arrows in KMS , preserveidentities, and preserve compositions.The operation !1 can also be extended to a functor. To deal with !1 we need some additionalmachinery. We will develop this machinery in the Subsection 4.1.By means of composition and tupling5 we can form new functors from the above de�ned ones.Example 3.5 The operation of the domain equation(X; dX) �= (Y; dY )� 12 � (X; dX);where (Y; dY ) is an (arbitrary) 1-bounded compact metric space, can be extended to the functor� � ((Y; dY ); 12 �):The operation of the domain equation(X; dX) �= (Y; dY ) + Pnk ((Z; dZ)� 12 � (X; dX));4 Let C and D be categories. The product category C � D has as objects pairs (X;Y ), with X an object in C and Y anobject in D, and as arrows pairs (f; g) : (U; V )! (X;Y ), with f : U ! X an arrow in C and g : V ! Y an arrow in D.The composition of the arrows (f; g) and (h; i) is (h � f; i � g). The identity arrows are pairs of identity arrows.5 Let C, D, and E be categories. Let F : C ! D, G : D ! E, and H : C ! E be functors.� The composition of G with F is the functor G � F : C ! E de�ned by(G � F ) (X) = G (F (X))(G � F ) (f) = G (F (f))� The tupling of F and H is the functor (F;H) : C ! (D � E) de�ned by(F;H) (X) = (F (X); H (X))(F;H) (f) = (F (X); H (f))



10 From operations to functorswhere (Y; dY ) and (Z; dZ) are (arbitrary) 1-bounded compact metric spaces, can be extended to thefunctor+ � ((Y; dY );Pnk � � � ((Z; dZ); 12 �)):However, not every operation can be extended to a functor as the following example shows us.Example 3.6 The operation F assigning to each 1-bounded compact metric space (X; dX) the1-bounded compact metric spaceF (X; dX) = � diam (X; dX) � (X; dX) if diam (X; dX) > 0(X; dX) otherwisewherediam (X; dX) = supx;y2X dX (x; y);cannot be extended to a functor as we will see.Consider the sets X = f0; 12g and Y = f0; 12 ; 1g endowed with the Euclidean metric. Clearly, thesemetric spaces are objects in KMS . Consider the functions f : f0; 12g ! f0; 12 ; 1g de�ned byf (0) = 0f (12) = 12and g : f0; 12 ; 1g ! f0; 12g de�ned byg (0) = 0g (12) = 12g (1) = 12The functions can be depicted by112 12 120 0 0YYYYYYYYYYY,,___________// ___________//___________// ___________//Obviously, the functions f and g are arrows in KMS . Now assume that the operation F can beextended to a functor. Then F (f) and F (g) are arrows of KMS , i.e. the functions F (f) and F (g)are nonexpansive. Consequently,dF (Y ) (F (f)(0); F (f)(12 ))� dF (X) (0; 12) [F (f) is nonexpansive]= 12 � dX (0; 12)= 14 :Since all elements of F (Y ) have a distance larger than 14 to each other, we have thatF (f)(0) = F (f)(12) (3.9)A possible choice for F (f) and F (g) is depicted by11212 120 0 0&&� � � � � � � � � � � � � � � � � � � � � � � � � � � � ))� � � � � � � � � � � � � � � � � � � � � � � � � � �--� � � � � � � � � � � � � � � � � � � � � � � � � � � //� � � � � � � � � � � � � � � � � � � � � � � � � � � � //� � � � � � � � � � � � � � � � � � � � � � � � � � � �



4. Fixed points of functors 11Since F is assumed to be a functor, we have thatF (g) � F (f)= F (g � f) [F preserves compositions]= F (idX)= idF (X) [F preserves identities]However, this is in contradiction with (3.9). Consequently, F cannot be extended to a functor.Although the operation F of the above example cannot be extended to a functor, the domainequation(X; dX) �= F (X; dX)has several solutions. For example, every nonempty and �nite set endowed with the discrete metric isa solution of the above domain equation. Hence, by focusing on �xed points of functors rather thansolutions of domain equations, we loose some generality.4. Fixed