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INTRODUCTION

In the field of semantics of programming languages, various mathematical structures are used nowa-
days. Since the late sixties, complete lattices and complete partial orders play a primary role in this
field. In the late seventies, complete metric spaces entered the scene. The last five years, there is a
growing interest in nonwellfounded sets.!

In this paper, we will concentrate on semantic models for programming languages based on complete
metric spaces. Main parts of the theory in this area have been developed by Arnold and Nivat and
their co-workers ([AN80]), the Programming Research Group of Oxford University ([Ree89]), and the
Amsterdam Concurrency Group ([BR92]). In this paper, we will introduce some new - what we think
are important - concepts which enable us to generalize some of the existing theory. The generalizations
give rise to simplifications of proofs of some already known results. Furthermore, we are able to model
more advanced programming language notions by means of the new concepts.

We will focus on semantics defined by means of labelled transition systems. The use of labelled
transition systems for defining so-called operational semantics seems to originate with Keller ([Kel76]).
The standard work on operational semantics is Plotkin’s [Plo81]. Not only in operational semantics,

LOf the above mentioned structures, complete partial orders, complete metric spaces, and nonwellfounded sets have
been put into a unifying categorical framework by Rutten and Turi in [RT92].
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but also in denotational semantics labelled transition systems and their theory have turned out be
useful (see, e.g., Rutten’s [Rut92]).

It is well-known that an operational semantic model induced by a labelled transition system satis-
fying some finiteness condition has a corresponding topological property. For example, the so-called
linear operational semantics? induced by a finitely branching labelled transition system is compact,
and the linear operational semantics induced by an image finite labelled transition system is closed.
Similar results hold for the so-called branching operational semantics®.

If an operational semantics has one of the above mentioned topological properties, then we can
possibly use the unique fized point proof principle in order to relate the semantics to another semantics.
This proof principle has been introduced by Kok and Rutten in [KR90]. It is based on Banach’s fized
point theorem ([Ban22]): a contractive mapping from a complete metric space to itself has a unique
fixed point. The proof principle has been applied successfully to relate semantic models for various
programming language notions (see, e.g., the theses [AR89a, Eli91, Hor93, Kok89]). An order-theoretic
version of the proof principle has been introduced by Hennessy and Plotkin in [HP79].

In order to model advanced notions like Baeten and Bergstra’s real time integration ([BB91]) and
higher order communication as, e.g., in Thomson’s CHOCS ([Tho90]), we sometimes need to deal with
labelled transition systems which do not satisfy the above mentioned finiteness conditions. In order to
generalize the finiteness conditions of labelled transition systems (such that the induced operational
semantic models still have the desired topological properties), we will supply the labelled transition
system with some additional structure. The structure is added by endowing the configurations and
the labels with a complete metric. We will call such an enriched labelled transition system a metric
labelled transition system. The additional structure enables us to generalize the finiteness conditions
finitely branching and image finite to compactly branching and image compact, respectively?.

Already in the early sixties, the problem what structure to add to an abstract machine - like a
labelled transition system - to obtain a topological machine was formulated by Ginsburg in [Gin62].
In [Shr64], Shreider introduced a particular topological machine - a so-called compact automaton -
in order to study dynamic programming. A general and detailed study of topological machines can
be found in Brauer’s [Bra70]. Our metric labelled transition systems are a special case of Brauer’s
topological machines. However, the results presented in this paper cannot be found (in some possibly
more general form) in Brauer’s paper. In [Ken87], Kent studied so-called metrical transition systems.
A metrical transition system is a labelled transition system the configurations of which are endowed
with an ultraquasimetric (the labels are not provided with any additional structure). In Kent’s paper,
semantics induced by a metrical transition systems are not addressed. Structures related to labelled
transition systems, like abstract reduction systems, have also been provided with additional structure

by endowing certain sets with metrics (cf.; e.g., Kennaway’s metric abstract reduction systems in
[Ken92]).

The present paper can be divided into two parts. In the first and main part, a short survey of
some theory on labelled transition systems is given and subsequently the theory is generalized. In
the second part, we present six applications of the theory developed in the first part to provide some
evidence of its usefulness.

We will consider an operational semantics induced by a (metric) labelled transition system to be
a mapping from the configurations of the (metric) labelled transition system to some mathematical
structure built from the labels of the (metric) labelled transition system. In the first section of this
paper, we will define five spaces built from the (complete metric space of) labels by means of recursive

2In Van Glabbeek’s linear time - branching time spectrum ([Gla90]) this semantics is called the infinitary completed
trace semantics.

3Van Glabbeek uses the term bisimulation semantics for this semantics.

4Compact is a topological generalization of finite. For example, every compact subset of a metric space is the limit
of a sequence of finite sets.
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domain equations. In the (systems of) domain equations, we will encounter the compact or closed
power set (being the metric counterpart of the Smyth, Plotkin, and Hoare power domains as has been
shown by Bonsangue and Kok in [BK94]). So far, these spaces - called domains in the sequel - have
only been studied in case the labels are endowed with the discrete metric.

In the second section, we will present the definitions of labelled transitions system, linear oper-
ational semantics, and the finiteness conditions finitely branching and image finite. Furthermore,
the topological properties of the linear operational semantics induced by a labelled transition system
satisfying one of the finiteness conditions will be discussed.

All the - already known - results from the second section are generalized in the third section by going
from labelled transition systems to metric labelled transition systems and from finitely branching and
image finite to compactly branching and image compact.

In the fourth section, we will study so-called higher order transformations. Higher order transfor-
mations play an important role in the formulation of the already mentioned unique fixed point proof
principle. A higher order transformation assigns to a semantics of a programming language another
semantics of the language. A semantics of a programming language PL is considered to be a mapping
from the language - the set of statements of the language possibly provided with some additional
information - to some mathematical structure MS. A corresponding higher order transformation is of
the form @ : (PL — MS) — (PL — MS). In case MS is a complete metric space, also PL — MS can
be turned into a complete metric space, and hence @ is a mapping from a complete metric space to
itself. If the higher order transformation @ is contractive, then @ has a unique fixed point according
to Banach’s fixed point theorem.

