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Abstract

The Eclipse modelling framework provides a hi-
erarchy of Java classes that represent the ab-
stract syntax of BPEL4WS. Many analyses of
a BPEL4WS program boil down to walking its
abstract syntax tree. We review, refine and
extend a technique, based on Java’s reflection
mechanism, to walk such trees. We apply this
technique to implement two non-trivial analy-
ses of BPEL4WS programs.
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analysis
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1 Introduction

The analysis of a program usually involves
walking the abstract syntax tree of the pro-
gram. When walking the syntax tree, nodes
of the tree are visited. Which nodes are visited
and in which order these nodes are visited may
differ from one analysis to another. When a
node is visited, some code is executed. Differ-
ent code snippets may be associated to different
types of nodes.

There are a number of different ways to im-
plement such analyses in Java:

• adding dedicated methods to the Java
classes representing the abstract syntax,

• the syntax separate from interpretation
approach [2, Section 4.2],

• exploiting the visitor design pattern [14],

• tailoring automatically generated tree
walkers as supported by compiler kits like
ANTLR [25] and SableCC [12, 13], and

• reflection based tree walkers.

In this paper, we focus on reflection based tree
walkers. This approach was put forward by
Palsberg and Jay [23] (see also [24]) and re-
fined and improved by Bravenboer and Visser
[4]. This approach is based on Java’s reflec-
tion mechanism (see, for example, [11]), imple-
mented in the package java.lang.reflect. Reflec-
tion is both used for walking the tree and for ex-
ecuting the appropriate code snippet when vis-
iting a node. The main advantage of reflection
based tree walkers over all other approaches is
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that changes to the class hierarchy represent-
ing the abstract syntax have very little effect on
the code that performs the analyses. As we will
see, it has other advantages as well. Its main
disadvantage is its relatively poor performance.

Neither Palsberg and Jay nor Bravenboer
and Visser walk array objects. In this paper,
we show how to extend reflection based tree
walkers so that we can also deal with arrays.

The Eclipse modelling framework (EMF) [6]
generates a hierarchy of Java classes from the
specification of an XML based language. These
classes represent the abstract syntax of the lan-
guage. In this paper, we will focus on the EMF
model of the language BPEL4WS [1]. This lan-
guage allows a programmer to compose web
services. We present the implementation of
a number of analyses of BPEL4WS programs
by walking the EMF model by means of re-
flection based tree walkers. For example, we
present the implementation of an analysis that
detects if dead-path-elimination, a key ingre-
dient of BPEL4WS, may cause side effects in
a BPEL4WS program. Furthermore, we show
how to translate BPEL4WS programs into the
BPE-calculus — the input language for a veri-
fication tool for web service orchestration.

Since the EMF model of BPEL4WS repre-
sents BPEL4WS programs as directed graphs,
rather than trees, some care is needed to en-
sure that the walkers terminate. As we will
see, walking the EMF model of BPEL4WS can
be viewed as a depth first traversal of a directed
graph.

Combining EMF and reflection based graph
walkers provides us with a powerful approach
to analyze programs written in XML based lan-
guages. As we will see, the amount of code one
needs to write is often considerably less than
when exploiting any of the other approaches
mentioned above. Since the resulting code can
be produced rather quickly but is relatively
slow, we believe that this approach is ideal for
prototyping.

The rest of this paper is organized as fol-
lows. In Section 2, we provide a very brief
introduction to BPEL4WS. We focus only on
those concepts of BPEL4WS that play a role
in the rest of this paper. Reflection based tree
walkers are reviewed and refined in Section 3.
In Section 4, we show how to walk array ob-

jects. Furthermore, we provide two simple ex-
amples of array walkers. The EMF model for
BPEL4WS and reflection based walkers of this
model are presented in Section 5. We provide
two simple examples that walk the EMF model
for BPEL4WS. In Section 6 and 7 we discuss
two more elaborate examples of graph walk-
ers. A translation from BPEL4WS to the BPE-
calculus is sketched in Section 6 and detection
of side effects of dead-path-elimination is the
topic of Section 7. Section 8 concludes and dis-
cusses related and future work.

