
A Progress Measure for Explicit-State Probabilistic Model-Checkers∗

Xin Zhang and Franck van Breugel
DisCoVeri Group, Department of Computer Science and Engineering

York University, Toronto, Canada

Abstract

Verification of the source code of a probabilistic system
by means of an explicit-state model-checker is challeng-
ing. In most cases, the model-checker will either run out
of memory or will simply not terminate within any reason-
able amount of time. We introduce the notion of a progress
measure for such a model-checker. The progress measure
returns a number in the interval [0, 1]. This number pro-
vides us a quantitative measure of the amount of progress
the model-checker has made verifying a particular linear
time property. The larger the number, the more progress the
model-checker has made. We also show how to compute the
progress measure for checking invariants.

Explicit-state model-checkers usually exploit search
strategies such as depth-first search and breadth-first search
to explore the transitions. We introduce several new
search strategies that take the probabilities associated with
the transitions into account. We compare the amount of
progress made by the different search strategies.

1. Introduction

Model-checkers such as PRISM [4] have been success-
fully exploited to check properties of probabilistic systems.
Such a verification tool considers a model of the system,
rather than the actual source code of the system. A model is
usually simpler than the source code and, hence, the model
is generally easier to verify. However, the details from
which the model abstracts are not considered in the veri-
fication effort and, hence, the results obtained when con-
sidering a model may be less precise. Whereas a tool that
checks properties of a model is usually exploited to find er-
rors in algorithms, a tool that considers the source code is
generally used to detect coding errors.

In this paper, we consider the applicability of model-
checkers to verify the source code of probabilistic systems.
In particular, we focus on explicit-state model-checkers,

∗This research is supported by NSERC.

that is, model-checkers in which the states of the systems
are represented explicitly. For a comparison of explicit-state
and symbolic model-checkers, we refer the reader to, for ex-
ample, [3].

One may wonder if an explicit-state model-checker, such
as Java PathFinder (JPF for short) [8], is suitable for veri-
fying implementations of randomized algorithms. Consider
the following Java snippet.

Random random = new Random();
long count = 0;
while (random.nextBoolean())

count++;

The above snippet gives rise to a huge number of different
states: more than264. Hence, it will come as no surprise
that an explicit-state model-checker either will run out of
memory or will not complete its verification of the above
very simple code snippet within any reasonable amount of
time. The same applies for most implementations of ran-
domized algorithms.

Since explicit-state model-checkers generally cannot
fully verify implementations of randomized algorithms, it
would be interesting to extend such a model-checker such
that it keeps track of the amount of progress it has made with
its verification effort. Simply counting the number of (states
or) execution paths that have been checked is not very use-
ful for several reasons. First of all, it may be very difficult
or even impossible to determine the total number of poten-
tial execution paths. Hence, the number of execution paths
that have been checked by the model-checker gives us very
limited information about the amount of progress that has
been made. Secondly, some execution paths are more likely
to happen than others. For example, the nonterminating ex-
ecution path of the above snippet occurs with probability
zero. Checking this execution path amounts to no progress
at all.

In this paper, we develop a theoretical framework to
define the progress made by an explicit-state probabilistic
model-checker when verifying a particular linear time prop-
erty. Furthermore, we show how to compute the progress
for the verification of invariants.

The potential execution paths of the system being veri-
fied are represented by means of a probabilistic transition
system. We use a sequence of transitions to represent the
verification effort, or search, of the model-checker.

To capture the progress made by the model-checker, in-
stead of counting the number of execution paths, we endow
the set of potential execution paths with aσ-algebra and a
probability measure. In this way, we obtain a probability
space of execution paths. The measure of a particular set
of execution paths relevant to the property being checked
gives us a number in the interval [0, 1]. This number pro-
vides us a quantitative measure of the amount of progress
the model-checker has made verifying the property. The
larger the number, the more progress the model-checker has
made.

For the case that the property being verified is an invari-
ant, we will present an alternative characterization of the
progress measure. We will show that the amount of progress
for invariants is the measure of the set of execution paths
that have been checked.

From the probabilistic transition system representing the
system under verification, we construct another probabilis-
tic transition system. To distinguish the two systems, we
refer to the probabilistic transition system representing the
system under verification as the complete system and the
other system as the searched system. Assume that the tran-
sitions t1, t2, . . . , tn are those transitions of the complete
system that have been explored by the model-checker. Then
the states of the searched system are the source and target
states oft1, t2, . . . , tn and a “sink” states⊥. For those
statess of which the sum of the probabilities of the outgo-
ing transitions is less than one, that is, those states that have
outgoing transitions which have not been explored yet, we
add a transition froms to s⊥ with the remaining probability
(so that the transition probabilities add up to one). The state
s⊥ has a transition to itself with probability one.

As we will show, to compute the amount of progress
made by the model-checker after having explored the tran-
sitionst1, . . . , tn when checking an invariant, it suffices to
consider the searched system as described in the previous
paragraph. Let the “sink” states⊥ be the only state that
satisfies the atomic proposition⊥. We will prove that the
measure of the complement of the set of those executions
of the searched system that satisfy the temporal logic for-
mula trueU ⊥ corresponds to the progress measure of the
searcht1, t2, . . . , tn in the complete system. Note that, ac-
cording to [7, Corollary 2.4], this set of executions is mea-
surable. To compute the measure of this set, we can use, for
example, the algorithm of Courcoubetis and Yannakakis [2,
Lemma 3.1.1.1].

