
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Comparative Semantics for Linear Arrays of Communicating
Processes

J.W. de Bakker, F. van Breugel, A. de Bruin

Computer Science/Department of Software Technology

CS-R9336 1993

1Comparative Semantics for Linear Arrays of Communicating Processesa study of the UNIX� fork and pipe commandsJ.W. de Bakker1;2, F. van Breugel1;2 and A. de Bruin31CWIP.O. Box 4079, 1009 AB Amsterdam, The Netherlands2Vrije UniversiteitP.O. Box 7161, 1007 MC Amsterdam, The Netherlands3Erasmus UniversiteitP.O. Box 1738, 3000 DR Rotterdam, The NetherlandsAbstractOperational (O) and denotational (D) semantic models are designed for a language incorporating a version ofthe UNIX fork and pipe commands. Taking a simple while language as starting point, a number of programmingconstructs are added which achieve that a program can generate a dynamically evolving linear array of processesconnected by channels. Over these channels sequences of values (`streams') are transmitted. BothO andD arede�ned as (unique) �xed point of a contractive higher order operator. This allows a smooth proof that O andD are equivalent. Additional features are the use of hiatons, and of the closely related syntactic resumptionsand semantic continuations.AMS Subject Classi�cation (1991): 68Q55CR Subject Classi�cation (1991): D.3.1, F.3.2Keywords & Phrases: operational semantics, denotational semantics, complete metric space, fork statement,hiaton, resumption, continuationNote: The work of F. van Breugel was partially supported by the Netherlands Nationale Faciliteit Infor-matica programme, project Research and Education in Concurrent Systems (REX). This paper will appear inProceedings of the Eighteenth International Symposium on Mathematical Foundations of Computer Science,Gdansk, August 30 - September 3, 1993.IntroductionWe present a comparative semantic study of a simple imperative language L which features theconstruction of dynamically evolving linear arrays of communicating processes. Our investigation wasin particular motivated by the UNIX fork and pipe commands which return in somewhat adaptedform in L.Both operational (O) - based on an SOS style transition system ([Plo81]) - and denotational (D)semantics for L will be presented, and their equivalence will be established. Simple topological tech-niques will su�ce for the mathematical underpinning of both models. In fact, Banach's �xed pointtheorem ([Ban22]) is all we need. ([BR92] gives an overview of more advanced uses of topologicalmodelling.)Forks and pipes occur in several papers on programming language design and application (forks,e.g., in [HSS91], pipes in [KK92]). Semantic studies focusing on these topics are scarce (e.g. [AW85,Ben82, Bru86, MA89, RS83, RS92]), and none of them develops both operational and denotationalmodels. Accordingly, we see the comparative result as the main contribution of our paper.�UNIX is a trademark of Bell Laboratories.