2 BPEL4WS

The business process execution language for
web services (BPEL4WS) [1] represents the
uniting of two previously competing standards:
the web services flow language (WSFL) [19]
from IBM and Microsoft’s XLANG [28]. Like
WSFL and XLANG, BPEL4WS has been de-
signed to compose web services. For an intro-
duction to web services, we refer the reader to,
for example, [26].

In BPEL4WS, the basic activities include
assignments, invoking web service operations,
receiving requests, and replying to requests.
These basic activities are combined into struc-
tured activities using ordinary sequential con-
trol flow constructs like sequencing, switch con-
structs, and while loops.

Concurrency is provided by the flow con-
struct. For example, in

<flow>
buy
sell

</flow>

the activities buy and sell, whose behaviour
has been left unspecified to simplify the exam-
ple, are concurrent. The pick construct allows
for selective communication. Consider, for ex-
ample,

<pick>
<onMessage partner="consumer">
sell

</onMessage>
<onMessage partner="producer">
buy

</onMessage>
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</pick>

On the one hand, if a message from consumer
is received then the activity sell is executed.
In that case, the buy activity will not be per-
formed. On the other hand, the receipt of a
message from producer triggers the execution
of the buy activity and discards the sell activ-
ity. In the case that both messages are received
almost simultaneously, the choice of activity to
be executed depends on the implementation of
BPEL4WS.

Synchronization between concurrent activi-
ties is provided by means of links. Each link has
a source activity and a target activity. Further-
more, a transition condition is associated with
each link. The latter is a Boolean expression
that is evaluated when the source activity ter-
minates. Its value is associated to the link. As
long as the transition condition of a link has
not been evaluated, the value of the link is un-
defined. In this paper, we will use, for example

?>=<89:;as
true

`
// 76540123at

to depict that link ` has source as and target
at and transition condition true.

Each activity has a join condition. This con-
dition consists of incoming links of the activity
combined by Boolean operators. Only when all
the values of its incoming links are defined and
its join condition evaluates to true, an activity
can start. As a consequence, if its join condi-
tion evaluates to false then the activity never
starts. We will use, for example,

?>=<89:;a1
s true

`1
��

@@
@@

@@
@@

?>=<89:;a2
strue

`2
`1∧`2

��~~
~~

~~
~~

76540123at

to depict that the join condition of activity at

is `1 ∧ `2. In the above example, activity at

can only start after activities a1
s and a2

s have
finished.

3 Walking Trees

Below, we introduce the reflection based tree
walkers of Palsberg and Jay [23] by means of
simple examples. In the examples, we focus on

join conditions of BPEL4WS. We introduce a
small hierarchy of Java classes that represents
the abstract syntax of join conditions. We show
how a reflection based tree walker can be used
to traverse an abstract syntax tree of a join
condition to extract (some of) the links of the
join condition.

As we already mentioned above, a join con-
dition in BPEL4WS consists of links combined
by Boolean operators. To simplify the presen-
tation, we consider join conditions defined by
the following BNF production

c ::= true | false | ` | ¬c | c ∧ c | c ∨ c | (c)
where ` is the name of a link. For example,
¬(¬`1 ∧ `2) ∨ ¬`3 is a join condition.

To represent the abstract syntax of join con-
ditions in Java, we introduce the following class
hierarchy.

Condition

True

66lllllllllllll
False

::vvvvvvvvv
Link

OO

Not

bbFFFFFFFF
And

ggPPPPPPPPPPPP
Or

iiTTTTTTTTTTTTTTTTT

The class Condition is abstract and the other
classes are not. The class Not has a single field
of type Condition and the classes And and Or
have two such fields. The class Link has a field
of type String. The classes True and False
have no fields. The abstract syntax tree of the
join condition ¬(¬`1 ∧ `2) ∨ ¬`3 is represented
by a Condition object that can be depicted as
the following tree.

Or
%%LLL

LL
yytttt

Not

��

Not

��

And

$$III
II

zzuuu
uu

Link

��

Not

��

Link

��

`3

Link

��

`2

`1

To distinguish the three String objects, these
objects are represented by their value. The
nodes of the tree are objects. An object is a
parent of another object in the tree if the for-
mer object has a non-static field the value of
which is the latter object.

