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INTRODUCTION

In the denotational approach to programming language semantics, domains specified by (recursive)
equations play an important role. As domains, structures like complete partial orders, complete metric
spaces, nonwellfounded sets, and wellfounded sets are used. In this report, we will focus on complete
metric spaces. (For a detailed overview of the use of complete metric spaces in denotational semantics
we refer the reader to [BR92].)

Solving domain equations over complete metric spaces has been studied by De Bakker and Zucker
([BZ82]), America and Rutten ([AR89]), Majster-Cederbaum and Zetzsche ([MC88, MC89, MCZ91])
and Rutten and Turi ([RT92]).

In this report, we restrict our attention to compact metric spaces. The compactness of a complete

metric space is frequently exploited in semantics.

* In [GR83], Golson and Rounds introduce a complete pseudometric space of Milner’s rigid syn-
chronization trees ([Mil80]). From the compacitness of the space, the compactness theorem for

Hennessy Milner logic ([HM80]) can be derived.
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* In [L1o87], Lloyd studies the semantics of nonterminating logic programs. The complete Her-
brand universe and base are both turned into a complete metric space. Because of the compact-
ness of these spaces, a richer set of properties of the immediate consequence operator can be
proved.

* Two denotational semantics for a simple language are proved to be equivalent by De Bakker
and Meyer in [BM87]. The first model is order-theoretic and the second model uses a complete
metric space. The equivalence proof relies on the compactness of the complete metric space used
in the second model.

* In [Bre93], Van Breugel proves three complete metric spaces of so-called processes to be iso-
metric. These processes are frequently used in semantics (see, e.g., [BBKM84]) and have the
nice property of representing bisimilarity equivalence classes (see [GR89]). In the proof that the
three spaces are isometric, the compactness of the spaces is exploited.

In order to conclude that a domain defined by a domain equation over complete metric spaces
is compact, we will solve the domain equation restricted to compact metric spaces (instead of first
solving the domain equation and second proving that the solution is compact). The way we will
solve domain equations over compact metric spaces is based on ART: [AR89] and [RT92] (the part
on solving domain equations over complete metric spaces of the latter paper being a reconstruction of
the former paper along the lines of Smyth and Plotkin’s standard work on solving domain equations
over complete partial orders [SP82]).

Let F be an operation assigning to each compact metric space another compact metric space. Then
X & F(X) is a domain equation over compact metric spaces. A solution of the equation is a compact
metric space which is isometric - isometry being the natural notion of equivalence of metric spaces - to
its F-image. The solution of a domain equation can be viewed as a fixed point of F' (up to isometry).

In order to find such a solution we provide the collection of compact metric spaces with some
additional structure. We turn this collection of objects into the category KMS by defining a collection
of arrows between them: nonexpansive functions. Also the operation of the domain equation is
provided with some additional structure by extending it to a functor.

Not every operation on compact metric spaces can be extended to a functor (see Example 3.6).
However, various operations including the Cartesian product, the disjoint union, the nonempty and
compact power set, and the nonexpansive function space will be shown to be extensible to a functor.
As we will see, in order to deal with the nonexpansive function space some additional machinery -
including the more involved category KMS® - has to be introduced.

Since a fized point of a functor F' is defined to be an object of the category being isomorphic to its
F-image, and objects in the above mentioned categories are isomorphic if and only if they are isometric
(i.e. we have chosen the right type of arrows), we can derive the following important equivalence. A
domain equation has a solution if and only if the corresponding functor (if it exists) has a fixed point.
Furthermore, a fixed point of the functor is a solution of the domain equation, and a solution of the
domain equation is a fixed point of the functor (provided that the operation of the domain equation
can be extended to a functor).

Not every functor has a fixed point (see Example 4.1). For so-called locally contractive functors on
KMS and so-called contractive functors on KMST we will show that they have fixed points (in the
Theorems 4.6 and 4.13). Furthermore, we will prove that locally contractive functors on KMS and
KMS¥? have at most one fixed point up to isomorphism (in Theorem 4.14). Consequently, locally
contractive functors on KMS and contractive and locally contractive functors on KMS¥ have unique
fixed points.

We will introduce a so-called (locally) Lipschitz coefficient for a functor and provide simple rules to
approximate a functor’s (locally) Lipschitz coefficient. This (locally) Lipschitz coefficient is defined
in such a way that a functor is (locally) contractive if and only if its (locally) Lipschitz coefficient is
smaller than 1.
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The main part of this report concerns fixed points of functors on KMS and KMS¥. Besides the
work on fixed points of functors on categories of complete metric spaces mentioned above, fixed points
of functors in various other related categories have been studied. Tn his PhD thesis [Mat86], Matthews
considers a category of compact agreement spaces - being topologically equivalent to 1-bounded com-
pact ultrametric spaces - and continuous functions. In [Ken87], Kent focuses on a category of pseudo-
quasimetric spaces and nonexpansive functions. Edalat and Smyth ([ES92]) use a category of compact
metric information systems, which is dual to the category KMS we use. In [Wag94], Wagner studies
a category of complete abstract preorders over {2, with Q0 a quantale. For a particular choice for 2
one obtains the category studied by Kent. Wagner also studies compactness in his setting.

Most of the results of this report are obtained from results of [AR89] and [RT92] using some theorems
from (metric) topology. To our knowledge, the Examples 3.6 and 4.1, and the Theorems 4.6, 4.13 -
the main result of the report - and 4.14 - a generalization of Theorem 5.5 of [RT92] - are new.

In the first section, we present some (nonstandard) notions on metric spaces. In the second section,
completeness and compactness of metric spaces are considered. In the third section, we show how
various operations on compact metric spaces can be extended to functors. Furthermore, we give an
example of an operation which cannot be extended to a functor. In the fourth section, we discuss fixed
points of functors. We also develop the additional machinery to deal with the nonexpansive function
space. We conclude this section and this report with discussing the (locally) Lipschitz coefficient of a
functor.
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present report is based, and Fer-Jan de Vries for numerous discussions. Furthermore, the authors are
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Maurice, Daniele Tur: and Herbert Wiklicky for their comments on the work presented in this report.

1. MATHEMATICAL PRELIMINARIES

In the rest of this report, the reader is assumed to be familiar with some standard notions of metric
spaces. In this first section, only some nonstandard notions of metric spaces, i.e. notions which are
not found in the main text of [Eng89], are introduced. The notions of category theory we use in this
report are introduced in footnotes. In order not to burden the presentation, we will not present the
notions in their most general form, but in a way which suits our purposes best. For more details on
categories the reader is referred to [ML71].

In this report, e- Lipschitz functions will play an important role.