2 IntroductionIn the remainder of this introduction we informally introduce L, and present three simple examplesof its use culminating in a version of the sieve of Eratosthenes. Sections 1 and 2 present the operationaland denotational semantics, respectively. In the design of O, arrays of processes are modelled usingthe concept of (nested) resumptions. For D, continuations are an essential tool. In Section 3, we provethe equivalence of O and D using the unique �xed point proof principle from [KR90]. Let us mentionone subtlety in the semantic models: in order to apply Banach's theorem, we require contractivenessat various instances. At appropriate points a version of Park's hiaton ([Par83]) is used to enforcecontractiveness if this would not arise naturally.We now present the syntax of L. It is a simple imperative language with assignment, while state-ments and the like, to which three further constructs are added: write (e), read (v), and fork (v).The syntax for L followss ::= v := e j skip j write (e) j read (v) j fork (v) j s ; s j if b then s else s � j while b do s od:In the sequel, a program in execution will be called a process. Each process has exactly one inputchannel and one output channel connected to it (see Figure 1). Execution of the write statementwrite (e) has the e�ect that the value of the expression e is written on the output channel, the e�ectof the read statement read (v) is that a new value is read from the input channel which is thenassigned to the variable v. If there are no more values on the input channel then the process blocks(terminates). processinput channel_________________//� �� � output channel_________________//Figure 1A process can be modelled by a function which takes an input stream as an argument and yieldsan output stream as a result. The input stream is the sequence of all values assumed to be preloadedon the input channel, and the output stream is the sequence of all values to be written by the processon the output channel. Both streams can very well be in�nite, and this means that nonterminatingprocesses are meaningful in this setting. We give as �rst example, a `2-�lter' described by the programwhile truedo read (v);if vmod2 6= 0 then write (v) else skip �od.This program �lters all even numbers, passing only the odd numbers from its input channel to itsoutput channel.The other new concept in the language is the fork statement, described by a statement of the formfork (v). This statement can be regarded as a combination of the UNIX fork and the UNIX pipe.When a process executes the statement fork (v), the e�ect is that an almost identical copy of theprocess is constructed. We call the original process the parent and the new process the child. Afterthe fork statement has been evaluated both processes continue execution with the statement followingthe fork statement. There is no sharing of variables, each process has its own set of variables all (butfor the variable v, see below) having the values they had in the parent process when the fork statementwas executed.

Introduction 3: : : ; fork (v) ; : : :: : : ; v := 1 ; : : : parent : : : ; v := 0 ; : : : childin_____________________________//� �� � out____________________________//������in_____//� �� � intermediate channel__________________________ //� �� � out_____//Figure 2There are two di�erences between the two processes. The �rst one has to do with the fact thatexecuting fork (v) has as a side e�ect that a value is assigned to v. In the parent process the assignmentv := 1 is performed, in the child process the value 0 is assigned to v. The other di�erence has to dowith the input and output channels of the original process. On execution of the fork statement a newintermediate channel is constructed which behaves like a UNIX pipe. The parent process remainsconnected to the original input channel, but from now on writes on the new intermediate channel.The child will write on the original output channel, but reads from the intermediate channel. Thee�ect of a fork statement is depicted in Figure 2. The second example is the programread (v);write (v);fork (w);if w = 1then while truedo read (v);if vmod2 6= 0 then write (v) else skip �odelse while truedo read (v);if vmod3 6= 0 then write (v) else skip �od�.The original process passes one value from the input to the output unaltered, and then splits into two�lters: the parent �lters out all even numbers, passing only the odd input numbers to the child. Thechild �lters out all the numbers which are a multiple of 3. The e�ect is a �lter that passes its �rstinput number unaltered, and then passes only those inputs values that are not multiples of 2 or 3.The �nal example is a version of the sieve of Eratosthenes:read (v);while truedo read (v);write (v);fork (w);if w = 1then while truedo read (x);if xmod v 6= 0 then write (x) else skip �odelse skip�od

4 IntroductionIf on the input channel for the original process the stream of the positive natural numbers is inserted,then execution of this program will result in an expanding array of processes which in cooperation yieldan output stream consisting of all prime numbers. The original process can be called an `expander'(e in Figure 3), it reads a number n and expands into a �lter process (the parent) which blocks allmultiples of n (the parent process is denoted by n in Figure 3), and a new expander process (thechild) which behaves like the original process. How this array evolves is shown in Figure 3.� � �87654321 e� � �876543 2 e 2� � �87654 2 e 2� � �87654 2 3 e 32� � �876 2 3 e 32� � �876 2 3 5 e 532

