
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Topological Models for Higher Order Control Flow

J.W. de Bakker, F. van Breugel

Computer Science/Department of Software Technology

CS-R9340 1993

1Topological Models for Higher Order Control FlowJ.W. de Bakker1;2 and F. van Breugel1;21CWIP.O. Box 4079, 1009 AB Amsterdam, The Netherlands2Vrije UniversiteitP.O. Box 7161, 1007 MC Amsterdam, The NetherlandsAbstractSemantic models are presented for two simple imperative languages with higher order constructs. In the �rstlanguage the interesting notion is that of second order assignment x := s, for x a procedure variable and s astatement. The second language extends this idea by a form of higher order communication, with statementsc ! s and c ?x, for c a channel. We develop operational and denotational models for both languages, and studytheir relationships. Both in the de�nitions and the comparisons of the semantic models, convenient use is madeof some tools from (metric) topology. The operational models are based on (SOS-style) transition systems;the denotational de�nitions use domains speci�ed as solutions of domain equations in a category of 1-boundedcomplete ultrametric spaces. In establishing the connection between the two kinds of models, fruitful use ismade of Rutten's processes as terms technique. Another new tool consists in the use of metric transitionsystems, with a metric de�ned on the con�gurations of the system. In addition to higher order programmingnotions, we use higher order de�nitional techniques, e.g., in de�ning the semantic mappings as �xed pointsof (contractive) higher order operators. By Banach's theorem, such �xed points are unique, yielding anotherimportant proof principle for our paper.AMS Subject Classi�cation (1991): 68Q55CR Subject Classi�cation (1991): D.3.1, F.3.2Keywords & Phrases: operational semantics, denotational semantics, complete metric space, second orderassignment, second order communication, processes as terms, metric transition systemNote: The work of F. van Breugel was partially supported by the Netherlands Nationale Faciliteit Infor-matica programme, project Research and Education in Concurrent Systems (REX). This paper will appearin Proceedings of the Ninth Conference on the Mathematical Foundations of Programming Semantics, NewOrleans, LA, USA, April 7-10, 1993.IntroductionIn recent years, the study of higher order programming notions has become a central topic in the�eld of semantics. Seminal in this development have been two schools of research, viz. that of (typed)�-calculus in the area of functional programming (see, e.g., [Bar92] for a survey of the current sit-uation), and that of higher order processes in the theory of concurrency (see, e.g., [AR87, Tho90,MPW92]). ([LTLG92] can be used for a quick overview of much of the relevant literature.) The aimof the present paper is to provide another perspective on this problem area by studying higher ordernotions embedded in the traditional setting of imperative languages. First, we study second orderassignment : the statement x := s, for x a procedure variable and s a statement, assigns s to x. In theoperational semantics, this is modelled by storing (the syntactic entity) s in the current `syntactic'state. Denotationally, the (function which is the) meaning of s is stored in the `semantic' state. Thesecond notion we study is second order communication. Recall that in a CSP- or occam-like languagevalue-passing communication is expressed by the two actions c ! e and c ? v occurring in two parallelcomponents (c a channel, e some expression, and v an individual variable), and synchronised execution

2 Introductionof these actions results in the transmission of the current value of e to v. A second order variant ofthis is the pair of communication constructs c ! s and c ? x (c, s, and x as above). Now a higher ordervalue is passed at the moment of synchronised execution: in the operational semantics, we pass s(again a syntactic object); denotationally, the meaning of s is transmitted.Though these notions are, we hope, conceptually quite simple, a not so simple arsenal of semantictools is necessary to make the ideas just sketched precise, and to obtain a full picture of the relation-ships between the operational (O) and denotational (D) models. In both kinds of models, topologicaltechniques play an essential rôle. More speci�cally, we work in a category of 1-bounded completeultrametric spaces, and a variety of functors on this category is used to specify the domains we workwith. (This type of domain equations originated with [BZ82]; the general theory is due to [AR89].See also [BR92] for many further applications.)For reasons of presentation, in addition to the languages with higher order assignment (Las2) andcommunication (Lco2) we also discuss two simpler languages with only �rst order assignment (Las)and communication (Lco), respectively. This allows a more leisurely development of the machinery:in particular, we are able to demonstrate in a simple setting another higher order phenomenon whichis pervasive in this paper, viz. the use of (contractive) higher order mappings in both the de�nitionand the comparison of semantic meaning functions. Each of the O's or D's to be de�ned is obtainedas (unique) �xed point of some higher order mapping �O or �D. By the uniqueness property, in orderto establish O = D, it su�ces to show, e.g., that �O (D) = D.The de�nition of each of the O's follows the customary pattern in that it is derived from some(SOS-style) transition system ([Plo81]). Mostly, these systems are �nitely branching, a property onwhich the compactness of the resulting sets of meanings is based. However, in the comparative studyof Lco2 we need a generalisation to compactly branching transition systems. This is, in turn, based onan extension of the metric framework consisting in the introduction of a metric on the con�gurationsof the transition system (rather than only having a metric based on the standard distance betweensequences of actions generated by successive transitions).The key idea in the semantic analysis of Las2 is the introduction of both syntactic and semanticstates, and of a suitable mapping linking the two. Whereas the syntactic states are an immediateextension of those used for Las , the set of semantic states requires a system of (reexive) domainequations for its speci�cation. Once the appropriate de�nitions have become available, a concise(statement and) proof of the relationship between O and D is possible, thanks to the rather powerfulgeneral methodology.The �rst order language Lco is a fairly typical language with imperative concurrency. Our designof O for Lco exhibits only some mild variations compared with the traditional approach. The deno-tational D is based on a `branching time' process domain P of the `nonuniform' variety (processeshave a functional dependence on the state). It is not di�cult to show (and implicit in [BZ82]) that Pis strongly extensional : with a slight adaptation of the usual de�nition of bisimilarity, we have thatbisimilarity on P coincides with identity. The various semantic operators on P may as well be de�nedby higher order techniques. The relationship between O and D for Lco involves a trace mappingfrom the denotational `branching time' to the operational `linear time' domain: among others, thebranching structure is collapsed, and failing attempts at communication are deleted (and deadlock isdelivered if no `proper' action remains).The paper culminates in the semantic study of Lco2 , bringing a synthesis of many of the earliertechniques. The denotational domain, albeit rather complex due to the use of three domain equations,allows an appealingly simple denotational de�nition. This domain can also be shown to be stronglyextensional (with some higher order generalisation of the bisimilarity de�nition, cf., e.g., [AGR92,MS92]). More work is needed to link O and D. First, an idea already used for Lco , viz. to designa variant of O delivering results in the denotational domain, is applied again. However, for Lco2