DEFINITION 1.1 Let (X, dx) and (Y, dy) be metric spaces. A function f: X — Y is called e- Lipschitz
if, for all x, 2’ € X,

dy (f (@), ] (=) < ¢ - dx (a,").

A function is called nonexpansive if 1t is 1-Lipschitz. A function is called contractive if it is e-Lipschitz
for some 0 < e < 1.

In the next definition, several (metrics inducing) operations on 1-bounded metric spaces are pre-
sented. These operations are used in domain equations.

DEFINITION 1.2 Let (X,dx) and (Y, dy) be 1-bounded metric spaces. Let Z be a set.

1. For all €, with 0 < e < 1, a new metric on X is defined by

(¢ - d)x (z,2") =¢-dx (z,2").
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2. The Hausdorff metric on the set of nonempty and compact (with respect to the metric dx)
subsets of X, P, (X), is defined by

dp,, (X) (A, B) = max{sup{inf{dx(a,b)|be B} |ac A},
sup {inf{dx (b,a)|a€c A} |be B}}.

3. A metric on the Cartesian product of X and Y, X x Y, is defined by

dxxy ((z,9),(2',y") = max{dx (z,2'),dy (y,v') }.
4. A metric on the disjoint union of X and Y, X + Y, is defined by

dx(z,2") iffzeXandz' € X
dx,y (2,2)={ dy(z,2') ifz€Y and:' €Y
1 otherwise

5. A metric on the functions from Z to X, Z — X, is defined by

dy—x (f, f') =sup{dx (f(2),f'(2)) |z € Z}.

6. A metric on the nonexpansive functions from X to Y, X —! Y is defined by

dx 1y (f,f") = sup{dy (f (2), f'(z)) [z € X }.

In 2, 5, and 6 of the above definition, the boundedness of the original metrics is needed for the defined
metrics to be well-defined. We restrict ourselves to 1-bounded bounded spaces, because considering
bounded spaces naturally gives rise to the addition of co to the codomain of a metric (cf. [LawT73])
and bring us outside standard (metric) topology.

The 1-bounded metrics introduced above induce operations on 1-bounded metric spaces. For ex-
ample, the disjoint union of the 1-bounded metric spaces (X,dx) and (Y, dy), (X,dx) + (Y,dy), is
the 1-bounded metric space (X + Y, dx1v).

Another operation one encounters frequently in domain equations is taking the set of nonempty and
closed subsets of a given 1-bounded metric space and endowing it with the induced Hausdorff metric.
We do not consider this operation, since on the spaces we are interested in - 1-bounded compact
metric spaces - the operation coincides with the second operation of the above definition.

Besides the metric on the Cartesian product introduced in Definition 1.2.3 we will employ another
metric on the Cartesian product.

DEFINITION 1.3 Let (X, dx) and (Y, dy) be metric spaces. A metric on the Cartesian product of X
and Y, this time denoted by X ® Y, is defined by

dxey ((z,y),(2,y) = dx (z,2") + dv (v,9").

We will not use the Cartesian product ® in domain equations, since it does not preserve
1-boundedness, but use it to turn function composition into a nonexpansive operation.

We conclude this section with Banach’s unique fixed point theorem. The uniqueness of fixed points
of certain functors will be proved by means of this theorem.

THEOREM 1.4 Let (X,dx) be a complete metric space. If f : X — X is contractive then f has a
unique fized point fix (f).
PROOF See Theorem I1.6 of [Ban22). O
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2. FROM COMPLETENESS TO COMPACTNESS

Most results of this report on 1-bounded compact metric spaces have already been proved for 1-bounded
complete metric spaces. To prove the results for 1-bounded compact metric spaces, the following the-
orem - due to Fréchet ([Fré10]) - will turn out to be very useful.

THEOREM 2.1 A metric space is compact if and only if it is complete and totally bounded.

Completeness of a metric space is defined in terms of sequences, viz a metric space (X, dx) is called
complete if every Cauchy sequence (z, ), in (X, dx) converges to some x in X. Also compactness and
totally boundedness can be expressed using sequences. A subsequence of the sequence (), will be
denoted by (x,(,))n, where s is a strictly increasing mapping from IN to IN.

THEOREM 2.2 A metric space (X, dx) is compact if and only if for every sequence (z,,)y in X there
exists a converging subsequence (:Us(.,,,)),,,/.

THEOREM 2.3 A metric space (X,dx) is totally bounded if and only if for every sequence (x, ), in
X and for every e, with € > 0, there exists a subsequence (Ty(,))n satisfying, for all m and n,

dx (xs(m):ms(n)) <e
The operations introduced in Definition 1.2 preserve completeness.

THEOREM 2.4 Let (X,dx) and (Y,dy) be 1-bounded metric spaces. Let 7 be a set. If (X,dx) and
(Y,dy) are complete, then

1. for alle, with0 < e <1, e-(X,dx),

o

Pur (X, dx),

(X, dx) x (V,dy),
- (X, dx) + (Y, dy),
. 7 —(X,dx), and

S v A W

. (Xa dX) —T (Ya dY)
are complete.

PROOF The second case is proved in Lemma 3 of [Kur56]. The other cases are easy to prove. a
Of the operations all but — preserve totally boundedness.

THEOREM 2.5 Let (X,dx) and (Y,dy) be 1-bounded metric spaces. Let 7 be a set. If (X,dx) and
(Y,dy) are totally bounded, then

1. for alle, with0 < e <1, e-(X,dx),

o

Pnk (X7dX)7
. (X, dX) X (Y, dy),
: (X: dX)+(YJ dY)7 and

N )

(X, dx) —1 (Y,dy)

are totally bounded.
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PROOF We only treat the second and the fifth case. The other three cases are easy to prove and are
left to the reader.

Let us first deal with the second case. We will show that for all sequences (4,,), in P,; (X) and
for all €, with € > 0, there exists a subsequence (A,(,)), satisfying, for all m and n,

dPnk (X) (As('m,)7 As(n)) <e (21)
Having shown this we can conclude that (P, (X),dp  (x)) is totally bounded according to Theo-
rem 2.3.