In proof by uniqueness of fixed point, we have two semantic models for a programming language
PL viz & : PL — MS and Sy : PL — MS, we want to prove to be equivalent. Suppose that we can
turn the mathematical structure MS into a complete metric space. Assume we can find a contractive
higher order transformation @ : (PL — MS) — (PL — MS) such that both §; and Ss are fixed point
of &. Then we can conclude that §; and §3 must be equal.

In this paper, we will focus on higher order transformations induced by (metric) labelled transition
systems. That is, the semantic models to be transformed are mappings from the configurations of
the labelled transition system to some domain built from the labels of the labelled transition system,
and the transformation is driven by the transition relation of the labelled transition system. First, we
will introduce a so-called linear higher order transformation induced by a metric labelled transition
system. The linear operational semantics induced by a metric labelled transition system will be
shown to be fixed point of the corresponding linear higher order transformation. If the metric labelled
transition system satisfies one of the generalized finiteness conditions, then the induced linear higher
order transformation will be proved to be a contractive mapping from a complete metric space to
itself. Consequently, we can use the unique fixed point proof principle to relate the linear operational
semantics to another semantics as sketched above. Second, we will define a branching operational
semantics induced by a metric labelled transition system satisfying one of the generalized finiteness
conditions. The operational semantics is defined as the unique fixed point of the so-called branching
higher order transformation induced by the metric labelled transition system. Finally, we will relate
the linear and branching higher order transformations and their unique fixed points, viz the linear and
branching operational semantics. In establishing this relation, we will use the fact that the codomain of
a branching operational semantics - a so-called branching domain - can be viewed as a metric labelled
transition system (cf. [Acz88]). The induced operational semantics is an abstraction operator from
the branching domain to a so-called linear domain - the codomain of the linear operational semantics.

In the fifth section, we will provide the reader with six examples showing how the theory developed
can be used. In the first example, we will use a compactly branching metric labelled transition system
in order to model a real time process algebra introduced by Baeten and Bergstra in [BB91]. By



4 Linear and branching domains

means of an image compact metric labelled transition system, a language with the so-called iteration
statement will be modelled in the second example. In the third example, we will describe how De
Bakker and Van Breugel ([BB93]) have used a metric labelled transition system in order to link an
operational and a denotational semantics for a language with higher order communication. Rutten’s
processes as terms approach ([Rut92]) will be considered in the fourth example. In the setting of
complete metric spaces, the approach will elaborated and extended. The fifth and sixth example
are related to the above mentioned abstraction operator linking a linear and a branching domain.
In the fifth example, an abstraction operator introduced by De Bakker, Bergstra, Klop, and Meyer
in [BBKM84] will be shown to coincide with one of the abstraction operators to be introduced in
Section 4. By means of the theory of this paper, we will be able to improve some of the results presented
in Appendix B of [BBKMS84] on this abstraction operator. In the sixth example, an abstraction
operator introduced by Rutten in [Rut90] will be shown to be well-defined using the theory developed
in this paper, and so providing an alternative proof for the results of Appendix IT of [Rut90].

Novel in the present paper are

% the introduction of a metric labelled transition system,

* the generalizations of the finiteness conditions finitely branching and image finite to compactly
branching and image compact,

% the study of operational semantic models and higher order transformations induced by metric
labelled transition systems satisfying one of the generalized finiteness conditions,

* the linear and branching domains built from a label set endowed with an arbitrary complete
metric rather than the discrete metric,

* the semantic study of the iteration statement,

% the elaboration and extension of the processes as terms approach in the setting of complete
metric spaces,

% the improvement of the results in Appendix B of [BBKMS84], and

* the alternative proof for the results in Appendix IT of [Rut90].

All in all, we hope to convince the reader of the usefulness of the generalizations of the finiteness
conditions of labelled transition systems in order to give semantics of programming languages.
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1. LINEAR AND BRANCHING DOMAINS

As already mentioned in the introduction, we consider an operational semantics induced by a labelled
transition system to be a mapping from the configurations of the labelled transition system to a
domain built from the labels of the labelled transition system. We study two classes of these domains:
the so-called linear and branching domains. (Other domains have been studied by, e.g., De Bakker

and Warmerdam ([BW91]) and Rutten ([Rut88]).) The elements of a linear domain can be regarded
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as sets of sequences of labels. The elements of a branching domain can be viewed as trees the edges
of which are indexed by labels.

The linear and branching domains are defined by means of (systems of) domain equations. A
category theoretic technique to solve these domain equations has been presented by America and
Rutten in [AR89b] (cf. Edalat and Smyth’s [ES92]). By defining the domains by means of domain
equations, we can easily define the domains parametric with respect to the metric space of labels of
the (metric) labelled transition system.

In the domain equations, we use the following operations on 1-bounded complete metric spaces:
Cartesian product x, disjoint union +, nonexpansive function space —!, (nonempty and) compact
power set Pu, (Ppeo), nonempty and closed power set P,,.;, and ( )% multiplying the metric by a half
(cf. Definition A.2). Furthermore, we encounter the set of labels I of the labelled transition system
endowed with a 1-bounded complete metric (in Section 2, we will use the discrete metric on the label
set, in Section 3 and 4, the labels will be endowed with arbitrary 1-bounded complete metrics) and
the nonempty power set P,,.

DEFINITION 1.1

1. The domain L*° is defined by the domain equation
L~ = {e} + (L x (LOC)%).

2. The linear domains Ly [L], £1 [L], and L5 [L] are defined by
Lo [L] =P, (L)
L1 [L] = Preo (L)
‘62 [L} - 7Dncl (LOC)

3. The branching domains By [L] and By [L] are defined by the domain equations

By [L] = Peo (L x (By [L])1)
BQ [L} >~ 1 Peo ((BQ [LD

1R

)

(M

The linear domain £Lq [L], the set of nonempty subsets of L>° (endowed with the Hausdorff metric),
is a pseudometric space but not a metric space. If we restrict the subsets to compact or closed subsets
- resulting in £4 [L] or L3 [L] - we obtain a complete metric space (cf. Theorem A.4 and A.5). Also
the branching domains B; [L] and B; [L] are complete metric spaces.