1. A sequential language with assignment 3a complication arises, inducing the appearance of `processes as terms' ([Rut92]). Also, this is thepoint where, as signalled earlier, a compactly branching transition system appears, a notion whichpresupposes a metric on the con�gurations ([Bre94]). In the �nal stage of the proof relating O andD, a lemma relating the transitions of both the original system (on which O for Lco2 is based) andof the extended system (in which the con�gurations may involve semantic processes) provides the keytechnical step.In the �nal section, the paper summarises the relationships between O and D for the four lan-guages considered. We see as one of the achievements of our paper the transparency of the successivere�nements, going from the simple O = D result for Las to the more elaborate theorem for Lco2 .We conclude this introduction with some remarks on related work. The idea to handle second orderassignment x := s through the storing of a pair (x; s) in the (syntactic) state is close to the explicitsubstitution (in the framework of the �-calculus) of [Cur88, ACCL90], albeit that some stack likenesting of states - omitted in this paper not to overload the presentation - would be needed to allowa full correspondence. The language Lco2 should, after some massaging of the speci�c operator forparallelism, be able to at least model a key part of Thomsen's CHOCS ([Tho89, Tho90]), viz. thatsublanguage which he uses to encode the lazy �-calculus. However, a precise statement and, especially,a full proof of this claim demands a lot of further work. Other connections to explore include therelationships with the �-calculus ([MPW92, Mil92]), the higher order �-calculus ([San92, San93]), andthe -calculus ([Bou89, BB92], cf. also [JP90]). In the �-calculus, channel names are transmittedrather than processes, so an immediate correspondence is not to be expected. For another reason, thesame holds for the -calculus: the notion of sequential composition used there is essentially di�erentfrom ours.1. A sequential language with assignmentThe �rst language we discuss, viz. Las , is quite simple, and chosen especially to illustrate the useof higher order techniques in de�ning and relating semantic models. Also, it prepares the way forthe more interesting language with second order assignment considered in the next section. For Las ,we shall de�ne both O (operational) and D (denotational) semantics as (unique) �xed point of asuitable contractive mapping 1. Banach's theorem2 applies, since all spaces involved are complete.The semantics O and D shall be related by showing that both are �xed points of the same contractivemapping.Let (v 2) IVar , (x 2)PVar be alphabets of individual and procedure variables. Let (e 2)Exp be aclass of simple expressions (syntax left unspeci�ed).Definition 1.1 The language Las is de�ned bys ::= v := e j s ; s j s+ s j x j �x [s]:The pre�x �x binds occurrences of procedure variable x. Our semantic de�nitions will throughoutbe given for closed constructs (no free procedure variables) only. To de�ne the operational semanticswe shall use transition systems. The con�gurations of the transition system are pairs of resumptionsand states.1Let (X; dX) and (X0; dX0) be metric spaces. A function f : X ! X0 is called contractive if there exists an �, with0 � � < 1, such that, for all x and x0,dX0 (f (x); f (x0)) � � � dX (x; x0):2Let (X; dX) be a complete metric space. If f : X ! X is contractive then f has a unique �xed point �x (f) (cf.[Ban22]).

4 IntroductionDefinition 1.2 The class Res1 of resumptions is de�ned byr ::= e j s : r:The set State1 of states is de�ned by(� 2)State1 = IVar ! Val ;for (� 2)Val some set of values.The (empty) resumption e will be used to denote termination. The state �f�=vg has value � in vand equals � elsewhere. Let V (e)(�) denote the value of expression e in state �. Let sfs0=xg denotesyntactic substitution of statement s0 for the free occurrences of procedure variable x in statement s.The transition system T1 is introduced inDefinition 1.3 The transition relation ! of T1 is the smallest subset of(Res1 � State1)� (Res1 � State1)satisfying the rules given below. A rule of the formif [r1; �1]! [r; �] then [r2; �2]! [r; �]will be abbreviated to[r2; �2]!0 [r1; �1];the 0-subscript indicates that we have here a zero-step transition.(1) [v := e : r; �] ! [r; �f�=vg], where � = V (e)(�)(2) [(s1 ; s2) : r; �] !0 [s1 : (s2 : r); �](3) [(s1 + s2) : r; �]!0 [s1 : r; �](4) [(s1 + s2) : r; �]!0 [s2 : r; �](5) [�x [s] : r; �] ! [sf�x [s]=xg : r; �]In the operational semantics we collect successive transitions. Each resumption is mapped to anelement of the semantic domain P1 presented inDefinition 1.4 The domain P1 is de�ned by(p 2)P1 = State1 ! Pnc (State11):The set (& 2)State11 = State�1 [State!1 of �nite and in�nite sequences of states is endowed with the1-bounded complete ultrametric d speci�ed byd (&; & 0) = � 0 if & = & 02�n otherwise