Assume that we have constructed the searched system
for the searcht1, . . . , tn. As we will show, rather than con-
structing a new searched system from scratch after transi-

tion tn+1 has been explored by the model-checker, we can
construct the new searched system from the old one in con-
stant time.

Explicit-state model-checkers such as JPF can check
the transitions in different orders by using, for example,
a depth-first search (DFS) or a breadth-first search (BFS).
These search strategies do not take the probabilities of the
transitions into account. In this paper, we will propose sev-
eral new search strategies which use the probabilities asso-
ciated with the transitions. To let transitions with the high-
est probability be searched first, our probability-first search
(PFS) strategy sorts the enabled transitions by their proba-
bility. Our breadth-first probability-second search (BFPSS)
is an enhancement of BFS in which transitions at the same
level are sorted by their probability. Our randomized search
(RS) randomly selects an enabled transition. The chance
that a transition is selected is proportional to its probability.

Our progress measure allows us to compare the amount
of progress these different search strategies make. As we
will show, the different search strategies are incomparable.
That is, for each pair of search strategies, we can construct
a small complete system such that the one strategy makes
faster progress than the other.

We have implemented several well-known randomized
algorithms and compared their progress when being verified
using different search strategies. We observed that different
algorithms are best verified using different search strategies.
Hence, being able to determine how much progress is made
with a particular search strategy is useful for choosing an
appropriate search strategy.

The two main contributions of this paper are the follow-
ing. First of all, we introduce the notion of a progress mea-
sure. Secondly, we show how this progress measure can
be computed when checking invariants. Furthermore, we
propose several new search strategies. Our proposed the-
oretical framework has been implemented within JPF. The
details of our implementation are discussed in [10].

When we verify the implementation of a randomized al-
gorithm with JPF and the model-checker runs out of mem-
ory, our progress measure provides us with an indication
how much progress the model-checker has made with its
verification effort. In some examples, we have seen that
DFS makes no progress (the progress measure is still zero
when it runs out of memory) whereas the progress of PFS is
very close to one. We believe that this type of information
is useful when verifying implementations of randomized al-
gorithms.

2. Probabilistic Transition Systems

We represent the system to be verified by the explicit-
state model-checker as a probabilistic transition system.
The model-checker explores the (states and) transitions of

2

the probabilistic transition system in a systematic way. Note
that the set of transitions of a probabilistic transition system
may be infinite. In that case, not all transitions can be ex-
plored by the model-checker.

Definition 1 A probabilistic transition system is a tuple
〈S, T, AP, s0, source, target, prob, label〉 consisting of

• a setS of states,

• a setT of transitions,

• a set AP of atomic propositions,

• an initial states0,

• a functionsource: T → S,

• a functiontarget: T → S,

• a functionprob : T → (0, 1], and

• a functionlabel : S → 2AP

such that

• s0 ∈ S and

• for all s ∈ S,
∑
{prob(t) | source(t) = s } ∈ {0, 1}.

Instead of〈S, T, s0, source, target, prob, AP, L〉 we usu-
ally write S and we denote, for example, its set of states by
SS .

We will use the following probabilistic transition system
as the running example for the rest of this paper.

Example 2 The probabilistic transition system depicted by

s0
0.6

��

0.4

 B
BB

BB
BB

B

s1
0.3

//
0.7

FF

s2

has 3 states and 4 transitions and a single atomic proposi-
tion p. In this example, we use the indexes of the source and
target to name the transitions. For example, the transition
from s0 to s2 is namedt02. Given this naming convention,
the functionssourceand targetare defined in the obvious
way. For example,source(t02) = s0 and target(t02) = s2.
The functionprob can be easily extracted from the above
diagram. For example,prob(t02) = 0.5. Atomic propo-
sition p is satisfied in all states. Hence, for example,
label(s1) = {p}.

For the remainder of this section, we fix a probabilistic
transition systemS.

A state is final inS if it has no outgoing transitions. In
Example 2, the states2 is final.

Definition 3 A state s is final in S if
∑
{probS(t) |

sourceS(t) = s } = 0.

Next, we formalize the potential execution paths of a
probabilistic transition system. We classify them into two
categories: infinite execution paths and finite execution
paths.

Definition 4 An infinite execution path is an infinite se-
quencet1t2 . . . such that

• for all i ≥ 1, ti ∈ TS ,

• sourceS(t1) = s0, and

• for all i ≥ 1, targetS(ti) = sourceS(ti+1).

The set of all infinite execution paths is denoted byExecωS .
A finite execution path is either a finite sequence of tran-

sitionst1 . . . tn for somen ≥ 1 such that

• for all 1 ≤ i ≤ n, ti ∈ TS ,

• sourceS(t1) = s0,

• targetS(tn) is final inS and

• for all 1 ≤ i < n, targetS(ti) = sourceS(ti+1),

or the empty sequenceε if s0 is final in S. The set of all
finite execution paths is denoted byExec∗S .

The set of all execution pathsExecS is defined by
ExecS = ExecωS ∪ Exec∗S .