3



A reflection based tree walker uses Java’s
reflection mechanism to access (some of) the
fields of the objects representing an abstract
syntax tree in order to walk the tree. Fur-
thermore, the reflection mechanism is also ex-
ploited to execute the appropriate code snip-
pets when visiting nodes of the tree. The ab-
stract class Walker forms the basis for a reflec-
tion based tree walker. To implement an actual
walker, one has to extend this class. The sub-
class contains the code snippets that need to be
executed when visiting nodes of the tree. We
can associate different code snippets to differ-
ent types of nodes. For example, to associate a
code snippet to nodes of type Link, we intro-
duce a method

void visit (Link link) { ... }

Next, we give an informal presentation of the
class Walker.

abstract class Walker
{
void walk(Object o)
{
if (o != null)

if (this class has a visit method
that takes o as an argument)

visit(o);
else
walkFields(o);

}

void walkFields(Object o)
{
if (o != null)

for (each field f of o)
if (f is not static and

f is not of primitive type)
walk(o.f);

}
}

Clearly, the walk method is similar to a depth
first traversal. Whenever we encounter a node
for which we have introduced a visit method,
the corresponding code snippet is executed.
Note that the subtree of such a node is not
traversed.

Let us briefly discuss the differences between
the above code and the code presented by Pals-
berg and Jay [23] and by Bravenboer and Visser

[4]. When walking the tree, we do not consider
static fields. These fields contain very generic
information about a class and not specifically
about an object. Therefore, these fields are not
considered part of the tree. Bravenboer and
Visser also do not consider static fields, but
Palsberg and Jay do.

Palsberg and Jay and also Bravenboer and
Visser only consider the public fields, including
inherited public fields. In contrast, we consider
all non-static fields, including inherited ones.
If only public fields were walked, it would force
us to make the fields in the classes represent-
ing the syntax trees public, hence violating the
object-oriented principle of encapsulation. Fur-
thermore, tree walkers would not be applicable
to EMF models since most fields of EMF mod-
els are not public. However, by walking non-
public fields, one should in general refrain from
changing the object that is provided as an ar-
gument to the visit methods. For example,
in the body of the method

void visit(Link link) { ... }

the object link should not be modified in
general. Otherwise, we may be violating
the object-oriented principle of encapsulation,
since the object link may be the value of a
private field.

Palsberg and Jay do not walk objects of type
Number, Boolean and Character, whereas we
follow Bravenboer and Visser and do not con-
sider fields of primitive type. If one were to
remove the condition f is not of primitive
type, then the walk method would not ter-
minate for objects of type Number, Boolean
and Character. For example, consider an ob-
ject o of type Boolean. The class Boolean has
a private and non-static field named value of
type boolean. Java’s reflection mechanism au-
tomatically wraps values of primitive type in
an object. Hence, walk(o) would gives rise
to walk(new Boolean(o.value)), where the
Boolean objects o and new Boolean(o.value)
represent the same Boolean value, and hence
walk(o) would give rise to infinite recursion.

On the one hand, Palsberg and Jay only
consider visit methods that are part of the
class that walks the tree. On the other hand,
Bravenboer and Visser consider visit meth-
ods in the class that walks the tree, but also in
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any of its superclasses. We also take the latter
approach. This approach allows us to exploit
inheritance as we will show in the second ex-
ample presented below.

The type of the parameter of the visit
methods we restrict to classes. That is, we dis-
allow the use of an interface as the type of the
parameter of a visit method. Bravenboer and
Visser allow interfaces. Although interfaces al-
low more generic code in some cases, the use of
interfaces in this setting may lead to ambiguity.
For example, consider that class C implements
the interfaces I and J. Furthermore, assume
that the walker has

void visit(I i) { ... }
void visit(J j) { ... }

but no visit method with parameter of type C.
In this case, when visiting a node of type C,
it is not evident which of the above two visit
methods should be chosen.

Next, we realize the following analysis by
means of a reflection based tree walker. Given
a join condition c, return the collection of all
links that are part of c. That is, given a
Condition object c, return the collection of all
Link objects that are part of c. Let us imple-
ment the collection by a Vector. To perform
this analysis, one has to traverse the tree of c.
Whenever a Link node is visited, this object
has to be added to the vector.

class LinkExtractor extends Walker
{
Vector links;

LinkExtractor()
{
super();
links = new Vector();

}

Vector getLinks()
{
return links;

}

void visit(Link link)
{
links.add(link);

}
}

The Vector object links keeps track of the
Link objects that have been encountered dur-
ing the traversal.