1. A sequential language with assignment 5where n is the length of the longest common pre�x of & and & 0. According to Kuratowski's theorem3,the set Pnc (State11) of nonempty compact subsets of State11 endowed with the Hausdor� metric is a1-bounded complete ultrametric space.Definition 1.5 The higher order mapping �O� : (Res1 ! P1)! (Res1 ! P1) is de�ned by�O� (�)(e) = �� : f"g�O� (�)(s : r) = �� :S f�0 � � (r0)(�0) j [s : r; �]! [r0; �0] gThe operational semantics O� : Res1 ! P1 is de�ned byO� = �x (�O�):In the above de�nition of �O� , �0 � � (r0)(�0) is the result of pre�xing the set of state sequences� (r0)(�0) by the state �0. The well-de�nedness proof of �O� exploits the fact that T1 is �nitelybranching. Obviously, �O� is contractive. According to Banach's theorem, �O� has a unique �xedpoint.Definition 1.6 The operational semantics O : Las ! P1 is de�ned byO (s) = O� (s : e):In the denotational semantics, we restrict ourselves to nonexpansive mappings4 (notation !1).Definition 1.7 The higher order mapping �D : (Las ! P1 !1 P1) ! (Las ! P1 !1 P1) is de�nedby �D (�)(v := e)(p) = �� : (�f�=vg � p (�f�=vg)), where � = V (e)(�)�D (�)(s1 ; s2)(p) = �D (�)(s1)(�D (�)(s2)(p))�D (�)(s1 + s2)(p) = �� : (�D (�)(s1)(p)(�) [�D (�)(s2)(p)(�))�D (�)(�x [s])(p) = �� : (� � � (sf�x [s]=xg)(p)(�))The denotational semantics D : Las ! P1 !1 P1 is de�ned byD = �x (�D):The nonexpansiveness of �D (�)(s) and the contractiveness of �D can be proved by structural induc-tion. Note that this de�nition of D implies, e.g., that D (�x [s])(p) = �� : (� � D (sf�x [s]=xg)(p)(�)).Well-de�nedness of D is a consequence of the contractiveness of �D (here ensured by the �-step)rather than of a direct argument by structural induction on s.Definition 1.8 The denotational semantics D� : Res1 ! P1 is de�ned by3If (X; dX) is a 1-bounded complete ultrametric space then the set of nonempty and compact subsets of X, Pnc (X),endowed with the Hausdor� metric based on dX is a 1-bounded complete ultrametric space (cf. [Kur56]).4Let (X; dX) and (X0; dX0) be metric spaces. A function f : X ! X0 is called nonexpansive if, for all x and x0,dX0 (f (x); f (x0)) � dX (x; x0):

6 IntroductionD� (e) = �� : f"gD� (s : r) = D (s)(D� (r))The operational and denotational semantics are related inTheorem 1.9 O� = D�.Proof For this theorem, we will sketch two alternative proofs.1. We can prove that, for all r,�O� (D�)(r) = D� (r)by induction on the complexity of r. For example, for the resumption (s1 ; s2) : r we have that�O� (D�)((s1 ; s2) : r)= �O� (D�)(s1 : (s2 : r)) [the de�nition of the complexity is such= D� (s1 : (s2 : r)) that the induction hypothesis applies here]= D (s1)(D (s2)(D� (r)))= D� ((s1 ; s2) : r):Since O� and D� are both �xed point of �O� and �O� has a unique �xed point, O� and D� mustbe equal.2. We can also prove that, for all r,d (O� (r);D� (r)) � 12 � sup f d (O� (r0);D� (r0)) j r0 2 Res1 gby induction on the complexity of r. For example, for the resumption v := e : r we have thatd (O� (v := e : r);D� (v := e : r))= d (�� : (�f�=vg � O� (r)(�f�=vg)); �� : (�f�=vg � D� (r)(�f�=vg)))= 12 � d (O� (r);D� (r))� 12 � sup f d (O� (r0);D� (r0)) j r0 2 Res1 g:Consequently, for all r, d (O� (r);D� (r)) = 0. Hence O� = D�. utThe �rst proof follows [KR90] (cf. [BM88]), but with a substantial simpli�cation thanks to ouravoiding procedure environments.corollary 1.10 For all s, O (s) = D (s)(�� : f"g).2. A sequential language with second order assignmentThe central notion of this section is second order assignment, in the form of the statement x :=s, for sitself a statement. In the operational semantics, the routine (program text) s is stored in the syntacticstate � as value for x; in the denotational semantics, the meaning D (s) is stored as value for x in thesemantic state �. The de�nition of O and D for Las2 allows a particularly succinct (statement and)proof of the relationship between O and D.Definition 2.1 The language Las2 is de�ned bys ::= v := e j s ; s j s+ s j x j x := s:

2. A sequential language with second order assignment 7The con�gurations of the transition system de�ning the operational semantics are pairs of re-sumptions (de�ned as in the previous section, but now named Res2) and syntactic states, which areintroduced inDefinition 2.2 The set SynState2 of syntactic states is de�ned by(� 2)SynState2 = (IVar ! Val)� (PVar ! Las2):Let, for the state � = (�1; �2), the states �f�=vg and �fs=xg be short for (�1f�=vg; �2) and(�1; �2fs=xg), respectively. The transition system T2 is introduced inDefinition 2.3 The transition relation ! of T2 is the smallest subset of(Res2 � SynState2)� (Res2 � SynState2)satisfying (1), (2), (3), (4) from De�nition 1.3, and(6) [x : r; �] ! [� (x) : r; �](7) [x := s : r; �]! [r; �fs=xg]The de�nitions of O� and O follow those of O� and O of the previous section, but now usingtransition system T2 and semantic domain P2, which is obtained from P1 by replacing State1 bySynState2. We next present the (system of) domain equations5 for the collection of semantic statesSemState2 and P3, the denotational domain for Las2 .Definition 2.4 The domains SemState2 and P3 are de�ned by(� 2)SemState2 �= (IVar ! Val)� (PVar ! id 12 (P3 !1 P3))(p 2)P3 �= SemState2 !1 Pnc (SemState12)Definition 2.5 The denotational semantics D : Las2 ! P3 !1 P3 is de�ned byD (v := e)(p) = �� : (�f�=vg � p (�f�=vg)), where � = V (e)(�)D (s1 ; s2)(p) = D (s1)(D (s2)(p))D (s1 + s2)(p) = �� : (D (s1)(p)(�) [D (s2)(p)(�))D (x)(p) = �� : (� � � (x)(p)(�))D (x := s)(p) = �� : (�f =xg � p (�f =xg)), where = D (s)The denotational semantics D closely follows the structure of the rules in transition system T2.Consider, for example, the case that a rule [r; �] ! [r0; �0] (or [r; �] !0 [r0; �0]) is the sole rulefor con�guration [r; �] in T2. Let p and p0 denote the denotational meanings of r and r0, and let� and �0 be the semantic states corresponding to � and �0 (cf. De�nition 2.6). Then the formula5To solve these domain equations, we work in a category of 1-bounded complete ultrametric spaces and apply themethodology of solving domain equations in this category as developed in [AR89]. Functors F appearing in domainequations X �= F (X) - or rather (X; dX) �= F (X; dX) - with �= denoting isometry, may be built from the familiaroperations on 1-bounded complete ultrametric spaces such as Cartesian product, disjoint union, (nonexpansive) functionspace, and (nonempty) compact power set, and the operation id1=2 (id1=2(X; dX) = (X; 12 �dX)), starting from given 1-bounded complete ultrametric spaces (A; dA) and the unknown space (X; dX). The operation id1=2 is used in particularto ensure contractiveness of the functor F , which induces uniqueness of the solution up to isometry.