For the probabilistic transition system of Example 2, the
sequencet01t10t01t10 . . . is an example of an infinite exe-
cution path and the sequencet01t12 is an example of a finite
execution path.

We denote the set of finite prefixes of ExecS by
pref(ExecS).

Definition 5 The functiontargetS : pref(ExecS) → S is
defined by

targetS(ε) = s0

targetS(t1 . . . tn) = targetS(tn)

Many proofs, which are based on probability theory, rely
on sets being countable. The sets pref(ExecS) and Exec∗S
play a key role in our theory. Both are countable.

Proposition 6 The setpref(ExecS) is countable.

Corollary 7 The setExec∗S is countable.

3

3. Searches and their Progress

Before formalizing the search of a model-checker and its
progress measure, we first turn the set ExecS into a proba-
bility space. The probability space we define below is simi-
lar to the ones studied by Segala [5] and Sokolova, De Vink
and Woracek [6]. We start by identifying particular subsets
of ExecS .

Definition 8 Let t1 . . . tn ∈ pref(ExecS). Its basic cylinder
set Bt1...tn

is defined by

Bt1...tn = { e ∈ ExecS | e starts witht1 . . . tn }.

The setBS is defined by

BS = {Bt1...tn
| t1 . . . tn ∈ pref(ExecS) } ∪ {∅}.

Note thatBε = ExecS . The collectionBS can be shown
to satisfy the following properties:

• ∅ ∈ BS ,

• if A ∈ BS andB ∈ BS , thenA ∩B ∈ BS , and

• if A ∈ BS andB ∈ BS , whereB ⊂ A, then there exist
finitely or countably many mutually disjointCn ∈ BS
such thatA \B =

⋃
Cn.

A collection satisfying the above properties is called a semi-
ring in [9, page 25].1

Proposition 9 The setBS is a semi-ring.

Next, we define a function that assigns to each set inBS
a real number.

Definition 10 The functionνS : BS → IR is defined by

νS(Bt1...tn
) =

∏
1≤i≤n probS(ti)

νS(∅) = 0

Note thatνS(Bε) = 1.

Proposition 11 The functionνS is a measure.

According to [9, Chapter 2], the measureνS on the
semi-ringBS can be extended to a measure on aσ-algebra
ΣS containing the semi-ring. We denote the extended
measure byµS . We will exploit the measurable space
〈ExecS ,ΣS , µS〉 to capture our progress measure. But first
we formalize the notion of a search of a model-checker.

Definition 12 A search of a probabilistic transition system
S is a sequence of distinct transitionst1, . . . , tn for some
n ≥ 0 such thatti ∈ TS for all 1 ≤ i ≤ n.

1This definition of a semi-ring is non-standard.

For the probabilistic transition system introduced in Ex-
ample 2,t01, t02, t12 is a search.

If the model-checker has checked the transitions
t1, . . . , tn of S, it of course is not aware of the remain-
ing transitions ofS. To capture this, we formalize how
t1, . . . , tn can be extended.

Definition 13 The probabilistic transition systemS ′ ex-
tends the searcht1, . . . , tn of the probabilistic transition
systemS if

• {t1, . . . , tn} ⊆ TS′ , and for all1 ≤ i ≤ n,

• sourceS′(ti) = sourceS(ti),

• targetS′(ti) = targetS(ti),

• probS′(ti) = probS(ti),

• labelS′(sourceS′(ti)) = labelS(sourceS(ti)), and

• labelS′(targetS′(ti)) = labelS(targetS(ti)).

Obviously, the probabilistic transition systemS extends
the searcht1, . . . , tn of S.

For the definition of linear time properties and the defi-
nition of e |=S φ, capturing that execution pathe of proba-
bilistic transition systemS satisfies linear time propertyφ,
we refer the reader to, for example, [1].

Proposition 14 Let the probabilistic transition systemS ′
extend the searcht1, . . . , tn of the probabilistic transition
systemS and letφ be a linear time property. Then

ExecS ∩ {t1, . . . , tn}∗ = ExecS′ ∩ {t1, . . . , tn}∗

and

µS(ExecS ∩{t1, . . . , tn}∗) = µS′(ExecS′ ∩{t1, . . . , tn}∗)

and for alle ∈ ExecS ∩ {t1, . . . , tn}∗,

e |=S φ iff e |=S′ φ.

We only define our progress measure in case no violation
of the property has been found yet. The latter is formalized
as follows.

Definition 15 The searcht1, . . . , tn of the probabilistic
transition systemS has not found a violation of the linear
time propertyφ if

• for all e ∈ {t1, . . . , tn}ω, if e ∈ ExecωS thene |=S φ,
and

• for all e ∈ {t1, . . . , tn}∗, if e ∈ pref(ExecS) then there
exists a probabilistic transition systemS ′ that extends
t1, . . . , tn such thate′ |=S′ φ for all e′ ∈ Be and
Be ∈ BS′ .

4

Note that the searcht1, . . . , tn has found a violation of
the linear time propertyφ if

• either we can form an infinite execution path from the
transitionst1, . . . , tn that violatesφ

• or we can form a prefix of an execution path from the
transitionst1, . . . , tn which gives rise to a violation of
φ no matter how we extend it.