points of functorsIn this �nal section we will focus on �xed points6 of functors. First of all, we show that not everyfunctor on KMS has a �xed point.Example 4.1 Consider the functor F : KMS ! KMS de�ned byF = + � (11; 1�);where 11 is the singleton metric space. Assume that (X; dX) is a �xed point of F . Then the space(X; dX) is compact and we have that(X; dX) �= 11 + (X; dX)�= 11 + (11 + (X; dX))�= 11 + (11 + (11 + (X; dX)))...Consequently, (X; dX) contains an unbounded number of elements having distance 1 to each other.This contradicts the fact that (X; dX) is compact. Hence F has no �xed point.Next, we will introduce a su�cient condition on functors on KMS for having �xed points. In orderto formulate this condition we will consider CMS -categories - a natural generalization of categories.Definition 4.2 A CMS -category C is a category with some additional structure: the homsets areobjects in CMS and the compositions are arrows in CMS , that is, for all objects X and Y in C, thehomset hom (X;Y ) is a 1-bounded complete metric space, and, for all objects X, Y , and Z in C, thecomposition� : (hom (Y; Z)
 hom (X;Y ))! hom (X;Z)is a nonexpansive function.6 Let C be a category. Let F : C ! C be a functor. An object X in C is called a �xed point of F if X is isomorphic toF (X).



12 Fixed points of functorsThe above introduced notion CMS -category is consistent with the notion C-category, with C aso-called monoidal category (see, e.g., page 180 of [ML71]).The category KMS can be turned into a CMS -category by endowing the homsets with the metricintroduced in De�nition 1.2.6.Proposition 4.3 KMS is a CMS-category.Proof The fact that the homsets of KMS are objects in CMS is an immediate consequence of Theo-rem 2.4.6. Let (f; g) and (h; i) be pairs of composable arrows in KMS withf , h : (X; dX)! (Y; dY ) and g, i : (Y; dY )! (Z; dZ). Thend (g � f; i � h)= supx2X dZ (g (f (x)); i (h (x)))� supx2X dZ (g (f (x)); g (h (x))) + dZ (g (h (x)); i (h (x)))� supx2X dZ (g (f (x)); g (h (x))) + supx2X dZ (g (h (x)); i (h (x)))� supx2X dY (f (x); h (x)) + supy2Y dZ (g (y); i (y)) [g is nonexpansive]= d (f; h) + d (g; i)= d ((f; g); (h; i)): utNote that if we replace the 
 in De�nition 4.2 by �, then KMS is not a CMS -category any more.If C and D are CMS -categories, then the product category C�D, the homsets of which are endowedwith the product (as introduced in De�nition 1.2.3) of the metrics of the homsets of C and D, is aCMS -category. Consequently, KMS2 is a CMS -category.For functors on CMS -categories we can introduce the notion of being locally �-Lipschitz.Definition 4.4 Let C and D be CMS -categories. A functor F : C ! D is called locally �-Lipschitzif, for all objects X and Y in C, the functionF � hom (X;Y )is �-Lipschitz. A functor is called locally nonexpansive if it is locally 1-Lipschitz. A functor is calledlocally contractive if it is locally �-Lipschitz for some 0 � � < 1. A functor is called locally Lipschitz ifit is locally �-Lipschitz for some �.Example 4.5 The functor F : KMS ! KMS de�ned byF = � � ((X; dX); 12 �);where (X; dX) is an (arbitrary) 1-bounded complete metric spaces, is locally 12 -Lipschitz, since for all(Y; dY ), (Z; dZ) in KMS , and f , g 2 hom ((Y; dY ); (Z; dZ)), we have thatd (F (f); F (g))= sup f dX�12 �Z ((x; f (y)); (x; g (y))) j (x; y) 2 X � Y g= sup fmaxfdX (x; x); 12 � dZ (f (y); g (y))g j (x; y) 2 X � Y g= sup f 12 � dZ (f (y); g (y)) j y 2 Y g= 12 � d (f; g):Every functor on KMS which is locally contractive has a �xed point.Theorem 4.6 Let F : KMS ! KMS be a functor. If F is locally contractive then it has a �xed point.