Let (A, ), be a sequence in P, (X). Let € > 0. Because (X, dx) is totally bounded, there exists a
finite subset F' of X satisfying

Vee X:3f e F:dx(z,f) <
Let (F.,), be the sequence obtained from (A,,), and F' by defining

F,={feF|3acA,: dx(af)<5}

Because the set F' is finite, there exist only finitely many different F),’s. Consequently, there exists a
constant subsequence (Fy(,,))n of (F,),. In order to prove (2.1), it suffices to prove that, for all n,

dpnk: (X) (As(’n,)a Es’(’n,)) < %a (23)

since then

(2.2)

Lo

dp,,. (x) (As(m), As(n))
< dpy (x) (Asm), Fsem)) + dp oy (x) (Fsimy, Fony) + dp . (x) (Finy, Asen))
< $+0+3.
We finish the proof of the second case by proving (2.3). From the definition of F,, we can derive that
Vf€ Fymy:Jdac Ayp 1 dx (f,a) < 5.
Consequently,

sup{inf{dx (f,a)|a € A,y } | f € Fyny } < 5. (2.4)
From (2.2) we can conclude that

Va€ Ay :3f € F:dx(a, f) <3,
From the definition of F}, we can derive that f € F,,, and hence

Va € Ay 3f € Fyy 1dx (a, f) < 3.
Consequently,

sup{inf{dx (a,f)| fE€ Fyu}t|lac A} <5 (2.5)

From (2.4) and (2.5) we can conclude (2.3), since

dp,; (x) (Asuys Fam)
= max {sup{inf{dx (f,a)|ac A} | f€ Fym}
Sllp{il]f{dX (a: f) ‘ f S Fe(n) } | ac As('n,) }}

€ €

< max{g, 5}

Next, we treat the fifth case. As in the previous case, totally boundedness of the space is proved
using Theorem 2.3. That is, we will show that for all sequences (f,), in X —! Y and for all ¢, with
€ > 0, there exists a subsequence ( fy(,))» satisfying, for all m and n,

dX—>1Y (fe(m)a fe(n)) <e (26)
Let (f,)n be a sequence in X —1Y. Let € > 0. Because (X, dx) is totally bounded, there exists a
finite subset A of X satisfying

Vee X:3ac A:dx(z,a) <. (2.7)
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Since (f,, | A),, where f,, | A denotes the restriction of f,, to A, is a sequence in A — Y and A — Y
is totally bounded (immediate consequence of the facts that the set A is finite and the metric space
(Y, dy) is totally bounded), there exists a subsequence (f,(,) [ A), satisfying, for all m and n,

dAHY (fs(’m) [ A: fs(n) F A) < % (28)
according to Theorem 2.3. Consequently, for all m, n, and =z,
dY (fs('m,) (I), f.s('n,) (Q?))
dY (fs(m) (I)J fs('m,) ((1)) + dY (f.s(m) (a)7 fs(n) (a)) + dY (fs(n) (a)7 fs(n) (I))
dx (z,0)+da_y (fs(.,,,,) [ A, f,s.(n) [ A)+ dx (a, ) [f,g(m) and f.(,) are nonexpansive]
s +5++5 [(27) and (2.8)]
From the above we can conclude (2.6), since, for all m and n,
dXélY (fs(m,) P fe(n))

= Ssup { dy (fs(m) (:1?)7 fs(n) (flf)) | z € X}
< e

INIACIA

The operation — does not preserve totally boundedness as is shown in
ExAMPLE 2.6 Consider the set
X:{%|n€]N}U{0}

endowed with the Euclidean metric. The obtained metric space is totally bounded. Let f, : X — X
be defined by

e — L
fn(il?)_{ 1 1fm—77

z otherwise
Because, for all m and n, with m # n, we have that
dX—»X (fmv f'n,) 2 %7

the space X — X is not totally bounded. Because f, is continuous, also if we restrict ourselves to
continuous functions we do not obtain a totally bounded metric space.

Combining the Theorems 2.1, 2.4, and 2.5 we obtain

THEOREM 2.7 Let (X,dx) and (Y,dy) be 1-bounded metric spaces. Let Z be a set. If (X,dx) and
(Y,dy) are compact, then

1. for alle, with0 < e <1, e-(X,dx),
2. Pu (X,dx),
3. (X,dx) x (YV,dy),
4. (X, dx)+ (Y, dy), and
5. (X,dx) =1 (V,dy)
are compact.

We conclude this section with some remarks on the above theorem. None of the results listed in
the theorem are new. The results can also be proved directly, i.e. without splitting compactness into
completeness and totally boundedness. Also in that case, all but the second and the fifth case are
easy to prove. A direct proof of the second case is presented in, e.g., Theorem 4.2 of [Mic51]. The
fifth case is a consequence of the theorem of Arzela-Ascoli (see, e.g., page 267 of [Dug66]). We have
chosen for splitting compactness into completeness and totally boundedness, since this will turn out
to be fruitful in the sequel.
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3. FROM OPERATIONS TO FUNCTORS

As already mentioned in the introduction, in this report we will focus on fixed points of functors
in order to find solutions of domain equations. In this section, we will point out our limitations
by showing that, although the operations of Definition 1.2 which preserve compactness can all be
extended to a functor, there exists a simple example of an operation which cannot be extended to a
functor.

We introduce the category® KMS in

DEFINITION 3.1 The category KMS has 1-bounded compact metric spaces as objects and nonexpan-
sive functions as arrows. The domain and codomain of arrows are the domain and codomain of the
functions. The composition of arrows is the function composition of the functions. The identity arrows
are the identity functions.

Note that in this category objects are isomorphic? if and only if they are isometric. This is also the

case for the closely related category CMS used in [AR89] and [RT92].

DEFINITION 3.2 The category CMS has 1-bounded complete metric spaces as objects and nonex-
pansive functions as arrows. The domain and codomain of arrows are the domain and codomain of
the functions. The composition of arrows is the function composition of the functions. The identity
arrows are the identity functions.

The operations e and P, introduced in Definition 1.2 are extended to a functor® by defining how
these operations act on arrows.

DEFINITION 3.3 Let (X,dx) and (Y,dy) be 1-bounded compact metric spaces. Let
f S (X, dx) —>1 (Y, dy)

* For all €, with 0 < e <1, the function e- f : e - (X,dx) — € (Y,dy) is defined by

1 A category consists of

e a class of objects,

e a class of arrows,

e a function dom assigning to each arrow an object, called domain,

e a function cod assigning to each arrow an object, called codomain,

x We will write f : X — Y to denote that dom (f) = X and cod (f) =Y. The arrow f is a so-called arrow from X
to Y. The set of all arrows from X to Y, called homset, is denoted by hom (X,Y). We will call a pair of arrows
(f,g) composable if cod (f) = dom (g).

e a function o assigning to each pair of composable arrows (f,g) an arrow go f : dom (f) — cod(g), called the
composition of f and g, which is associative, i.e. for all pairs of composable arrows (f, g) and (g, h),

ho(gof)=(hog)of,

% We can also introduce the function o in terms of homsets: for all objects X, Y, and Z, a function

o:hom (Y,Z) X hom (X,Y) — hom (X, Z).

e for each object X, an arrow idx : X — X, called the identity of X, which satisfies the unit law, i.e. for all arrows

f: X — Y, we have that
foidx = fand idy o f = f.