The domain L> can be viewed as the set of finite and infinite sequences of labels. The empty
sequence corresponds to € and (Ig, (I1, ¢)), written as Ilgl; in the sequel, corresponds to the sequence
lpli. If we endow the label set I with the discrete metric, then we obtain the usual metric space of
sequences (as used by, e.g., Nivat in [Niv79]). The linear domains L [L], £1 [L], £ [L] can be seen as
sets of label sequences.

The branching domains By [L] and By [L] with L endowed with the discrete metric have been in-
troduced by De Bakker and Zucker in [BZ83] and Van Breugel in [Bre93], respectively. In [Bre93]
it has been shown that the domains B [L] and B [L] can be regarded as (absorptive, commutative,
and closed) indexed trees. The domain Bs [L] has been introduced since it can be used to model a
larger class of programming language notions than B [L], and it does not give rise to difficulties in

modelling basic notions like sequential composition as a third branching domain B [L] (cf. Subsec-
tion 5.5) introduced by De Bakker and Zucker in [BZ82] does. The domains 51 [L] and B; [L] can be
viewed as labelled transition systems (cf. Lemma 4.8). The corresponding bisimilarity relations can
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be shown to coincide with equality (as has been proved by Van Glabbeek and Rutten in [GR89] for
the branching domain B3 [L] with the label set L endowed with the discrete metric).

The linear and branching domains presented in this section are used to define the so-called linear
and branching operational semantics in the following sections.

2. LABELLED TRANSITION SYSTEMS

The so-called (linear) operational semantics induced by a labelled transition system is a mapping from
the configurations of the labelled transition system to the linear domain Ly [L] with L the label set
of the labelled transition system endowed with the discrete metric. An operational semantics can be
viewed as a mapping assigning to a configuration a set of label sequences. The assignment is driven
by the transition relation of the labelled transition system. A label sequence o is an element of the set
assigned to a configuration c if this sequence o records the labels of a sequence of transitions starting
from the configuration c.

DEFINITION 2.1 A labelled transition system is a triple (C, L, —) consisting of

* a set of configurations C,
* a set of labels L, and

* a transition relation — C C' x L x C.

i
Tnstead of (c,l,c') € — we write ¢ — . If for a configuration c there exist a label [ and a

1
configuration ¢’ such that ¢ — ¢, then we write ¢ —. Otherwise, we write ¢ /.

DEFINITION 2.2 The (linear) operational semantics induced by a labelled transition system (C, L, —)
is the mapping O : C' — Ly [L] defined by

1 lo I 1y 15
O(C):{lll2~"ln‘C:CO—>61_’"'—>C/,L7L>}U{lllg“~‘CZCO—>61—>~'~}.

Two topological properties on operational semantic models are introduced in

DEFINITION 2.3

1. An operational semantics O : C — L [L] is called compact if O € C — £y [L].

2. An operational semantics O : C' — L [L] is called closed if O € C — Lo [L].

Every compact operational semantics is closed, but a closed operational semantics is in general not
compact.

Not every labelled transition system induces a compact or closed operational semantics. However, if
we restrict ourselves to labelled transition systems satisfying one of the finiteness conditions introduced
in the following definition, then we do obtain compact or closed operational semantics.

DEFINITION 2.4

1. A labelled transition system (C, L, —) is called finitely branching if, for all ¢ € C, the set
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is finite.

2. A labelled transition system (C, L, —) is called image finite if, for all ¢ € C and [ € L, the set

!
IF () ={c[ec—<"}
is finite.

Every finitely branching labelled transition system is image finite, but an image finite labelled
transition system is not necessarily finitely branching.

THEOREM 2.5

1. The operational semantics induced by a finitely branching labelled transition system is compact.

2. The operational semantics induced by an image finite labelled transition system is closed.

The above theorem, relating the topological properties and the finiteness conditions, seems to be

folklore ([ArnQ?)D.5

3. METRIC LABELLED TRANSITION SYSTEMS

In this section, we generalize the results of the previous section. For this purpose, we supply a labelled
transition system with some additional structure by endowing the configurations and the labels with
a 1-bounded complete metric. In this way, we obtain a so-called metric labelled transition system.

DEFINITION 3.1 A metric labelled transition system is a triple (C, L, —) consisting of

* a l-bounded complete metric space of configurations C,
% a 1-bounded complete metric space of labels L, and

* a transition relation — C C x L x C.

A metric labelled transition system induces an operational semantics along the lines of Definition 2.2.
The operational semantics induced by a metric labelled transition system (C, L, —) is a mapping from
the complete metric space of configurations C' to the domain £ [L] with L the complete metric space

of labels.

By means of the additional structure, we can generalize the finiteness conditions finitely branching
and image finite to compactly branching (and nonexpansive) and image compact (and binonexpansive),
respectively.

DEFINITION 3.2

1. A metric labelled transition system (C| L, —) is called compactly branching and nonezpansive if

the mapping CB : C' — P (L x C) defined by

580 far, the author has not been able to locate the original proofs of Theorem 2.5.1 and 2.5.2. Both theorems are
based on Kénig’s lemma ([Kon26]). Proofs of related results can be found in, e.g., [Arn83, BMOZ88].
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1
CB(c)={(l.c")|c— "}
is an element of C —1 P, (L x (C)%).

2. A metric labelled transition system (C, L, —) is called image compact and binonezpansive if the
mapping ZC : C — L — P (C') defined by

!
() = {c e e}
is an element of C —' L = P, ((C’)%)

If we endow the configurations and the labels of a finitely branching labelled transition system both
with the discrete metric, then we obtain a compactly branching and nonexpansive metric labelled
transition system. Similarly, an image finite labelled transition system with the configurations and
labels endowed with the discrete metric gives rise to an image compact and binonexpansive metric
labelled transition system.

A compactly branching and nonexpansive metric labelled transition system is in general not finitely
branching. Also an image compact and binonexpansive metric labelled transition system is not nec-
essarily image finite.