8 Introductionp (�) = �0 � p0 (�0) (or p (�) = p0 (�0)) expresses the denotational counterpart of this rule. In this waythe clause for D (x)(p)(�) may be understood from clause (6) of De�nition 2.3.The de�nition of D� follows that of D� of the previous section. To each syntactic state a corre-sponding semantic state is assigned by the mapping sem introduced inDefinition 2.6 The mapping sem : SynState2 ! SemState2 is de�ned bysem (�) = (�1; �x : �p :D (�2(x))(p)):The mapping sem is extended in the natural way to a mapping from Pnc (SynState12) toPnc (SemState12). By means of this mapping the operational and denotational semantics are relatedinTheorem 2.7 For all r and �, sem (O� (r)(�)) = D� (r)(sem (�)).Proof This proof follows the second proof of Theorem 1.9. For example, for resumption x := s : rwe have thatd (sem (O� (x := s : r)(�));D� (x := s : r)(sem (�)))= d (sem (�fs=xg � O� (r)(�fs=xg));D (x := s)(D� (r))(sem (�)))= d (sem (�fs=xg) � sem (O� (r)(�fs=xg)); sem (�)fD (s)=xg � D� (r)(sem (�)fD (s)=xg))= 12 � d (sem (O� (r)(�fs=xg));D� (r)(sem (�)fD (s)=xg))� 12 � sup fd (sem (O� (r0)(�0));D� (r0)(sem (�0)) j r0 2 Res2; �0 2 State2g;since sem (�fs=xg) = sem (�)fD (s)=xg. utcorollary 2.8 For all s and �, sem (O (s)(�)) = D (s)(�� : f"g)(sem (�)).3. A parallel language with communicationThe language Lco studied here has �rst order communication (synchronised transmission of simplevalues) as its main concept. Lco is close to a language such as CSP ([Hoa85]); again, its main moti-vation in the present context is to pave the way for the second order variant. A further simpli�cationwith respect to the usual languages of this kind is that we assume one global state, rather than adistribution of local states over the various parallel components. The design of a mechanism for lo-cal states is well-understood (see, e.g., [ABKR89]), and we have kept it separate from the presentdevelopment in order not to burden the presentation.Let (c 2)Chan be an alphabet of channel names.Definition 3.1 The language Lco is de�ned bys ::= v := e j c ! e j c ? v j s ; s j s+ s j s k s j x j �x [s]:The con�gurations of the transition system are pairs of resumptions and extended states.Definition 3.2 The class Res3 of resumptions is de�ned by

3. A parallel language with communication 9r ::= e j s:The set State3 of states is de�ned by(� 2)State3 = State1:The set Stateext3 of extended states is de�ned by(� 2)Stateext3 = State3 [(Chan �Val) [(Chan � IVar):In the transition system, we will use the extended state (c; �) to denote that the value � is sent onchannel c, and we will use (c; v) to denote that the value received on channel c should be assigned tothe individual variable v. The transition system T3 is introduced inDefinition 3.3 The transition relation ! of T3 is the smallest subset of(Res3 � Stateext3)� (Res3 � Stateext3)satisfying(1) [v := e; �] ! [e; �f�=vg], where � = V (e)(�)(2) [c ! e; �] ! [e; (c; �)], where � = V (e)(�)(3) [c ? v; �] ! [e; (c; v)](4) [s1 + s2; �] !0 [s1; �](5) [s1 + s2; �] !0 [s2; �](6) [�x [s]; �] ! [sf�x [s]=xg; �](7) if [s1; �]! [r1; �] then [s1 ; s2; �] ! [r1 ; s2; �](8) if [s1; �]! [r1; �] then [s1 k s2; �]! [r1 k s2; �](9) if [s2; �]! [r2; �] then [s1 k s2; �]! [s1 k r2; �](10) if [s1; �]! [r1; (c; �)] and [s2; �]! [r2; (c; v)]then [s1 k s2; �]! [r1 k r2; �f�=vg](11) if [s1; �]! [r1; (c; v)] and [s2; �]! [r2; (c; �)]then [s1 k s2; �]! [r1 k r2; �f�=vg]In the above, we adopt the convention that e ; s = e k s = s k e = s, and e k e = e. We say that[s; �] blocks if there do not exist a resumption r and a state (not an extended state) �0 such that[s; �]! [r; �0]. The semantic domain for the operational semantics is introduced inDefinition 3.4 The domain P4 is de�ned by(p 2)P4 = State3 ! Pnc ((State3)1�):The set (& 2) (State3)1� = State�3 [State!3 [State�3 � f�g of �nite and in�nite sequences of statespossibly ending with � is endowed with the ultrametric described after De�nition 1.4.Definition 3.5 The operational semantics O� : Res3 ! P4 is the unique mapping satisfying