2 Let C be a category. Two objects X and Y are called isomorphic if there exist arrows f: X — Y and g: Y — X in C
forming an isomorphism, i.e.
go f=1idx and fog=idy.

3 Let C and D be categories. A functor F : C — D is a function assigning to each object in C an object in D and assigning
to each arrow f: X — Y in C an arrow F (f): F(X) — F(Y) in D such that
e it preserves identilies, i.e. for each object X in C,
F(idx) =idp (x),
e it preserves compositions, i.e. for all pairs of composable arrows (f,g) in C,

F(gof)=F(g)oF(f).
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* The function P (f) : Pur (X,dx) — P (Y,dy) is defined by

Pur (f)(A) ={f(a)|ae A}

In order to conclude that we have extended the operations to functors, we have to check that if f
is an arrow in KMS then € f and P, (f) are arrows in KMS, and that e- and P,,;, preserve identities
and compositions. This is easy and left to the reader (cf. Lemma 5.2 of [AR89]).

Furthermore, for each 1-bounded compact metric space (X, dx), the operation assigning to each
1-bounded compact metric space the space (X,dx) can be extended to a functor on KMS: every
arrow is assigned to the identity arrow of (X, dx).

The operations x and + are extended to functors from the product category* KMS x KMS - in the
sequel abbreviated to KMS? - to the category KMS as follows.

DEFINITION 3.4 Let (U,dy), (V,dy), (X,dx), and (Y, dy) be 1-bounded compact metric spaces. Let
fe(Udy) ="' (X,dx)and g: (V,dy) =t (Y,dy).

* The function f x ¢g: (U,dy) x (V,dv)) — ((X,dx) x (Y, dy)) is defined by

(f x g)(u,v) = (f (u), g (v)).
* The function f+g¢: ((U,dy) + (V,dy)) — ((X,dx) + (Y, dy)) is defined by

(f+g)(w>—{ f;((fg)) Hgg

One can easily verify that the operations x and + map arrows in KMS? to arrows in KMS, preserve
identities, and preserve compositions.

The operation —! can also be extended to a functor. To deal with —! we need some additional
machinery. We will develop this machinery in the Subsection 4.1.

By means of composition and tupling® we can form new functors from the above defined ones.

ExaMPLE 3.5 The operation of the domain equation
(X,dx) = (Y,dy) x % (X, dx),

where (Y, dy) is an (arbitrary) 1-bounded compact metric space, can be extended to the functor
<o (Y, dy), 3.

The operation of the domain equation

(X,dx) =2 (Y,dy) + Pu (Z,dz) x £ (X, dx)),

4 Let C and D be categories. The product category C x D has as objects pairs (X,Y), with X an object in C and Y an
object in D, and as arrows pairs (f,g) : (U, V) — (X,Y), with f: U — X an arrow in C and g : V — Y an arrow in D.
The composition of the arrows (f,g) and (h, 1) is (ho f,70g). The identity arrows are pairs of identity arrows.

5 Let C, D, and £ be categories. Let F:C — D, G:D — £, and H : C — £ be functors.

e The composition of G with F' is the functor G o F : C — £ defined by
(GoF)(X) = G(F(X))
(GoF)(f) =G(F(f)

e The tupling of F and H is the functor (F, H) : C — (D X &) defined by
(F, H) (X) = (F (X), H (X))
(F,H)(f) = (F(X),H(f))
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where (Y,dy) and (7,dz) are (arbitrary) 1-bounded compact metric spaces, can be extended to the
functor

+ o0 ((Y,dy),Pur o x0((Z,dz), 5)).
However, not every operation can be extended to a functor as the following example shows us.

EXAMPLE 3.6 The operation F' assigning to each 1-bounded compact metric space (X, dx) the
1-bounded compact metric space

| diam(X,dx) - (X,dx) if diam(X,dx) >0
F(X,dx) = { (X,dx) otherwise

where

diam (X,dx) = sup dx (z,y),
z,yeX
cannot be extended to a functor as we will see.
Consider the sets X = {0, %} and YV = {0, %, 1} endowed with the Euclidean metric. Clearly, these
metric spaces are objects in KMS. Consider the functions f : {0, %} — {0, %, 1} defined by

f((l)) 2?
f(3) =3
and g : {0, %, 1} — Ao, %} defined by
9(0) =0
9(3) =3
g(1) =3

The functions can be depicted by

\

(e BN
O N= =
[en BN

Obviously, the functions f and g are arrows in KMS. Now assume that the operation F' can be
extended to a functor. Then F (f) and F (g) are arrows of KMS, i.e. the functions F (f) and F (g)

are nonexpansive. Consequently,

dp vy (F (£)(0), F (£)(5))
(

< dF(X) (0, %) [F (f) is nonexpansive]
= L. dx (0, %)

= o

Since all elements of F'(Y') have a distance larger than % to each other, we have that

F(£)(0)=F(f)(3) (3.9)
A possible choice for F (f) and F (g) is depicted by

1.

1

2 -
L -
IR a2
) e USE( e ;0
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Since F' is assumed to be a functor, we have that

F(g)o F(f)

= F(gof) [F preserves compositions]
F(idx)
= idF(X) [F preserves identities]

However, this is in contradiction with (3.9). Consequently, F' cannot be extended to a functor.

Although the operation F of the above example cannot be extended to a functor, the domain
equation

(X,dx) 2 F(X,dx)

has several solutions. For example, every nonempty and finite set endowed with the discrete metric is
a solution of the above domain equation. Hence, by focusing on fixed points of functors rather than
solutions of domain equations, we loose some generality.

4. FIXED POINTS OF FUNCTORS

In this final section we will focus on fized points® of functors. First of all, we show that not every
functor on KMS has a fixed point.

ExampPLE 4.1 Consider the functor F : KMS — KMS defined by
F=+o0(1,1),

where 1 is the singleton metric space. Assume that (X, dx) is a fixed point of F. Then the space
(X,dx) is compact and we have that

(X,dx) = 1+4+(X,dx)

1R

T4+ M+ (1+(X,dx)))

Consequently, (X,dx) contains an unbounded number of elements having distance 1 to each other.
This contradicts the fact that (X, dx) is compact. Hence F has no fixed point.

Next, we will introduce a sufficient condition on functors on KMS for having fixed points. In order
to formulate this condition we will consider CMS-categories - a natural generalization of categories.