Hence, we can conclude that the above definition generalizes the finiteness conditions of the previous
section. Furthermore, we can generalize Theorem 2.5 by proving that the operational semantics
induced by a metric labelled transition system satisfying one of the generalized finiteness conditions
still has the corresponding topological property (and is nonexpansive).

THEOREM 3.3

1. The operational semantics induced by a compactly branching and nonexpansive metric labelled
transition system is compact and nonexpansive.

2. The operational semantics induced by an image compact and binonexpansive metric labelled
transition system is closed and nonerpansive.

A proof of Theorem 3.3.1 can be found in Appendix B. The proof of the theorem contains the main
ingredients for proofs of most of the other theorems of this paper.

The results of this section and their relation with the results of the previous section are depicted in
the following diagram.

compact closed
and nonexpansive and nonexpansive
compactly branching image compact
and nonexpansive and binonexpansive
compact T closed

finitely branching image finite
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There is no arrow from compactly branching and nonexpansive to image compact and binonex-
pansive, since a compactly branching and nonexpansive metric labelled transition system is image
compact but not necessarily binonexpansive.

4. HIGHER ORDER TRANSFORMATIONS

In order to relate the operational semantic models studied in the foregoing sections to other semantic
models, we introduce two classes of higher order transformations. The higher order transformations are
induced by metric labelled transition systems. The semantic models to be transformed are mappings
from the configurations of the metric labelled transition system to one of the linear and branching
domains of Section 1. The transformation is driven by the transition relation of the metric labelled
transition system. First, we focus on the so-called linear higher order transformations: mappings
transforming semantic models the codomain of which is a linear domain.

DEFINITION 4.1 A (linear) higher order transformation induced by a metric labelled transition system
(C,L,—) is a mapping @ : (C — Ly[L]) — (C — Ly [L]) defined by

€ if ¢
P (¢)(c) = { ) ! -

{lo|c—c Nocp(c)) otherwise

The mapping ¢ transforms a semantics ¢ : C — L [L] to the semantics ¢ () : C — Ly [L]. The
semantics @ (¢) assigns to a configuration ¢, with ¢ 4, the singleton set consisting of the empty
sequence . To a configuration ¢, with ¢ —, the semantics @ (¢) assigns the set of sequences lo
obtained from the label [ of a transition from the configuration ¢ to some configuration ¢’ and the
sequence o of ¢ (c').

PROPERTY 4.2 The operational semantics O induced by a metric labelled transition system is fized
point of the higher order transformation @ induced by the metric labelled transition system, t.e.

0 =a(0).

In order to turn the higher order transformation induced by a metric labelled transition system
into a contractive mapping from a complete metric space to itself, we restrict ourselves to compact or
closed (and nonexpansive) semantic models.

DEFINITION 4.3

1. A higher order transformation @ : (C' — Ly[L]) — (C — Ly[L]) is called compactness and
nonezxpansiveness preserving if ® € (C —' Ly [L]) — (C =" £y [L]).

2. A higher order transformation @ : (C — Ly[L]) — (C — Ly[L]) is called closedness and
nonexpansiveness preserving if @ € (C —! Ly [L]) — (C = Ly [L]).

A higher order transformation satisfying one of the above introduced topological properties is a
mapping from a complete metric space to itself. Furthermore, such a higher order transformation can
be shown to be contractive.

Not every metric labelled transition system induces a compactness or closedness and nonexpansive-
ness preserving higher order transformation.
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LEMMA 4.4

1. The higher order transformation induced by a compactly branching and nonexpansive metric
labelled transition system is compactness and nonerpansiveness preserving.

2. The higher order transformation induced by an image compact and binonexpansive metric labelled
transition system is closedness and nonexpansiveness preserving.

The operational semantics O induced by a compactly branching and nonexpansive metric labelled
transition system is compact and nonexpansive according to Theorem 2.5. Together with Property 4.2
this gives us that the operational semantics O is fixed point of the higher order transformation @
induced by the metric labelled transition system. Since @ is contractive, O is the unique fixed point
of @ - denoted by fiz () - according to Banach’s fixed point theorem (Theorem A.3).

THEOREM 4.5 The operational semantics O induced by a compactly branching and nonexpansive or
an image compact and binonexpansive metric labelled transition system is the unique fized point of the
higher order transformation @ induced by the metric labelled transition system, i.e.

O = fiz (D).

Let (C, L, —) be a compactly branching and nonexpansive metric labelled transition system. If we
can show that the semantics S : C' — £ [L] is fixed point of the induced higher order transformation,
then we can conclude that the induced operational semantics is equal to the semantics § according
to the unique fixed point proof principle.

The above theorem can be turned into a definition, that is, we can define the operational semantics
induced by, e.g., a compactly branching and nonexpansive metric labelled transition system as the
unique fixed point of the induced higher order transformation. According to the unique fixed point
property, the operational semantics O induced by the compactly branching and nonexpansive metric
labelled transition system (C, L, —) is the unique mapping O : C —! £; [L] satisfying

€ if ¢
O(C)_{{} "

1
{lo|c—d Noe€eO(d)} otherwise

Theorem 4.5 generalizes the - already known - result that the operational semantics induced by a
finitely branching or an image finite labelled transition system is the unique fixed point of the induced
higher order transformation (see, e.g., [KR90]).

Second, we discuss the so-called branching higher order transformations.

PROPERTY 4.6

1. A compactly branching and nonexpansive metric labelled transition system (C, L, —) induces a

branching higher order transformation @ : (C —! By [L]) — (C —! By [L]) defined by

8(6)() = {(Lo(c)) | e}

6A compactly branching and nonexpansive metric labelled transition system induces not necessarily a compactness
preserving higher order transformation @. In proving that @ (¢) is compact, the nonexpansiveness of ¢ is needed.
A similar remark applies to a higher order transformation induced by an image compact and binonexpansive metric
labelled transition system. Since the semantic models to be transformed have to be nonexpansive, we restricted the
operational semantic models in Section 3 to nonexpansive mappings.
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2. An image compact and binonexpansive metric labelled transition system (C, L, —) induces a

branching higher order transformation @ : (C' —"' By [L]) — (C' —! By [L]) defined by

B ($)(0) = N{b() | c =<},

We restrict ourselves to metric labelled transition systems satisfying one of the generalized finiteness
conditions, because for arbitrary metric labelled transition systems the above property is in general
not valid. The branching higher order transformation introduced in Property 4.6.1 has already been
studied for finitely branching labelled transition systems. The branching higher order transformation
presented in Property 4.6.2 has not been considered in the context of labelled transition systems.
Both higher order transformations are contractive mappings from a complete metric space to itself.
According to Banach’s theorem, the higher order transformations have unique fixed points.

