
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Relating State Transformation Semantics and Predicate Transformer
Semantics for Parallel Programs

Franck van Breugel

Computer Science/Department of Software Technology

CS-R9339 1993

1Relating State Transformation Semantics and Predicate TransformerSemantics for Parallel ProgramsFranck van BreugelCWIP.O. Box 4079, 1009 AB Amsterdam, The NetherlandsVrije UniversiteitP.O. Box 7161, 1007 MC Amsterdam, The NetherlandsAbstractA state transformation semantics and a predicate transformer semantics for programs built from atomic actions,sequential composition, nondeterministic choice, parallel composition, atomisation, and recursion are presented.Both semantic models are derived from some SOS-style labelled transition system. The state transformationsemantics and the predicate transformer semantics are shown to be isomorphic extending results of Plotkin andBest.AMS Subject Classi�cation (1991): 68Q55CR Subject Classi�cation (1991): D.3.1, F.3.2Keywords & Phrases: state transformation, predicate transformer, isomorphism, labelled transition system,parallelismNote: This work was partially supported by the Netherlands Nationale Faciliteit Informatica programme,project Research and Education in Concurrent Systems (REX).IntroductionIn [Dij76], Dijkstra introduces a predicate transformer semantics, which is called the weakest precon-dition semantics, to deal with partial correctness of sequential programs. The relation between thispredicate transformer semantics and a state transformation semantics is considered by De Roever in[Roe76]. In [Bak77], De Bakker shows that there is a homomorphism from the state transformationsemantics to the predicate transformer semantics. Plotkin shows, in [Plo79], that by re�ning thede�nitions this homomorphism can be strengthened to an isomorphism.Predicate transformer semantics for partial correctness of parallel programs are studied by VanLamsweerde and Sintzo� [LS79], Haase [Haa81], Flon and Suzuki [FS81], Elrad and Francez [EF84],Best [Bes82, Bes89], and Schole�eld and Zedan [SZ92]. In [Bes89], a predicate transformer semanticsand a state transformation semantics are related. However, only parallel programs without recursionare considered.In this paper, we present a state transformation semantics and a predicate transformer semantics forparallel programs built from atomic actions, sequential composition, nondeterministic choice, parallelcomposition, atomisation (atomicity being a key notion in reasoning about parallel programs, see, e.g.,[LL90]), and recursion. (In order to introduce recursion we will consider a program to be a statementand a declaration. The statement is built from atomic actions, procedure variables, and the operatorsmentioned above, and the declaration assigns to the procedure variables their corresponding bodies,which are again statements. In general, we will �x the declaration part of a program and only considerthe statement part.) These semantics are shown to be isomorphic. Although several results of [Plo79]are exploited in our paper, for parallel programs the isomorphism result cannot be obtained simply

2 Introductionalong the lines of [Plo79], because the parallel composition is not compositional with respect to the(state transformation and predicate transformer) semantics de�ned in [Plo79]. The standard exampleto show that compositionality is lost when introducing parallel composition is that the programsx := 2 and x := 1 ; x := x+ 1are semantically equivalent, butx := 2 k x := 3 and (x := 1 ; x := x+ 1) k x := 3are not (see, e.g., [Mil93]).The state transformation semantics and the predicate transformer semantics to be presented aremappings from statements to state transformations and predicate transformers, respectively. Beforewe come to these semantics, we �rst discus the state transformations and the predicate transformersand their relationship.To model a statement we can use a state transformation assigning to an arbitrary (initial) statethe result of the statement started in the state. If the statement (always) terminates, then theresult is described by a set of (possible �nal) states. (Note that we need sets of states to modelnondeterminism.) Otherwise, i.e. if the statement might not terminate, the result is modelled by aspecial element. For the time being, the set of state transformations can be viewed as(� 2) �! (P (�) [f�?g);with �? being the above mentioned special element.A statement can also be modelled by a predicate transformer. A predicate transformer transformsa predicate valid after the execution of a statement to a predicate valid before the execution of thestatement. (Note the order reversal when we go from state transformations to predicate transformers inthat a state transformation maps an initial state to a set of �nal states whereas a predicate transformermaps a `�nal' predicate to an `initial' predicate.) To model predicates we employ sets of states. (TakingP (�) as the set of predicates is the so-called extensional view. We could also have taken the so-calledintensional view by describing the set of predicates by �! ftrue; falseg as is done in, e.g., [Bak80].)Predicate transformers will look like(� 2)P (�)! P (�):With each state transformation � we can associate a predicate transformer ! (�) de�ned by! (�) = �S � f� 2 � j � (�) � S g:The set ! (�)(S) is called the weakest precondition of S relative to � (cf. [Roe76]). By re�ning theabove de�nitions of state transformations and predicate transformers and by endowing them withorders, complete partial orders of state transformations and predicate transformers can be obtained.These complete partial orders can be shown to be isomorphic (by means of a modi�cation of ! andits inverse). These re�nements and endowments with orders can be done in various ways. Here, wewill follow [Plo79]. Other isomorphism results of state transformations and predicate transformers arepresented by Wand [Wan77], Majster-Cederbaum [MC80], Best [Bes82], Smyth [Smy83, Smy92], Aptand Plotkin [AP86], and Bonsangue and Kok [BK92, BK93]. For an overview of these isomorphismresults we refer the reader to [BK92].