Given a Condition object c,

(new LinkExtractor()).walk(c).getLinks();

gives us a Vector object containing the Link
objects that are part of c.

As a second example, we show how to find
all negative occurrences of links in a join con-
dition. We will exploit this analysis in Sec-
tion 7. A Link object occurs negatively in a
Condition object if the path from the Link
object to the root of the abstract syntax tree
has an odd number of Not objects. For exam-
ple, in the join condition ¬(¬`1 ∧ `2) ∨ ¬`3 the
links `2 and `3 occur negatively and the link `1

does not.

class NegativeLinkExtractor
extends LinkExtractor

{
boolean odd;

NegativeLinkExtractor()
{
super();
odd = false;

}

void visit(Link link)
{
if (odd)
links.add(link);

}

void visit(Not not)
{
odd = !odd;
walkFields(not);
odd = !odd;

}
}

The field odd tells us whether the number of
nodes of type Not from the currently visited
node to the root of the tree is odd. In order to
walk the subtree rooted at a node of type Not,
we use the method walkFields.

5



4 Walking Arrays

Neither Palsberg and Jay nor Bravenboer and
Visser walk arrays. To handle array objects
we modify the walk method and add the
walkArray method to the class Walker.

void walk(Object o)
{
if (o != null)
if (this class has a visit method

that takes o as an argument)
visit(o);

else
if (o is an array)
walkArray(o);

else
walkFields(o);

}

void walkArray(Object o)
{
if (o != null and

component type of o is not primitive)
for (int i = 0; i < o.length; i++)

walk(o[i]);
}

Now let us walk some arrays. For example, the
sum of the values of an (n-dimensional) array
of Integer objects can be computed as follows.

class Adder extends Walker
{
int sum;

Adder()
{
super();
sum = 0;

}

int getSum()
{
return sum;

}

void visit(Integer i)
{
sum += i.intValue();

}
}

Consider a two-dimensional array a of Integer
objects with m rows and n columns. We can
compute ∏

1≤r≤m

∑
1≤c≤n

a[c][r]

as follows.

class Multiplier extends Adder
{

int product;

Multiplier()
{
super();
product = 1;

}

int getProduct()
{
return product;

}

void visit(Integer[] a)
{
sum = 0;
walkArray(a);
product *= sum;

}
}

Note that the class Multiplier extends the
class Adder. As a consequence, the method call
walkArray(a) results in summing the values of
the array a.

5 Walking Graphs

The Eclipse modelling framework (EMF) [6]
generates a hierarchy of Java classes from the
specification of an XML based language. These
classes represent the abstract syntax of the lan-
guage. In this paper, we will focus on the EMF
model of BPEL4WS.

Note that if we apply the method walk to a
collection of objects that forms a graph, rather
than a tree, then the traversal may not termi-
nate. The objects representing a BPEL4WS
program often form a graph. For example,
a Flow object flow, which represents a flow,
refers to a Links object, say, links, which rep-
resents the collection of links that are declared
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within the flow. The Links object links in
turn refers to the Flow object flow. Because
of the presence of cycles, we have to refine the
above introduced tree walker so that it can also
deal with graphs.

Palsberg and Jay do not walk graphs,
whereas Bravenboer and Visser do. They pro-
pose two solutions to address the termination
problem that arises when walking graphs. The
first is to remember which objects have already
been walked. The second is to mark those
objects that have been walked. We have im-
plemented the first solution as it does not re-
quire any changes to the graph. We introduce a
collection walked that contains all the objects
that have been walked so far.

Collection walked;

Walker()
{
walked = empty collection;

}

void walk(Object o)
{
if (o != null and

walked does not contain o)
walked.add(o);
if (this class has a visit method

that takes o as an argument)
visit(o);

else
if (o is an array)
walkArray(o);

else
walkFields(o);

}

Note that a walk is similar to a depth first
traversal of a directed graph. The vertices of
the graph are objects. There is a directed edge
from one object to another if the former ob-
ject has a field the value of which is the latter
object. Whenever the traversal reaches an ob-
ject for which a visit method has been in-
troduced, then the corresponding code snip-
pet is executed. In that case, the objects that
are reachable from the visited object are not
walked.

