
Detecting Data Races with Java PathFinder?

Sergey Kulikov1??, Nastaran Shafiei1, Franck van Breugel1, and Willem Visser2

1 DisCoVeri Group, Department of Computer Science and Engineering
York University, 4700 Keele Street, Toronto, M3J 1P3, Canada

2 Department of Mathematical Sciences, Computer Science Division
University of Stellenbosch, Private Bag X1, 7602 Matieland, South Africa

1 Introduction

Roughly speaking, a (data) race on a shared variable arises in a concurrent
program if two threads access that variable simultaneously and the accesses are
conflicting, that is, at least one of them writes to the variable. Although some
races are benign, races often are an indication of bugs. Hence, tools that detect
them are invaluable to those writing concurrent programs.

Many tools have been developed to detect races. These tools are based on
two types of race detection techniques: dynamic and static. In dynamic race
detection, a single execution of a concurrent program is checked for races. One
of the key approaches to detect races dynamically is based on locksets and has
been popularized by the Eraser tool [1].

In this paper, we focus on static race detection. All potential executions are
considered in static race detection. Although this approach gives rise to tools
that are usually sound (that is, the races that are reported by the tool are real
races), the tools are generally not complete (that is, not all races are always
reported). Several different approaches exist to statically detect races. Here, we
concentrate on model checking. In [2] model checking is exploited to detect races
in programs written in an extension of C. Here, we focus on Java PathFinder
(JPF)3 [3]. This is a model checker for Java bytecode. It has been developed in
such a way that it can easily be extended. Extensions to detect races is the topic
of this paper.

The lockset algorithm and its numerous variations are usually exploited for
dynamic race detection. However, this algorithm has also been used for static
race detection. A variation on the lockset algorithm has been implemented in
JPF.4 In this paper, we propose a different way to use JPF to detect races.

2 The New Race Detector

JPF explores all potential executions in a systematic way. Each execution is
a sequence of transitions. Each transition takes the system from one state to
? This research is supported by NSERC.

?? Current affiliation: MKS, 410 Albert Street, Waterloo, N2L 3V3, Canada
3 http://babelfish.arc.nasa.gov/trac/jpf/
4 The class gov.nasa.jpf.tools.RaceDetector contains this implementation.



2 Sergey Kulikov et al.

another. Each transition consists of a sequence of bytecode instructions. JPF
groups bytecode instructions such that an instruction that manipulates a shared
variable is the first one of a transition. We exploit this fact in our race detector.

The idea behind our race detector is fairly simple. In every state that JPF
visits, we check all actions that can be performed next. If this collection of actions
contains at least two conflicting accesses of a shared variable, then a race on the
shared variable is reported. A similar approach in a considerably simpler setting
has been proposed in [4].

To prove that our approach is sound, we consider a simplified version of the
Java memory model presented in [5]. The happens-before relation is defined as
the transitive closure of the program order and the synchronization order. The
program order captures the order in which the actions occur within a thread.
The synchronization order captures the orders in which synchronization actions
within different threads may occur. Two actions are concurrent if either one
does not happen before the other. For the details, we refer the reader to [5,
Section 2.1]. Now we are in a position to formally state that our algorithm is
sound.

Theorem 1. Let a and b be either a read or a write action. There exists an
execution in which a and b are concurrent if and only if there exists a state in
which a and b are enabled.

Hence, there are concurrent and conflicting accesses of a shared variable (that
is, a race on the shared variable) if and only if there exists a state in which those
conflicting accesses are enabled. The latter is checked by our race detector.

3 Partial Order Reduction

One of the biggest challenges of JPF, as well as other model checkers, is the
notorious state explosion problem. One of the approaches to battle the state
explosion problem is partial order reduction (POR). JPF is also applying a POR
technique to cut down the state space. Basically by putting POR in effect, JPF
combines more bytecode instructions into a single transition. This invalidates
Theorem 1 and, hence, our race detector is not sound anymore. However, we
have modified JPF’s POR so that one can partially enable POR. In that case,
we maintain soundness, but the state space is generally larger than when POR
is fully enabled. In the table below, we present the size of the state space for
a number of concurrent Java programs when POR is fully, partially and not
enabled. Note that partially enabling POR only mildly increases the size of
the state space and maintains soundness. Not enabling POR also maintains
soundness but increases the size of the state space much more.