Introduction 3Having discussed the state transformations and the predicate transformers, we now come to thestate transformation and predicate transformer semantics. Both semantic models are so-called oper-ational semantics de�ned by means of a labelled transition system (cf. [Plo81, Plo82]). Let us �rstdiscus the state transformation semantics. The labels of the labelled transition system de�ning thestate transformation semantics are state transformations. To deal with recursion, we employ pairs ofstatements and natural numbers as con�gurations of the labelled transition system. A con�guration(s; n) denotes that statement s has to be executed with recursion restricted to at most depth n. Bymeans of the labelled transition system we de�ne an (intermediate) state transformation semanticsO�st mapping a con�guration to a state transformation. This state transformation is obtained bycomposing the labels of the transition sequences starting from the con�guration. The state transfor-mation semantics Ost maps statements to state transformations. For statement s, Ost (s) is de�nedas the least upper bound (in the complete partial order of state transformations) of the O�st (s; n)'s.The predicate transformer semantics Opt is de�ned similar to the state transformation semantics Ost .In this case, the labels of the labelled transition system are predicate transformers. These two stepde�nitions are choosen to smoothen the proof of the theorem establishing the isomorphism of the statetransformation semantics and the predicate transformer semantics.The main result of this paper is the relation of the state transformation semantics Ost and thepredicate transformer semantics Opt . We will show that these semantics are isomorphic. A problem inthe proof of this theorem is that the state transformation semantics Ost and the predicate transformersemanticsOpt are not compositional. As an intermediate tool, compositional semantics Cst and Cpt areintroduced. The semantics Cst and Cpt are de�ned by means of the labelled transition systems de�ningthe semantics O�st and O�pt , respectively. This time, the semantics assign to a con�guration a set ofsequences of state transformations and predicate transformers (cf. [Coo78]). To a con�guration theset of label sequences corresponding to the set of transition sequences starting from the con�gurationis assigned. Using sets of sequences of state transformations and predicate transformers instead ofstate transformations and predicate transformers gives rise to compositional semantics as we will see.We prove that the compositional semantics Cst and Cpt are isomorphic. For this purpose, we use thealready mentioned result of [Plo79] that a complete partial order of state transformations (ST) and acomplete partial order of predicate transformers (PT) are isomorphic, ! : ST �= PT . From this result,we can easily derive that the sets of (nonempty and �nite) sets of (nonempty and �nite) sequences ofstate transformations and predicate transformers are isomorphic,
 : Pnf (ST+) �= Pnf (PT+). Basedon this, the compositional semantics Cst and Cpt are shown to be isomorphic. This proof shows someresemblance with the isomorphism proof in [Bes89].Conf�Pnf (ST+) Pnf (PT+)Cst �������������� Cpt;;;;;;;;;;;; ��
oo________________ //From this isomorphism result we will derive the isomorphism of Ost and Opt as follows. We introduceabstraction operators absst and abspt . These operators map sets of sequences of state transformationsand predicate transformers to state transformations and predicate transformers, respectively. Thesets of sequences will be composed as in the de�nitions of the intermediate semantics O�st and O�pt .

4 IntroductionFirst, we relate the isomorphisms ! and
 by means of the abstraction operators.Pnf (ST+) Pnf (PT+)�ST PT

oo____________//absst �������������� abspt��������������!oo___________________//Second, we relate the compositional semantics with the intermediate semantics.Pnf (ST+) Pnf (PT+)� Conf �ST PTabsst ��������������� abspt���������������CstiiRRRRRRRRRRRRR Cptlllllllllllll55O�stuukkkkkkkkkkkkkkk O�ptSSSSSSSSSSSSSSS))By combining the above results, we �nally show that the state transformation semantics Ost and thepredicate transformer semantics Opt are isomorphic.Stat�ST PTOst

�� Opt444444444444��!oo_______________//In the �rst section of this paper, some results of [Plo79] are repeated. A complete partial order ofstate transformations and a complete partial order of predicate transformers, which are isomorphic, areintroduced. In the second section, the state transformation semantics and the predicate transformersemantics are presented. The paper concludes with the theorem establishing the isomorphism ofthese semantics. The theorem extends the isomorphism results of [Plo79] and [Bes89] by going fromsequential programs to parallel programs and by adding recursion, respectively.AcknowledgementsThe author would like to thank Jaco de Bakker for introducing him to the problem of relating statetransformation semantics and predicate transformer semantics for parallel programs and discussing thetopic. Furthermore, the author is grateful to Marcello Bonsangue, Wim Hesselink, Joost Kok, Vincentvan Oostrom, Prakash Panangaden, Jan Rutten, Daniele Turi, and Erik de Vink for their commentson a preliminary version of this paper. Finally, the author is thankful to one of the CONCUR refereesfor pointing out that a previous de�nition of the complexity measure (De�nition 2.5) did not validateProperty 2.6.1. State transformations and predicate transformersIn this section, some results of [Plo79] are repeated. A complete partial order of state transformationsand a complete partial order of predicate transformers are introduced and shown to be isomorphic.

1. State transformations and predicate transformers 51.1 State transformationsFirst, we de�ne a complete partial order of state transformations (cf. De�nitions 5.1, 5.2, and 5.3 of[Plo79]). We postulate a denumerable set (� 2) � of states (cf. page 212 of [Wan77] and page 529 of[Plo79]). State transformations are de�ned as mappings from � to the so-called Smyth power domain([Smy78]) of � inDefinition 1.1 The partial order (� 2)ST of state transformations is the set�! PS (�?);wherePS (�?) = fS � � j S is nonempty and �nite g [f�?gand �? denotes the disjoint union of � and f?g. This set is ordered by � v �0 iffor all � 2 �, � (�) � �0 (�).Property 1.2 ST is a complete partial order.Proof See Proposition 5.4 of [Plo79]. utComposition and union of state transformations are de�ned inDefinition 1.3 The mapping � : ST � ST ! ST is de�ned by� � �0 = �� �� S f�0 (�0) j �0 2 � (�) g if � (�) 6= �?�? otherwiseand the mapping [: ST � ST ! ST is de�ned by� [�0 = �� � � (�) [�0 (�):Note that the state transformation � � �0 is the result of performing state transformation �0 afterstate transformation �. The de�nition of the composition is similar to the de�nition of Comp atpage 543 of [Plo79]. The de�nition of the union is similar to the de�nition of u at page 542 of[Plo79]. We will use the composition and union of state transformations to compose the labels, i.e.state transformations, of transition sequences of the labelled transition system in the de�nition of the(intermediate) state transformation semantics.Property 1.4 The mappings � and [are strict in both arguments.Proof Trivial. utThe strictness of composition and union will be applied in the well-de�nedness proof of the statetransformation semantics.