For the probabilistic transition system of Example 2, the
searcht01, t10 has found a violation of the propertyutp and
the searcht01, t12 has not found a violation ofutp.

In all our proofs, we only need the following weaker con-
dition.

Proposition 16 If the searcht1, . . . , tn of the probabilis-
tic transition systemS has not found a violation of the lin-
ear time propertyφ, thene |=S φ for all e ∈ ExecS ∩
({t1, . . . , tn}∗ ∪ {t1, . . . , tn}ω).

In the definition of our progress measure we make use of
the following sets.

Definition 17 Let the probabilistic transition systemS ′ ex-
tend the searcht1, . . . , tn of probabilistic transition sys-
tem S and let φ be a linear time property. The set
Bφ
S′(t1, . . . , tn) is defined by

Bφ
S′(t1, . . . , tn)

=
⋃
{Be ∈ BS′ | e ∈ {t1, . . . , tn}∗ ∧ ∀e′ ∈ Be : e′ |=S′ φ }.

The setBφ
S′(t1, . . . , tn) contains a basic cylinder setBe

if all its execution paths, that is, all extensions ofe, satisfy
φ. In that case,Be does not contain a counterexample ofφ.
Hence, the setBφ

S′(t1, . . . , tn) consists of those basic cylin-
der sets that do not contain a counterexample ofφ. This set
is measurable, as is stated in the following proposition.

Proposition 18 Let the probabilistic transition systemS ′
extend the searcht1, . . . , tn of probabilistic transition
systemS and let φ be a linear time property. Then
Bφ
S′(t1, . . . , tn) ∈ ΣS′ .

Since the setBφ
S′(t1, . . . , tn) is measurable, its measure

µS′(Bφ
S′(t1, . . . , tn)) is defined. The latter is a number in

the interval[0, 1] which represents the “size” of the basic
cylinder sets that do not contain a counterexample ofφ.
This number captures the amount of progress oft1, . . . , tn
for φ, provided thatthe probabilistic transition system under
consideration isS ′.

Now consider the searcht1, . . . , tn of the probabilistic
transition systemS for the linear time propertyφ. Since the
model-checker has only checked the transitionst1, . . . , tn,

it only knows that it is checking some probabilistic transi-
tion systemS ′ that extendst1, . . . , tn. For each of those
extensions,µS′(Bφ

S′(t1, . . . , tn)) captures the amount of
progress oft1, . . . , tn for φ. Those amounts of progress
can be combined as follows.

Definition 19 Consider the searcht1, . . . , tn of the proba-
bilistic transition systemS. Assume thatt1, . . . , tn has not
found a violation of the linear time propertyφ. Theprogress
of t1, . . . , tn for φ is defined by

progS(t1, . . . , tn, φ)

= inf
{

µS′(Bφ
S′(t1, . . . , tn)) | S ′ extendst1, . . . , tn of S

}
.

In the above definition, we consider the worst case by
taking the infimum. Hence, no matter how the search
t1, . . . , tn is extended, it has made at least the given amount
of progress. We could also consider the best case by replac-
ing inf with sup in the above definition. However, in that
case we can show that the progress is always one.

Consider the probabilistic transition system of Exam-
ple 2 and the linear time property©p. At the beginning,
when the model-checker has not explored any transitions,
the progress is zero. After checking the transitiont01, the
progress increases to 0.6. Checking the transitiont12 does
not increase the progress, and the progress of the search
t01, t12, t02 is one. Now consider the linear time property
utp. Again, the empty search has not made any progress.
Checking the transitiont01 does not increase the progress.
After also checking the transitiont12, the progress increases
to 0.6×0.3 = 0.18. Furthermore, the progress of the search
t01, t12, t02 is 0.18 + 0.4 = 0.58.

Our progress measure provides a lowerbound of the
probability that the linear time property is satisfied.

Proposition 20 If the searcht1, . . . , tn of the probabilistic
transition systemS has not found a violation of the linear
time propertyφ, then

progS(t1, . . . , tn, φ) ≤ µS({ e ∈ ExecS | e |=S φ }).

4. Progress for Invariants

In case the property under verification is an invariant, we
can characterize our progress measure in terms of the set of
execution paths that solely consist of transitions that have
been explored by the model-checker. This set is measurable,
as is stated in the following proposition.

Proposition 21 Let t1, . . . tn be a search of the probabilis-
tic transition systemS. ThenExecS ∩ ({t1, . . . , tn}∗ ∪
{t1, . . . , tn}ω) ∈ ΣS .

5

Since the above set is measurable, its measure is defined.
As shown in the following theorem, it captures the progress
of the search for invariants.

Theorem 22 If the searcht1, . . . , tn of the probabilistic
transition systemS has not found a violation of the invari-
antφ, then

progS(t1, . . . , tn, φ)
= µS(ExecS ∩ ({t1, . . . , tn}∗ ∪ {t1, . . . , tn}ω)).

Proof Due to lack of space, we only present a sketch of the
proof. We prove the above equality by proving two inequal-
ities.