The EMF model of BPEL4WS consists of
more than 500 classes. Here, we will only dis-

cuss a few (simplified versions) of those classes.
However, all the graph walkers presented below
work for the EMF model of BPEL4WS (pro-
vided that some class names, that we abbre-
viated, are expanded and some pseudocode is
replaced with Java code).

In the EMF model of BPEL4WS, activities
are represented as objects of type Activity.
Activity is an abstract class that is extended
by a number of concrete classes.

Activity

Invoke

55kkkkkkkkkkkkkk
Receive

::uuuuuuuuu
Flow

OO

Pick

bbEEEEEEEE
. . .

In BPEL4WS, a link is declared within a
flow. The scope of the link is the flow. For
example, in the BPEL4WS snippet

<flow>
<links>
<link name="l">

</links>
...
<flow>
<links>
<link name="l">

</links>
...

</flow>
...

</flow>

two links, both named l, are declared. It is
sometimes useful to rename the links so that
all links have a different name.

In the EMF model of BPEL4WS, a Flow ob-
ject has a collection of Link objects. These
Link objects represent the links that are de-
clared within the flow.

The following walker of the EMF model of
BPEL4WS renames links so that all links have
a different name.

class LinkRenamer extends Walker
{

int counter;

LinkRenamer()
{
super();
counter = 0;
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}

void visit(Link link)
{
link.setName("l" + counter);
counter++;

}
}

Note that the visit method changes the link
object. In this case, the objective of the walker
is to change the model. We will exploit this
LinkRenamer in a tool described in Section 6.

In Section 7, we will present a tool to detect
side effects of dead-path-elimination. The tool
makes use of a directed graph. This graph is
extracted from an Activity object. The ver-
tices of the graph are activities and the edges of
the graph are links. The directed graph is rep-
resented by a Graph object. The class Graph
includes the methods

void addSource(Activity source,
Link link);

void addTarget(Activity target,
Link link);

The method addSource adds the vertex
source and the edge link to the graph pro-
vided that the graph does not already contain
them. Furthermore, it sets the vertex source
to be the source of the edge link. The method
addTarget has a similar effect. The graph can
be built as follows.

class GraphBuilder extends Walker
{
Graph g;

GraphBuilder()
{
super();
g = new Graph();

}

Graph getGraph()
{
return g;

}

void visit(Source s)
{
g.addSource(s.getActivity(),

s.getLink());
}

void visit(Target t)
{
g.addTarget(t.getActivity(),

t.getLink());
}

}

Once we have built the (hyper)graph, we can
easily check if each link has a unique source and
target activity. We can also verify the absence
of (control) cycles. A valid BPEL4WS program
has to satisfy both conditions as specified in the
BPEL4WS definition [1, Section 12.5].

6 BPE-Calculus

The BPE-calculus is a small language based
on BPEL4WS proposed by Koshkina and Van
Breugel in [18] (see also [17]). In the BPE-
calculus they focus on the control flow in
BPEL4WS. They abstract from many details.
In particular, they do not consider data, time,
and fault and compensation handlers.

The concurrency workbench (CWB) is a
generic and customizable verification tool de-
veloped by Cleaveland et al. [7, 8]. Originally,
the CWB was designed for the verification
of Milner’s calculus of communicating systems
(CCS) [22]. However, the CWB can be cus-
tomized to support languages other than CCS.
In [18], Koshkina and Van Breugel show how to
customize the CWB so that it also supports the
BPE-calculus. In this way, they obtain a verifi-
cation tool for the BPE-calculus. Furthermore,
Ramay [27] implemented a tool that translates
a BPEL4WS program into a BPE-process. Us-
ing this tool, Koshkina and Van Breugel have
verified a number of BPEL4WS programs.