Just as linear operational semantic models are the unique fixed points of linear higher order trans-
formations, branching operational semantic models are defined as the unique fixed points of branching
higher order transformations.

DEFINITION 4.7

1. The branching operational semantics induced by a compactly branching and nonexpansive metric
labelled transition system (C, L, —) is a mapping O : C' — By [L] defined by

O = fiz (),

where @ is the branching higher order transformation induced by the metric labelled transition
system.

2. The branching operational semantics induced by a image compact and binonexpansive metric
labelled transition system (C, L, —) is a mapping O : C' — By [L] defined by

O = fiz (&),

where @ is the branching higher order transformation induced by the metric labelled transition
system.

According to the unique fixed point property, the branching operational semantics O induced by,
e.g., a compactly branching and nonexpansive metric labelled transition system (C, L, —) is the unique
mapping O : C' —! B; [I] satisfying

O(c) = {(1L,O() e}

We conclude this section with relating the linear and branching higher order transformations and
their unique fixed points. We first link the linear and branching domains before relating the cor-
responding higher order transformations. We link the branching domains B; [L] and Bs [L] to the
linear domains £ [L] and L4 [L] by means of operators abstracting from the branching structure. For
this purpose, it is convenient to view the branching domains as metric labelled transition systems
satisfying one of the generalized finiteness conditions.
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LEMMA 4.8

]
1. The metric labelled transition system (By[L],L,—), with 8 — B’ if (I,5") € B, s compactly
branching and nonexpansive.

1
2. The metric labelled transition system (By [L], L, —), with 8 — B if ' € B (1), is image compact
and binonexpansive.

The operational semantics induced by, e.g., the metric labelled transition system introduced in
Lemma 4.8.1 - denoted by trace in the sequel - is a nonexpansive mapping from the branching domain
B1 [L] to the linear domain £ [L] according to Theorem 3.3.1. This operational semantics is the above
mentioned abstraction operator from Bj [L] to £y [L]. The abstraction operators can be defined as
follows.

DEFINITION 4.9

1. The mapping trace : By [L] —' £1 [L] is the unique mapping satisfying

t 5 (e} ifg=0
race () = {lo | (I,p") € BAo € trace (8')} otherwise

2. The mapping trace : By [L] =1 L4 [L] is the unique mapping satisfying

B {5} if 6=2X.0
trace (6) = { {la ‘ 3 e 5(1) Ao € trace (ﬁ')} otherwise

By means of the abstraction operators trace, we can relate the linear and branching higher order
transformations.

THEOREM 4.10 For the linear and branching higher order transformations ®; and @y induced by
a compactly branching and nonexpansive or an image compact and binonexpansive metric labelled
transition system we have that

fiz (§;) = trace o fiz (Py).

Suppose (C, L, —) is a compactly branching and nonexpansive metric labelled transition system.
If the semantics S : €' —! By [L] is a fixed point of the induced higher order transformation, then
we can conclude that the induced linear operational semantics O is related to the semantics S by
O = trace o § by uniqueness of fixed point.

Combining Theorem 4.5, Definition 4.7, and Theorem 4.10, we arrive at

THEOREM 4.11 For the linear and branching operational semantics O; and Oy induced by a compactly
branching and nonexpansive or an image compact and binonexpansive metric labelled transition system
we have that

O; = trace o Oy.

5. APPLICATIONS

In this fifth and final section, we present six applications of the theory developed in the preceding
sections.
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5.1 REAL TIME INTEGRATION

In [BB91], Baeten and Bergstra have introduced the real time process algebras ACPp and ACPrp.
In [Bre91], Van Breugel has studied semantic models for a sequential fragment of ACPrp. In this
fragment, timed actions and integration are the time dependent notions. A timed action a[r], with
a an element of some set of actions and r a nonnegative real number, denotes that the action a
has to be performed r time units after its enabling. Integration is an alternative composition over a
continuum. For example, the integration fte[o.s. 1.0] a[t], with ¢ an element of some set of time variables,
denotes that the action a has to be performed between 0.5 and 1.0 time units after the enabling of
the integration.

In [Bre91], an operational semantics induced by a modification of the labelled transition system for
ACPrp of [BB91] has been presented. (The labelled transition system has been modified along the
lines of Klusener’s modification of the labelled transition system for ACPp of [BB91] in [Klu91].) The
labelled transition system is not image finite and, a fortiori, not finitely branching, since, e.g., for all

re[0.5,1.0],

all]
/ a[l] - a[t] —— a[r].
t€[0.5,1.0]

By endowing the configurations and the labels with suitable metrics, the labelled transition system

can be turned into a compactly branching and nonexpansive metric labelled transition system. These
metrics are based on the 1-bounded (topologically) equivalent of the Euclidean metric defined by
r—r'|

d(r,v") = 7| .

( ’ ) |7" — 7! | +1

Closed intervals of the real numbers - being part of the integration construct - are compact with
respect to this metric.

In [Bre91], also a denotational semantics for the fragment of ACPrp has been presented. Further-
more, the operational and denotational semantic models have been proved to be equivalent by means
of the unique fixed point proof principle using some of the results of the previous sections.

5.2 ITERATION

An operational semantics and a denotational semantics for a simple programming language built from
assignments and operators like sequential composition and conditionals have been presented by De
Bakker and Meyer in [BM88]. Furthermore, the semantic models have been related by means of
the unique fixed point proof principle. Since the labelled transition system inducing the operational
semantics is finitely branching, the generalized theory developed in this paper is not needed.