________________________ //� �� �___//�����___________//� �� �________________________//� �� �___________________________//___________//� �� �________________________//� �� �___________________________//������___________//� �� �___________//� �� �___________________//� �� �___________________ //___________//� �� �___________//� �� �___________________//� �� �___________________ //������___________//� �� �___________//� �� �___________//� �� �_____________//� �� �___________//Figure 31. Operational SemanticsBefore we come to the operational semantics, we �rst repeat the de�nition of the syntax for L. Let(v 2)Var be the syntactic class of variables.Definition 1.1 The language (s 2)L is de�ned bys ::= v := e j skip j write (e) j read (v) j fork (v) j s ; s j if b then s else s � j while b do s od:Here e and b range over the syntactic classes of expressions and boolean expressions, respectively.We assume a simple syntax for these which we do not bother to specify. Programs in L operate onstreams of input values, delivering streams of output values. Let us use (� 2)Val to denote the setof these (input and output) values. In addition, we shall have occasion to use the `silent' value � . Wewrite (� 2)Val� = Val [f�g. The role of the � -value - sometimes also called hiaton - will be, inthe transition system to be introduced in a moment, to signal a `silent' transition. Such a transitiondoes not correspond to delivering a `normal' value (from Val); it is employed in a situation where themetric framework requires a step to achieve contractiveness.The operational semantics for L will be based on a transition system in the familiar SOS style. Inthis system we encounter� The set (� 2)State = Var ! Val of states. The notation �f�=vg is used for a state which islike �, but for its value in v which equals �.

1. Operational Semantics 5� The set (& 2)Val1� , consisting of all �nite and in�nite sequences (the `streams' mentioned earlier)of elements from Val� .� The special symbol e standing for termination.� Auxiliary syntactic categories of so-called resumptions and nested resumptions. These are intro-duced inDefinition 1.2 The class of resumptions (r 2)Res is de�ned byr ::= e j s : r:The class of nested resumptions (� 2)NRes is de�ned by� ::= & j< r; �; � > :Resumptions are sequences of statements ending in e. Nested resumptions have a structure of theform � =< r1; �1; < r2; �2; : : : < rn; �n; & > : : : >> :Nested resumptions correspond to process arrays as described in the introduction in the followingway:� For n = 0, we have that � = &. In this case � consists of no more than the input stream &.� If n = 1, then � =< r1; �1; & >. The process � executes the (sequence of) statements speci�edby r1, for state �1 and input stream &.� For n = 2, we obtain � =< r1; �1; < r2; �2; & >>. In this case, � consists of a parent process�p =< r2; �2; & > - interpreted as just described - the output of which acts as input for thechild process (� =) �c =< r1; �1; �p >.� For n > 2, we obtain a process array of length n as described above.In the transition system T to be presented in the next de�nition, we use V (e)(�) (yielding anelement in Val) and B (b)(�) to denote the values of e and b in state �.Definition 1.3 The transition system T = (NRes ;Val� ;!) has NRes as the set of its con�gurationsand Val� as its set of labels. The transition relation ! is the smallest subset of NRes �Val� �NRessatisfying the rules given below. We use the notation� ��! �0as short hand for (�; �; �0) 2 !. A rule of the formif �1 ��! � then �2 ��! �will be abbreviated to �2 !0 �1; the 0-subscript indicates that we have here a zero-step transition.