Next, we sketch how the translation from
BPEL4WS to the BPE-calculus can be im-
plemented by walking the EMF model of
BPEL4WS. First, we use the walker as de-
scribed in Section 5 to rename the links in
such a way that all links have a different name.
Next, we show how a Condition object, rep-
resenting a BPEL4WS join condition, can be
translated into the String representation of
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the corresponding join condition in the BPE-
calculus.

class Translator extends Walker
{
Stack s;

Translator()
{
super();
s = new Stack();

}

String getTranslation()
{
return (String) s.pop();

}

void visit(True t)
{
s.push("true");

}

void visit(False f)
{
s.push("false");

}

void visit(Link link)
{
s.push(link.getName());

}

void visit(Not not)
{
walkFields(not);
s.push("(not " +

(String) s.pop() + ")");
}

void visit(And and)
{
walkFields(and);
String right = (String) s.pop();
String left = (String) s.pop();
s.push("(" + left +

" and " + right + ")");
}

void visit(Or or)
{
walkFields(or);

String right = (String) s.pop();
String left = (String) s.pop();
s.push("(" + left +

" or " + right + ")");
}

}

We use a Stack object s to temporarily store
the translation of subtrees of the syntax tree of
the join condition.

Similarly, we can develop a walker that
translates an Activity object, representing a
BPEL4WS activity, into a String representa-
tion of its counterpart in the BPE-calculus.

Ramay used the syntax separate from inter-
pretation approach to implement the transla-
tion from BPEL4WS to the BPE-calculus. For
this translation the syntax separate from inter-
pretation approach needed more than five times
as much code as our walker of the EMF model.
We conjecture that the other approaches men-
tioned in the introduction also need consider-
ably more code to implement the analysis.

7 Dead-Path-Elimination

In this section, we present a tool to detect side
effects of dead-path-elimination (DPE). Also
this tool relies on walkers of the EMF model
of BPEL4WS. Before we present these walkers,
we first briefly discuss DPE.

Let us consider the following activities and
links.

?>=<89:;a1
1
true

`11
��

+ ?>=<89:;a2
1 true

`21   @
@@

@@
@@

@
?>=<89:;a2

true

`2
`21∧`2

~~~~
~~

~~
~~

?>=<89:;a3 ?>=<89:;a4
true

`3
��?>=<89:;a5

In the above picture, we use + to depict the
pick construct. Note that the choice between
the activities a1

1 and a2
1 determines which of the

activities a3, a4 and a5 are performed. For ex-
ample, if a1

1 is chosen then a3 is executed. In
that case neither a4 nor a5 can ever occur. As a
consequence, the activities a4 and a5 could be
“garbage collected.” We use the term “garbage
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collection” to denote the process of automati-
cally reclaiming activities (rather than mem-
ory). This can be achieved as follows.

• If a pick construct is executed, then we
also assign false to all the outgoing links of
those branches of the pick construct that
are not chosen.

• If the join condition of an activity evalu-
ates to false, then the activity is “garbage
collected” after assigning false to its out-
going links.

This “garbage collection” scheme is named
dead-path-elimination (DPE) [1, 20]. As an
aside, DPE not only “garbage collects” activi-
ties but also simplifies termination detection of
structured activities. Let us briefly return to
the above example. Assume that activity a1

1 is
chosen. Then, as a result of DPE, the value of
the link `2

1 becomes false. When activity a2

terminates, the link `2 gets the value true. At
this point, the join condition of activity a4 can
be evaluated. Since its value is false, by DPE,
false is assigned to link `3 and activity a4 is
“garbage collected.” Subsequently, again ex-
ploiting DPE, activity a5 can be “garbage col-
lected” as well.

Now let us consider another example.

?>=<89:;a1
1 + ?>=<89:;a2

1 true

`21   @
@@

@@
@@

@
?>=<89:;a2false

`2

¬`21∧¬`2

~~~~
~~

~~
~~

?>=<89:;a3

At first sight, one may be tempted to conclude
that activity a3 will never be executed. How-
ever, DPE may trigger the execution of activ-
ity a3 as follows. Assume that activity a1

1 is
chosen. By DPE, the value of the link `2

1 be-
comes false. Since the value of the link `2 is
false as well, the join condition ¬`2

1 ∧ ¬`2 eval-
uates to true. Hence, activity a3 can be per-
formed. The above can be paraphrased as DPE
may have side effects. We believe that side ef-
fects as in the above example may be intro-
duced accidentally.

