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1Three Metric Domains of Processes for BisimulationFranck van BreugelCWIP.O. Box 4079, 1009 AB Amsterdam, The NetherlandsVrije UniversiteitP.O. Box 7161, 1007 MC Amsterdam, The NetherlandsAbstractA new metric domain of processes is presented. This domain is located in between two metric process domainsintroduced by De Bakker and Zucker. The new process domain characterizes the collection of image �niteprocesses. This domain has as advantages over the other process domains that no complications arise in thede�nitions of operators like sequential composition and parallel composition, and that image �nite language con-structions like random assignment can be modelled in an elementary way. As in the other domains, bisimilarityand equality coincide in this domain.The three domains are obtained as unique (up to isometry) solutions of equations in a category of 1-boundedcomplete metric spaces. In the case the action set is �nite, the three domains are shown to be equal (up toisometry). For in�nite action sets, e.g., equipollent to the set of natural or real numbers, the process domainsare proved not to be isometric.AMS Subject Classi�cation (1991): 68Q55CR Subject Classi�cation (1991): D.3.1, F.3.2Keywords & Phrases: process, completemetric space, bisimulation, �nitely branching, image �nite, sequentialcompositionNote: This work was partially supported by the Netherlands Nationale Faciliteit Informatica programme,project Research and Education in Concurrent Systems (REX). This paper will appear in Proceedings of theNinth Conference on the Mathematical Foundations of Programming Semantics, New Orleans, LA, USA, April7-10, 1993.IntroductionIn semantics, a process is usually understood as a behaviour of a system. Labelled transition systemshave proved to be suitable for describing the behaviour (or operational semantics) of a system (cf.[Plo81]). A labelled transition system can be viewed as a rooted directed graph of which the edges arelabelled by actions (cf. [BK87]), or as a tree of which the edges are labelled by actions, which is obtainedby unfolding the graph. The semantic notion of a process is usually de�ned by means of a suitablebehavioural equivalence over the labelled transition systems. Bisimilarity (cf. [Par81]) is commonlyaccepted as the �nest behavioural equivalence over labelled transition systems (cf. [Gla90, Gla93]).In this paper, processes are studied from the point of view of denotational semantics. In theliterature, domains of processes are found for several mathematical structures. For complete partialorders, process domains are presented by Milne and Milner in [MM79], and Abramsky in [Abr91].Aczel introduces in [Acz88] a process domain for non-well-founded sets. For complete metric spaces,process domains are presented by De Bakker and Zucker in [BZ82, BZ83], and Golson and Rounds in[GR83, Gol84].Aczel shows in [Acz88] that processes can be viewed as labelled transition systems. Bisimulationrelations on these labelled transition systems induce bisimulation relations on the processes. A process



2 Introductiondomain is called strongly extensional (or internally fully abstract) if bisimilarity - being the largestbisimulation relation - coincides with equality, i.e. processes are bisimilar if and only if they are equal.Abramsky and Aczel prove that their process domains are strongly extensional. The process domainsintroduced by De Bakker and Zucker in [BZ82] and [BZ83] are shown to be strongly extensional byVan Glabbeek and Rutten in [GR89] and [Rut92].The metric process domains introduced by De Bakker and Zucker in [BZ82] and [BZ83], which willbe denoted by P1 and P2 in the sequel, and a third new process domain, which will be denoted byP3, are studied in detail in this paper. Processes can be viewed as trees (both �nite and in�nite indepth) of which the edges are labelled by actions, and which are absorptive, i.e. for all nodes of a treethe collection of subtrees of that node is a set instead of a multiset, and commutative. For example,the tree � �� � � is not a process, and � �� � � �a;;; ;;; ��a������a �������� a;;; ;;; ��a ��������b;; ;; ��b������b ������ b������is the process obtained by absorption. Furthermore, the processes� �� � � �a ������ b== ==�� b ������ a== ==��andare identi�ed by commutativity. The processes are endowed with a metric such that the distancebetween processes decreases if the maximal depth at which the truncations of the processes coincideincreases. All processes considered in this paper are closed with respect to this metric. For example,the process �� � �� ��
a pppppwwppppp a ������ � � �a������a������ a������a������including the in�nite branch is closed in contrast with the process not containing this in�nite branch.A process is called �nitely branching if each node has only �nitely many outgoing edges. A processis called image �nite if, for each action, each node has only �nitely many outgoing edges labelled withthat action. A �nitely branching process is image �nite, but an image �nite process is in general not�nitely branching. For example, the process �� � �a0 pppppwwppppp a1 ������ � � �a2������



Introduction 3is image �nite but not �nitely branching. �� � �� � �a pppppwwppppp a ������ � � �a������a0������ a1������ � � �a2������is an example of a general (or unrestricted) process being not �nitely branching nor image �nite. Theprocess domains P1, P2, and P3 can be shown to correspond to the collections of (�nite in depth and)� general processes,� �nitely branching processes, and� image �nite processes.For example, the correspondence between the process domain P3 and the collection of image �niteprocesses of �nite depth will be accomplished as follows. First, the space of image �nite processesof �nite depth is completed. In this way, a complete metric space of (�nite and in�nite in depth)processes is obtained. Second, the completed space is shown to be isometric to the process domain P3.The three process domains can be related in the following way. The process domain P2 can beisometrically embedded in the process domain P3 and the process domain P3 can be isometricallyembedded in the process domain P1. If the action set is �nite, then the three process domains canbe shown to be isometric. If the action set is in�nite, e.g., equipollent ot the set of natural or realnumbers, then it can be demonstrated that the three process domains are not isometric.For P1-processes, complications arise in the de�nitions of the following operators:� sequential composition (cf. [BZ82, BM88]),� parallel composition (cf. [BZ82, BM88, ABKR89, AR92]),� trace set as de�ned by De Bakker et al. in [BBKM84], and� fairi�cation as de�ned by Rutten and Zucker in [RZ92].For example, it is not possible to give a (denotational) de�nition of the sequential composition ofP1-processes, which coincides with the operational de�nition of the sequential composition. (Notethat processes can be viewed as labelled transition systems.) In [BM88], the sequential composition ofP1-processes is not well-de�ned. The de�nition of the sequential composition in [BZ82] is well-de�ned,but does not coincide to the operational one. It can be shown that these complications do not arisein the de�nitions of the operators mentioned above on P2- and P3-processes.Unlike the process domain P2, the process domain P3 makes an elementary semantic modellingof image �nite language constructions like random assignment possible (cf. [Bre94]). (For a detailedoverview of metric semantic models the reader is referred to [BR92].)Novel in the present paper are� the process domain P3, which can be shown to correspond to the class of image �nite processesand to be strongly extensional,� the detailed comparison of the process domains P1, P2, and P3, and



4 Introduction� the relation of the process domains P1, P2, and P3 with the classes of general, �nitely branching,and image �nite processes, extending results concerning the process domains P1 and P2 of [BZ82]and [BZ83].In the �rst section of this paper, some preliminaries concerning metric spaces can be found. In thesecond section, the three process domains are introduced. In the third section, the correspondencebetween P1-, P2-, and P3-processes and general, �nitely branching, and image �nite processes isstudied. The process domains are related as described above in the fourth section. In the �fth section,the process domains are shown to be strongly extensional. In the sixth section, some complicationsarising in the de�nition of the sequential composition of P1-processes are pinpointed. Furthermore, itis shown that these complications do not arise in the de�nition of this operator on P3-processes. Theother three operators, viz parallel composition, trace set, and fairi�cation, are considered in [Bre94].In this paper, several de�nitions from other papers have been modi�ed slightly to stress the corre-spondence with the other de�nitions.1. Metric spacesSome preliminaries concerning metric spaces are presented. Only some nonstandard notions, i.e.notions which are not found in the main text of [Eng89], are introduced.Contractive functions, which are called contractions, are introduced inDefinition 1.1 Let (X; dX) and (X 0; dX0) be metric spaces. A function f : X ! X 0 is calledcontractive if there exists an ", with 0 � " < 1, such that, for all x and x0,dX0 (f (x); f (x0)) � " � dX (x; x0):These contractions play a central rôle inTheorem 1.2 (Banach's theorem) Let (X; dX) be a complete metric space. If f : X ! X is acontraction then f has a unique �xed point �x (f). For all x,limn fn (x) = �x (f)wheref0 (x) = x and fn+1 (x) = f (fn (x)):Proof See Theorem II.6 of [Ban22]. utIn this paper, several recursive de�nitions are presented (cf. De�nition 4.1, 4.3, 4.4, 6.1, and 6.3).Banach's theorem can be used to prove the well-de�nedness of these de�nitions (cf. [KR90]).The embeddings to be introduced in Section 4 will be de�ned by means of nonexpansive functions.Definition 1.3 Let (X; dX) and (X 0; dX0) be metric spaces. A function f : X ! X 0 is callednonexpansive if, for all x and x0,dX0 (f (x); f (x0)) � dX (x; x0):