6 Introduction(1) < (v := e) : r; �; � >!0< r; �f�=vg; � >;where � = V (e)(�)(2) < skip : r; �; � >!0< r; �; � >(3) < write (e) : r; �; � > ��!< r; �; � >;where � = V (e)(�)(4) if � ��! �0 then < read (v) : r; �; � > ��!< r; �f�=vg; �0 >(5) if � ��! �0 then < read (v) : r; �; � > ��!< read (v) : r; �; �0 >(6) < fork (v) : r; �; � >!0< r; �f0=vg; < r; �f1=vg; � >>(7) < (s1 ; s2) : r; �; � >!0< s1 : (s2 : r); �; � >(8) if B (b)(�) then < if b then s1 else s2 � : r; �; � >!0< s1 : r; �; � >(9) if :B (b)(�) then < if b then s1 else s2 � : r; �; � >!0< s2 : r; �; � >(10) < while b do s od : r; �; � > ��!< if b then s ;while b do s od else skip � : r; �; � >(11) � � & ��! &We add some explanations:� A transition � ��! �0 expresses that (the process corresponding to) � performs a one-step transi-tion to process �0, while producing a value � (either a normal or a silent value) which is appendedto the current output stream.� Note that there is no transition de�ned for a con�guration< e; �; � >. As a consequence, neitheris there a transition possible for, e.g., < (v := e) : e; �; � >, < read (v) : e; �; < e; �; � >>, etc.We emphasize that transitions become observable only by delivering output values (includingan occasional silent value); note that this is quite di�erent from more customary models wherestate changes - from � to some �0 - are observable.� The rules for v := e, skip, s1 ; s2, and if b then s1 else s2 � should be clear. The whilestatement always induces a silent step. (A zero-step transition would not work in this case, thisbeing incompatible with a subsequent crucial property of zero-step transitions, cf. Lemma 1.7.)� The e�ect of write (e) :r is to append � (= V (e)(�)) to the output stream, and continue with r.� For a read (v) statement - with respect to current r, �, and � - we distinguish two cases. Inthe `normal' situation, an input � is available, produced (as output) by � when it turns itselfinto �0. We then assign � to v, and continue with r, the updated state �f�=vg, and the newparent process �0. Otherwise, i.e. when � produces a silent step � , we reject this as possiblevalue for v - recall that the codomain of any state equals Val rather than Val� -, maintain therequirement for an input read (v), and continue with r, �, and parent process �0. (As for thewhile statement also in this case a zero-step transition would not work.)� The fork statement fork (v) - with respect to current r, �, and � - creates two processes, theparent process�p =< r; �f1=vg; � >and the child process�c =< r; �f0=vg; �p > :

1. Operational Semantics 7We observe that� The forking process performs a zero-step transition to �c.� Both �p and �c execute the resumption r.� In �p, the fork variable is set to 1, in �c it is set to 0. This o�ers the possibility to `program'in r so as to have di�erent executions in �p and �c, respectively (cf. the examples in theintroduction).� Since �p occurs as part of �c, the net e�ect of this is that the output of �p acts as input for�c, cf. also the way the read and write rules are de�ned.� The �nal rule simply describes how an input stream � �& performs a one step transition deliveringthe output �, and turns itself into &.� The transition system T speci�es deterministic behaviour (see Lemma 1.8) and synchronouscommunication. Concerning the former phenomenon, adding the metaruleif �!0 �0 then < r; �; � >!0< r; �; �0 >would allow some form of parallelism in the execution of processes. As a consequence of thelatter phenomenon, a parent process can only write when its child is willing to read. As wewill see, a communication between a parent and its child will not be visible in the operationalsemantics (apart from a silent transition). Asynchronous communication could be handled byadding an output sequence to the nested resumptions which then take the form < &; r; �; � >.A study of these variations is outside the scope of the present paper.We now describe how to obtain the operational semantics O : L ! Proc, whereProc = State ! Val1� ! Val1� . We see that O[[s]] (�) yields a function transforming streams tostreams, in accordance with the intended model for L. We shall employ an intermediate mappingO : NRes ! Val1� ; O is the function which, for argument �, collects the sequence of labels producedsuccessively by the transitions as speci�ed by T , starting from �. Thus O (�) = & states that theprocess � yields output stream &. (Recall that the input to � is included in its own description.) Letus use the terminology � blocks in case � cannot make any transitions, that is:9 �; �0 : � ��! �0:As de�ning properties for O we want the following to be satis�ed:O (�) = (" if � blocks� � O (�0) if � ��! �0Note that �0 is not necessarily of smaller syntactic complexity than �, so this `de�nition' cannot beshown to be well-formed simply by structural induction on �. Instead, we use a familiar technique fordealing with recursive de�nitions, viz. through the use of �xed points of some higher-order operator.Let � be an operator which maps meanings � to meanings �0 in the following way:Definition 1.4 Let (� 2)SemO = NRes ! Val1� , and let � : SemO ! SemO be de�ned as follows:� (�)(�) = (" if � blocks� � � (�0) if � ��! �0