To prove that progS(t1, . . . , tn, φ) is smaller than or equal
to µS(ExecS ∩ ({t1, . . . , tn}∗ ∪ {t1, . . . , tn}ω)), we con-
struct a probabilistic transition systemS ′ that extends
t1, . . . , tn of S such that µS′(Bφ

S′(t1, . . . , tn)) equals
µS(ExecS ∩ ({t1, . . . , tn}∗ ∪ {t1, . . . , tn}ω)).

The proof thatµS(ExecS∩({t1, . . . , tn}∗∪{t1, . . . , tn}ω))
is smaller than or equal to progS(t1, . . . , tn, φ) consists of
two major steps. LetS ′ extendt1, . . . , tn of S. Assume that
t1, . . . , tn has not found a violation ofφ. First, we show
that ExecS ∩{t1, . . . , tn}∗ is a subset ofBφ

S′(t1, . . . , tn, φ).
Since it is in general not the case that ExecS∩{t1, . . . , tn}ω
is a subset ofBφ

S′(t1, . . . , tn, φ), we show that the set
Bφ
S′(t1, . . . , tn, φ) \ (ExecS ∩ {t1, . . . , tn}ω) has measure

zero. The latter proof is quite involved. We defineδ as
min{probS′(t) | sourceS′(t) ∈ { targetS′(ti) | 1 ≤ i ≤
n } ∪ {s0} } ∨ t ∈ {t1, . . . , tn} }. For e ∈ pref(ExecS′)
andn ∈ IN, we usee[n] to denotee truncated at lengthn.
One of the key ingredients of this part of the proof is the
proof that for allk ∈ IN, µS′(

⋃
{Be[k(n+1)] ∈ BS′ | e ∈

Bφ
S′(t1, . . . , tn)\(ExecS∩{t1, . . . , tn}ω) }) ≤ (1−δn+1)k.

ut

Note that the above theorem does not hold for all linear
time properties. For example, consider probabilistic transi-
tion system of Example 2, the searcht01 and the property
©p. As we have already seen, the progress oft01 for©p is
0.6. However, the set ExecS ∩ ({t01}∗ ∪ {t01}ω) is empty
and, hence, its measure is zero.

5. Progress Computation for Invariants

In this section, we fix a probabilistic transition systemS,
which we call the complete system, a searcht1, . . . , tn of
this system and an invariantφ. Next, we construct a proba-
bilistic transition systemS ′, which we call the searched sys-
tem. This searched system is usually considerably smaller
than the complete system. We will exploit the searched sys-
tem to compute the progress oft1, . . . , tn for φ.

Definition 23 The setSS′ is defined by

SS′ =
⋃

1≤i≤n

{sourceS(ti), targetS(ti)} ∪ {s0, s⊥}.

A states is partial if s is not final inS and

outS(s) =
∑
{probS(ti) | 1 ≤ i ≤ n∧sourceS(ti) = s } ∈ [0, 1).

The setTS′ is defined by

TS′ = {t1, . . . , tn}∪{ ts | s ∈ SS′ is final inS or partial }∪{t⊥}.

The set APS′ is defined by

APS′ = APS ∪ {⊥}.

The functionsourceS′ : TS′ → SS′ is defined by

sourceS′(t) =

 s⊥ if t = t⊥
s if t = ts
sourceS(t) if t ∈ {t1, . . . , tn}

The functiontargetS′ : TS′ → SS′ is defined by

targetS′(t) =

s⊥ if t = t⊥
s if t = ts ands is final
s⊥ if t = ts ands is partial
targetS(t) if t ∈ {t1, . . . tn}

The functionprobS′ : TS′ → (0, 1] is defined by

probS′(t) =

1 if t = t⊥
1 if t = ts ands is final
1− outS(s) if t = ts ands is partial
probS(t) if t ∈ {t1, . . . tn}

The functionlabelS′ : SS′ → 2APS′ is defined by

labelS′(s) =
{
{⊥} if s = s⊥
labelS(s) otherwise

Proposition 24 S ′ is a probabilistic transition system.

For the complete system of Example 2 and the searcht01,
t02, t12, the corresponding searched system can be depicted
as

s0

0.6

~~||
||

||
|| 0.4

 B
BB

BB
BB

B

s⊥

1

��
s1

0.3
//0.7oo s2

1

Note that the probabilistic transition systemS ′ only
gives rise to infinite execution paths. Let us denote the set
of execution paths of this system by ExecS′ . As we turned
the set ExecS into a measurable space, we can also turn the
set ExecS′ into a measurable space〈ExecS′ ,ΣS′ , µS′〉.

To prove that we can indeed use the searched system to
compute the progress of the search in the complete system,
we relate the complete and the searched system. We relate
the systems by linking the execution paths of the two sys-
tems.

6

Definition 25 The functionη : ExecS → ExecS′ is defined
by

η(e) =

e(ttarget(e))ω if e ∈ {t1, . . . , tn}∗
e if e ∈ {t1, . . . , tn}ω
e′ttarget(e′)(t⊥)ω if e = e′te′′ ande′ ∈ {t1, . . . , tn}∗

andt 6∈ {t1, . . . , tn}

Next, we characterize those execution paths of the com-
plete system, which solely consist of transitions of the
search, in terms of execution paths in the searched system.

Proposition 26 The sets ExecS ∩ ({t1, . . . , tn}∗ ∪
{t1, . . . , tn}ω) and{ e′ ∈ ExecS′ | e′ does not containt⊥ }
are isomorphic viaη.