10 IntroductionO� (e) = �� : f"gO� (s) = �� :� f�g if [s; �] blocksS f�0 � O� (r)(�0) j [s; �]! [r; �0] g otherwiseThe operational semantics O is de�ned as the restriction of O� to Lco . It is important to ob-serve that O�, and hence O, is not compositional, i.e. there is no semantic operator k satisfyingO� (s1 k s2) = O� (s1) k O� (s2).The semantic domain for the denotational semantics is presented inDefinition 3.6 The domain P5 is de�ned by(p 2)P5 �= feg �[(State3 ! Pco (Stateext3 � id 12 (P5))):In the above de�nition, Pco denotes the compact power set operator. The domain P5 is a branchingdomain. Its core structure is as that of a P 05 solving P 05 �= Pco (Stateext3 �id 12 (P 05)); additional structureis provided by the nil process e and by P5's functional dependence on arguments in State3. It is notdi�cult to de�ne (a natural extension of) bisimilarity (notation �) on P5, and to show that P5 isstrongly extensional, viz. p1 � p2 if and only if p1 = p2 (cf. [RT92, Bre93]).Definition 3.7 The operator ; : P5 � P5 !1 P5 is the unique mapping satisfyingp1 ; p2 = � p2 if p1 = e�� : f (�; p01 ; p2) j (�; p01) 2 p1 (�) g otherwiseThe operator + : P5 � P5 !1 P5 is de�ned byp1 + p2 = 8><>: p2 if p1 = ep1 if p2 = e�� : (p1 (�) [p2 (�)) otherwiseThe operator k : P5 � P5 !1 P5 is the unique mapping satisfyingp1 k p2 = (p1 bb p2) + (p2 bb p1) + (p1 b p2) + (p2 b p1)wherep1 bb p2 = � p2 if p1 = e�� : f (�; p01 k p2) j (�; p01) 2 p1 (�) g otherwiseand, for p1 = e or p2 = e,p1 b p2 = e;otherwisep1 b p2 = �� : f (�f�=vg; p01 k p02) j ((c; �); p01) 2 p1 (�); ((c; v); p02) 2 p2 (�) g:The above de�nition can be made rigorous by another appeal to higher order techniques. Forexample, for the operator ; we should introduce a higher order mapping �; : (P5 � P5 !1 P5) !(P5 � P5 !1 P5) de�ned by

3. A parallel language with communication 11�; (�)(p1; p2) = � p2 if p1 = e�� : f (�; � (p01; p2) j (�; p01) 2 p1 (�) g otherwiseDefinition 3.8 The denotational semantics D : Lco ! P5 is the unique mapping satisfyingD (v := e) = �� : f(�f�=vg; e)g, where � = V (e)(�)D (c ! e) = �� : f((c; �); e)g, where � = V (e)(�)D (c ? v) = �� : f((c; v); e)gD (s1 ; s2) = D (s1) ;D (s2)D (s1 + s2) = D (s1) +D (s2)D (s1 k s2) = D (s1) k D (s2)D (�x [s]) = �� : f(�;D (sf�x [s]=xg))gWe now prepare the way for the statement relating O and D. We �rst de�ne a `hybrid' operationalsemantics, based on T3 but yielding elements in the denotational domain P5.Definition 3.9 The operational semantics O# : Res3 ! P5 is the unique mapping satisfyingO# (e) = eO# (s) = �� : f (�;O# (r)) j [s; �]! [r; �] gSecond, we extend the denotational semantics D to a denotational semantics D# from Res3 to P5by de�ning D# (e) = e.Lemma 3.10 O# = D#.Proof Following the �rst proof of Theorem 1.9, it su�ces to show that the higher order mapping�O# underlying De�nition 3.9 has D# as �xed point. utFinally, we show how the operational semantics O# and O� are connected. Semantic domain(p4 2)P4 is simpler than (p5 2)P5 in three ways;� for all �, the branching structure of p5 (�) is collapsed, leaving in p4 (�) only a set of paths ofp5 (�),� failing attempts at communication (c; �) or (c; v) appear in p5 (�) but not in p4 (�), and� p5 (�) contains, in general, pairs (�0; p05). Here p05 models the continuation of the execution after�0 has been delivered. This allows that an interleaving action of some �p5 might change �0 beforep05 is applied. However, this does not hold for p4 (�) which contains sets of the form �0 � p04 (�0).The combined e�ect of these simpli�cations is yielded by trace de�ned inDefinition 3.11 The mapping trace : P5 !1 P4 is the unique mapping satisfyingtrace (e) = �� : f"gtrace (p) = �� :�f�g if p (�) blocksS f�0 � trace (p0)(�0) j (�0; p0) 2 p (�) g otherwise

12 Introductionwhere p (�) blocks if there does not exist a pair (�0; p0) in p (�).The well-de�nedness proof of the higher order mapping �trace underlying the above de�nition relieson Michael's theorem6.Lemma 3.12 O� = trace � O#.Proof Again we can follow the �rst proof of Theorem 1.9 by showing that the higher order mapping�O� underlying De�nition 3.5 has trace � O# as �xed point. utTheorem 3.13 O = trace � D.4. A parallel language with second order communicationThis is the culminating section of our paper, providing a synthesis of ideas from the Sections 2 and 3.In addition, we need some novel techniques to establish the relationship between O and D for Lco2.In particular, we use� the `processes as terms' approach of [Rut92], and� a metric on con�gurations of a transition system ([Bre94]).As in Section 2, a more realistic language could be based on local states. In such a setting it wouldbe meaningful to transmit a closure, a pair consisting of a statement and a local state, rather thanjust a statement (as we do in the operational model for Lco2).Definition 4.1 The language Lco2 is de�ned bys ::= v := e j s ; s j s+ s j s k s j x j c ! s j c ? x:The con�gurations of the transition system are pairs of resumptions (de�ned as in the previoussection, but now named Res4) and extended syntactic states.Definition 4.2 The set SynState4 of syntactic states is de�ned by(� 2)SynState4 = (IVar ! Val)� (PVar ! Lco2):The class SynStateext4 of extended syntactic states is de�ned by(� 2)SynStateext4 = SynState4 [(Chan � Lco2) [(Chan � PVar);where Chan = f �c j c 2 Chan g.We introduce Chan to avoid a possible ambiguity: we distinguish between the extended statedenoting that statement x is sent on channel c - denoted by (c; x) -, and the extended state denotingthat the statement received on channel c should be assigned to procedure variable x - denoted by(�c; x). The transition system T4 is presented in6Let (X; dX) be a metric space. If X 2 Pco (Pco (X)) then SX 2 Pco (X) (cf. [Mic51]).