8 IntroductionWell-de�nedness of this de�nition requires that T is deterministic, i.e. that each � can make at mostone transition. Lemma 1.8 below states this result.By the de�nition of �, it is immediate that it is contractive1in �. Since SemO is a complete metricspace2, we have, by Banach's theorem3, that � has a unique �xed point, and we have justi�edDefinition 1.5 The operational semantics O : SemO is de�ned byO = �x (�):In addition to its serving as a means to de�ne O, � will play a crucial role (in Section 3) in theproof that (�) O = D (the denotational semantics to be introduced in Section 2). In fact, (�) followsas an immediate corollary of an argument exploiting the unique �xed point property of �.The next step in the technical development is the introduction of the complexity measurec : NRes ! IN inDefinition 1.6 The complexity measure c : NRes ! IN is de�ned byc (&) = 1 c (< r; �; � >) = c (r) + c (�)wherec (e) = 1 c (s : r) = c (s) � c (r)wherec (v := e) = 2 c (fork (v)) = 3c (skip) = 2 c (s1 ; s2) = c (s1) � c (s2) + 1c (write (e)) = 1 c (if b then s1 else s2 �) = c (s1) + c (s2)c (read (v)) = 1 c (while b do s od) = 2The measure c is used in the proof of the following two lemmas.Lemma 1.7 For all � and �0, if �!0 �0 then c (�) > c (�0).1Let (X; dX) and (X0; dX0) be metric spaces. A function f : X ! X0 is called contractive if there exists an �, with0 � � < 1, such that, for all x and x0,dX0 (f (x); f (x0)) � � � dX (x; x0):2The set Val1� is endowed with the metricd (&; &0) = n 0 if & = &02�n otherwisewhere n is the longest common pre�x of the sequences & and &0. By means of this metric we can endow SemO with themetricd (�; �0) = sup fd (� (�); �0 (�)) j � 2 NResg:These metrics are ultrametrics, i.e., for all x, x0, and x00,d (x; x00) � maxfd (x; x0); d (x0; x00)g:3Let (X; dX) be a complete metric space. If f : X ! X is contractive then f has a unique �xed point �x (f).

2. Denotational Semantics 9Proof Only a few cases of the proof of this lemma are elaborated on.1. Let � �< (v := e) : r; �; �� >. Thenc (< (v := e) : r; �; �� >)= 2 � c (r) + c (��)> c (r) + c (��)= c (< r; �f�=vg; �� >):2. Let � �< fork (v) : r; �; �� >. Thenc (< fork (v) : r; �; �� >)= 3 � c (r) + c (��)> 2 � c (r) + c (��)= c (< r; �f0=vg; < r; �f1=vg; �� >>): utLemma 1.8 The transition system T is deterministic.Proof We can show that, for all �, jf (�; �0) j � ��! �0 gj � 1 by induction on the complexity of �. utWe are now ready for the key de�nition of this section.Definition 1.9 The operational semantics O : L ! Proc is de�ned byO [[s]] = �� : �& :O (< s : e; �; & >):The �nal program of the introduction with an arbitrary initial state and the input stream 12345678will produce the output stream �32�43�85�107�7 and terminate as the reader may verify.2. Denotational SemanticsThe denotational semantics for L uses the set of continuations (� 2)Cont = State ! Val1� !1 Val1� .Note that, but for the specialization to the nonexpansive4 function space !1, Cont equals Proc asintroduced earlier. Continuations correspond to resumptions in the sense that, as we shall see inDe�nition 3.2, meanings of Res reside in Cont.We shall use �rst (&) to denote the �rst element of the nonempty sequence &, and rest (&) to denotethe result of omitting the �rst element from the nonempty sequence &.The denotational semantics D for L is presented inDefinition 2.1 Let (2)SemD = L ! Cont !1 Cont . Let 	 : SemD ! SemD be de�ned by4Let (X; dX) and (X0; dX0) be metric spaces. A function f : X ! X0 is called nonexpansive if, for all x and x0,dX0 (f (x); f (x0)) � dX (x; x0):