6 Introduction1.2 Predicate transformersSecond, we de�ne a complete partial order of predicate transformers (cf. page 537 of [Plo79]).Definition 1.5 The partial order (� 2)PT of predicate transformers is the setf� 2 P (�)! P (�) j � is strict, continuous, and multiplicativeg;where � is called multiplicative iffor all S; S0 2 P (�), � (S \ S0) = � (S) \ � (S0).This set is ordered by � v �0 iffor all S 2 P (�), � (S) � �0 (S).Property 1.6 PT is a complete partial order.Proof See Proposition 4.2 of [Plo79]. utFor predicate transformers, composition and intersection are de�ned inDefinition 1.7 The mapping � : PT � PT ! PT is de�ned by� � �0 = �S � �0 (� (S))and the mapping \ : PT � PT ! PT is de�ned by� \ �0 = �S � � (S) \ �0 (S):The predicate transformer � ��0 is the result of performing predicate transformer �0 after predicatetransformer �. The de�nition of the composition is the `reversed' version of Comp at page 538 of[Plo79], i.e. � � �0 = Comp (�; �0). The de�nition of the intersection is similar to the de�nition ofu at page 537 of [Plo79]. The composition and intersection of state transformations will be usedto compose the labels, i.e. predicate transformers, of transition sequences of the labelled transitionsystem in the de�nition of the (intermediate) predicate transformer semantics.Property 1.8 The mappings � and \ are strict in both arguments.Proof Trivial. utThe strictness of composition and intersection will be exploited in the well-de�nedness proof of thepredicate transformer semantics.1.3 Isomorphism theoremThird, we show ST and PT to be isomorphic. To de�ne the isomorphism the following stability lemma(this term originates from the term stable function which has been introduced in [Ber78]) is proved.Lemma 1.9 Let � 2 P (�) ! P (�). Then � 2 PT if and only if whenever � 2 � (�) there exists anonempty and �nite set min (�; �) satisfying

2. State transformation semantics and predicate transformer semantics 7for all S 2 P (�); � 2 � (S), min (�; �) � S:Proof See Lemma 5.6 of [Plo79]. utThe isomorphism ! and its inverse !�1 are de�ned as follows (cf. De�nition 5.8 of [Plo79]).Definition 1.10 The mapping ! : ST ! PT is de�ned by! (�) = �S � f� 2 � j � (�) � S gand the mapping !�1 : PT ! ST is de�ned by!�1 (�) = �� � � min (�; �) if � 2 � (�)�? otherwiseTheorem 1.11 The mapping ! : ST �= PT is an isomorphism of complete partial orders.Proof See Theorem 5.9 of [Plo79]. utThe predicate transformer corresponding to the composition of the state transformations � and �0is the composition of the predicate transformers corresponding to the state transformations �0 and �(order reversal). The predicate transformer corresponding to the union of the state transformations� and �0 is the intersection of the predicate transformers corresponding to the state transformations� and �0.Property 1.12 For all � and �0,! (� � �0) = ! (�0) � ! (�)! (� [�0) = ! (�) \ ! (�0)Proof See Lemmas 5.10 and 5.11 of [Plo79]. utThe proof that the state transformation semantics and the predicate transformer semantics areisomorphic, will be based on these properties.2. State transformation semantics and predicate transformer semanticsIn this section, we present the state transformation semantics and the predicate transformer semantics.After we have introduced these semantic models, we head for the main theorem of this paper. In thistheorem, we show that the semantics are isomorphic.The parallel programs are built from atomic actions a, sequential composition ;, nondeterministicchoice +, parallel composition k, atomisation [], and procedure variables x.Definition 2.1 The class (s 2)Stat of statements is de�ned bys ::= a j s ; s j s+ s j s k s j [s] j xand the class (d 2)Decl of declarations is de�ned byDecl = PVar ! Stat

8 Introductionand the class (p 2)Prog of programs is de�ned byProg = Decl � Stat:In the sequel, we �x the declaration part of a program and only consider the statement part.2.1 State transformation semanticsFirst, we present the state transformation semantics. The semantics is de�ned by means of a labelledtransition system. In the labelled transition system, we employ con�gurations (s; n) in Stat�IN . Thenatural number n in the con�guration (s; n) denotes the maximal depth of recursion which is allowedduring the execution of statement s. The use of such con�gurations will facilitate the subsequent proofthat the state transformation semantics and the predicate transformer semantics are isomorphic. Thecon�gurations of the labelled transition system are de�ned inDefinition 2.2 The class (c 2)Conf of con�gurations is de�ned byc ::= (s; n) j c ; c j c+ c j c k c j [c]:Furthermore, the empty statement e, which denotes termination, is used as con�guration of thelabelled transition system. The labels of the labelled transition system are state transformations. Wepresuppose a mapping ST assigning to each atomic action a state transformation. For an atomicaction a and a state �, ST (a)(�) is the singleton set consisting of the state after the execution of astarted in �. The transition relation of the labelled transition system is de�ned inDefinition 2.3 The transition relation ! is the smallest subset of(Conf [feg) � ST � (Conf [feg)satisfying� (a; n) ST (a)�����! e � (x; 0) ����?�����! e� (s1; n) ; (s2; n) ��! e j c(s1 ; s2; n) ��! e j c � (s1; n) + (s2; n) ��! e j c(s1 + s2; n) ��! e j c� (s1; n) k (s2; n) ��! e j c(s1 k s2; n) ��! e j c � [(s; n)] ��! e j c([s]; n) ��! e j c� (d (x); n) ��! e j c(x; n+ 1) ��! e j c � c1 ��! e j c01c1 ; c2 ��! c2 j c01 ; c2� c1 ��! e j c01c1 + c2 ��! e j c01c2 + c1 ��! e j c01 � c1 ��! e j c01c1 k c2 ��! c2 j c01 k c2c2 k c1 ��! c2 j c2 k c01