Now, we add to the language the so-called iteration statement ST, with s an arbitrary statement.
The execution of the statement s amounts to first choosing the number of iterations of the statement
and second executing the statement s the chosen number of iterations. The number of iterations can
be any natural number or infinity.

The configurations of the labelled transition system of [BM88] are pairs of the form [s, ¢] where s
is a statement and ¢ is a state, i.e. a mapping from variables to values. The labels of the labelled
transition system are states.

In order to model the language extended with the iteration statement operationally, we introduce
the auxiliary statements s, with n € IN, and s*. The execution of the statement s™ (s*) amounts
to executing n (an infinite number of) times the statement s. Furthermore, we add some rules to the
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transition system specification inducing the labelled transition system (as described by, e.g., Groote
and Vaandrager in [GV92]). Below, we use so-called zero-step transitions of the form s —q s’ for
denoting rules of the form

!
<

[S, g} - [S”, gll}

[s' ] —[s", ¢"]
We add the following rules:

« sl —q 8", for all n € IN

* s'l- — 8

* SO —0 E

n+1

* s —0s;8", forallmeN

* 8% —(g 858

where the empty statement E denotes termination and ‘;’ denotes sequential composition. The ob-
tained labelled transition system is no longer finitely branching, not even image finite. However, the
labelled transition system can be turned into an image compact and binonexpansive metric labelled
transition system by endowing the configurations and the labels with a complete metric using the
compact metric on IN U {co} defined by

0 ifk=F
d(kﬂkl) = { 2—min{k.k’}

otherwise

Also the denotational semantics of [BM88] can be extended to deal with the iteration statement. By
means of the theory developed in the foregoing sections, the operational and denotational semantic
models can be related. The details will appear in [Bre94].

5.3 SECOND ORDER COMMUNICATION

In [BB93], De Bakker and Van Breugel have presented a linear operational semantics and a branching
denotational semantics for a language with second order communication. Recall that in a CSP-like
language value-passing communication is expressed by the two statements c¢!e and ¢ 7 v, for ¢ a
channel, e some expression, and v an individual variable, occurring in two parallel components, and
synchronized execution of these statements results in the transmission of the current value of e to
v. A second order variant of this is the pair of communication constructs ¢! s and ¢? z, for ¢ a
channel, s a statement, and x a statement variable. Now a higher order value is passed at the moment
of synchronized execution. In the operational semantics the statement s is passed, whereas in the
denotational semantics the (semantic) meaning of s is transmitted. In order to link the operational
and denotational semantic models, a branching operational semantics is introduced. This operational
semantics is induced by a labelled transition system not satisfying one of the finiteness conditions.
By endowing the configurations and the labels with suitable complete metrics, the labelled transition
system can be turned into a compactly branching and nonexpansive metric labelled transition system.
The branching operational and denotational semantic models are related by means of the unique fixed
point proof principle.
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5.4 METRIC PROCESSES AS TERMS

As we have already mentioned, from a transition system specification one can derive a labelled transi-
tion system and hence an operational semantics. In [Rut92], Rutten has shown that also an equivalent
denotational semantics can be derived from a transition system specification provided that the transi-
tion system specification is in the so-called BSOS format. Crucial in this so-called processes as terms
approach is the use of elements of some (semantic) mathematical structure - called processes - in the
terms of the transition system specification. All this has been carried out in a setting using nonwell-
founded sets as mathematical structure for the semantic models. In the final section of the paper,
Rutten has argued that also complete metric spaces instead of nonwellfounded sets can be used. In
that case, the complete metric space Bj [L], with the set L endowed with the discrete metric, is the
collection of processes used as terms. Since the metric processes are used as terms in the transition
system specification, we encounter them as configurations of the labelled transition system. Because
this labelled transition system is not finitely branching nor image finite, we have to consider metric
labelled transition systems (cf. Lemma 4.8.1). The (metric) processes as terms approach can be ex-
tended to deal with the complete metric spaces By [L] and By [L], where the set L is endowed with an
arbitrary complete metric, using the theory developed in this paper.

5.5 THE TRACE OPERATOR OF [BBKM&4]

De Bakker, Bergstra, Klop, and Meyer have presented a linear and a branching denotational semantics
for a simple language in [BBKM84]. The linear semantics uses the linear domain £5[L] and the
branching semantics uses the branching domain Bs [L] defined by the domain equation

Bs[L] 2 P (L x (Bs[L])1),

ML

where P.; denotes the closed power set and the set I is endowed with the discrete metric. In order
to relate the semantic models, an abstraction operator trace is introduced. In case the set L is finite,
trace is shown to be a continuous mapping from Bs[L] to L3 [L]. We can improve this result by
proving that trace is a nonexpansive mapping from Bs [L] to £ [L]. If the set L is finite, we have
that Bs [L] = By [I] (cf. [Bre93, BW93]). The abstraction operator of [BBKMS84] coincides with the

operator trace introduced in Definition 4.9.1.

5.6 THE ABSTR OPERATOR OF [RUT90]

In [Rut90], Rutten has presented a linear operational semantics and a branching denotational seman-
tics for Philips’ parallel object-oriented language POOL. The semantic models have been related by
means of an abstraction operator abstr. The well-definedness proof of abstr is far from trivial (cf.
Appendix IT of [Rut90]). The branching domain used in the denotational semantics is similar to -
although much more complicated than - the branching domain B; [L]. Also in this case, the branching
domain can be viewed as a compactly branching and nonexpansive metric labelled transition system.
The abstraction operator abstr turns out to be the induced linear operational semantics and the
well-definedness of abstr is an immediate consequence of Theorem 3.3.
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20 Metric spaces

A. METRIC SPACES

We present some definitions and theorems of (metric) topology. For further details on topology, we
refer the reader to [Eng89].

DEFINITION A.1 Let (X,dx) and (X', dx/) be metric spaces.

1. A mapping f: X — X' is called contractive if there exists an €, with 0 < € < 1, such that, for
all z, 2’ € X,

dx (f (), f (2') < € dx (z,2").
2. A mapping f : X — X' is called nonezpansive if, for all z, z' € X,
dxr (f (2), f(2')) < dx (2, 2").
DEFINITION A.2 Let (X,dx) and (X', dx) be 1-bounded metric spaces. Let Y be a set.
1. A metric on the Cartesian product of X and X', X x X' is defined by

dxxx ((z,2'),(2,2")) = max{dx (z,2),dx (', ") }.