10 Introduction	 ()(v := e)(�)(�)(&) = � (�f�=vg)(&) where � = V (e)(�)	 ()(skip)(�)(�)(&) = � (�)(&)	 ()(write (e))(�)(�)(&) = � � � (�)(&) where � = V (e)(�)	 ()(read (v))(�)(�)(&) = 8<: " (a)� � � (�f�rst (&)=vg)(rest (&)) (b)� � (read (v))(�)(�)(rest (&)) (c)	 ()(fork (v))(�)(�)(&) = (� (�f0=vg))(� (�f1=vg)(&))	 ()(s1 ; s2)(�)(�)(&) = 	 ()(s1)(()(s2)(�))(�)(&)	 ()(if b then s1 else s2 �)(�)(�)(&) = �	 ()(s1)(�)(�)(&) (d)	 ()(s2)(�)(�)(&) (e)	 ()(while b do s od)(�)(�)(&) = � � (if b then s ;while b do s od else skip �)(�)(�)(&)where(a) if & = "(b) if & 6= " and �rst (&) 6= �(c) if & 6= " and �rst (&) = �(d) if B (b)(�)(e) if :B (b)(�)The denotational semantics D : SemD is de�ned byD = �x ():Some remarks:� Much of the structure of the above clauses may be understood by consulting T . For example,the clause for the fork statement amounts toD (fork (v))(�)(�)(&) = (� (�f0=vg))(� (�f1=vg)(&)):Now using the correspondence between the semantic continuation � and the syntactic resump-tion r, we see that this is an immediate counterpart of the transition< fork (v) : r; �; & >!0< r; �f0=vg; < r; �f1=vg; & >> :� Similar to what we did for O, we have de�ned D here as (unique) �xed point of a higher-ordermapping. Such a `global' �xed point approach is attractive, were it only for symmetry reasons.However, a more traditional (`local') approach, where the taking of �xed points is restricted tothe clauses for the read and while statement, would also serve our purposes.De�nition 2.1 is justi�ed inLemma 2.2 For all , s, �, and �,the mapping 	 ()(s)(�)(�) is nonexpansive (in &),the mapping 	 ()(s) is nonexpansive (in �), andthe mapping 	 is contractive (in).Proof We only consider the second property. It can be shown that, for all , s, �1, �2, �, and &,