Fixed points of functors 13We will provide the reader with a proof of this theorem at the end of Subsection 4.1. The proofmakes use of another - to be presented - �xed point theorem (viz Theorem 4.13). A direct proof ofthe above theorem would be similar to the proof of this other �xed point theorem.Note that the condition of being locally contractive is not necessary for having �xed points, sincethe identity functor 1� is not locally contractive but every object is a �xed point of this functor.In Subsection 4.2, we will strengthen the above result by showing that the �xed point of a locallycontractive functor on KMS is even unique.4.1 The nonexpansive function spaceNext, we will discuss how to extend the nonexpansive function space to a functor. Assume that we tryto extend the nonexpansive function space to a functor from KMS2 to KMS . Let f be an arrow from(U; dU) to (X; dX) in KMS and let g be an arrow from (V; dV ) to (Y; dY ) in KMS . Then f !1 g shouldbe an arrow from (U; dU) !1 (V; dV ) to (X; dX) !1 (Y; dY ) in KMS , i.e. a nonexpansive functionassigning to each arrow h from (U; dU) to (V; dV ) in KMS an arrow (f !1 g) (h) from (X; dX) to(Y; dY ) in KMS , as depicted in the following picture.(U; dU) (V; dV )(X; dX) (Y; dY )
h___________//f ������������� g�������������(f!1g) (h) //� � � � � � � � � � � � � � � � � � � � � � � � � � �In this case, it is not clear how to de�ne the arrow (f !1 g) (h). However, if we use the op-posite category7 KMSop, then we can extend the nonexpansive function space to a functor fromKMSop �KMS to KMS by de�ning (f !1 g) (h) as follows.(U; dU) (V; dV )(X; dX) (Y; dY )
h___________// g�������������f OO����������� (f!1g) (h) //� � � � � � � � � � � � � � � � � � � � � � � � � � �Definition 4.7 Let (U; dU), (V; dV ), (X; dX), and (Y; dY ) be 1-bounded compact metric spaces. Letf 2 (X; dX)!1 (U; dU) and g : (V; dV )!1 (Y; dY ). The functionf !1 g : ((U; dU )!1 (V; dV ))! ((X; dX)!1 (Y; dY ))is de�ned by(f !1 g) (h) = g � h � f:One can easily verify that the above de�nition extends the nonexpansive function space to a functor.Because the functor !1 uses arrows in \both directions", i.e. arrows in KMSop and KMS , in orderto solve domain equations like(X; dX) �= (X; dX)!1 (X; dX) (4.10)7 Let C be a category. The opposite category Cop has the objects of C as objects and the opposites of the arrows of Cas arrows. That is, if f : X ! Y is an arrow in C then f : Y ! X is an arrow in Cop . Composition and identities arede�ned in the obvious way.



14 Fixed points of functorswe introduce a category of 1-bounded compact metric spaces with arrows in \both directions". (Analternative route for solving domain equations incorporating the function space is taken by Freyd in[Fre90].)Definition 4.8 Let C be a category. The category CE has as objects the objects of C and as arrowspairs (e; p) : X ! Y with e : X ! Y and p : Y ! X arrows in C satisfying p � e = idX . Thecomposition of (e; p) and (f; q) is (f � e; q � p). The identity arrows are pairs of identity arrows.The category KMSE has arrows in \both directions". The additional condition that p � e = idX isa technicality we inherit from [AR89].As in KMS , also in KMSE objects are isomorphic if and only if they are isometric.In order to solve equations like (4.10), we will extend the functor !1 to a functor !1E on KMSE.More generally, every functor from (Cop)m�Cn - denoted by Cm;n in the sequel - to C will be extendedto a functor from (CE)m+n to CE .Definition 4.9 Let C be a category. Let F : Cm;n ! C be a functor. The functorFE : (CE)m+n ! CEis de�ned on objects byFE (X1; : : : ; Xm+n) = F (X1; : : : ; Xm+n)and on arrows byFE ((e1; p1); : : : ; (em+n; pm+n))= (F (p1; : : : ; pm; em+1; : : : ; em+n); F (e1; : : : ; em; pm+1; : : : ; pm+n)):Example 4.10 With the domain equation(X; dX) �= (Y; dY ) + 13 � ((X; dX)!1 (X; dX));with (Y; dY ) an (arbitrary) 1-bounded compact metric space, we associate the functor+E � ((Y; dY )E ; 13 �E �!1E � (1�E ; 1�E)):Not every functor on KMSE has a �xed point. As in Example 4.1, one can easily verify that thefunctor+E �(11E ; 1�E); (4.11)with 11 the singleton metric space, has no �xed point.Next, we will introduce a su�cient condition for functors on KMSE for having �xed points. Againwe will exploit the fact that the category involved - the category KMSE - can be turned into aCMS -category. (If the category C is a CMS -category then the category CE , the homsets of whichare endowed with the product (as de�ned in De�nition 1.2.3) of the metric of the homsets of C, is aCMS -category.)Definition 4.11 Let C be a CMS -category. A functor F : (CE)m ! (CE)n is called �-Lipschitz if,for all arrows ((e1; p1); : : : ; (em; pm)) : (X1; : : : ; Xm)! (Y1; : : : ; Ym) in (CE)m,� (F ((e1; p1); : : : ; (em; pm))) � � � � ((e1; p1); : : : ; (em; pm));where� ((e1; p1); : : : ; (em; pm)) = maxf d (ei � pi; idYi) j 1 � i � m g:



Fixed points of functors 15A functor is called nonexpansive if it is 1-Lipschitz. A functor is called contractive if it is �-Lipschitzfor some 0 � � < 1. A functor is called Lipschitz if it is �-Lipschitz for some �.Every locally �-Lipschitz functor is extended to a �-Lipschitz and locally �-Lipschitz functor byDe�nition 4.9.Proposition 4.12 Let C be a CMS-category. Let F : Cm;n ! C be a functor. If F is locally �-Lipschitz then FE is �-Lipschitz and locally �-Lipschitz.Proof Let F : Cm;n ! C be a locally �-Lipschitz functor. The fact that the functor FE is �-Lipschitzis proved in Theorem 5.22 of [RT92]. The functor FE is also locally �-Lipschitz, because for all((e1; p1); : : : ; (em+n; pm+n)), ((f1; q1); : : : ; (fm+n; qm+n)) : (X1; : : : ; Xm+n)! (Y1; : : : ; Ym+n) we havethat d (FE ((e1; p1); : : : ; (em+n; pm+n)); FE ((f1; q1); : : : ; (fm+n; qm+n)))= d ((F (p1; : : : ; pm; em+1; : : : ; em+n); F (e1; : : : ; em; pm+1; : : : ; pm+n));(F (q1; : : : ; qm; fm+1; : : : ; fm+n); F (f1; : : : ; fm; qm+1; : : : ; qm+n)))= max fd (F (p1; : : : ; pm; em+1; : : : ; em+n); F (q1; : : : ; qm; fm+1; : : : ; fm+n));d (F (e1; : : : ; em; pm+1; : : : ; pm+n); F (f1; : : : ; fm; qm+1; : : : ; qm+n))g� max f� � d ((p1; : : : ; pm; em+1; : : : ; em+n); (q1; : : : ; qm; fm+1; : : : ; fm+n));� � d ((e1; : : : ; em; pm+1; : : : ; pm+n); (f1; : : : ; fm; em+1; : : : ; em+n))g[F is locally �-Lipschitz]= � � d (((e1; p1); : : : ; (em+n; pm+n)); ((f1; q1); : : : ; (fm+n; qm+n))): utFunctors on KMSE which are contractive have a �xed point.Theorem 4.13 Let F : KMSE ! KMSE be a functor. If F is contractive then it has a �xedpoint.Proof Let F : KMSE ! KMSE be a �-Lipschitz functor, for some 0 � � < 1. In order to concludethat F has a �xed point, we will construct an object (X; dX) in KMSE which can be shown to beisomorphic to F (X; dX).First, we will de�ne the above mentioned object (X; dX). Let (X1; dX1) be the singleton metricspace and let (e1; p1) be an arbitrary arrow from (X1; dX1) to F (X1; dX1). A so-called !