2. State transformation semantics and predicate transformer semantics 9� c �1�! c1 �2�! � � � �k+1���! e[c] �1������k+1�����������! eIn the con�guration (x; 0) only recursion at depth 0, i.e. no recursion, is allowed. Consequently,the procedure variable x cannot be replaced by its declaration d (x). In this case, (x; 0) can only doa �� ��?-step, which denotes nontermination (see Introduction). In the con�guration (x; n+ 1), theprocedure variable x can be replaced by its declaration d (x). However, in d (x) only recursion atdepth at most n is allowed.Although the parallel composition �ts in the framework described above, for example, the condi-tional statement does not �t in this framework, because the obvious transition rule� c1 ��! e j c01if b then c1 else c2 �0�! e j c01 where �0 = �� ��� (�) if b is true in state �; if b is false in state �gives rise to a label �0 which is in general not a state transformation, since �0 may map a state to theempty set (see Conclusion).Instead of state transformations as labels, we could also have used pairs of states (cf. [BKPR91]).By changing the de�nitions of the transition relation and the state transformation semantics to beintroduced below, an equivalent state transformation semantics can be obtained.By means of the labelled transition system, the (intermediate) state transformation semantics O�stis de�ned. This state transformation semantics maps a con�guration to a state transformation. Thisstate transformation is obtained by composing the labels, i.e. state transformations, of the transitionsequences starting from the con�guration by means of composition and (�nite) union.Definition 2.4 The (intermediate) state transformation semantics O�st : Conf ! ST is de�ned byO�st (c) =[f�1 � � � � � �k+1 j c �1�! c1 �2�! � � � �k+1���! e g:To prove the well-de�nedness of the state transformation semanticsO�st , i.e. showing that composingthe labels gives rise to a state transformation, we introduce a complexity measure.Definition 2.5 The complexity measure cm : (Conf [feg)! IN is de�ned bycm (a; n) = 1cm (s1 ; s2; n) = cm (s1; n) + cm (s2; n) + 1cm (s1 + s2; n) = cm (s1; n) + cm (s2; n) + 1cm (s1 k s2; n) = cm (s1; n) + cm (s2; n) + 1cm ([s]; n) = cm (s; n) + 2cm (x; n) = �1 if n = 0cm (d (x); n� 1) otherwisecm (c1 ; c2) = cm (c1) + cm (c2)cm (c1 + c2) = cm (c1) + cm (c2)cm (c1 k c2) = cm (c1) + cm (c2)cm ([c]) = cm (c) + 1cm (e) = 0

10 IntroductionThe complexity measure can be shown to be well-de�ned as follows. First, for all s and n, the well-de�nedness of cm (s; n) is proved by induction on n and structural induction on s. Second, for all c,cm (c) is demonstrated to be well-de�ned by structural induction on c. The complexity measure is suchthat if there is a transition from con�guration c to con�guration �c (including the empty statement),then the complexity of c is greater (with respect to the lexicographic order) than that of �c, as is showninProperty 2.6 For all c and �c, if c ��! �c for some �, then cm (c) > cm (�c).Proof This property can be proved by induction on the complexity of con�guration c. utThe labelled transition system is �nitely branching, as is shown inProperty 2.7 For all c, the set f (�; �c) j c ��! �c g is nonempty and �nite.Proof The property is proved by induction on the complexity of con�guration c. We only considerthe case c � [c0]. According to the de�nition of the transition relation,f (�; �c) j [c0] ��! �c g = f (�1 � � � � � �k+1; e) j c0 �1�! c1 �2�! � � � �k+1���! e g: (2.1)Consider the tree of which the nodes are labelled with con�gurations and the root is labelled with c0.The branches of the tree are labelled with state transformations, and there exists a branch from ~c to~c0 labelled with � if and only if ~c ��! ~c0. The paths of this tree correspond to the transition sequencesstarted from con�guration c0. Because IN is well-founded and by Property 2.6, all transition sequencesare �nite, i.e. all paths in the tree are �nite. By induction, the tree is �nitely branching. By K�onig'slemma ([K�on26]), the tree has only a �nite number of paths. Consequently, the set (2.1) is �nite.Obviously, (2.1) is a nonempty set. utThe well-de�nedness of the state transformation semantics O�st is concluded from the above twoproperties inProperty 2.8 O�st is well-de�ned.Proof By Property 2.7, each transition sequence is nonempty. By Property 2.6, all transitionsequences are �nite. Similar to the proof of Property 2.7, the nonemptiness and �niteness of theset of transition sequences started in a �xed con�guration can be proved. Because composition of anonempty and �nite sequence of state transformations gives rise to a state transformation and unionof a nonempty and �nite set of state transformations gives rise to a state transformation, O�st assignsto each con�guration a state transformation. utBy means of the above de�ned state transformation semantics O�st , the state transformation seman-tics Ost , which maps statements to state transformations, is de�ned.Definition 2.9 The state transformation semantics Ost : Stat ! ST is de�ned byOst (s) =Gn O�st (s; n):Remark 2.10 The above de�nition shows some similarities with the approximation theorem in thelabelled �-calculus, i.e.