The side effect in the above example is
caused by negative occurrences of links in the
join condition. The links `2

1 and `2 both have
a negative occurrence in the join condition

¬`2
1 ∧ ¬`2. As Van Breugel and Koshkina have

shown in [5], by disallowing negative occur-
rences of links in join conditions, side effects
like the one in the above example can be elimi-
nated. However, not every negative occurrence
of a link in a join condition gives rise to side
effects. For example, the link ` in

?>=<89:;a1
true

`

¬`// ?>=<89:;a2

occurs negatively, but does not give rise to any
side effects.

Note that, in the second example of this sec-
tion, activity a3 can only be executed once the
execution of activity a1

1 has started and the ex-
ecution of activity a2 has terminated. Since
BPEL4WS is Turing complete, the problem of
determining whether a given negative occur-
rence of a link in a join condition may give rise
to side effects can be reduced to the halting
problem and, hence, is undecidable.

Below, we present a tool that can narrow
down the negative occurrences of links in join
conditions that may be troublesome. If our tool
finds no such occurrences then we know that
the BPEL4WS program is free of such side ef-
fects. If, however, our tool finds some negative
occurrences of links that may give rise to side
effects, then we should check whether such side
effects can really occur and, if so, whether these
side effects are intentional.

If a negative occurrence of a link in a join
condition gives rise to a side effect, then

• the value of the link is set to false due to
DPE and

• the join condition evaluates to true.

Next, we introduce two (mutually recursive)
functions to capture these two conditions. But
before presenting these functions, we first con-
sider the following BPEL4WS snippet.

<flow>
<assign>
<copy>
<from expression="0">
<to variable="v">

</copy>
</assign>
<assign>
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<copy>
<from expression="1">
<to variable="v">

</copy>
</assign>

</flow>

After executing the above snippet, the value
of the variable v can either be 0 or 1. As a
consequence, the transition condition

bpws:getVariableData(’v’)=’0’

can be either true or false. Hence, the link ` to
which this transition condition is associated ei-
ther gets the value true or false. Therefore, the
join condition ` either evaluates to true or false.
Consequently, if we want to predict the value
of a transition condition, a link, or a join condi-
tion, then we can make three different predic-
tions: its value is always true (which we repre-
sent by 1), its value is always false (which we
represent by −1) or its value is some times true
and other times false (represented by 0).

Given a link `, the Boolean dpe(`) tells us
whether ` may be set to false due to DPE.
Given a join condition c, value(c) captures the
possible values of c. Given a transition condi-
tion b, value(b) approximates the possible val-
ues of b. The function dpe is defined by

dpe(`) = (s is part of a pick) ∨ (value(c) 6= 1)

where s is the source activity of link ` and c is
the join condition of activity s. The function
value on join conditions is defined by

value(true) = 1
value(false) = −1

value(`) =
{

value(b)min 0 if dpe(`)
value(b) otherwise

value(¬c) = −value(c)
value(c1 ∧ c2) = value(c1)min value(c2)
value(c1 ∨ c2) = value(c1)max value(c2)

where b is the transition condition of the link `.
Note that if the link ` can be set to false due to
DPE and the value of b is either always true or
some times true and other times false, then the
value of ` is some times true and other times
false. The function value on transition condi-
tions is defined by

value(b) =




1 if b = true
−1 if b = false

0 otherwise

Note that the approximation of the possible
values of a transition condition is not very pre-
cise. This approximation could easily be im-
proved considerably. We leave this for future
work.

To compute dpe(`), we have to determine the
source activity of the link `. For this purpose,
we exploit the Graph object built by the walker
described in Section 5.

While computing the value of a join condi-
tion, we may have to compute the values of
other join conditions as well. To refrain from
computing the value of a join condition multi-
ple times, we store these values in the Graph
object. Therefore, we augment the Graph class
with the following methods.

boolean hasValue(Activity activity);
int getValue(Activity activity);
void setValue(Activity activity,

int value);

The method hasValue checks if the value of
the join condition of the activity activity has
already been set. The method getValue re-
turns the value of the join condition of the ac-
tivity activity. The method setValue sets
the value of the join condition of the activity
activity to value.