As we show next, to compute the progress of the search
in the complete system, it suffices to compute the measure
of the set of those execution paths of the searched system
which do not contain the transitiont⊥.

Theorem 27 progS(t1, . . . , tn, φ) = µS′({ e′ ∈ ExecS′ |
e′ does not containt⊥ }).

The set of those execution paths of the searched sys-
tem which contain the transitiont⊥ can be captured as the
set of execution paths satisfying the linear time property
trueU ⊥.

Proposition 28 For all e′ ∈ ExecS′ ,

e′ containst⊥ iff e′ |=S′ trueU ⊥ .

From Theorem 27 and Proposition 28 we can conclude
the following.

Corollary 29 progS(t1, . . . , tn, φ) = 1 − µS′({ e′ ∈
ExecS′ | e′ |=S′ trueU ⊥}).

Hence, to compute the progress of the search in the com-
plete system, it suffices to compute the measure of the set
of those execution paths in the searched system that satisfy
the property trueU ⊥. An algorithm to compute the lat-
ter has been presented by Courcoubetis and Yannakakis [2,
Lemma 3.1.1.1].

6. Maintaining the Searched System

As we have seen in the previous section, to compute
the progress measure of a search of a complete system for
an invariant, we construct the corresponding searched sys-
tem (and compute the measure of the set of those execu-
tion paths in the searched system that satisfy a particular
property). As the search of the model-checker continues,
we would like to keep track of the progress. For a given

complete systemS, this can be captured by the following
diagram.

t1, . . . , tn //

��

t1, . . . , tn, tn+1

��

Sn Sn+1

Rather than constructing the searched system from scratch
after a new transition has been explored by the model-
checker, we show that we can construct the new searched
systemSn+1 from the old searched systemSn and the tran-
sition tn+1 in constant time.

But first we characterize the searched system corre-
sponding to the empty search.

Proposition 30 LetS0 be the searched system correspond-
ing to the empty search. ThenS0 = {s0, s⊥}, T0 =
{ts0 , t⊥}, AP0 = APS ∪ {⊥}, source0(ts0) = s0,
source0(t⊥) = s⊥, target0(t⊥) = s⊥, prob0(ts0) = 1,
prob0(t⊥) = 1, label0(s0) = labelS(s0) and label0(s⊥) =
{⊥}. If s0 is final then target(ts0) = s0. Otherwise,
target(ts0) = s⊥.

Theorem 31 LetSn andSn+1 be the searched systems re-
lated to the searchest1, . . . , tn andt1, . . . , tn, tn+1, respec-
tively. Letss = source(tn+1) andst = target(tn+1). Then

Sn+1 = Sn ∪ {ss, st}.

and

Tn+1 =

Tn ∪ {tn+1} ∪ {tss
} ∪ {tst

} if ss 6∈ Sn ∧ st 6∈ Sn∧
probS(tn+1) < 1

Tn ∪ {tn+1} ∪ {tst
} if ss ∈ Sn ∧ st 6∈ Sn∧

probn(tss) > probS(tn+1)
Tn ∪ {tn+1} ∪ {tst} if ss 6∈ Sn ∧ st 6∈ Sn∧

probS(tn+1) = 1
Tn ∪ {tn+1} ∪ {tst

} \ {tss
} if ss ∈ Sn ∧ st 6∈ Sn∧

probn(tss
) = probS(tn+1)

Tn ∪ {tn+1} ∪ {tss
} if ss 6∈ Sn ∧ st ∈ Sn∧

probS(tn+1) < 1
Tn ∪ {tn+1} if ss ∈ Sn ∧ st ∈ Sn∧

probn(tss
) > probS(tn+1)

Tn ∪ {tn+1} if ss 6∈ Sn ∧ st ∈ Sn∧
probS(tn+1) = 1

Tn ∪ {tn+1} \ {tss
} if ss ∈ Sn ∧ st ∈ Sn∧

probn(tss) = probS(tn+1)

and
APn+1 = APn

and the functionsourcen+1 : Tn+1 → Sn+1 satisfies

sourcen+1(t) =

ss if t = tn+1

ss if t = tss

st if t = tst

sourcen(t) otherwise

7

and the functiontargetn+1 : Tn+1 → Sn+1 satisfies

targetn+1(t) =

st if t = tn+1

s⊥ if t = tss

st if t = tst
∧ st is final

s⊥ if t = tst
∧ st is partial

targetn(t) otherwise

and the functionprobn+1 : Tn+1 → (0, 1] satisfies

probn+1(t) =

probS(tn+1)
if t = tn+1

probn(tss
)− probS(tn+1)

if t = tss
∧ ss ∈ Sn∧

probn(tss
) > probS(tn+1)

1− probS(tn+1)
if t = tss ∧ ss 6∈ Sn∧
probS(tn+1) < 1

1
if t = tst

∧ st 6∈ Sn

probn(t)
otherwise

and the functionlabeln+1 : Sn+1 → 2APn+1 satisfies

labeln+1(s) =
{

labeln(s) if s ∈ Sn

labelS(s) otherwise

The above results provide the correctness proof of the
algorithm below.