2. A metric on the disjoint union of X and X', X + X', is defined by
dx (z,z) ifz,z€X
dxix (z,2) = dx/ (z,z) ifz,z€X’
1 otherwise

3. A metric on the collection of mappings from Y to X, Y — X is defined by

dy—x (f, f')=sup{dx (f(v),f (¥) lye Y}
4. A metric on the collection of nonexpansive mappings from X to X', X —! X' is defined by
dx—ax (f, f') = sup{dx/ (f (@), f'(z)) |z € X }.

5. The Hausdorff metric on the set of nonempty and compact subsets of X, P,., (X), and on the
set of nonempty and closed subsets of X, P,.;(X), is defined by

dp(x) (A, A") = max {sup {inf { dx (z,2') [2' € A"} |z € A},
sup{inf{dx (z/,z) |z € A} |z' € A'}}

6. A metric on the set of compact subsets of X, P, (X), is defined by
Peo (X) = Puco (X) + {0}.
A metric on the set of closed subsets of X, P, (X), is defined by
Pei (X) = Poa (X) + {0}

7. A new metric on X is defined by
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THEOREM A.3 (BANACH’S THEOREM) Let (X,dx) be a complete metric space. If f: X — X is a

contraction then f has a unique fized point fiz (f). For allz € X,
lim £* () = fiz (/)
where

@) =2 and f"F (x) = (" (2)).
PROOF See Theorem I1.6 of [Ban22).

THEOREM A.4 (KURATOWSKI'S THEOREM) If (X,dx) is a I-bounded complete metric space,

(Prco (X),dp(x)) is a 1-bounded complete metric space.

PROOF See Lemma 3 of [Kur56].

THEOREM A.5 (HAHN’S THEOREM) If (X,dx) is a I1-bounded complete metric space,
(Pret (X),dp(x)) is a 1-bounded complete metric space.

PROOF See §9.6 and §18.10 of [Hah48].

THEOREM A.6 (MICHAEL’S THEOREM) Let (X,dx) be a 1-bounded metric space.

1. If Ae P, (P, (X)) then A € P, (X).
2. The mapping | : Peo (Peo (X)) — P, (X) is nonexpansive.

PROOF See Theorem 2.5 of [Mic51].

B. PrROOF OF THEOREM 3.3.1

a

then

O

then

As an illustration how to prove the results of this paper, we present a proof of Theorem 3.3.1. The

proof of this theorem contains the main ingredients for proofs of most of the other theorems.

THEOREM 3.3.1 The operational semantics induced by a compactly branching and nonezpansive metric

labelled transition system is compact and nonexpansive.

We prove the theorem in two steps. First, we show that the operational semantics induced by a

compactly branching and nonexpansive metric labelled transition system is compact (Theorem B.3).

Second, we demonstrate that the compact operational semantics induced by a compactly branching

and nonexpansive metric labelled transition system is nonexpansive (Theorem B.4). In the proof of

Theorem B.3, we use the following two lemmas.

LEMMA B.1 For a compactly branching and nonexpansive metric labelled transition system (C, L, —),

foralle, ' € C,

if c— and ' £ then d(c,c') = 1.
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PROOF Let ¢, ¢’ € C'. Assume ¢ — and ¢ 4. Because CB(c) # () and CB(c') = @ and the metric
labelled transition system is compactly branching and nonexpansive,

1=d(CB(c),CB(c")) <d(c, ). ;

LEMMA B.2 For a compactly branching and nonexpansive metric labelled transition system (C, L, —),
for allc € C and n € IN, the set

1 l I
{(CU:llaclalQ:---:l'n,-,cn) ‘ c=C 41>Cl 42} ch}

18 compact.

PrROOF We prove this lemma by induction on n. Obviously, the set is compact for n = 0. Let
n > 0. Because the metric labelled transition system is compactly branching and nonexpansive, for
all ¢,—1 € C, the set

Iy
{ (lnv Cn) | Cp—1 —— Cp }

is compact. Consequently, for all ¢y, ¢1, ..., ¢,—1 € C and Iy, Iy, ..., l,,_1 € L, the set

In
{ (COJ ll; C1, l2~, sy l'nu c'n,) ‘ Cp—1 ——Cp }

is also compact. Since the metric labelled transition system is compactly branching and nonexpansive,
the mapping

ln
Mo, liy e, o,y o luo1, cnmt) { (co Ly ey loy ool 60) [ Eml —— ¢ )

is continuous. By induction, the set

11 I ln—1
{(Cﬂalluclul27 .. ';lnflacnfl) ‘ cC=Cc——€C — - —>C’IL71}

is compact. Because the continuous image of a compact set is compact,

Ly

1 ls ln—1
{{ (C()a l17 Clal% ey l'nra C'n,) ‘ Cp—1 Cp, } c=C 1 e C'n,fl}

is a compact set of compact sets. From Michael’s theorem (Theorem A.6.1), the compactness of the
set

Ly

U {{ (COJ ll; 1, l27 L) ln; Cn) | Cp—1 ——Cyp }

11 ls )
c=cyp—01 —>"'—>Cn71}

can be concluded. O

THEOREM B.3 The operational semantics induced by a compactly branching and nonexpansive metric
labelled tramsition system is compact.
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ProOOF Let (C, L, —) be a compactly branching and nonexpansive metric labelled transition system.
We will prove that the induced operational semantics O is compact, i.e., for all ¢ € C, the set O (c) is
compact.

Let ¢ € C. Let (0;); be a sequence in O (c). We will show that there exists a subsequence (o¢(;)); of
(0;); converging to some o € O (c).