3. Equivalence Theorem 11d (()(s)(�1)(�)(&); 	 ()(s)(�2)(�)(&)) � d (�1; �2)by structural induction on s. Only a few cases are elaborated on.1. Let s � read (v). We distinguish three cases.(a) If & = ", thend (()(read (v))(�1)(�)(&); 	 ()(read (v))(�2)(�)(&))= d ("; ")� d (�1; �2):(b) If & 6= " and �rst (&) 6= � , thend (()(read (v))(�1)(�)(&); 	 ()(read (v))(�2)(�)(&))= d (� � �1 (�f�rst (&)=vg)(rest (&)); � � �2 (�f�rst (&)=vg)(rest (&)))= 12 � d (�1 (�f�rst (&)=vg)(rest (&)); �2 (�f�rst (&)=vg)(rest (&)))� 12 � d (�1; �2):(c) If & 6= " and �rst (&) = � , thend (()(read (v))(�1)(�)(&); 	 ()(read (v))(�2)(�)(&))= d (� � (read (v))(�1)(�)(rest (&)); � � (read (v))(�2)(�)(rest (&)))= 12 � d ((read (v))(�1)(�)(rest (&)); (read (v))(�2)(�)(rest (&)))� 12 � d ((read (v))(�1); (read (v))(�2))� 12 � d (�1; �2): [(read (v)) is nonexpansive]2. Let s � fork (v). Thend (()(fork (v))(�1)(�)(&); 	 ()(fork (v))(�2)(�)(&))= d ((�1 (�f0=vg))(�1 (�f1=vg)(&)); (�2 (�f0=vg))(�2 (�f1=vg)(&)))� maxfd ((�1 (�f0=vg))(�1 (�f1=vg)(&)); (�1 (�f0=vg))(�2 (�f1=vg)(&)));d ((�1 (�f0=vg))(�2 (�f1=vg)(&)); (�2 (�f0=vg))(�2 (�f1=vg)(&)))g[ultrametricity]� maxfd (�1 (�f1=vg)(&); �2 (�f1=vg)(&)); d (�1 (�f0=vg); �2 (�f0=vg))g[�1 (�f0=vg) is nonexpansive]� d (�1; �2): utWe conclude this section withDefinition 2.3 The denotational semantics D : L ! Cont is de�ned byD [[s]] = D (s)(�� : �& : "):3. Equivalence TheoremTheorem 3.1 For all s 2 L, O [[s]] = D [[s]].On the way to the proof of this theorem, we �rst introduce two intermediate semantics.Definition 3.2 The mapping H : Res ! Cont is de�ned by

12 IntroductionH (e) = �� : �& : "H (s : r) = D (s)(H (r))The mapping I : NRes ! Val1� is de�ned byI (&) = &I (< r; �; � >) = H (r)(�)(I (�))The following properties of I are furthermore of importance.Lemma 3.3 For all �, �0, and �,if �!0 �0 then I (�) = I (�0), andif � ��! �0 then I (�) = � � I (�0).Proof We only consider a few cases of the proof of the �rst property.1. Let � �< (v := e) : r; �; �� >. ThenI (< (v := e) : r; �; �� >)= H ((v := e) : r)(�)(I (��))= D (v := e)(H (r))(�)(I (��))= H (r)(�f�=vg)(I (��))= I (< r; �f�=vg; �� >):2. Let � �< fork (v) : r; �; �� >. ThenI (< fork (v) : r; �; �� >)= H (fork (v) : r)(�)(I (��))= D (fork (v))(H (r))(�)(I (��))= (H (r)(�f0=vg))(H (r)(�f1=vg)(I (��)))= (H (r)(�f0=vg))(I (< r; �f1=vg; �� >))= I (< r; �f0=vg; < r; �f1=vg; �� >>): utThe main step in the proof of Theorem 3.1 now follows. Recall that � is the higher-order operatorused in the de�nition of O.Lemma 3.4 � (I) = I.Proof We can show that, for all �,� (I)(�) = I (�)by induction on the complexity of � (cf. De�nition 1.6). Only a few cases are elaborated on.1. Let � �< (v := e) : r; �; �0 >. Then� (I)(< (v := e) : r; �; �0 >)= � (I)(< r; �f�=vg; �0 >) [< (v := e) : r; �; �0 >!0< r; �f�=vg; �0 >]= I (< r; �f�=vg; �0 >) [Lemma 1.7, induction]= I (< (v := e) : r; �; �0 >): [Lemma 3.3]2. Let � �< read (v) : r; �; �0 >. We distinguish three cases.