2. Three process domains 52. Three process domainsThree process domains are presented. These process domains are de�ned by means of recursive domainequations.In [AR89], America and Rutten present a category theoretic technique to solve recursive domainequations. The objects of the category are 1-bounded complete metric spaces. With a domain equationa functor is associated. If this functor satis�es certain conditions, then it has a unique �xed point (upto isometry) which is the intended solution of the domain equation.The recursive domain equations, by which the process domains are de�ned, are built from an actionset A, which is endowed with the discrete metric, and the constructions described inDefinition 2.1 Let (X; dX) and (X 0; dX0) be 1-bounded complete metric spaces.A metric on the Cartesian product of X and X 0, X �X 0, is de�ned bydX�X0 ((x; x0); (�x; �x0)) = maxf dX (x; �x); dX0 (x0; �x0) g:A metric on the collection of functions from X to X 0, X ! X 0, is de�ned bydX!X0 (f; f 0) = sup f dX0 (f (x); f 0 (x)) j x 2 X g:A new metric on X is de�ned bydid 12 (X) (x; x0) = 12 � dX (x; x0):The Hausdor� metric on the set of closed subsets of X, Pcl (X), and on the set of compact subsets ofX, Pco (X), is de�ned bydP (X) (A;B) = max f sup f inf f dX (x; x0) j x0 2 B g j x 2 A g;sup f inf f dX (x; x0) j x0 2 A g j x 2 B g gwhere sup ; = 0 and inf ; = 1.The three process domains are introduced inDefinition 2.2 The process domains P1, P2, and P3 are de�ned by the recursive domain equationsP1 �= Pcl (A� id 12 (P1))P2 �= Pco (A� id 12 (P2))P3 �= A! Pco (id 12 (P3))Processes as described in the introduction can be represented by elements of these process domains.For example, the process �� �a ������ b== == ��is represented by the P1- and P2-processf(a; ;); (b; ;)g



6 Introductionand by the P3-process�a0 :� f�a00 : ;g if a0 = a or a0 = b; otherwiseThe process �� �� a ������ a== == ��b������is represented by the P1- and P2-processf(a; f(b; ;)g); (a; ;)gand by the P3-process�a0 :� fp0; p1g if a0 = a; otherwisewherep0 = �a00 :� f�a000 : ;g if a00 = b; otherwiseand p1 = �a00 : ;:Not every process can be represented in all three process domains. In Section 4, we will show thatthe process domain P3 is located in between P1 and P2, i.e. P2 can be isometrically embedded in P3and P3 can be isometrically embedded in P1.
P2 P3 P1