2. State transformation semantics and predicate transformer semantics 11[[M]] =[f [[L]] j L 2 ! (M) g;with ! (M) the set of so-called
-approximants of the term M , as is found in [Hyl76].The least upper bound F in De�nition 2.9 exists, because ST is a complete partial order (Prop-erty 1.2), and (O�st (s; n))n is an increasing chain as is shown inProperty 2.11 For all n, O�st (s; n) v O�st (s; n+ 1).Proof If there exists a transition sequence (s; n) �1�! c1 �2�! � � � �k+1���! e with �j = �� � �?for some j, then O�st (s; n) = �� � �?, since � and [are strict (Property 1.4). Consequently,O�st (s; n) v O�st (s; n+ 1). Otherwise, O�st (s; n) = O�st (s; n+ 1). ut2.2 Predicate transformer semanticsSecond, we present the predicate transformer semantics. Also this semantics is de�ned by means of alabelled transition system. The con�gurations of the labelled transition system are de�ned as in theprevious subsection. The labels of the labelled transition system are predicate transformers. Witheach atomic action a, a predicate transformer PT (a) is associated, by de�ning PT (a) = ! (ST (a)).The transition relation of the labelled transition system is de�ned inDefinition 2.12 The transition relation ! is the smallest subset of(Conf [feg) � PT � (Conf [feg)satisfying� (a; n) PT (a)�����! e � (x; 0) �S�;����! e� (s1; n) ; (s2; n) ��! e j c(s1 ; s2; n) ��! e j c � (s1; n) + (s2; n) ��! e j c(s1 + s2; n) ��! e j c� (s1; n) k (s2; n) ��! e j c(s1 k s2; n) ��! e j c � [(s; n)] ��! e j c([s]; n) ��! e j c� (d (x); n) ��! e j c(x; n+ 1) ��! e j c � c2 ��! e j c02c1 ; c2 ��! c1 j c1 ; c02� c �1�! c1 �2�! � � � �k+1���! e[c] �1������k+1����������! e

12 Introduction� c1 ��! e j c01c1 + c2 ��! e j c01c2 + c1 ��! e j c01 � c1 ��! e j c01c1 k c2 ��! c2 j c01 k c2c2 k c1 ��! c2 j c2 k c01The main di�erence with the transition relation de�ned in the previous subsection is the transitionrule for the sequential composition. The con�guration c1 ; c2 can do a �-step if and only if c2 can do a�-step (order reversal). Furthermore, the axioms for atomic actions and procedure variables and therule for atomisation exhibit the natural di�erences in that� for the atomic action a we use the label PT (a) instead of ST (a),� for the con�guration (x; 0) we employ the label �S � ; instead of �� � �? (note that! (�� � �?) = �S � ;), and� in the rule for atomisation we apply the composition � on predicate transformers instead of statetransformations.By means of the labelled transition system, the (intermediate) predicate transformer semantics O�ptis de�ned. This predicate transformer semantics maps a con�guration to a predicate transformer.This predicate transformer is obtained by composing the labels, i.e. predicate transformers, of thetransition sequences starting from the con�guration by means of composition and (�nite) intersection.Definition 2.13 The (intermediate) predicate transformer semantics O�pt : Conf ! PT is de�nedby O�pt (c) =\ f�1 � � � � � �k+1 j c �1�! c1 �2�! � � � �k+1���! e g:The well-de�nedness of the predicate transformer semantics O�pt can be proved along the lines ofthe well-de�nedness proof of the state transformation semantics O�st in the previous subsection.Remark 2.14 The above de�nition shows some similarities with the de�nition of the weakest invari-ant in terms of the weakest liberal precondition, i.e.win (�;Q) = �̂2��wlp (�;Q);as at page 408 of [Lam90].By means of the above de�ned predicate transformer semantics O�pt , the predicate transformersemantics Opt , which maps statements to predicate transformers, is de�ned.Definition 2.15 The predicate transformer semantics Opt : Stat ! PT is de�ned byOpt (s) =Gn O�pt (s; n):

2. State transformation semantics and predicate transformer semantics 132.3 Isomorphism theoremThird, we prove the main theorem of our paper establishing the state transformation semanticsOst andthe predicate transformer semantics Opt being isomorphic. As already mentioned in the introduction,a problem in the proof of this theorem is that the semantics Ost and Opt are not compositional. Asan intermediate tool, we introduce the semantics Cst and Cpt . These semantics will turn out to becompositional. The compositionality of these semantic models will facilitate the subsequent proof thatthey are isomorphic. From this isomorphism result we will obtain the isomorphism of Ost and Opt .The semantics Cst and Cpt are de�ned by means of the labelled transition systems de�ning theintermediate semantics O�st and O�st , respectively. They map a con�guration to a set of sequences ofstate transformations and predicate transformers. To each con�guration the set of label sequencescorresponding to the transition sequences starting from the con�guration is assigned. The sets ofnonempty and �nite sequences of state transformations and predicate transformers are denoted byST+ and PT+, and the sets of nonempty and �nite subsets of these sets are denoted by Pnf (ST+)and Pnf (PT+).Definition 2.16 The semantics Cst : Conf ! Pnf (ST+) is de�ned byCst (c) = f�1 � � ��k+1 j c �1�! c1 �2�! � � � �k+1���! e gand the semantics Cpt : Conf ! Pnf (PT+) is de�ned byCpt (c) = f�1 � � ��k+1 j c �1�! c1 �2�! � � � �k+1���! e g:The well-de�nedness of these semantics can be proved along the lines of the well-de�nedness proofsof the intermediate semantics O�st and O�pt . We now show that the above introduced semantics arecompositional by introducing for each syntactic operator a corresponding semantic operator (denotedby the same symbol).Definition 2.17 The mapping ; : Pnf (ST+)� Pnf (ST+)! Pnf (ST+) is de�ned byX ;X 0 = fx ; x0 j x 2 X ^ x0 2 X 0 gwhere� ; x0 = �x0�x ; x0 = �(x ; x0)The mapping + : Pnf (ST+)� Pnf (ST+)! Pnf (ST+) is de�ned byX +X 0 = X [X 0:The mapping k : Pnf (ST+)�Pnf (ST+)! Pnf (ST+) is de�ned byX kX 0 =[fx bb x0 + x0 bb x j x 2 X ^ x0 2 X 0 gwhere� bb x0 = f�x0g�x bb x0 = �(x k x0)