-chain� = ((Xn; dXn); (en; pn))n is constructed by de�ning, for all n, (Xn+1; dXn+1) = F (Xn; dXn) and(en+1; pn+1) = F (en; pn). The so-called direct limit of � is the set X de�ned byX = f (xn)n j xn 2 Xn ^ pn (xn+1) = xn gendowed with the metric dX de�ned bydX ((xn)n; (yn)n) = sup f dXn (xn; yn) j n 2 IN g:The above supremum exists, since, for all n, the metric dXn is 1-bounded. Note thatthe sequence (dXn (xn; yn))n is increasing, (4.12)since dXn (xn; yn)= dXn (pn (xn+1); pn (yn+1))� dXn+1 (xn+1; yn+1) [pn is nonexpansive]Second, we will show that (X; dX) is an object in KMSE. In Lemma 3.10 of [AR89], it is shownthat the direct limit of an !-chain in the category CMSE is an object in CMSE, that is, the direct



16 Fixed points of functorslimit is a 1-bounded complete metric space. Clearly, the above de�ned !-chain � is also an !-chainin CMSE . Consequently, (X; dX) is a 1-bounded complete metric space. In order to conclude that(X; dX) is an object in KMSE , that is, (X; dX) is a 1-bounded compact metric space, we only haveto show that (X; dX) is totally bounded due to Theorem 2.1. According to Theorem 2.3, it su�cesto prove that for all sequences (�xn)n, with �xn = (xn;k)k, in X and for all 
, with 
 > 0, there existsa subsequence (�xs(n))n satisfying, for all m and n,dX (�xs(m); �xs(n)) � 
:Let (�xn)n be a sequence in X. Let 
 > 0. Because F is �-Lipschitz, the !-chain � is Cauchy, i.e.8� > 0 : 9N 2 IN : 8m > n � N : � (em;n; pn;m) � �;whereem;n = en � � � � � em�1pn;m = pm�1 � � � � � pnsince � (em;n; pn;m)= � (Fn�1 (em�n+1;1; p1;m�n+1)) [F preserves compositions]� �n�1 � � (em�n+1;1; p1;m�n+1) [F is �-Lipschitz]� �n�1 [d is 1-bounded]Consequently,9N 2 IN : 8m > n � N : � (em;n; pn;m) � 
3 : (4.13)Because (XN ; dXN ) is compact, (XN ; dXN ) is totally bounded due to Theorem 2.1. By Theorem 2.3,there exists a subsequence (xs(n);N)n of (xn;N )n satisfying, for all m and n,dXN (xs(m);N ; xs(n);N) � 
3 : (4.14)For all m, n, and k, with k > N , we have thatdXk (xs(m);k; xs(n);k) � 
 (4.15)since dXk (xs(m);k; xs(n);k)� dXk (xs(m);k; (eN;k � pk;N) (xs(m);k)) +dXk ((eN;k � pk;N ) (xs(m);k); (eN;k � pk;N ) (xs(n);k)) +dXk ((eN;k � pk;N ) (xs(n);k); xs(n);k)� � (ek;N ; pN;k) +dXN (pk;N (xs(m);k); pk;N (xs(n);k)) +� (ek;N ; pN;k) [de�nition of �, eN;k is nonexpansive]� 
3 + dXN (xs(m);N ; xs(n);N) + 
3 [(4.13)]� 
3 + 
3 + 
3 [(4.14)]Consequently, we can conclude that, for all m and n,dX (�xs(m); �xs(n))= dX ((xs(m);k)k; (xs(n);k)k)= sup f dXk (xs(m);k; xs(n);k) j k 2 IN g= sup f dXk (xs(m);k; xs(n);k) j k > N g [(4.12)]� 
 [(4.15)]



Fixed points of functors 17Third, the fact that the spaces (X; dX) and F (X; dX) are isomorphic can be proved along the linesof the proof of Theorem 5.23 of [RT92]. utBy means of the above theorem we will prove Theorem 4.6. Before we come to this proof we makea remark on the above theorem.In Lemma 3.10 of [AR89], it is shown that the direct limit of an !-chain in CMSE is an objectin CMSE . In the above proof, it is shown that the direct limit of a Cauchy !-chain in KMSE is anobject in KMSE . The fact that the !