3. Finite processes 7Next, processes in the shaded regions of the above picture are presented. The process�� � �a0 pppppwwppppp a1 ������ � � �a2������is represented by the P1-processf (an; ;) j n 2 IN g:However, this is not a P2-process, because the above set is closed but not compact. The process isalso represented by the P3-process�a0 :� f�a00 : ;g if a0 = an for some n; otherwiseThe process �� � �� � �a pppppwwppppp a ������ � � �a������a0������ a1������ � � �a2������is represented by the P1-processf (a; f(an; ;)g) j n 2 IN g:Again, this is not a P2-process, because the above set is not compact. The process can also not berepresented by a P3-process. The obvious candidate�a0 :� f pn j n 2 IN g if a0 = a; otherwisewherepn = �a00 :� f�a000 : ;g if a00 = an; otherwiseis not a P3-process, since the setf pn j n 2 IN gis not compact.3. Finite processesThe three process domains are related to certain collections of �nite (in depth) processes. It isdemonstrated that P1-, P2-, and P3-processes correspond to general, �nitely branching, and image�nite processes, respectively.The set of processes of �nite depth is introduced in



8 IntroductionDefinition 3.1 The set P �1 of processes of �nite depth is de�ned byP �1 =[ fPn1 j n 2 IN gwherePn1 = � f;g if n = 0P (A� Pn�11 ) otherwiseObviously, each P �1 -process is a P1-process. The P �1 -processes are endowed with the restriction ofthe metric on the P1-processes. The obtained metric space is not complete. For example, the sequence(pn)n of P �1 -processes de�ned bypn = � ; if n = 0f(a; pn�1)g otherwiseis a Cauchy sequence but does not have a limit in P �1 (the sequence converges to a process of in�nitedepth). The metric completion of the metric space of P �1 -processes, which is denoted by fP �1 , is shownto be isometric to the process domain P1 inTheorem 3.2 fP �1 �= P1.Proof See Theorem 2.11 of [BZ82]. utThe set of �nitely branching processes of �nite depth is introduced in the following de�nition, inwhich P� denotes the set of all �nite subsets.Definition 3.3 The set P �2 of �nitely branching processes of �nite depth is de�ned byP �2 =[ fPn2 j n 2 IN gwherePn2 = � f;g if n = 0P� (A� Pn�12 ) otherwiseSimilarly, the metric completion of the metric space of P �2 -processes is proved to be isometric tothe complete metric space of P2-processes inTheorem 3.4 fP �2 �= P2.Proof See Theorem 3.2 of [BZ83]. utThe set of image �nite processes of �nite depth is introduced inDefinition 3.5 The set P �3 of image �nite processes of �nite depth is de�ned byP �3 =[ fPn3 j n 2 IN g



4. Comparison of the process domains 9wherePn3 = � f�a � ;g if n = 0A! P� (Pn�13 ) otherwiseThe process domain P3 can be shown to be isometric to the metric completion of the metric spaceof P �3 -processes.Theorem 3.6 fP �3 �= P3.Proof Similar to the proofs of the Theorems 3.2 and 3.4. ut4. Comparison of the process domainsThe three process domains are related. It is shown that the process domain P2 can be isometricallyembedded in the process domain P3 and that the process domain P3 can be isometrically embeddedin the process domain P1. Furthermore, if the action set A is �nite, then the process domain P1 canbe isometrically embedded in the process domain P2 such that the diagramP3P2 P1i2AAAAAA  #"id!ooi1}}}}}}>>! id# // i3oo_____________ !id"oocommutes. Consequently, if the action set A is �nite, then the process domains P1, P2, and P3 areisometric. If the action set A is in�nite, then it can be proved that the process domains P1, P2, andP3 are not isometric.The embedding i1 from the process domain P2 to the process domain P3 is introduced inDefinition 4.1 The embedding i1 : P2 ! P3 is de�ned byi1 (p) = �a � f i1 (p0) j (a; p0) 2 p g:In order to prove the well-de�nedness of the above recursive de�nition of the embedding i1, aso-called higher-order transformation 	i1 is introduced inDefinition 4.2 The higher-order transformation 	i1 : (P2 !1 P3)! (P2 !1 P3) is de�ned by	i1 ( )(p) = �a � f (p0) j (a; p0) 2 p g:In order to be well-de�ned, the higher-order transformation 	i1 is restricted to nonexpansive func-tions, i.e.	i1 2 (P2 !1 P3)! (P2 !1 P3):