14 IntroductionThe mapping [] : Pnf (ST+)! Pnf (ST+) is de�ned by[X] = f [x] j x 2 X gwhere[�] = �[�x] = � � [x]The compositionality of Cst is shown inProperty 2.18 For the semantics Cst we have thatCst (a; n) = fST (a)gCst (s1 ; s2; n) = Cst (s1; n) ; Cst (s2; n)Cst (s1 + s2; n) = Cst (s1; n) + Cst (s2; n)Cst (s1 k s2; n) = Cst (s1; n) k Cst (s2; n)Cst ([s]; n) = [Cst (s; n)]Cst (x; 0) = f�� ��?gCst (x; n+ 1) = Cst (d (x); n)Cst (c1 ; c2) = Cst (c1) ; Cst (c2)Cst (c1 + c2) = Cst (c1) + Cst (c2)Cst (c1 k c2) = Cst (c1) k Cst (c2)Cst ([c]) = [Cst (c)]Proof The property is proved by induction on the complexity of the con�guration. Below, thenotation�X = f�x j x 2 X g� �X = f� � x j x 2 X gis used. Only a few cases are elaborated on.1. Let c � (s1 k s2; n).Cst (s1 k s2; n)= Cst ((s1; n) k (s2; n))= Cst (s1; n) k Cst (s2; n): [induction]2. Let c � c1 ; c2.Cst(c1 ; c2)= [f� Cst (c2) j c1 ��! e g [[f� Cst(c01 ; c2) j c1 ��! c01 g= [f� Cst (c2) j c1 ��! e g [[f� (Cst (c01) ; Cst (c2)) j c1 ��! c01 g [Property 2.6, induction]= (f� j c1 ��! e g [[f� Cst (c01) j c1 ��! c01 g) ; Cst (c2)= Cst (c1) ; Cst (c2):3. Let c � [c0].Cst ([c0])= f�1 � � � � � �k+1 j c0 �1�! c1 �2�! � � � �k+1���! e g

2. State transformation semantics and predicate transformer semantics 15= f�1 j c0 �1�! e g [[f�1 � Cst ([c1]) j c0 �1�! c1 g= f�1 j c0 �1�! e g [[f�1 � [Cst (c1)] j c0 �1�! c1 g [Property 2.6, induction]= [f�1 j c0 �1�! e g [[f�1 Cst (c1) j c0 �1�! c1 g]= [Cst (c0)]: utIn order to show that Cpt is compositional, semantic operators similar to the ones introduced inDe�nition 2.17 can be introduced. The compositionality of Cpt is demonstrated inProperty 2.19 For the semantics Cpt we have thatCpt (a; n) = fPT (a)gCpt (s1 ; s2; n) = Cpt (s2; n) ; Cpt (s1; n)Cpt (s1 + s2; n) = Cpt (s1; n) + Cpt (s2; n)Cpt (s1 k s2; n) = Cpt (s1; n) k Cpt (s2; n)Cpt ([s]; n) = [Cpt (s; n)]Cpt (x; 0) = f�S � ;gCpt (x; n+ 1) = Cpt (d (x); n)Cpt (c1 ; c2) = Cpt (c2) ; Cpt (c1)Cpt (c1 + c2) = Cpt (c1) + Cpt (c2)Cpt (c1 k c2) = Cpt (c1) k Cpt (c2)Cpt ([c]) = [Cpt (c)]Proof Similar to the proof of Property 2.18. utThe main di�erence with the previous property is the clause for the sequential composition. Thesemantics of the sequential composition of c1 and c2 is the sequential composition of the semantics ofc2 and the semantics of c1 (order reversal).Next, we show that the compositional semantics Cst and Cpt are isomorphic. For this purpose, we�rst prove their codomains, i.e. Pnf (ST+) and Pnf (PT+), to be isomorphic. The isomorphism
reverses each sequence of state transformations and applies ! (cf. De�nition 1.10) to each state trans-formation of the reversed sequence. Its inverse
�1 reverses each sequence of predicate transformersand applies !�1 to each predicate transformer of the reversed sequence.Definition 2.20 The mapping
 : Pnf (ST+)! Pnf (PT+) is de�ned by
 (X) = f! (�k+1) � � �! (�1) j �1 � � ��k+1 2 X gand the mapping
�1 : Pnf (PT+)! Pnf (ST+) is de�ned by
�1 (Y) = f!�1 (�k+1) � � �!�1 (�1) j �1 � � ��k+1 2 Y g:Property 2.21 The mapping
 : Pnf (ST+) �= Pnf (PT+) is an isomorphism of sets.Proof Immediate consequence of Theorem 1.11. ut