We implement the function dpe as follows.

boolean dpe(Link link, Graph graph)
{

Activity a = graph.getSource(link);
if (!graph.hasValue(a))
Evaluator e = new Evaluator(graph);
Condition c = a.getCondition();
e.walk(c);
int v = e.getValue();
graph.setValue(a, v);

return (a is part of a pick or
graph.getValue(a) != 1);

}

In the above snippet, we use an Evaluator ob-
ject to compute the possible values of the join
condition of the source activity of the link link.
The value of a Condition object is computed
by walking the tree of the Condition object as
follows.

class Evaluator extends Walker
{
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Stack s;
Graph g;

Evaluator(Graph graph)
{
super();
s = new Stack();
g = graph;

}

int getValue()
{
return pop();

}

void visit(True t)
{
push(1);

}

void visit(False f)
{
push(-1);

}

void visit(Link link)
{
int v = value of transition

condition of link;
if (dpe(link, g))

v = Math.min(v, 0);
push(v);

}

void visit(Not not)
{
walkFields(not);
push(-pop());

}

void visit(And and)
{
walkFields(and);
push(Math.min(pop(), pop()));

}

void visit(Or or)
{
walkFields(or);
push(Math.max(pop(), pop()));

}

void push(int i)
{
s.push(new Integer(i));

}

int pop()
{
return ((Integer) s.pop()).intValue();

}
}

To check if DPE may give rise to side effects,
for each link ` that occurs negatively in a join
condition c, we compute dpe(`) and value(c).
This can be accomplished by modifying the
walker NegativeLinkExtractor by replacing
the visit method for Link objects with

void visit(Link link)
{

if (odd)
{
Activity a = graph.getTarget(link);
if (!graph.hasValue(a))
Evaluator e = new Evaluator(graph);
Condition c = a.getCondition();
e.walk(c);
int v = e.getValue();
graph.setValue(a, v);

if (dpe(link, graph) &&
graph.getValue(a) == 1)

links.add(link);
}

}

Our tool to detect side effects of DPE can
easily be plugged into IBM’s WebSphere Stu-
dio Application Developer Integration Edition.
In the screenshot below, the activities marked
with an exclamation mark may be “garbage
collected” due to DPE. The links marked with
an exclamation mark may be set to false due
to DPE. And the activities marked with a sun
may be executed due to DPE.

8 Conclusion

Palsberg and Jay [23] (see also [24]) introduced
reflection based tree walkers. Blosser [3] also
used Java’s reflection mechanism to walk trees.
Bravenboer and Visser [4] refined and improved
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the tree walkers of Palsberg and Jay. In partic-
ular, they do not walk fields that static or prim-
itive. Furthermore, they allow visit methods
in superclasses of the walker and they also al-
low interfaces as the type of the parameter of
a visit method. They not only walk trees
but also walk graphs. In this paper, we ex-
tended reflection based walkers by also walk-
ing array objects. When walking trees and
graphs, we not only consider public fields but
also non-public ones. This is essential when
walking EMF models, since most fields in the
Java classes generated by EMF are not public.

Exploiting reflection based walkers of the
EMF model of BPEL4WS, we have imple-
mented a number of analyses. For example, we
developed a tool that translates a BPEL4WS
program into a BPE-process (which can subse-
quently be verified using the CWB) and a tool
that detects if DPE may give rise to side effects.
Furthermore, we used a walker to build a graph
from which we can easily derive whether each
link has a unique source and a unique target
and whether there are (control) cycles.

The performance of the reflection based tree
walkers of Palsberg and Jay is relatively poor
in comparison with the other approaches men-

tioned in the introduction. Forax and Roussel
[10] and also Bravenboer and Visser have shown
that the performance can be improved consid-
erably by caching fields and methods. Grothoff
[15] demonstrated that the performance can be
improved even more by using runtime code gen-
eration techniques. EMF provides it own re-
flection mechanism for the classes generated by
EMF. Since EMF reflection is more efficient
than Java reflection [21], we plan to exploit
EMF reflection in combination with the tech-
niques mentioned above to improve the perfor-
mance of our walkers.

Another topic for further research is the im-
provement of our tool to detect side effects of
DPE. In particular, we are interested to im-
prove the approximation of the possible values
of transition conditions. Again, we hope to ex-
ploit walkers, this time to approximate the val-
ues of variables.

We plan to exploit reflection based walkers
to implement other analyses of BPEL4WS pro-
grams. In particular, we are interested to de-
velop type systems to detect deadlocks and race
conditions a la [9, 16] and to implement these
type systems by means of reflection based walk-
ers of the EMF model of BPEL4WS.
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