10 Introduction(The collection of nonexpansive functions from P2 to P3, P2 !1 P3, endowed with the restrictionof the metric on functions from P2 to P3 is a complete metric space.) Although only continuity,which is implied by nonexpansiveness, is needed in the well-de�nedness proof of the higher-ordertransformation 	i1 , the restriction induces half of the proof that the embedding i1 is isometric (seebelow). This higher-order transformation 	i1 can be shown to be contractive (here the id 12 in thedomain equation of process domain P3 is crucial). According to Banach's theorem (cf. Theorem 1.2),the higher-order transformation 	i1 has a unique �xed point which is the intended embedding i1, i.e.i1 = �x (	i1):Consequently, i1 2 P2 !1 P3. To show that the embedding i1 is isometric it is left to prove that, forall p and p0,d (i1 (p); i1 (p0)) � d (p; p0):This can be demonstrated by �xed point induction using Banach's theorem.The embedding i2 from the process domain P3 to the process domain P1 is introduced inDefinition 4.3 The embedding i2 : P3 ! P1 is de�ned byi2 (p) = f (a; i2 (p0)) j p0 2 p (a) g:As the embedding i1, also the embedding i2 can be shown to be well-de�ned and isometric.Assume the action set A is �nite. Then the process domain P1 can be isometrically embedded inthe process domain P2. The embedding i3 from the process domain P1 to the process domain P2 isintroduced inDefinition 4.4 The embedding i3 : P1 ! P2 is de�ned byi3 (p) = f (a; i3 (p0)) j (a; p0) 2 p g:Also this embedding can be shown to be well-de�ned by means of a higher-order transformation. Inthe well-de�nedness proof of the higher-order transformation the compactness of the process domainP1 is exploited. The process domain P1 is compact, since the solution of a recursive domain equationbuilt from 1-bounded compact metric spaces (e.g., the �nite action set A endowed with the discretemetric), Pcl , �, and id 12 is a 1-bounded compact metric space as is proved in [BW93].The embedding i3 can also be shown to be isometric. Furthermore, it can be demonstrated thatthe above diagram commutes. For example, it can be proved thatd (i3 � i2 � i1; id) � 12 � d (i3 � i2 � i1; id)and hence i3 � i2 � i1 = id. As a consequence, the process domains P1, P2, and P3 are isometric.Theorem 4.5 If A is �nite, then P1 �= P2, P2 �= P3, and P1 �= P3.Assume the action set is in�nite. More precisely, assume A is equipollent to 2"n, for some n, where2 " n is de�ned in



5. Bisimulation 11Definition 4.6 The sets 2 " n are de�ned by2 " n = � IN if n = 022"(n�1) otherwiseThe set 2 " ! is de�ned by2 " ! =[n2IN 2 " n:The case n = 0, i.e. A � IN, is considered to be the most interesting case. The case n = 1, i.e.A � 2IN � IR, is also of interest when one considers real-time processes.Theorem 4.7 If A � 2 " n, for some n, then P1 6�= P2, P2 6�= P3, and P1 6�= P3.The above theorem can be proved as follows. It can be demonstrated that P �1 , P �2 , and P �3 arediscrete spaces. Consequently, the weight of these spaces is equal to the cardinality of the spaces.Since the weight of the metric completion of a space is equal to the weight of the original space, theweight of fP �1 , fP �2 , and fP �3 is equal to the cardinality of P �1 , P �2 , and P �3 . The weight of a space beingsmaller than some cardinal number is a topological property. Because the cardinality of P �2 (2 " n) isstrictly smaller than the cardinality of P �3 (2 " (n + 1)) and the cardinality of P �3 is strictly smallerthan the cardinality of P �1 (2 " !), it can be concluded that fP �1 , fP �2 , and fP �3 are not isometric. Fromthe theorems of the previous section immediately follows that P1, P2, and P3 are not isometric.5. BisimulationThe process domains can be viewed as labelled transition systems. The bisimulation relations onthese labelled transition systems induce bisimulation relations on the process domains. The processdomains are proved to be strongly extensional, i.e. the largest bisimulation relation - bisimilarity -coincides with equality.The process domain P1 is turned into a labelled transition system of which the con�gurations areP1-processes, the labels are actions, and the transition relation is de�ned byp a�! p0 if and only if (a; p0) 2 p:Bisimilarity on the process domain P1 coincides with equality as is shown inTheorem 5.1 P1 is strongly extensional.Proof See Theorem 1 of [GR89]. utA similar result is proved for the process domain P2 inTheorem 5.2 P2 is strongly extensional.Proof See [Rut92]. utThe process domain P3 is turned into a labelled transition system of which the con�gurations areP3-processes, the labels are actions, and the transition relation is de�ned by