16 IntroductionBy means of this isomorphism, we can prove the compositional semantics Cst and Cpt to be isomor-phic. Conf�Pnf (ST+) Pnf (PT+)Cst �������������� Cpt;;;;;;;;;;;; ��
oo________________ //The isomorphism of Cst and Cpt is based on the following properties of the isomorphism
.Property 2.22 For all X and X 0,
 (X ;X 0) =
 (X 0) ;
 (X)
 (X +X 0) =
 (X) +
 (X 0)
 (X kX 0) =
 (X) k
 (X 0)
 ([X]) = [
 (X)]Proof Only the last case is considered.
 ([X])=
 (f�1 � � � � � �k+1 j �1 � � ��k+1 2 X g)= f! (�1 � � � � � �k+1) j �1 � � ��k+1 2 X g= f! (�k+1) � � � � � ! (�1) j �1 � � ��k+1 2 X g [Property 1.12]= [f! (�k+1) � � �! (�1) j �1 � � ��k+1 2 X g]= [
 (X)]: utNote that the
-image of the sequential composition of X andX 0 is the sequential composition of the
-image of X 0 and the
-image of X (order reversal). For the other operators,
 is a homomorphism.Property 2.23
 � Cst = Cpt and
�1 � Cpt = Cst .Proof We prove the property by induction on the complexity of con�guration c. Only the casec � c1 ; c2 is considered.
 (Cst (c1 ; c2))=
 (Cst (c1) ; Cst(c2)) [Property 2.18]=
 (Cst (c2)) ;
 (Cst (c1)) [Property 2.22]= Cpt (c2) ; Cpt (c1) [induction]= Cpt (c1 ; c2): [Property 2.19]Furthermore,
�1 (Cpt (c))=
�1 (
 (Cst (c)))= Cst (c): [Property 2.21] ut

2. State transformation semantics and predicate transformer semantics 17We introduce abstraction operators absst and abspt . These operators composing sets of label se-quences as is done in the de�nitions of the intermediate semantics O�st and O�pt , are de�ned inDefinition 2.24 The mapping absst : Pnf (ST+)! ST is de�ned byabsst (X) =[f�1 � � � � � �k+1 j �1 � � ��k+1 2 X gand the mapping abspt : Pnf (PT+)! PT is de�ned byabspt (Y) =\ f�1 � � � � � �k+1 j �1 � � ��k+1 2 Y g:The isomorphisms ! and
 are related by means of the abstraction operators.Pnf (ST+) Pnf (PT+)�ST PT

oo____________//absst �������������� abspt��������������!oo___________________//Property 2.25 ! � absst = abspt �
.Proof! (absst (X))= ! ([f�1 � � � � � �k+1 j �1 � � ��k+1 2 X g)= \ f! (�1 � � � � � �k+1) j �1 � � ��k+1 2 X g [Property 1.12]= \ f! (�k+1) � � � � � ! (�1) j �1 � � ��k+1 2 X g [Property 1.12]= abspt (f! (�k+1) � � �! (�1) j �1 � � ��k+1 2 X g)= abspt (
 (X)): utThe compositional semantics Cst and Cpt are related to the intermediate semantics O�st and O�pt bymeans of the abstraction operators.Pnf (ST+) Pnf (PT+)� Conf �ST PTabsst ��������������� abspt���������������CstiiRRRRRRRRRRRRR Cptlllllllllllll55O�stuukkkkkkkkkkkkkkk O�ptSSSSSSSSSSSSSSS))Property 2.26 absst � Cst = O�st and abspt � Cpt = O�pt .Proof Trivial. ut

18 ConclusionFinally, we prove that the state transformation semantics Ost and the predicate transformer seman-tics Opt are isomorphic by combining the Properties 2.23, 2.25, and 2.26.Stat�ST PTOst

�� Opt444444444444��!oo_______________//Theorem 2.27 ! � Ost = Opt and !�1 � Opt = Ost .Proof! (Ost (s))= ! (Gn O�st (s; n))= Gn ! (O�st (s; n)) [Theorem 1.11]= Gn ! (absst (Cst (s; n))) [Property 2.26]= Gn abspt (
 (Cst (s; n))) [Property 2.25]= Gn abspt (Cpt (s; n)) [Property 2.23]= Gn O�pt (s; n) [Property 2.26]= Opt (s):Furthermore,!�1 (Opt (s))= !�1 (! (Ost (s)))= Ost (s): [Theorem 1.11] utConclusionA state transformation semantics and a predicate transformer semantics for programs built fromatomic actions, sequential composition, nondeterministic choice, parallel composition, atomisation,and recursion have been presented. These semantics were shown to be isomorphic. Although parallelcomposition �ts in the presented framework, for example, the conditional statement does not �t inthe framework (see Section 2).In order to treat the conditional statement, we could drop the restriction to nonempty sets inDe�nition 1.1. The modi�ed complete partial order of state transformations is isomorphic to thecomplete partial order of continuous and multiplicative predicate transformers (cf. [BK92]). By meansof this isomorphismwe could extend the presented results and deal also with the conditional statement.