-chain is Cauchy is essential can be demonstrated as follows.Consider the functor (4.11). Let ((Xn; dXn); (en; pn)n) be an !-chain constructed from the functor asdescribed above. This !-chain is not Cauchy and one can easily verify that its direct limit is not inKMSE.The reader may be surprised by this, since in general topology the limit of an inverse sequenceof nonempty and compact metrizable spaces is a nonempty and compact metrizable space (see theTheorems 3.2.13 and 4.2.5 of [Eng89]). However, in the topological setting continuous rather thannonexpansive functions are considered.We conclude this subsection with the already announcedProof of Theorem 4.6 Let F : KMS ! KMS be a locally contractive functor. According toProposition 4.12, FE : KMSE ! KMSE is a contractive functor. From Theorem 4.13 we can concludethat FE has a �xed point. One can easily verify that this �xed point is also a �xed point of F . ut4.2 Uniqueness of fixed pointsThe �xed points of locally contractive functors on KMS and contractive and locally contractive func-tors on KMSE are shown to be unique up to isomorphism, that is, there exists a �xed point (as wehave already seen in the Theorems 4.6 and 4.13) and all �xed points are isomorphic (as is shown inthe following theorem).Theorem 4.14 Let C be a CMS-category. Let F : C ! C be a locally contractive functor. If X andY are �xed points of F then they are isomorphic.Proof Let F : C ! C be a locally �-Lipschitz functor, with 0 � � < 1. Let X and Y be �xed pointsof F . Then there exist arrows f : X ! F (X), g : F (X) ! X, h : Y ! F (Y ), and i : F (Y ) ! Ysatisfyingg � f = idXf � g = idF (X)i � h = idYh � i = idF (Y )We will de�ne an arrow fromX to Y and arrow from Y toX, and prove that they form an isomorphism.In order to de�ne a suitable arrow from X to Y we introduce the function� : hom (X;Y )! hom (X;Y )de�ned by� (j) = i � F (j) � f:This function is a contraction, because for all j, k 2 hom (X;Y ),d (� (j); � (k))= d (i � F (j) � f; i � F (k) � f)� d (F (j); F (k)) [� is nonexpansive]� � � d (j; k) [F is locally �-Lipschitz]



18 Fixed points of functorsAccording to Banach's theorem (Theorem 1.4), � has a unique �xed point �x (�): an arrow from Xto Y . Similarly, the unique �xed point of the function	 : hom (Y;X)! hom (Y;X)de�ned by	 (j) = g � F (j) � h;which we denote by �x (	), is an arrow from Y to X.We prove�x (	) � �x (�) = idX ;by uniqueness of �xed point. We introduce the function
 : hom (X;X)! hom (X;X)de�ned by
 (j) = g � F (j) � fOne can easily verify that 
 is contractive. Next, we will show that both �x (	) ��x (�) and idX are�xed point of 
. We have that
 (�x (	) � �x (�))= g � F (�x (	) � �x (�)) � f= g � F (�x (	)) � F (�x (�)) � f [F preserves compositions]= g � F (�x (	)) � h � i � F (�x (�)) � f= 	 (�x (	)) � � (�x (�))= �x (	) � �x (�) [�xed point property of � and 	 ]and 
 (idX)= g � F (idX) � f= g � idF (X) � f [F preserves identities]= idX :Similarly, by means of the contractive function� : hom (Y; Y )! hom (Y; Y )de�ned by� (j) = i � F (j) � hwe can prove�x (�) � �x (	) = idYby uniqueness of �xed point. utTheorem 4.15 Let F : KMS ! KMS be a functor. If F is locally contractive then it has a unique�xed point.Proof Immediate consequence of the Theorems 4.6 and 4.14. utTheorem 4.16 Let F : KMSE ! KMSE be a functor. If F is contractive and locally contractivethen it has a unique �xed point.Proof Immediate consequence of the Theorems 4.13 and 4.14. ut