12 Introductionp a�! p0 if and only if p0 2 p (a):Also the process domain P3 can be shown to be strongly extensional.Theorem 5.3 P3 is strongly extensional.Proof Similar to the proofs of the Theorems 5.1 and 5.2. ut6. Sequential compositionSome complications arising in the de�nition of the sequential composition of P1-processes are pin-pointed. Furthermore, it is shown that these complications do not arise in the de�nition of thesequential composition of P3-processes.In De�nition 4.4 of [BM88], the sequential composition of P1-processes is de�ned byDefinition 6.1 The operator ; : P1 � P1 ! P1 is de�ned byp ; p0 = � p0 if p = ;f (a; p00 ; p0) j (a; p00) 2 p g otherwiseThis de�nition coincides with the operational de�nition of the sequential composition. (Note thatprocesses can be seen as labelled transition systems.) However, the above de�nition is not well-de�ned,as Warmerdam ([War90]) showed (cf. Appendix A).Also in De�nition 2.14 of [BZ82], the sequential composition of P1-processes is de�ned.Definition 6.2 For a �nite process p, p;p0 is de�ned as in De�nition 6.1, and for an in�nite process p,p ; p0 = limn (p [n] ; p0)where p [n] denotes the truncation of process p at depth n.This de�nition is well-de�ned. However, the above de�nition does not coincide with the operationalde�nition of the sequential composition (cf. Appendix A).For P3-processes, the sequential composition is de�ned inDefinition 6.3 The operator ; : P3 � P3 ! P3 is de�ned byp ; p0 = � p0 if p = �a � ;�a � f p00 ; p0 j p00 2 p (a) g otherwiseThe well-de�nedness of the above de�nition of the sequential composition can be proved along thelines of the well-de�nedness proof of the embedding i1 in the fourth section of this paper.Also in the de�nitions of the operators parallel composition, trace set, and fairi�cation on P1-processes similar complications arise (cf. [BK87, BBKM84, Bre94]). These complications do not arisein the de�nitions of the operators on P3-processes (cf. [Bre94]). Also process domain P2 does not giverise to these complications (cf. [KR90]). However, unlike process domain P3, process domain P2 doesnot allow an elementary modelling of image �nite language constructions like random assignment (cf.[Bre94]).