References 13(a) Assume �0 ��! �00. Then� (I)(< read (v) : r; �; �0 >)= � � I (< r; �f�=vg; �00 >) [< read (v) : r; �; �0 > ��!< r; �f�=vg; �00 >]= I (< read (v) : r; �; �0 >): [Lemma 3.3](b) Assume �0 ��! �00. Then� (I)(< read (v) : r; �; �0 >)= � � I (< read (v) : r; �; �00 >) [< read (v) : r; �; �0 > ��!< read (v) : r; �; �00 >]= I (< read (v) : r; �; �0 >): [Lemma 3.3](c) Assume �0 blocks. Then < read (v) : r; �; �0 > blocks and hence� (I)(< read (v) : r; �; �0 >) = ":Since �0 blocks, � (I)(�0) = ". By induction, I (�0) = ". Consequently,I (< read (v) : r; �; �0 >) = ": utWe have arrived at the proof of Theorem 3.1:Proof Because both O and I are �xed point of � (De�nition 1.5 and Lemma 3.4) and � has aunique �xed point, O and I are equal. Consequently,O [[s]](�)(&)= O (< s : e; �; & >)= I (< s : e; �; & >)= H (s : e)(�)(I (&))= D (s)(H (e))(�)(&)= D (s)(�� : �& : ")(�)(&)= D [[s]](�)(&): utReferences[AW85] S.K. Abdali and D.S. Wise. Standard, Storeless Semantics for ALGOL-style Block Structureand Call-by-Name. In A. Melton, editor, Proceedings of the 1st International Conferenceon Mathematical Foundations of Programming Semantics, volume 239 of Lecture Notes inComputer Science, pages 1{19, Manhattan, April 1985. Springer-Verlag.[Ban22] S. Banach. Sur les Op�erations dans les Ensembles Abstraits et leurs Applications aux Equa-tions Int�egrales. Fundamenta Mathematicae, 3:133{181, 1922.[Ben82] D.B. Benson. Machine-Level Semantics for Nondeterministic, Parallel Programs. InM. Dezani-Ciancaglini and U. Montanari, editors, Proceedings of the 5th International Sym-posium on Programming, volume 137 of Lecture Notes in Computer Science, pages 15{25,Turin, April 1982. Springer-Verlag.[BR92] J.W. de Bakker and J.J.M.M. Rutten, editors. Ten Years of Concurrency Semantics, selectedpapers of the Amsterdam Concurrency Group. World Scienti�c, Singapore, 1992.[Bru86] A. de Bruin. Experiments with Continuation Semantics: jumps, backtracking, dynamic net-works. PhD thesis, Vrije Universiteit, Amsterdam, May 1986.

14 References[HSS91] T. Hagerup, A. Schmitt, and H. Seidl. FORK: A High-Level Language for PRAMs. In E.H.L.Aarts, J. van Leeuwen, and M. Rem, editors, Proceedings of the 3rd International PARLEConference, volume 505 of Lecture Notes in Computer Science, pages 304{320, Eindhoven,June 1991. Springer-Verlag.[KK92] E. Klein and K. Koskimies. How to Pipeline Parsing with Parallel Semantic Analysis. Struc-tured Programming, 13(3):99{107, 1992.[KR90] J.N. Kok and J.J.M.M. Rutten. Contractions in Comparing Concurrency Semantics. Theo-retical Computer Science, 76(2/3):179{222, 1990.[MA89] C. McDonald and L. Allison. Denotational Semantics of a Command Interpreter and theirImplementation in Standard ML. The Computer Journal, 32(5):422{431, October 1989.[Par83] D. Park. The \Fairness" Problem and Nondeterministic Computing Networks. In J.W. deBakker and J. van Leeuwen, editors, Foundations of Computer Science IV, Distributed Sys-tems, part 2: Semantics and Logic, volume 159 ofMathematical Centre Tracts, pages 133{161.Mathematical Centre, Amsterdam, 1983.[Plo81] G.D. Plotkin. A Structural Approach to Operational Semantics. Report DAIMI FN-19,Aarhus University, Aarhus, September 1981.[RS83] J.-C. Raoult and R. Sethi. Properties of a Notation for Combining Functions. Journal of theACM, 30(3):595{611, July 1983.[RS92] G. R�unger and K. Sieber. A Trace-Based Denotational Semantics for the PRAM-LanguageFORK. Report 1/1992, Universit�at des Saarlandes, Saarbr�ucken, 1992.