Fixed points of functors 194.3 Lipschitz coefficientsIn the above, we have seen that locally contractive functors onKMS and contractive functors on KMSEhave �xed points. In this subsection, for functors built from some basic functors by composition andtupling we will present a simple method for determining whether they are locally contractive andcontractive.For these functors we will approximate its so-called locally Lipschitz coe�cient and Lipschitz coe�-cient in a compositional way: �rst, we will determine the (locally) Lipschitz coe�cients for the basicfunctors, and second, we will show how the (locally) Lipschitz coe�cient of a composition or tuplingof functors can be approximated by the (locally) Lipschitz coe�cients of the functors. The (locally)Lipschitz coe�cient of a functor is de�ned such that the functor is (locally) contractive if and only ifits (locally) Lipschitz coe�cient is smaller than 1.The locally Lipschitz coe�cient of a functor is introduced inDefinition 4.17 Let C and D be CMS -categories. Let F : C ! D be a locally Lipschitz functor.The locally Lipschitz coe�cient of F is de�ned byLLC (F ) = minf � j F is locally �-Lipschitz g:One can easily verify that the minimum in the above de�nition exists. The basic functors on KMSand KMSE have the following locally Lipschitz coe�cients.Proposition 4.18LLC (��) = �LLC (Pnk) = 1LLC (X; dX) = 0LLC (�) = 1LLC (+) = 1LLC (!1) � 2LLC (��E) = �LLC (PnkE) = 1LLC ((X; dX)E) = 0LLC (�E) = 1LLC (+E) = 1LLC (!1E) � 2Proof Easy and left to the reader. utNote that for the functors !1 and !1E we have only given an approximation. For compositionand tupling we have the followingProposition 4.19 Let C, D, and E be CMS-categories. Let F : C ! D, G : D ! E, and H : C ! Ebe locally Lipschitz functors.LLC (G � F ) � LLC (G) � LLC (F )LLC (F;H) � max fLLC (F );LLC (H)gProof We only treat the �rst case. It su�ces to prove that, if F is locally �F -Lipschitz and G islocally �G-Lipschitz, then G � F is locally �G � �F -Lipschitz. For all X, Y in C and f , g 2 hom (X;Y ),we have thatd ((G � F ) (f); (G � F ) (g))= d (G (F (f)); G (F (g)))� �G � d (F (f); F (g)) [G is �G-Lipschitz]� �G � �F � d (f; g) [F is �F -Lipschitz]



20 Fixed points of functorsutNote that the �'s in the above proposition cannot be replaced by ='s.Example 4.20 From the above propositions we can derive that the locally Lipschitz coe�cient of the�rst functor introduced in Example 3.5 isLLC (� � ((X; dX); 12 �))� LLC (�) � LLC ((X; dX); 12 �)� max fLLC (X; dX);LLC (12 �)g= 12 :Consequently, the functor is locally contractive. Also the second functor of Example 3.5 is locallycontractive, since its locally Lipschitz coe�cient isLLC (+ � ((Y; dY );Pnk � � � ((Z; dZ); 12 �)))� LLC (+) � LLC ((Y; dY );Pnk � � � ((Z; dZ); 12 �))� max fLLC (Y; dY );LLC (Pnk � � � ((Z; dZ); 12 �))g� LLC (Pnk ) � LLC (�) � LLC ((Z; dZ); 12 �)� max fLLC (Z; dZ);LLC (12 �)g= 12 :For the functor of Example 4.10, we have thatLLC (+E � ((Y; dY )E ; 13 �E � !1E � (1�E; 1�E)))� LLC (+E) � LLC ((Y; dY )E ; 13 �E � !1E � (1�E ; 1�E))� max fLLC ((Y; dY )E);LLC (13 �E �!1E � (1�E ; 1�E))g� LLC (13 �E) � LLC (!1E) � LLC (1�E ; 1�E)� 23 �maxfLLC (1�E);LLC (1�E)g= 23 :Hence, the functor is locally Lipschitz.The Lipschitz coe�cient of a functor is de�ned as follows.Definition 4.21 Let C be a CMS -category. Let F : (CE)m ! (CE)n be a Lipschitz functor. TheLipschitz coe�cient of F is de�ned byLC (F ) = minf � j F is �-Lipschitz g:For the basic functors we have the following Lipschitz coe�cients.Proposition 4.22LC (��E) = �LC (PnkE) = 1LC ((X; dX)E) = 0LC (�E) = 1LC (+E) = 1LC (!1E) � 2