4. A parallel language with second order communication 13Definition 4.3 The transition relation ! of T4 is the smallest subset of(Res4 � SynStateext4)� (Res4 � SynStateext4)satisfying (1), (4), (5), (7), (8), (9) from De�nition 3.3, and(12) [x; �] ! [� (x); �](13) [c ! s; �] ! [e; (c; s)](14) [c ? x; �]! [e; (�c; x)](15) if [s1; �]! [r1; (c; s)] and [s2; �]! [r2; (�c; x)]then [s1 k s2; �]! [r1 k r2; �fs=xg](16) if [s1; �]! [r1; (�c; x)] and [s2; �]! [r2; (c; s)]then [s1 k s2; �]! [r1 k r2; �fs=xg]The de�nitions of O� and O follow those of O� and O of the previous section, but now usingtransition system T4 and semantic domain P6 introduced inDefinition 4.4 The domain P6 is de�ned by(p 2)P6 = SynState4 ! Pnc ((SynState4)1�):Next, we de�ne the collection of (extended) semantic states SemState4 (SemStateext4), and thedomain P7 of denotational meanings for Lco2 .Definition 4.5 The domains SemState4, SemStateext4 , and P7 are de�ned by(� 2)SemState4 �= (IVar ! Val)� (PVar ! id 12 (P7))(� 2)SemStateext4 �= SemState4 �[(Chan � id 12 (P7)) �[(Chan � PVar)(p 2)P7 �= feg �[(SemState4 !1 Pco (SemStateext4 � id 12 (P7)))Note the correspondence of the de�nitions of the domains SemState4, SemStateext4 , and P7 withthose of SynState4, SynStateext4 , and P6, respectively. On domain P7 we can de�ne (higher order)bisimilarity in several ways. Based on these de�nitions, the domain can be shown to be stronglyextensional. Whether one of the bisimilarity notions gives us the `right' equivalence needs furtherstudy.Definition 4.6 The denotational semantics D : Lco2 ! P7 is de�ned byD (v := e) = �� : f(�f�=vg; e)g,where � = V (e)(�)D (s1 ; s2) = D (s1) ;D (s2)D (s1 + s2) = D (s1) +D (s2)D (s1 k s2) = D (s1) k D (s2)D (x) = �� : f(�; � (x))gD (c ! s) = �� : f((c; p); e)g, where p = D (s)D (c ? x) = �� : f((�c; x); e)g

14 IntroductionThe semantic operators used here are de�ned quite similarly to those of De�nition 3.7. For example,for the operator b we have, for p1 6= e and p2 6= e,p1 b p2 = �� : f (�fp=xg; p01 k p02) j ((c; p); p01) 2 p1 (�); ((�c; x); p02) 2 p2 (�) g:In order to relate O and D, we need various preparations. First, we want to mimic the introductionof O# (cf. De�nition 3.9), delivering denotational meanings. This requires using �'s rather than �'s.Clause (12) of De�nition 4.3 then obtains the form [x; �] ! [� (x); �]. As a consequence, semanticentities p 2 P7 appear in the new T 04 , with respect to the extended class of resumptions introduced inDe�nition 4.7. In De�nition 4.8, we introduce the induced transition system. Note that T 04 is no more�nitely branching, and the higher order de�nition of O# based on T 04 requires separate justi�cation.Definition 4.7 The class Res 04 is de�ned byu ::= e j twheret ::= v := e j t ; t j t+ t j t k t j x j c ! t j c ? x j p:Definition 4.8 The transition relation ! of T 04 is the smallest subset of(Res 04 � SemStateext4)� (Res 04 � SemStateext4)satisfying(1) [v := e; �] ! [e; �f�=vg], where � = V (e)(�)(2) [t1 + t2; �] !0 [t1; �](3) [t1 + t2; �] !0 [t2; �](4) [x; �] ! [� (x); �](5) [c ! t; �] ! [e; (c; p)], where p = D# (t) (cf. De�nition 4.12)(6) [c ? x; �] ! [e; (�c; x)](7) if [t1; �]! [u1; �] then [t1 ; t2; �] ! [u1 ; t2; �](8) if [t1; �]! [u1; �] then [t1 k t2; �] ! [u1 k t2; �](9) if [t2; �]! [u2; �] then [t1 k t2; �] ! [t1 k u2; �](10) if [t1; �]! [u1; (c; p)] and [t2; �]! [u2; (�c; x)]then [t1 k t2; �]! [u1 k u2; �fp=xg](11) if [t1; �]! [u1; (�c; x)] and [t2; �]! [u2; (c; p)]then [t1 k t2; �]! [u1 k u2; �fp=xg](12) if (�; p0) 2 p (�) then [p; �]! [p0; �]Definition 4.9 The operational semantics O# : Res 04 !1 P7 is the unique mapping satisfyingO# (e) = eO# (t) = �� : f (�;O# (u)) j [t; �]! [u; �] g