DEFINITION 4.2 A CMS-category C is a category with some additional structure: the homsets are
objects in CMS and the compositions are arrows in CMS, that is, for all objects X and Y in C, the
homset hom (X,Y’) is a 1-bounded complete metric space, and, for all objects X, Y, and Z in C, the
composition

o:(hom (Y, Z)® hom (X,Y)) — hom (X, Z)

is a nonexpansive function.

6 Let C be a category. Let F : C — C be a functor. An object X in C is called a fized point of F if X is isomorphic to
F(X).
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The above introduced notion CMS-category is consistent with the notion C-category, with C a
so-called monoidal category (see, e.g., page 180 of [MLT71]).

The category KMS can be turned into a CMS-category by endowing the homsets with the metric
introduced in Definition 1.2.6.

PROPOSITION 4.3 KMS is a CMS-category.
PROOF The fact that the homsets of KMS are objects in CMS is an immediate consequence of Theo-

rem 2.4.6. Let (f,g) and (h,i) be pairs of composable arrows in KMS with
fih: (X,dx)— (Y,dy)and g,7: (Y,dy) — (Z,dz). Then
d(go f,ioh)

= sup dy (9(f (2)),i(h(2)))

< sup dz (9(f(2)),9(h(2))) +dz(g(h(2)),i(h(z)))

< sup dz (9(f (%)), g (h(2))) + sup dz (g (h(x)),i(h(x)))

z€X z€X
< jgg dy (f (z),h(2)) + 21615 dz (g(y),i(y)) [g is nonexpansive]

d(f h)+d(g,i)
= d((f.,g), (haz))
O

Note that if we replace the ® in Definition 4.2 by x, then KMS is not a CMS-category any more.

If C and D are CMS-categories, then the product category C x D, the homsets of which are endowed
with the product (as introduced in Definition 1.2.3) of the metrics of the homsets of C and D, is a
CMS-category. Consequently, KMS? is a CMS-category.

For functors on CMS-categories we can introduce the notion of being locally e-Lipschitz.

DEFINITION 4.4 Let C and D be CMS-categories. A functor F : C — D is called locally e-Lipschitz
if, for all objects X and Y in C, the function

F | hom(X,Y)

is e-Lipschitz. A functor is called locally nonexpansive if it is locally 1-Lipschitz. A functor is called
locally contractive if it is locally e-Lipschitz for some 0 < € < 1. A functor is called locally Lipschitz if
it is locally e-Lipschitz for some e.

ExAMPLE 4.5 The functor F': KMS — KMS defined by
F=x O((XJdX)J %):

where (X, dx ) is an (arbitrary) 1-bounded complete metric spaces, is locally %-Lipschitz, since for all

(Y,dy), (Z,dz) in KMS, and f, g € hom ((Y,dy),(Z,dz)), we have that
A(F (), F(9))
= sup{dx,1.z (= f () (z,9v) | (z,y) € X XV}
= sup {max{dx (z,2), 5 -dz (f(y).9(¥))} | (z,y) € X x Y}

= sup{z-dz(f(y),9(y)|yeY}
= $-d(f 9

Every functor on KMS which is locally contractive has a fixed point.

THEOREM 4.6 Let F': KMS — KMS be a functor. If F' is locally contractive then it has a fixed point.
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We will provide the reader with a proof of this theorem at the end of Subsection 4.1. The proof
makes use of another - to be presented - fixed point theorem (viz Theorem 4.13). A direct proof of
the above theorem would be similar to the proof of this other fixed point theorem.

Note that the condition of being locally contractive is not necessary for having fixed points, since
the identity functor 1- is not locally contractive but every object is a fixed point of this functor.

In Subsection 4.2, we will strengthen the above result by showing that the fixed point of a locally
contractive functor on KMS is even unique.

4.1 THE NONEXPANSIVE FUNCTION SPACE

Next, we will discuss how to extend the nonexpansive function space to a functor. Assume that we try
to extend the nonexpansive function space to a functor from KMS? to KMS. Let f be an arrow from
(U,dy) to (X,dx) in KMS and let g be an arrow from (V, dy) to (Y, dy) in KMS. Then f —! g should
be an arrow from (U,dy) —! (V,dy) to (X,dx) —! (Y,dy) in KMS, i.e. a nonexpansive function
assigning to each arrow h from (U, dy) to (V,dy) in KMS an arrow (f —! g)(h) from (X,dx) to
(Y,dy) in KMS, as depicted in the following picture.

(U, dy) ——L—(V, dy)
f g
(X,dx) oo (Y, dy)

(r—="9)(n)

In this case, it is not clear how to define the arrow (f —! g)(h). However, if we use the op-

posite category” KMS°’, then we can extend the nonexpansive function space to a functor from
KMS®? x KMS to KMS by defining (f —! g) (h) as follows.

(U, dy) ——L—s (V, dy)
f g
(X, dx) (Y, dy)

(f="g)(h)

DEFINITION 4.7 Let (U,dy), (V,dy), (X,dx), and (Y, dy ) be 1-bounded compact metric spaces. Let
fe(X,dx) =" (Udy)and g: (V,dy) —"' (Y,dy). The function

=g ((Udy) =" (V,dv)) — ((X,dx) =" (Y, dy))
is defined by
(f ='g)(R)=gohof.

One can easily verify that the above definition extends the nonexpansive function space to a functor.
Because the functor —! uses arrows in “both directions”, i.e. arrows in KMS° and KMS, in order
to solve domain equations like

~ 1
(X,dx) (X, dx) =" (X, dx) (4.10)
7 Let C be a category. The opposite category C°P has the objects of C as objects and the opposites of the arrows of C

as arrows. That is, if f: X — Y is an arrow in C then f:Y — X is an arrow in C°P. Composition and identities are
defined in the obvious way.
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we introduce a category of 1-bounded compact metric spaces with arrows in “both directions”. (An
alternative route for solving domain equations incorporating the function space is taken by Freyd in

[Fre90].)

DEFINITION 4.8 Let C be a category. The category C¥ has as objects the objects of C and as arrows
pairs (e,p) : X — Y withe: X — Y and p: Y — X arrows in C satisfying poe = idx. The
composition of (e,p) and (f,q) is (f o e, qop). The identity arrows are pairs of identity arrows.

The category KMS¥ has arrows in “both directions”. The additional condition that poe=1idx is
a technicality we inherit from [AR89].
As in KMS, also in KMS¥ objects are 1somorphic if and only if they are isometric.

In order to solve equations like (4.10), we will extend the functor —! to a functor —1% on KMSE.
More generally, every functor from (C°7)™ x C" - denoted by C™" in the sequel - to C will be extended
to a functor from (C¥)™*" to CF.