Concluding remarks 13Concluding remarksIn this concluding section, some related work is discussed and some points for further research arementioned.A fourth process domain P4 de�ned by the recursive domain equation P4 �= A ! Pcl (id 12 (P4)) isconsidered in [Bre94]. The process domain P4 can be shown to be isometric to the process domain P1(independent of the size of the action set A).An alternative metric process domain is introduced by Golson and Rounds in [GR83, Gol84]. Theprocesses are Milner's rigid synchronization trees endowed with a pseudometric. The pseudometricis induced by the (strong) behavioural equivalence relation introduced in [Mil80]. This behaviouralequivalence relation and the bisimilarity equivalence relation considered in Section 5 do not coincide(cf. [Mil90]). Golson and Rounds show that their process domain is isometric to the process domainP1 in case the action set is �nite or countably in�nite (for the countably in�nite case, the powerset construction used in the domain equation de�ning P1 should be restricted to the collection ofcountable subsets).In [Ole87], Oles de�nes a denotational semantics for a nonuniform language with the so-called angelicchoice operator. The mathematical domain of this denotational semantics is de�ned as the solutionof a recursive domain equation over bounded complete directed sets. For a uniform language withthe conventional choice operator, the mathematical domain de�ned by the recursive domain equationP �= A! P� (P ) has been suggested ([Ole92]). This domain equation shows some resemblance withthe domain equation for process domain P3.Some topics for further research are the study of the process domains P1, P2, and P3 with the actionset endowed with an arbitrary complete metric instead of the discrete metric, and process domainscorresponding to general, �nitely branching, and image �nite processes for complete partial ordersand non-well-founded sets.AcknowledgementsThe author would like to thank Jaco de Bakker, Jan Rutten, and Fer-Jan de Vries for several discus-sions and their comments on a preliminary version of this paper. Furthermore, the author is gratefulto Marcello Bonsangue, Frank Oles, Daniele Turi, and Erik de Vink for discussion.References[ABKR89] P. America, J.W. de Bakker, J.N. Kok, and J.J.M.M. Rutten. Denotational Semanticsof a Parallel Object-Oriented Language. Information and Computation, 83(2):152{205,November 1989.[Abr91] S. Abramsky. A Domain Equation for Bisimulation. Information and Computation,92(2):161{218, June 1991.[Acz88] P. Aczel. Non-Well-Founded Sets. Number 14 in CSLI Lecture Notes. Centre for the Studyof Languages and Information, Stanford, 1988.[AR89] P. America and J.J.M.M. Rutten. Solving Re
exive Domain Equations in a Categoryof Complete Metric Spaces. Journal of Computer and System Sciences, 39(3):343{375,December 1989.[AR92] P. America and J.J.M.M. Rutten. A Layered Semantics for a Parallel Object-OrientedLanguage. Formal Aspects of Computing, 4(4):376{408, 1992.
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16 A. Warmerdam's counterexampleThis P1-process p is depicted by �� � �� � � � � � � � � � � �� � � � ��
a ccccccccccccccccccccccccqqcccccccccccccccccccccccc a ggggggggggggssgggggggggggg � � �a������b pppppwwppppp a0 ������ a1������ � � �a2== ==�� b pppppwwppppp a0 ������ a1������ � � �a2== ==�� b pppppwwppppp a0 ������ a1������ � � �a2== ==��c������ b������ c������ b������ c������b������Let P1-process p0 be de�ned byp0 = flimn cng:This P1-process p0 is depicted by ���c������c������...According to De�nition 4.4 of [BM88] (cf. De�nition 6.1), the sequential composition of the P1-processes p and p0 is de�ned byp ; p0 = f (a; p00n) j n 2 IN gwherep00n = fbn ; p0; (a0; p0); (a1; p0); : : :gand bn ; p0 = � (b; p0) if n = 0(b; fbn�1 ; p0g) otherwise



A. Warmerdam's counterexample 17This process p ; p0 is depicted by �� � �� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �
a ccccccccccccccccccccccccqqcccccccccccccccccccccccc a ggggggggggggssgggggggggggg � � �a������b pppppwwppppp a0 ������ a1������ � � �a2== ==�� b pppppwwppppp a0 ������ a1������ � � �a2== ==�� b pppppwwppppp a0 ������ a1������ � � �a2== ==��c������ c������ c������ c������ b������ c������ c������ c������ b������ c������ c������ c������c������ c������ c������ c������ c������ c������ c������ c������ b������ c������ c������ c������c������ c������ c������ c������ c������ c������ c������ c������ c������ c������ c������ c������... ... ... ... ... ... ... ... ... ... ... ...However, p ; p0 is not a P1-process, since the set p ; p0 is not closed. The set p ; p0 contains the Cauchysequence ((a; p00n))n but not its limit (a; p00) wherep00 = flimn bn; (a0; p0); (a1; p0); : : :gwhich is depicted by ��� � � �� � � �� � � �� � � �

a������b pppppwwppppp a0 ������ a1������ � � �a2== == ��b������ c������ c������ c������b������ c������ c������ c������b������ c������ c������ c������... ... ... ...The above counterexample also shows that the limit construction in the de�nition of the sequentialcomposition presented in De�nition 2.14 of [BZ82] (cf. De�nition 6.2) adds unexpected subprocesses;the limit construction limn (p [n] ; p0) adds subprocess (a; p00).