Initialize ()
S ← empty set
T ← empty set
insert(S, s0); insert(S, s⊥)
source(t⊥)← s⊥; target(t⊥)← s⊥; prob(t⊥)← 1
insert(T, t⊥)
if s0 is final

target(ts0)← s0

else
target(ts0)← s⊥

source(ts0)← s0; prob(ts0)← 1
insert(T, ts0)

Precondition: t 6∈ T
Add(t)
ss ← source(t); st ← target(t)
insert(T, t)
if ss 6∈ S

insert(S, ss)
if probS(t) < 1

source(tss
)← ss; target(tss

)← s⊥
prob(tss

)← 1− probS(t)
insert(T, tss)

else

if probS(t) < prob(tss
)

prob(tss)← prob(tss)− probS(t)
else

remove(T, tss
)

if st 6∈ S
insert(S, st)

if st is final
target(tst)← st

else
target(tst

)← s⊥
source(tst

)← st; prob(tst
)← 1

insert(T, tst
)

Proposition 32 The worst-case running time of Initialize is
constant. The amortized expected running time per Add is
constant.

7. Search Strategies

Explicit-state model-checkers like JPF exploit search
strategies such as depth-first search (DFS) and breadth-first
search (BFS) to visit the transitions of the system under
verification. Next, we present three new search strategies.
In contrast to DFS and BFS, our search strategies take the
probabilities of the transitions into account.

7.1. Probability-First Search

To let transitions with the highest probability be searched
first, our probability-first search (PFS) strategy sorts the en-
abled transitions by their probability. For the probabilistic
transition system of Example 2, PFS visits the transitions in
the following order:t01, t10, t02, t12.

To implement PFS, we use a priority queueq. Each key
is a real, which represents a probability. The keys are or-
dered as follows:

p1 � p2 if p1 ≥ p2.

The elements of the priority queueq are transitions. An
algorithm for PFS can be found below.

Precondition: no state is marked visited
q ← empty priority queue
for all transitionst from s0

insert(q, 〈prob(t), t〉)
marks0 visited
while q is nonempty
〈p, t〉 ← deleteMin(q) . t is visited
if target(t) is not visited

for all transitionst′ from target(t)
insert(q, 〈prob(t′)× p, t′〉)

mark target(t) visited

8

7.2. Breadth-First Probability-Second Search

Our breadth-first probability-second search (BFPSS) is
an enhancement of BFS in which transitions at the same
level are sorted by their probability. For the probabilistic
transition system of Example 2, BFPSS visits the transitions
in the following order:t01, t02, t10, t12.

To implement BFPSS, we also use a priority queueq.
This time, each key is a pair consisting of an integer, which
represents a level, and a real, which represents a probability.
The keys are ordered as follows:

[`1, p1] � [`2, p2] if `1 < `2 ∨ (`1 = `2 ∧ p1 ≥ p2).

The elements of the priority queueq are transitions. An
algorithm for BFPSS can be found below.

Precondition: no state is marked visited
q ← empty priority queue
for all transitionst from s0

insert(q, 〈[1, prob(t)], t〉)
marks0 visited
while q is nonempty
〈[`,−], t〉 ← deleteMin(q) . t is visited
if target(t) is not visited

for all transitionst′ from target(t)
insert(q, 〈[` + 1, prob(t′)], t′〉)

mark target(t) visited

7.3. Randomized Search

Our randomized search (RS) randomly selects an en-
abled transition. The chance that a transition is selected is
proportional to its probability.

To implement RS, we use a sets. The elements of the
set are pairs, each consisting of a real, representing a prob-
ability, and a transition. The operation select(s) removes an
element〈p, t〉 from the sets and returns the element. The
probability that the element〈p, t〉 is selected is pP

〈p′,t′〉∈s p′ .

An algorithm for RS is given below.

Precondition: no state is marked visited
s← empty set
for all transitionst from s0

insert(s, 〈prob(t), t〉)
marks0 visited
while s is nonempty
〈p, t〉 ← select(s) . t is visited
if target(t) is not visited

for all transitionst′ from target(t)
insert(s, 〈prob(t′)× p, t′〉)

mark target(t) visited

7.4. Properties of Search Strategies

Like DFS and BFS, also PFS, BFPSS and RS visit each
state at most once.

Proposition 33 In PFS, BFPSS and RS, each transition is
visited at most once. LetT0 be the set of those transitions
that can be reached froms0. If T0 is finite then PFS, BFPSS
and RS visit all transitions inT0.

Since PFS, BFPSS and RS take the probabilities into ac-
count, these search strategies are not as efficient as DFS and
BFS.

Proposition 34 If

• a state can be marked visited inO(1),

• a state can be checked to be marked inO(1),

• the outgoing transitions of a states can be enumerated
in O(n), wheren is the number of outgoing transitions
of s,

then the worst-case running time of PFS, BFPSS and RS is
O(|T0| log |T0|).

7.5. Comparison

Our progress measure allows us to compare the amount
of progress these different search strategies make. Next we
will provide examples that show that DFS, BFS, PFS and
BFPSS are incomparable. That is, for each pair of search
strategies, we will construct a complete system such that
the one strategy makes faster progress than the other. Obvi-
ously, RS is incomparable with the other four search strate-
gies.