DEFINITION 4.9 Let C be a category. Let F': C"™"™ — C be a functor. The functor
FE . (CEymtn _, CF
is defined on objects by
FE(Xy, . 0 X)) = F (X1, Xonn)
and on arrows by
FE((e1,p1), - (€mntu Ptn)
= (F(p1, P> €mtts--s€min), F (€1, s €m;Pmils - Pmtn))-
ExXAMPLE 4.10 With the domain equation
(X, dx) = (V,dy) + 3 - (X, dx) = (X, dx)),

with (Y, dy) an (arbitrary) 1-bounded compact metric space, we associate the functor

E

+Fo ((Y7 dy)E, % o —>1E o (1~E7 lE))

Not every functor on KMST has a fixed point. As in Example 4.1, one can easily verify that the
functor

+E O(]lEal‘E)a (4‘11)

with 1 the singleton metric space, has no fixed point.

Next, we will introduce a sufficient condition for functors on KMSF for having fixed points. Again
we will exploit the fact that the category involved - the category KMSE - can be turned into a
CMS-category. (If the category C is a CMS-category then the category C¥, the homsets of which
are endowed with the product (as defined in Definition 1.2.3) of the metric of the homsets of C, is a
CMS-category.)

DEFINITION 4.11 Let C be a CMS-category. A functor F : (CF)™ — (CF)" is called e Lipschitz if,
for all arrows ((e1,p1),- -, (€m,Pm)) : (X1, ., X)) — (Y1,...,Y,,) in (CF)™,

6 (F ((61,p1), DR (emvpm))) <e-d ((61,p1), B (em’pm))v

where

6((617])1)7' . '7(6777,:p'm)) - max{d(ei O Pss ZdY,) | 1 S 1 S m}
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A functor is called nonexpansive if it is 1-Lipschitz. A functor is called contractive if it is e-Lipschitz
for some 0 < € < 1. A functor is called Lipschitz if it is e-Lipschitz for some e.

Every locally e-Lipschitz functor is extended to a e-Lipschitz and locally e-Lipschitz functor by
Definition 4.9.

PROPOSITION 4.12 Let C be a CMS-category. Let F . C"™" — C be a functor. If F is locally e-
Lipschitz then FP is e-Lipschitz and locally e-Lipschitz.

PROOF Let F': C™™ — C be a locally e-Lipschitz functor. The fact that the functor F'Z is e-Lipschitz
is proved in Theorem 5.22 of [RT92]. The functor F¥ is also locally e-Lipschitz, because for all

((elapl): ceey (e'm+'n7pm+n))~, ((fl: (J1)7 ceey (f7n+n: QTn+n)) : <X17 ey Xm+n) i (Yla ey Ym+'n) we have
that

d(F ((e1,p1), - s (€mtn, Prutn)), FE((fr @), o (Frnns Guntn)))
= d ((F (pl, ey Dy €Ly - - -y e,,,H_,,L), F (61, ey €y Pl - - - ,p,,,,/_l_,,,/)),
(F a5 @y frts s Fman)s E(f15 o fos @t - Gmn))
= max{d(F(p1, -, Pm,€mt1s--sC€mtn)s F(qLs- s @ms Frnt1s-- s Fntn)),
d(F(er, ..., m,Pmtts s Pmtn), F(fty ooy fin, @mats s Qmsn))}
max {€-d((p1,. -, Pms€mt1, s Cman) (s s Qms fnt1, o Frntn)),
€-d{(e1, sy Pantls s Prntn)y (Flsevos Jons €mt1s vy Emtn)) }
F is locally e—Lipschitz]

= e-d (((elapl)a ceey (emr+'nrapm+n))a ((fla ql): ) (ferm q'm,+n)))'

IN

Functors on KMST which are contractive have a fixed point.

THEOREM 4.13 Let F : KMSY — KMSE be a functor. If F is contractive then it has a fized
point.

PrOOF Let F': KMS® — KMS"” be a e-Lipschitz functor, for some 0 < ¢ < 1. In order to conclude
that F has a fixed point, we will construct an object (X,dx) in KMS¥ which can be shown to be
isomorphic to F (X, dx).

First, we will define the above mentioned object (X,dx). Let (X;,dx,) be the singleton metric
space and let (eq,p;) be an arbitrary arrow from (Xi,dx,) to F(X1,dx,). A so-called w-chain
A = ((Xn,dx,),(en,Pn))n is constructed by defining, for all n, (X,41,dx,.,) = F(X,,dx,) and
(en+1, Pn+1) = F(en,pn). The so-called direct limit of A is the set X defined by

X={(zn)n |20 € Xy APy (Zng1) = x4

endowed with the metric dx defined by
dX ((:En)'n,a (y'n,)n) = sup { an (m'n,y y'n,) ‘ n €N }
The above supremum exists, since, for all n, the metric dx, is 1-bounded. Note that
the sequence (dx, (@, Y. )). is increasing, (4.12)
since
d)(,7 (xna yn)
= an (pn (:r'n,+1)1pn (y'n,+1))
< anJr1 (xn,+1,yn,+1) [p,,,, is nonexpansive]

Second, we will show that (X, dx) is an object in KMS”. In Lemma 3.10 of [AR89], it is shown
that the direct limit of an w-chain in the category CMSE is an object in CMSE, that is, the direct
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limit is a 1-bounded complete metric space. Clearly, the above defined w-chain A is also an w-chain
in CMSE. Consequently, (X,dx) is a 1-bounded complete metric space. In order to conclude that
(X,dx) is an object in KMS® | that is, (X,dx) is a 1-bounded compact metric space, we only have
to show that (X, dx) is totally bounded due to Theorem 2.1. According to Theorem 2.3, it suffices
to prove that for all sequences (Z,,),,, with Z,, = (@,,.1 )&, in X and for all v, with v > 0, there exists
a subsequence (Z,(,))n satisfying, for all m and n,

dx (Zo(m), Ts(n)) <Y

Let (Z, ), be a sequence in X. Let v > 0. Because F' is e-Lipschitz, the w-chain A is Cauchy, i.e.
VB>0:ANeIN:Ym>n> N :6(emn,Pum) <0,

where

€mqpn = €p O 0 €py_1

Pnym = Pm—10":0Py

since
6 (em,na pn.m)
= ¢ (F"’_1 (e,,n,,,,&l’l,pl’,,,,,,,,LJrl)) [F preserves compositions]
< el.g (em,—n,+1,1;pl,m—rn,+1) [F is e—Lipschitz}
< el [d is 1-bounded]
Consequently,

ANeEIN:Ym>n2>N:6(emn,Pnm) < 3 (4.13)