4. A parallel language with second order communication 15Note that the !1 in the above de�nition assumes a metric on Res 04. This is presented inDefinition 4.10 The metric d : Res 04 � Res 04 ! [0; 1] is de�ned byd (u; u) = 0d (p; p0) = dP7 (p; p0)d (t1 ; t2; t01 ; t02) = maxfd (t1; t01); d (t2; t02)gd (t1 + t2; t01 + t02) = maxfd (t1; t01); d (t2; t02)gd (t1 k t2; t01 k t02) = maxfd (t1; t01); d (t2; t02)gd (c ! t; c ! t0) = d (t; t0)d (t; t0) = 1, otherwiseWe shall also need the mapping S de�ned inDefinition 4.11 The mapping S : (Res 04 � SemState4)!1 Pco (Res 04 � SemStateext4) is de�ned byS (u; �) = f [u0; �] j [u; �]! [u0; �] g:Let �O# be the higher order mapping associated in the natural way with the de�nition of O#.Well-de�nedness of �O# follows by noting that� S is well-de�ned, i.e., for all u and �, S (u; �) is compact and S is nonexpansive,� for all t and �, the set f (�; � (u)) j [t; �]! [u; �] g is compact, since S delivers compact sets and� is nonexpansive,� for all t, the mapping �� : f (�; � (u)) j [t; �] ! [u; �] g is nonexpansive, since S and � arenonexpansive.Second, we extend the denotational semantics D.Definition 4.12 The denotational semantics D# : Res 04 !1 P7 is de�ned byD# (e) = eD# (v := e) = �� : f(�f�=vg; e)g, where � = V (e)(�)D# (t1 ; t2) = D# (t1) ;D# (t2)D# (t1 + t2) = D# (t1) +D# (t2)D# (t1 k t2) = D# (t1) k D# (t2)D# (x) = �� : f(�; � (x))gD# (c ! t) = �� : f((c; p); e)g, where p = D# (t)D# (c ? x) = �� : f((�c; x); e)gD# (p) = pLemma 4.13 O# = D#.

16 IntroductionProof This proof follows the �rst proof of Theorem 1.9. For example, for resumption x we havethat �O# (D#)(x)= �� : f(�;D# (� (x)))g= �� : f(�; � (x))g= D# (x): utTo each extended syntactic state an extended semantic state is assigned by the mapping sem.Definition 4.14 The mapping sem : SynStateext4 ! SemStateext4 is de�ned bysem (�) = (�1; �x :D# (�2(x)))sem ((�c; x)) = (�c; x)sem ((c; s)) = (c;D# (s))The mapping sem is, again, extended in the natural way to a mapping from Pnc ((SynState4)1�) toPnc ((SemState4)1�). The next lemma is the key technical result on which the relationship between Oand D is based. The lemma expresses a canonical correspondence between transitions of T4 and T 04 .Lemma 4.15 For all s, r, u, �, �0, and �,if [s; �]! [r; �0] then [s; sem (�)]! [u0; sem (�0)]and O# (u0) = O# (r) for some u0and if [s; sem (�)]! [u; �] then [s; �]! [r0; �00]and O# (r0) = O# (u) and sem (�00) = � for some r0 and �00.Proof This lemma can be proved by structural induction on s. We will only consider the �rst partfor statement s1 ; s2. We distinguish two cases.1. Assume [s1 ;s2; �]! [s2; �0]. Then [s1; �]! [e; �0]. By induction, [s1; sem (�)]! [u0; sem (�0)]and O# (u0) = O# (e). Consequently, u0 � e. So, [s1 ; s2; sem (�)]! [s2; sem (�0)].2. Assume [s1 ; s2; �] ! [s01 ; s2; �0]. Then [s1; �] ! [s01; �0]. By induction,[s1; sem (�)] ! [u0; sem (�0)] and O# (u0) = O# (s01). Consequently, u0 6� e. So,[s1 ; s2; sem (�)]! [u0 ; s2; sem (�0)] andO# (u0 ; s2)= D# (u0 ; s2)= O# (u0) ;D# (s2)= O# (s01) ;D# (s2)= O# (s01 ; s2): utThe mapping trace used for Lco2 is obtained from De�nition 3.11 by replacing �'s by �'s:

Summary 17Definition 4.16 The mapping trace : P7 !1 SemState4 !1 Pnc ((SemState4)1�) is de�ned bytrace (e) = �� : f"gtrace (p) = �� : �f�g if p (�) blocksS f �0 � trace (p0)(�0) j (�0; p0) 2 p (�) g otherwiseThe operational semantics O� and O# are related by means of the mappings sem and trace.Lemma 4.17 For all r and �, sem (O� (r)(�)) = trace (O# (r))(sem (�)).Proof We can prove this lemma by means of the proof principle exploited in the second proof ofTheorem 1.9 using Lemma 4.15. utTheorem 4.18 For all s and �, sem (O (s)(�)) = trace (D (s))(sem (�)).SummaryThe results from the Sections 1 to 4 relatingO and D for the four languages considered are summarisedin the following table (putting O [[s]] = O (s) for each of the four languages, D [[s]] = D (s)(�� � f"g)for Las , D [[s]] = D (s)(�� � f"g) for Las2 , and D [[s]] = D (s) for Lco and Lco2):Las : O [[s]] = D [[s]]Las2 : sem � O [[s]] = D [[s]] � semLco : O [[s]] = (trace � D) [[s]]Lco2 : sem � O [[s]] = (trace � D) [[s]] � semReferences[ABKR89] P. America, J.W. de Bakker, J.N. Kok, and J.J.M.M. Rutten. Denotational Semanticsof a Parallel Object-Oriented Language. Information and Computation, 83(2):152{205,November 1989.[ACCL90] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. L�evy. Explicit Substitutions. In Proceedingsof the 17th Annual ACM Symposium on Principles of Programming Languages, pages 31{46, San Francisco, January 1990.[AGR92] E. Astesiano, A. Giovini, and G. Reggio. Observational Structures and their Logics. The-oretical Computer Science, 96(1):249{283, April 1992.[AR87] E. Astesiano and G. Reggio. SMoLCS-driven Concurrent Calculi. In H. Ehrig, R. Kowalski,G. Levi, and U. Montanari, editors, Proceedings of the International Joint Conference onTheory and Practice of Software Development, volume 249 of Lecture Notes in ComputerScience, pages 169{201, Pisa, March 1987. Springer-Verlag.[AR89] P. America and J.J.M.M. Rutten. Solving Reexive Domain Equations in a Categoryof Complete Metric Spaces. Journal of Computer and System Sciences, 39(3):343{375,December 1989.[Ban22] S. Banach. Sur les Op�erations dans les Ensembles Abstraits et leurs Applications auxEquations Int�egrales. Fundamenta Mathematicae, 3:133{181, 1922.