References 19The framework presented in our paper might also be amended to treat a variety of other languageconstructs using the various isomorphism results mentioned in the introduction.References[AP86] K.R. Apt and G.D. Plotkin. Countable Nondeterminism and Random Assignment. Journalof the ACM, 33(4):724{767, October 1986.[Bak77] J.W. de Bakker. Recursive Programs as Predicate Transformers. In E.J. Neuhold, editor,Proceedings of IFIP Working Conference on Formal Description of Programming Concepts,pages 165{179, St. Andrews, August 1977. North-Holland Publishing Company.[Bak80] J.W. de Bakker. Mathematical Theory of Program Correctness. Series in Computer Science.Prentice-Hall International, 1980.[Ber78] G. Berry. Stable Models of Typed �-Calculi. In G. Ausiello and C. B�ohm, editors, Proceed-ings of 5th International Colloquium on Automata, Languages and Programming, volume 62of Lecture Notes in Computer Science, pages 72{89, Udine, July 1978. Springer-Verlag.[Bes82] E. Best. Relational Semantics of Concurrent Programs. In D. Bj�rner, editor, Proceedingsof IFIP Working Conference on Formal Description of Programming Concepts - II, pages431{452, Garmisch-Partenkirchen, June 1982. North-Holland Publishing Company.[Bes89] E. Best. Towards Compositional Predicate Transformer Semantics for Concurrent Pro-grams. In J.W. de Bakker, 25 jaar semantiek, pages 111{117. CWI, Amsterdam, April1989.[BK92] M. Bonsangue and J.N. Kok. Semantics, Orderings and Recursion in the Weakest Precon-dition Calculus. Report CS-R9267, CWI, Amsterdam, December 1992. Extended abstractappeared in J.W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors, Proceedings ofthe REX Workshop on Semantics: Foundations and Applications, volume 666 of LectureNotes in Computer Science, pages 91{109, Beekbergen, June 1992. Springer-Verlag.[BK93] M. Bonsangue and J.N. Kok. Isomorphisms between Predicate and State Transformers. Toappear in Proceedings of the 18th International Symposium on Mathematical Foundations ofComputer Science, Lecture Notes in Computer Science, Gdansk, August/September 1993.Springer-Verlag.[BKPR91] F.S. de Boer, J.N. Kok, C. Palamidessi, and J.J.M.M. Rutten. The Failure of Failures ina Paradigm for Asynchronous Communication. In J.C.M. Baeten and J.F. Groote, editors,Proceedings of CONCUR'91, volume 527 of Lecture Notes in Computer Science, pages111{126, Amsterdam, August 1991. Springer-Verlag.[Coo78] S.A. Cook. Soundness and Completeness of an Axiom System for Program Veri�cation.SIAM Journal of Computation, 7(1):70{90, February 1978.[Dij76] E.W. Dijkstra. A Discipline of Programming. Series in Automatic Computation. Prentice-Hall International, 1976.[EF84] T. Elrad and N. Francez. A Weakest Precondition Semantics for Communicating Processes.Theoretical Computer Science, 29(3):231{250, 1984.[FS81] L. Flon and N. Suzuki. The Total Correctness of Parallel Programs. SIAM Journal ofComputation, 10(2):227{246, May 1981.[Haa81] V.H. Haase. Real-Time Behaviour of Programs. IEEE Transactions on Software Engineer-ing, SE-7(5):494{501, September 1981.[Hyl76] M. Hyland. A Syntactic Characterization of the Equality of some Models for the LambdaCalculus. Journal of the London Mathematical Association, 12(2):361{370, 1976.

20 References[K�on26] D. K�onig. Sur les correspondences multivoques des emsembles. Fundamenta Mathematicae,8:114{134, 1926.[Lam90] L. Lamport. win and sin: Predicate Transformers for Concurrency. ACM Transactions onProgramming Languages and Systems, 12(3):396{428, July 1990.[LL90] L. Lamport and N. Lynch. Distributed Computing: Models and Methods. In J. vanLeeuwen, editor, Handbook of Theoretical Computer Science, volume B: Formal Models andSemantics, chapter 18, pages 1157{1199. The MIT Press/Elsevier, Cambridge/Amsterdam,1990.[LS79] L. van Lamsweerde and M. Sintzo�. Formal Derivation of Strongly Correct ConcurrentPrograms. Acta Informatica, 12(1):1{31, 1979.[MC80] M.E. Majster-Cederbaum. A Simple Relation between Relational and Predicate Trans-former Semantics for Nondeterministic Programs. Information Processing Letters,11(4/5):190{192, December 1980.[Mil93] R. Milner. Elements of Interaction. Communications of the ACM, 36(1):78{89, January1993.[Plo79] G.D. Plotkin. Dijkstra's Predicate Transformers and Smyth's Powerdomains. In D. Bj�rner,editor, Proceedings of the Winter School on Abstract Software Speci�cation, volume 86 ofLecture Notes in Computer Science, pages 527{553, Copenhagen, January/February 1979.Springer-Verlag.[Plo81] G.D. Plotkin. A Structural Approach to Operational Semantics. Report DAIMI FN-19,Aarhus University, Aarhus, September 1981.[Plo82] G.D. Plotkin. An Operational Semantics for CSP. In D. Bj�rner, editor, Proceedings ofIFIP Working Conference on Formal Description of Programming Concepts - II, pages199{223, Garmisch-Partenkirchen, June 1982. North-Holland Publishing Company.[Roe76] W.-P. de Roever. Dijkstra's Predicate Transformer, Non-Determinism, Recursion and Ter-mination. In A. Mazurkiewicz, editor, Proceedings of 5th Symposium on MathematicalFoundations of Computer Science, volume 45 of Lecture Notes in Computer Science, pages472{481, Gdansk, September 1976. Springer-Verlag.[Smy78] M.B. Smyth. Power Domains. Journal of Computer and System Sciences, 16(1):23{36,February 1978.[Smy83] M.B. Smyth. Power Domains and Predicate Transformers: a Topological View. In J. Diaz,editor, Proceedings of 10th International Colloquium on Automata, Languages and Pro-gramming, volume 154 of Lecture Notes in Computer Science, pages 662{675, Barcelona,July 1983. Springer-Verlag.[Smy92] M.B. Smyth. Topology. In S. Abramsky, Dov M. Gabbay, and T.S.E. Maibaum, editors,Handbook of Logic in Computer Science, volume 1, Background: Mathematical Structures,pages 641{761. Clarendon Press, Oxford, 1992.[SZ92] D. Schole�eld and H.S.M. Zedan. Weakest Precondition Semantics for Time and Concur-rency. Information Processing Letters, 43(6):301{308, October 1992.[Wan77] M. Wand. A Characterization of Weakest Preconditions. Journal of Computer and SystemSciences, 15(2):209{212, October 1977.