Because (Xy,dx, ) is compact, (Xy,dx, ) is totally bounded due to Theorem 2.1. By Theorem 2.3,
there exists a subsequence (z,(,), 5 )n Of (Zn N )n satisfying, for all m and n,

dXN (ms('rrL),Na Is(n).N) < % (414)
For all m, n, and k, with £k > N, we have that
ka (ms(m,),ka x.s('n,),k) <~ (415)

since
ka ($s(m),ka ‘rs(n),k)
S ka (ms(m),k: (eN,kt OPA:,N) (ms('m,).,k)) +
ka ((eN,k: o th.N) (ms('rn).‘k% (eN,k: S pk.N) (xs(n,),k)) +
ka ((eN,k: S th.N) (ms(n).k)7 xs('n,),k)

< é(exn,pNg)+
dx (Pk,zv (:E,g(,,,,,),k),pmv (a:s(,,,,)’k)) +
6(ep,n,pN.k) [definition of 8, en,; is nonexpansive]
< % + dXJ\' (‘Ts(m),N7 xs(7;,),N> + % [(4.13)}
< Fe3+d (e

Consequently, we can conclude that, for all m and n,
dx (z ('s<m>a Zy(n))
= dx ((Zy(m).1 )k, (Ts(n),1)k)
= sup{dx, (Ty(m).h Ts(n)r) | K € N}
= sup{dx, (Tsm)p Tsnyk) | &> N} [(4.12)]
< v [(415)]
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Third, the fact that the spaces (X,dx) and F' (X, dx) are isomorphic can be proved along the lines
of the proof of Theorem 5.23 of [RT92].
0

By means of the above theorem we will prove Theorem 4.6. Before we come to this proof we make
a remark on the above theorem.

In Lemma 3.10 of [AR89], it is shown that the direct limit of an w-chain in CMS® is an object
in CMS¥. In the above proof| 1t is shown that the direct limit of a Cauchy w-chain in KMS¥® is an
object in KMST. The fact that the w-chain is Cauchy is essential can be demonstrated as follows.
Consider the functor (4.11). Let ((X,,,dx, ), (€n,Pn)n) be an w-chain constructed from the functor as
described above. This w-chain is not Cauchy and one can easily verify that its direct limit is not in
KMS*.

The reader may be surprised by this, since in general topology the limit of an inverse sequence
of nonempty and compact metrizable spaces is a nonempty and compact metrizable space (see the
Theorems 3.2.13 and 4.2.5 of [Eng89]). However, in the topological setting continuous rather than
nonexpansive functions are considered.

We conclude this subsection with the already announced

PrROOF OF THEOREM 4.6 Let F' : KMS — KMS be a locally contractive functor. According to
Proposition 4.12, FZ : KMST — KMST is a contractive functor. From Theorem 4.13 we can conclude
that FF has a fixed point. One can easily verify that this fixed point is also a fixed point of F. O

4.2 UNIQUENESS OF FIXED POINTS

The fixed points of locally contractive functors on KMS and contractive and locally contractive func-
tors on KMST are shown to be unique up to isomorphism, that is, there exists a fixed point (as we
have already seen in the Theorems 4.6 and 4.13) and all fixed points are isomorphic (as is shown in
the following theorem).

THEOREM 4.14 Let C be a CMS-category. Let F': C — C be a locally contractive functor. If X and
Y are fized points of F' then they are isomorphic.

PrROOF Let F :C — C be a locally e-Lipschitz functor, with 0 < e < 1. Let X and Y be fixed points
of F. Then there exist arrows f : X — F(X),g: F(X)—= X, h:Y = F(Y),andi: F(Y) =Y
satisfying

go f=1idx
fog=idp(x)
io0h :idy
hoit :de(y)

We will define an arrow from X to Y and arrow from Y to X, and prove that they form an isomorphism.
In order to define a suitable arrow from X to Y we introduce the function

@ : hom (X,Y)— hom (X,Y)
defined by
(j)=ioF(j)of.
This function is a contraction, because for all 7, k¥ € hom (X,Y),
4(8 (), (k)
= d{(ioF(j)of,ioF(k)of)
d(F(j), F(k)) [ois nonexpansive]
e-d(j, k) [F islocally eLipschitz]

IN A
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According to Banach’s theorem (Theorem 1.4), @ has a unique fixed point fiz ($): an arrow from X
to Y. Similarly, the unique fixed point of the function

U hom(Y,X) — hom (Y, X)
defined by
¥ (j)=goF(j)oh,

which we denote by fiz (¥), is an arrow from V to X.
We prove

fiz (¥)o fiz (P) = idx,

by uniqueness of fixed point. We introduce the function
2:hom (X, X)— hom (X, X)

defined by
23) = go F(i)e f

One can easily verify that §2 is contractive. Next, we will show that both fiz (¥) o fiz (@) and idx are
fixed point of 2. We have that

0 (fie (@) o fir (#))
= goF(fiz(¥)o fix(P))of
= goF(fix(¥))o F(fix(P))of [F preserves compositions]
= goF(fix(¥))ohoioF (fix(P))of
— U (i () 0 (fix (@)
= fiz (J/) o fix (@) [ﬁxed point property of @ and W}
and
2 (idx)
= goF(idx)of
go idF(X) o f [F preserves identities]

= idx.
Similarly, by means of the contractive function
Y :hom (Y,Y) — hom (Y,Y)
defined by
T()=ioF()oh
we can prove
fia (®) o fir (7) = idy

by uniqueness of fixed point. O

THEOREM 4.15 Let F : KMS — KMS be a functor. If F is locally contractive then it has a unique
fized point.

PROOF Immediate consequence of the Theorems 4.6 and 4.14. O

THEOREM 4.16 Let F : KMSY — KMSE be a functor. If F is contractive and locally contractive
then it has a unique fized point.

ProOF Immediate consequence of the Theorems 4.13 and 4.14. a
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4.3 LIPSCHITZ COEFFICIENTS

In the above, we have seen that locally contractive functors on KMS and contractive functors on KMS?
have fixed points. In this subsection, for functors built from some basic functors by composition and
tupling we will present a simple method for determining whether they are locally contractive and
contractive.

For these functors we will approximate its so-called locally Lipschitz coefficient and Lipschitz coeffi-
cient in a compositional way: first, we will determine the (locally) Lipschitz coefficients for the basic
functors, and second, we will show how the (locally) Lipschitz coefficient of a composition or tupling
of functors can be approximated by the (locally) Lipschitz coefficients of the functors. The (locally)
Lipschitz coefficient of a functor is defined such that the functor is (locally) contractive if and only if
its (locally) Lipschitz coefficient is smaller than 1.