Producer
Consumer

Reader
Writer

Sleeping
Barber

Cigarette
Smokers

fully 329,506 1,618,672 222,337 298,493

partially 492,588 1,930,804 294,853 306,007

not 1,307,178 5,348,875 1,368,784 559,159



Detecting Data Races with Java PathFinder 3

4 Comparison with the Old Race Detector

Let us now compare our race detector with JPF’s original race detector. As
we have shown above, our race detector is sound. JPF’s original race detector
is however not sound. The key idea behind the lockset algorithm, on which
the original race detector is based, is the following implication. If for a shared
variable v there exists at least one lock ` such that ` is held during all conflicting
accesses of v in an execution, then the execution is free of races on v. However,
locking is not the only programming idiom that can be used to prevent races.
Instead, for example, semaphores can be exploited. Assume that a semaphore
and a variable are shared by two threads and the semaphore is initialized to 1.
Assume also that both threads execute the following code snippet.

semaphore.acquire(); variable++; semaphore.release();

In this case, no locks are held when the variable is accessed. As a consequence,
JPF’s original race detector reports a potential race on variable. This is how-
ever not a real race, as is confirmed by our race detector which does not report
a race.

JPF has a number of search algorithms to traverse the state space such as
depth-first search (DFS) and breadth-first search (BFS). The user can configure
JPF to use any of these algorithms. But JPF’s original race detector has been
built on the assumption that JPF uses DFS. Assume that two threads share a
variable and that both threads increment the variable. If JPF uses DFS to
traverse the state space, the original race detector reports a race on variable.
However, if JPF uses BFS instead, then the original race detector does not report
the race. Also for other traversal algorithms, the implementation of the original
race detector needs to be changed. In contrast, our race detector is independent
of the search algorithm of JPF and, hence, can be used with any search algorithm
without any modification.

In our race detector, we have also addressed some of the limitations of JPF’s
original race detector. Due to lack of space, we will not discuss those here.

To evaluate the performance of our race detector, we ran JPF on a set of
concurrent Java programs. For each program, JPF was run a hundred times
with three different settings. The table below shows the average running time
in milliseconds. The first row contains the number of lines of code for each
program. The second row is obtained using the default setting of JPF. The third
and fourth row report the results with the old race detector and the new one
enabled, respectively. The fifth row compares the overhead of the old and the
new race detector.5 It shows that the overhead of both race detectors is very
small. It also shows that our race detector is more efficient than JPF’s original
race detector.

5 overhead ratio = old − default
new − default

.



4 Sergey Kulikov et al.

Producer
Consumer

Reader
Writer

Sleeping
Barber

Cigarette
Smokers

size 86 103 153 139

default 44791 41039 55082 13224

old 44888 42572 64617 13941

new 44805 41116 62949 13618

overhead ratio 6.9 19.9 1.2 1.8

5 Conclusion

If one uses JPF to verify some concurrent Java code, one may as well switch
on JPF’s race detector, since its overhead is very small as we have shown.6 We
believe that our new race detector is superior to JPF’s original race detector,
since the former is sound whereas the latter is not, the former addresses some of
the limitations of the latter, and the former is generally more efficient than the
latter. Our modification of JPF’s POR allows us to enable POR partially. This
increases the state space only slightly (in comparison with POR fully enabled)
and ensures that our race detector remains sound (in contrast to POR fully
enabled). Our race detector has already been used in other research. For example,
in [6] it is used in the context of self healing of races.

References

1. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: a dynamic
data race detector for multithreaded programs. ACM Transactions on Computer
Systems 15(4) (November 1997) 391–411

2. Henzinger, T., Jhala, R., Majumdar, R.: Race checking by context inference. In:
Proceedings of the ACM SIGPLAN 2004 Conference on Programming Language
Design and Implementation, Washington, DC, USA, ACM (June 2004) 1–13

3. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs.
Automated Software Engineering 10(2) (April 2003) 203–232

4. Pollack, K.: Extending IMP to support threads with race detection by model check-
ing. Unpublished (2004)

5. Manson, J., Pugh, W., Adve, S.: The Java memory model. In: Proceedings of the
32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, Chicago, IL, USA, ACM (June 2005) 378–391

6. Hrubá, V., Křena, B., Vojnar, T.: Self-healing assurance based on bounded model
checking. In: Proceedings of the 12th International Conference on Computer Aided
Systems Theory. Volume 5717 of Lecture Notes in Computer Science, Las Palmas
de Gran Canaria, Spain, Springer-Verlag (February 2009) 295–303

6 Note that we do not claim that JPF is the best tool to use to detect races. Numerous
special purpose tools are superior to JPF for detecting races.