Fixed points of functors 21Proof Easy and left to the reader. utAgain, for !1E we only have an approximation. Composition and tupling are dealt with inProposition 4.23 Let C be a CMS-category. Let F : (CE)m ! (CE)n, G : (CE)n ! (CE)k, andH : (CE)m ! (CE)k be Lipschitz functors.LC (G � F ) � LC (G) � LC (F )LC (F;H) � maxfLC (F );LC (H)gProof Similar to the proof of Proposition 4.19. utExample 4.24 From the above propositions we cannot conclude that the functor35 �E � !1E � (1�E; 12 �E)is contractive, sinceLC (35 �E � !1E � (1�E ; 12 �E))� LC (35 �E) � LC (!1E) � LC (1�E ; 12 �E)� 65 �maxfLC (1�E);LC (12 �E)g= 65 :According to the Propositions 4.18 and 4.19 for Lipschitz and locally Lipschitz functors F ,G : KMSE ! KMSE we have thatLLC (!1E � (F;G)) � 2 �maxfLLC (F );LLC (G)gLC (!1E � (F;G)) � 2 �maxfLC (F );LC (G)gThese approximations can be improved as follows.Proposition 4.25 Let F , G : KMSE ! KMSE be Lipschitz and locally Lipschitz functors.LLC (!1E � (F;G)) � LLC (F ) + LLC (G)LC (!1E � (F;G)) � LC (F ) + LC (G)Proof Easy and left to the reader. utExample 4.26 By means of the above proposition, we can conclude that the functor of Example 4.24is contractive, sinceLC (35 �E � !1E � (1�E ; 12 �E))� LC (35 �E) � LC (!1E � (1�E; 12 �E))� 35 � (LC (1�E) + LC (12 �E))= 910 :A more involved functor - the domain de�ned by a closely related functor is used in [BB93] - isdiscussed inExample 4.27 Consider the functor F : KMSE ! KMSE de�ned byF = 12 �E �+E � ((U; dU )E; G);



22 ReferenceswhereG =!1E � (H;PnkE � �E � (!1E � (H; 12 �E); 12 �E))and H = 12 �E � !1E � ((V; dV )E ; 12 �E)with (U; dU) and (V; dV ) 1-bounded compact metric spaces. The functor corresponds to the domainequation(X; dX) �= 12 � ((U; dU) + (Y; dY ))where(Y; dY ) �= (Z; dZ)!1 Pnk(((Z; dZ)!1 12 � (X; dX))� 12 � (X; dX))and (Z; dZ) �= 12 � ((V; dV )!1 12 � (X; dX)):We have thatLLC (H) � LLC (12 �E) � LLC (!1E � ((V; dV )E; 12 �E))� 12 � (LLC ((V; dV )E) + LLC (12 �E))= 14LLC (G) � LLC (H) + LLC (PnkE � �E � (!1E � (H; 12 �E); 12 �E))� 14 + LLC (PnkE) � LLC (�E) � LLC (!1E � (H; 12 �E); 12 �E))� 14 +maxfLLC (!1E � (H; 12 �E));LLC (12 �E)g� 14 +maxfLLC (H) + LLC (12 �E); 12g� 1LLC (F ) � LLC (12 �E) � LLC (+E) � LLC ((U; dU )E ; G)� 12 �maxfLLC ((U; dU)E);LLC (G)g= 12Similarly, one can demonstrate thatLC (H) � 14LC (G) � 1LC (F ) � 12Consequently, the functor F is contractive and locally contractive. Hence, F has a unique �xed point.This concludes our discussion of �xed points of functors, and brings us to the end of this report.References[AR89] P. America and J.J.M.M. Rutten. Solving Re
exive Domain Equations in a Categoryof Complete Metric Spaces. Journal of Computer and System Sciences, 39(3):343{375,December 1989.[Ban22] S. Banach. Sur les Op�erations dans les Ensembles Abstraits et leurs Applications auxEquations Int�egrales. Fundamenta Mathematicae, 3:133{181, 1922.
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