The locally Lipschitz coefficient of a functor is introduced in

DEFINITION 4.17 Let C and D be CMS-categories. Let ' : C — D be a locally Lipschitz functor.
The locally Lipschitz coefficient of F is defined by

LLC(F)=min{e| F is locally e-Lipschitz }.

One can easily verify that the minimum in the above definition exists. The basic functors on KMS
and KMS¥ have the following locally Lipschitz coefficients.

PROPOSITION 4.18

LLC (e)
Pok)
X, dy)
X

—

b‘

~

D
BR
Q. o
=
T
Il

A
= o T I I S o B

I~
B~

Q
TF
lH nj
vij
Al
[N}

Proor Easy and left to the reader. a

Note that for the functors —! and —'% we have only given an approximation. For composition
and tupling we have the following

PROPOSITION 4.19 Let C, D, and £ be CMS-categories. Let F:C —- D, G:D — &, and H:C — &
be locally Lipschitz functors.

LLIC(GoF)< LLC(G) - LLC(F)

LLC(F,H) <max{LLC(F),LLC(H)}
PROOF We only treat the first case. It suffices to prove that, if F' is locally ep-Lipschitz and G is
locally eg-Lipschitz, then G o F' is locally €g - e p-Lipschitz. For all X, Y in C and f, g € hom (X,Y),
we have that

d((Go F)(f),(GeoF)(g))
d(G(F(f)),G(F(9))
eq - d(F(f),F(g9)) |G is ec-Lipschitz]
eqg-€er-d(f,g) [F is ep-Lipschitz]

<
<
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O

Note that the <’s in the above proposition cannot be replaced by =’s.

ExaMpPLE 4.20 From the above propositions we can derive that the locally Lipschitz coefficient of the
first functor introduced in Example 3.5 1s
LLC (>< o ((X7dX)J %))
< LLC(x)- LLC((X.dx). })
< max{LLC (X,dx),LLC (%)}

| =

Consequently, the functor is locally contractive. Also the second functor of Example 3.5 is locally
contractive, since its locally Lipschitz coefficient is

LLC (+o((Y,dy),Pur o x o ((Z,dz), %.))
LLC(+) - LLC ((Y,dy),P.i o x o (( ,
max {LLC (Y,dy), LLC (Py 0o X o ((Z,dz), %))}
LLC (Ppy) - LLC (x) - LLC ((Z,dz), %)
max{LLC (Z,dz), LLC (%)}

-

VAN VAN VAR VAN

For the functor of Example 4.10, we have that

LLC (+7 o ((V,dy)F, %E 010 (1-71-5Y))

< LLC(+P)- LLO((Y,dy)?, 1.5 0 =17 o (1.7 1.7))
< max{LLC ((Y,dy)?), LLC (1.7 0 =17 o (1.7, 1.5))}
< Lo (LB rno (=) 1re (17, 1.7)

< Zmax{LLC(1-F),LLC(1.F)}

W Wl

Hence, the functor is locally Lipschitz.
The Lipschitz coefficient of a functor is defined as follows.

DEFINITION 4.21 Let C be a CMS-category. Let F : (CE)™ — (CF)™ be a Lipschitz functor. The
Lipschitz coefficient of F is defined by

LC(F)=min{e| F is eLipschitz }.
For the basic functors we have the following Lipschitz coefficients.

PROPOSITION 4.22

LC(e-E) =€
LC(Pu®) =

LC((X,dx)P)=0
LC(xF) =1
LC(+%) =1
Lo(="%y <2
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PROOF Easy and left to the reader.

Again, for —17 e only have an approximation. Composition and tupling are dealt with in

PROPOSITION 4.23 Let C be a CMS-category. Let F : (CEY™ — (CP)", G : (CEY™ — (CEY*, and
H : (CEY™ — (CEY* be Lipschitz functors.

LC(GoF)< LC(G) - LC(F)
LC(F, H) <max{LC (F),LC(H)}

PROOF Similar to the proof of Proposition 4.19. a

ExaAMPLE 4.24 From the above propositions we cannot conclude that the functor
%-E o —>1E o (I-E
is contractive, since
E E g 1E
10 (EF o101, 1.5)
E E E
< LCO(E7)-Lo(="")-LCe(1-”,
‘max{LC (1-F),L.¢ (1. %)}

| =

<

ooy o

According to the Propositions 4.18 and 4.19 for Lipschitz and locally Lipschitz functors F,
G: KMSY — KMS® we have that

LLC (=P o (F,G)) < 2 - max{LLC (F), LLC (G)}
LC (=P o (F,G) <2 -max{LC(F),LC(G)}

These approximations can be improved as follows.

PROPOSITION 4.25 Let F, G : KMSY — KMS¥ be Lipschitz and locally Lipschitz functors.
LLC (=P o (F,G)) < LLC (F) + LLC (G)
LC (=" o(F,Q)) <LC(F)+LC(G)

PrOOF Easy and left to the reader. O

EXAMPLE 4.26 By means of the above proposition, we can conclude that the functor of Example 4.24
is contractive, since

E E
LC (27 0"

< Lo(d") Lo (=" o117
< o)+ L")
9

A more involved functor - the domain defined by a closely related functor is used in [BB93] - is
discussed in

EXAMPLE 4.27 Consider the functor F : KMSY — KMS? defined by

F=1"01F0((U,dy)",G),
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where
G =" o (H Py"oxE
= — o ( s Pk " o X7 o (~>

and

E E E
H:% o —l o((V,dV)E,% )

with (U, dy) and (V,dy) 1-bounded compact metric spaces. The functor corresponds to the domain
equation

(X,dx) = 5 - ((U,dy) + (Y, dy))
where
(V.dy) = (Z,dz) =" Pu((Z,dz) =" 5 - (X,dx)) x 5 - (X, dx))
and
(Z,dz)= 5 -((V,dv) =" 5 (X,dx)).
We have that

LLC(H) < LLC(LP) LLC (=P o((V,dv)E, L")
< 5 (LLC((V,dy)P) + LLO (37))
= 1
LLC(G) < LLC(H)+ LLC(Pu”ox%o(="0(H,L1.7) 1.7
< 14 LLC(Pu”)- LLC(XP) - LLC (=P o (H,1.7) L.y
< Gamax{LLO (=" o (H,35), 100 (3:7))
< 14 max{LLC(H)+ LLC (7)1}
< 1
LLC(F) < LLC(:®).LLC(+P) - LLC((U,dy)", @)
< ~max {LLC (U, dp)®), LLC (G)}

[N

Similarly, one can demonstrate that
LC(H) <

LC(G) <
LC(F) <

Nl s

Consequently, the functor F' is contractive and locally contractive. Hence, F' has a unique fixed point.

This concludes our discussion of fixed points of functors, and brings us to the end of this report.
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