The first example shows that DFS can make faster
progress than BFS.

��������
0.5

����
��
� 0.5

��
::

::
:

��������
1.0
��

��������
1.0
���������� ��������

DFS BFS
0 0

0.5 0
0.5 0.5
1.0 1.0

The second example shows the opposite, that is, BFS can
make faster progress than DFS.

��������
0.4

����
��
� 0.6

��
::

::
:

��������
1.0
��

��������
��������

BFS DFS
0 0

0.6 0.4
1.0 1.0

Our third example show that both DFS and BFS can
make progress faster than PFS and BFPSS.

9

��������
0.4

����
��
� 0.6

��
::

::
:

�������� ��������
0.6

����
��
� 0.4

��
::

::
:

�������� ��������
DFS BFS PFS BFPSS

0.4 0.4 0 0
0.4 0.4 0.4 0.4

0.76 0.76 0.76 0.76
1.0 1.0 1.0 1.0

The fourth example shows the opposite, that is, both PFS
and BFPSS can make faster progress than DFS and BFS.

��������
0.4

����
��
� 0.6

��
::

::
:

�������� ��������
PFS BFPSS DFS BFS
0.6 0.6 0.4 0.4
1.0 1.0 1.0 1.0

Next, we present an example of a system for which BF-
PSS makes faster progress than PFS.

��������
0.4

����
��
� 0.6

��
::

::
:

�������� ��������
1.0
����������

0.4

����
��
� 0.6

��
::

::
:

�������� ��������

BFPSS PFS
0 0

0.4 0
0.4 0.4

0.76 0.76
1.0 1.0

Finally, we show that PFS can make progress faster than
BFPSS.

��������
0.3

����
��
� 0.7

��
::

::
:

��������
1.0
��

��������
0.5

����
��
� 0.5

��
::

::
:

�������� �������� ��������

PFS BFPSS
0 0

0.35 0
0.7 0.3
0.7 0.65
1.0 1.0

8. Conclusion

To measure the amount of progress made by an explicit-
state probabilistic model checker when checking a linear
time property, we introduced the notion of a progress mea-
sure. Although our notion is based on a probability space
that has been used by others to study probabilistic sys-
tems, as far as we know this notion is new. We have also
shown how to compute the progress measure for invariants.
Furthermore, we introduced several new search strategies
and compared them with depth-first search and breadth-first
search. Although these search strategies are not the main
focus of the paper and most likely have already been intro-
duced in different contexts, we believe that they show that
our theoretical framework allows us to study new search
strategies and compare them.

We have implemented our theoretical framework within
JPF. The details can be found in [10]. We implemented a

number of randomized algorithms in Java and used our ex-
tension of JPF to model-check them while keeping track
of JPF’s progress at the same time. Also these exam-
ples showed that the search strategies are incomparable, al-
though our new search strategies made progress faster than
depth-first search and breadth-first search for most exam-
ples.

Our framework only considers probabilistic choices. As
a consequence, it is only applicable to implementations of
sequential randomized algorithms. One direction of future
work is to extend our framework so that it can handle con-
current randomized algorithms as well. In that case, we also
have to deal with nondeterministic choices and, hence, we
may have to consider schedulers.

Here, we focused on explicit-state probabilistic model-
checkers. However, we believe that our developed theory
can be adapted to symbolic probabilistic model-checkers.
This is another direction for future research.

References

[1] C. Baier and J.-P. Katoen.Principles of Model Checking.
The MIT Press, 2008.

[2] C. Courcoubetis and M. Yannakakis. The complexity of
probabilistic verification.Journal of the ACM, 42(4):857–
907, July 1995.

[3] C. Eisner and D. Peled. Comparing symbolic and explicit
model checking of a software system. InProceedings of
the 9th International SPIN Workshop on Model Checking of
Software, volume 2318 ofLecture Notes in Computer Sci-
ence, pages 230–239. Springer-Verlag, Apr. 2002.

[4] M. Kwiatkowska, G. Norman, and D. Parker. Probabilis-
tic symbolic model checking with PRISM: A hybrid ap-
proach. International Journal on Software Tools for Tech-
nology Transfer, 6(2):128–142, Sept. 2004.

[5] R. Segala. Modeling and Verification of Randomized Dis-
tributed Real-Time Systems. PhD thesis, Laboratory for
Computer Science, Massachusetts Institute of Technology,
June 1995.

[6] A. Sokolova, E. de Vink, and H. Woracek. A compan-
ion to coalgebraic weak bisimulation for action-type sys-
tems. Technical Report CSR-07-12, Eindhoven University
of Technology, 2007.

[7] M. Y. Vardi. Automatic verification of probabilistic finite-
state programs. InProceedings of the 26th IEEE Symposium
on Foundations of Computer Science, pages 327–338. IEEE,
Oct. 1985.

[8] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda.
Model checking programs.Automated Software Engineer-
ing, 10(2):203–232, Apr. 2003.

[9] A. C. Zaanen.Integration. North-Holland, 1967.
[10] X. Zhang and F. van Breugel. Probabilistic model checking

with Java PathFinder. Submitted to theInternational
Conference on Computer Aided Verification. Available at
www.cse.yorku.ca/ ˜ franck/research/drafts/ ,
Jan. 2010.

10