18 References[Bar92] H.P. Barendregt. Lambda Calculi with Types. In S. Abramsky, Dov M. Gabbay, andT.S.E. Maibaum, editors, Handbook of Logic in Computer Science, volume 2, Background:Computational Structures, chapter 2, pages 117{309. Clarendon Press, Oxford, 1992.[BB92] G. Berry and G. Boudol. The Chemical Abstract Machine. Theoretical Computer Science,96(1):217{248, April 1992.[BM88] J.W. de Bakker and J.-J.Ch. Meyer. Metric Semantics for Concurrency. BIT, 28:504{529,1988.[Bou89] G. Boudol. Towards a Lambda-Calculus for Concurrent and Communicating Systems. InJ. Diaz and F. Orejas, editors, Proceedings of the International Joint Conference on Theoryand Practice of Software Development, volume 351 of Lecture Notes in Computer Science,pages 149{162, Barcelona, March 1989. Springer-Verlag.[BR92] J.W. de Bakker and J.J.M.M. Rutten, editors. Ten Years of Concurrency Semantics,selected papers of the Amsterdam Concurrency Group. World Scienti�c, Singapore, 1992.[Bre93] F. van Breugel. Three Metric Domains of Processes for Bisimulation. Report, CWI, Am-sterdam, June 1993. To appear in Proceedings of the 9th Conference on the MathematicalFoundations of Programming Semantics, Lecture Notes in Computer Science, New Orleans,April 1993. Springer-Verlag.[Bre94] F. van Breugel. Topological Models in Comparative Semantics. PhD thesis, Vrije Univer-siteit, Amsterdam, 1994. In preparation.[BZ82] J.W. de Bakker and J.I. Zucker. Processes and the Denotational Semantics of Concurrency.Information and Control, 54(1/2):70{120, July/August 1982.[Cur88] P.-L. Curien. The ��-calculus: An Abstract Framework for Environment Machines. Report,LIENS, Paris, October 1988.[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Series in Computer Science. Pren-tice/Hall International, London, 1985.[JP90] R. Jagadeesan and P. Panangaden. A Domain-theoretic Model for a Higher-order ProcessCalculus. In M.S. Paterson, editor, Proceedings of the 17th International Colloquium onAutomata, Languages and Programming, volume 443 of Lecture Notes in Computer Science,pages 181{194, Coventry, July 1990. Springer-Verlag.[KR90] J.N. Kok and J.J.M.M. Rutten. Contractions in Comparing Concurrency Semantics. The-oretical Computer Science, 76(2/3):179{222, 1990.[Kur56] K. Kuratowski. Sur une M�ethode de M�etrisation Compl�ete des Certains Espacesd'Ensembles Compacts. Fundamenta Mathematicae, 43:114{138, 1956.[LTLG92] J.-J. L�evy, B. Thomsen, L. Leth, and A. Giacalone. CONcurrency and Functions: Eval-uation and Reduction. Bulletin of the European Association for Theoretical ComputerScience, 48:88{106, October 1992.[Mic51] E. Michael. Topologies on Spaces of Subsets. Transactions of the American MathematicalSociety, 71:152{182, 1951.[Mil92] R. Milner. Functions as Processes. Mathematical Structures in Computer Science, 2(2):119{141, June 1992.[MPW92] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, I and II. Informationand Computation, 1(100):1{40 and 41{77, September 1992.[MS92] R. Milner and D. Sangiorgi. Barbed Bisimulation. In W. Kuich, editor, Proceedings of the19th International Colloquium on Automata, Languages and Programming, volume 623 ofLecture Notes in Computer Science, pages 685{695, Vienna, July 1992. Springer-Verlag.

References 19[Plo81] G.D. Plotkin. A Structural Approach to Operational Semantics. Report DAIMI FN-19,Aarhus University, Aarhus, September 1981.[RT92] J.J.M.M. Rutten and D. Turi. On the Foundations of Final Semantics: non-standard sets,metric spaces, partial orders. In J.W. de Bakker, W.-P. de Roever, and G. Rozenberg,editors, Proceedings of the REX Workshop on Semantics: Foundations and Applications,volume 666 of Lecture Notes in Computer Science, pages 477{530, Beekbergen, June 1992.Springer-Verlag.[Rut92] J.J.M.M. Rutten. Processes as Terms: Non-Well-Founded Models for Bisimulation. Math-ematical Structures in Computer Science, 2(3):257{275, September 1992.[San92] D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-OrderParadigms. PhD thesis, University of Edinburg, Edinburg, 1992.[San93] D. Sangiorgi. An Investigation into Functions as Processes. To appear in Proceedings ofthe 9th Conference on the Mathematical Foundations of Programming Semantics, LectureNotes in Computer Science, New Orleans, April 1993. Springer-Verlag.[Tho89] B. Thomsen. A Calculus of Higher Order Communicating Systems. In Proceedings of the16th Annual ACM Symposium on Principles of Programming Languages, pages 143{154,Austin, January 1989.[Tho90] B. Thomsen. Calculi for Higher Order Communicating Systems. PhD thesis, ImperialCollege, London, September 1990.