The subsequence (o(;)); will be constructed from a collection of subsequences (o7, (;))i satisfying
("neIN:Q(n))V(Em e N : Y0 <n<m:Qn)A R(m)) (B.1)
where

Qn) = Vi: op,iy = s, (dl2gn ) luatn () T fo ()
1, £ (0) l2, £ (1) In fn (0)
C=Cof,() — 7 CLfu(3) o Cn fuli) = N
U”Lsfn(i) € O (C"Lafn(i))/\
V1<j<n:limgly gy =5A
VO <j<n:lim Ci £, (i) = CiA
1 Iy ln
C:CO;Clﬂ~~~‘>CTL%

and

R(n) < Vi op, ) =lug, (plag,@) o lug. oA
B g () Lo g (i) Lo ()
€=t () — L1 (i) - Cnfu(i) 77 N
V1<j<nlimily g, ) = GA
YO <j<n:lim; Cifa(i) = CiN

I Iz [

C:CO*}ClH"'*)Cn#~

The existence of the subsequences (o, (;))i is verified by proving
Py M0<n<k:Qn)V(E0O<m<k:V0O<n<m:Q(n)AR(m))

by induction on k.

To prove P(0) it suffices to show Q(0) vV R(0). By definition, each subsequence (o, (;)); satisfies
Q(0) v R(0).
Let k > 0. To prove P(k — 1) = P(k) it suffices to show Q(k — 1) = Q(k) vV R(k). Tf Q(k — 1), then

Vie (00 =l e le () i i) Tk fon ()
ity 1) la gy 1) be gy 1)
C=Co gy a(i) — 7 CLfia(i) o Chofr—a(i) = N
Tk r(i) € Oleh 1))V
(Trv) = lpiaylefoca (- le s ()N
I 1) b2 1) I fre 1 ()
€= Cofpi(i) T ClLfr_a(i) e Chafi 1 (i) 72N
Vi<ji<k-—1:lim; lj«,fk—l(i) = l]’/\
VO<j3<k—1:lim; Cifrr(i) = G

I 15 lp—1
C=¢——C —— "7 C-1 —7 .

By Lemma B.2, there exists a subsequence



24 Proof of Theorem 3.3.1

(C(),gkfl(i)a ll,g;‘4,1(i)7 Cl,g;“,](i% lZ,gg.,l(i)a cey lk,gk,l(i)a Ck:.,gk,](i))i

of the sequence

(€O, i1 () 1) €L (D)) L2 (i) - o i1 () Ch i —a () )i

which converges to (cg,l1,¢1,la, ..., g, c;) such that
Iy I I
C=C ——C — " —Ck.

According to Lemma B.1, if ¢;, — (¢ /) then there exists a subsequence

(co,fu(i)o l i €1 () L2, iy - L) () i

of the sequence

(C(—)-,flk—l(i)’ ll-,f]k—l“)’ C1,gp—1(i)» lzf.‘lk'—l("')’ ce lk-,,(]k—l(’:)’ Cl“r-,!]k—l(i))i

satisfying c r, (i) — (i, f.(s) 72)- Consequently Q(k) (R(k)).
From the subsequences (o, (;)); satisfying (B.1) we next construct the subsequence (o(;y); distin-
guishing the following two cases.
1. If ¥n € IN : Q(n), then we define f(i) = f;(7). In this case, the sequence (o (;)); converges to
o=1Ully - in O(c).

2. If Im € IN : VO < n < m : Q(n) A R(m), then we define f(i) = f,,(i). The sequence (o4));
converges to o =I1ly -1, in O (c). 0

THEOREM B.4 The compact operational semantics induced by a compactly branching and nonexpan-
sive metric labelled transition system is nonexpansive.

ProOOF Let (C, L, —) be a compactly branching and nonexpansive metric labelled transition system.
We will prove that the induced operational semantics O is nonexpansive.

To prove the nonexpansiveness of O, a sequence (O;); of nonexpansive mappings converging to O, is
introduced. Because nonexpansiveness is a closed property, O is nonexpansive.

The mapping O; : C' —! L; [L] is defined by

1 ls 1 ! 1 1;
O,;(c):{lll2~~~lj|c:co—1>c1—>~~~;c‘j%Ajgi}u{lll2~~l,:\c%lcl—z>--~——>c,:—>}.

The well-definedness of these mappings is proved by induction on z. Obviously, Oy is well-defined.
Let 2 > 0.

First, we prove that, for all ¢ € C, the set O, (c) is compact. Let ¢ € C. By definition,

{ {e} if c £+

O,j (C) = 1
{lo|c—cd ANoeO,_1(c)} otherwise

Because the metric labelled transition system is compactly branching and nonexpansive, the set

{¢]e—c}
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is compact. By induction, O; 1 delivers compact sets. One can easily verify that, for all [ € L and
¢ € C,theset {lo| o€ O;_1(c)} is compact. By induction, the mapping O;_; is nonexpansive and
hence continuous. Because the continuous image of a compact set is compact, we can derive that

l
CHCI}

{{ZJ 0 €01 ()}

is a compact set of compact sets. According to Michael’s theorem (Theorem A.6.1),

! !
C—>C}

is compact. Hence, the set O; (¢) is compact.

U{{telce0ii(e)}

Second, we show that O, 1s nonexpansive. We will prove that, for all ¢, ¢ € C,
d(0i(c), 0; (¢)) < d(c,e). (B.2)

Let ¢, € € C'. We distinguish the following three cases.

1. If ¢ / and ¢ 4, then (B.2) is vacuously true.

2. If ¢ /» and ¢ — or ¢ — and ¢ 4, then d(¢,¢) = 1 according to Lemma B.1. Consequently, (B.2)
is also valid in this case.

3. If ¢ — and ¢ —, then

4(0:(e),0:(2)) = d((J{{1r | o € 0 1 ()} e HU{{Te 7€ 0i1(@)}

Because the metric labelled transition system is compactly branching and nonexpansive,

ELE'})A

l _ !
A4 ) e d A @e) o)) < d(ea).
By induction, O;_; is nonexpansive. Combining the above, one can verify that
l _
d({{la o e 01 ()} c—>c'}, {{15 5€0;1())

According to Michael’s theorem (Theorem A.6.2),

dU{{1o |0 €0i ()} CLC'},U{{L; 15 €0 1))

ELE'}) <d(c,c).

5—Z> 5’}) <d(c, ).




