A Progress Measure for Explicit-State Probabilistic Model-Checkers

Xin Zhang and Franck van Breugel
DisCoVeri Group, Department of Computer Science and Engineering
York University, Toronto, Canada

Abstract that is, model-checkers in which the states of the systems
are represented explicitly. For a comparison of explicit-state
Verification of the source code of a probabilistic system and symbolic model-checkers, we refer the reader to, for ex-
by means of an explicit-state model-checker is challeng-ample, [3].
ing. In most cases, the model-checker will either run out One may wonder if an explicit-state model-checker, such
of memory or will simply not terminate within any reason- as Java PathFinder (JPF for short) [8], is suitable for veri-
able amount of time. We introduce the notion of a progress fying implementations of randomized algorithms. Consider
measure for such a model-checker. The progress measur¢he following Java snippet.
returns a number in the interval [0, 1]. This number pro-
vides us a quantitative measure of the amount of progress ~ Random random = new Random();

the model-checker has made verifying a particular linear Iong count = 0;
time property. The larger the number, the more progress the while (random.nextBoolean())
model-checker has made. We also show how to compute the count++;

progress measure for checking invariants. . . : .
. . The above snippet gives rise to a huge number of different
Explicit-state model-checkers usually exploit search . 64 L .
states: more thaR®*. Hence, it will come as no surprise

strategies such as depth-first search and breadth-first search - . .
" . that an explicit-state model-checker either will run out of
to explore the transitions. We introduce several new

search strategies that take the probabilities associated with memory or will not gomplet_e |_ts verification of the above
e : very simple code snippet within any reasonable amount of
the transitions into account. We compare the amount of

progress made by the different search strategies. tlme._ The same applies for most implementations of ran-
domized algorithms.

Since explicit-state model-checkers generally cannot
fully verify implementations of randomized algorithms, it
1. Introduction would be interesting to extend such a model-checker such
that it keeps track of the amount of progress it has made with
Model-checkers such as PRISM [4] have been successits verificaﬁon effort. Simply counting the num_berof (states
fully exploited to check properties of probabilistic systems. ©F) €xecution paths that have been checked is not very use-
Such a verification tool considers a model of the system, ful for several reasons. First of all, it may be very difficult
rather than the actual source code of the system. A model i" €ven impossible to determine the total number of poten-

usually simpler than the source code and, hence, the modelial execution paths. Hence, the number of exec_ution paths
is generally easier to verify. However, the details from that have been checked by the model-checker gives us very

which the model abstracts are not considered in the veri-limited information about the amount of progress that has
fication effort and, hence, the results obtained when con-P&en made. Secondly, some execution paths are more likely
sidering a model may be less precise. Whereas a tool thaf® happen than others. For example, the nonterminating ex-
checks properties of a model is usually exploited to find er- €cution path of the above snippet occurs with probability
rors in algorithms, a tool that considers the source code isZ€r0- Checking this execution path amounts to no progress
generally used to detect coding errors. atall. . _

In this paper, we consider the applicability of model- In this paper, we develop a theoretical framework to

checkers to verify the source code of probabilistic systems. define the progress made by an explicit-state probabilistic
In particular, we focus on explicit-state model-checkers, Model-checker when verifying a particular linear time prop-
erty. Furthermore, we show how to compute the progress

*This research is supported by NSERC. for the verification of invariants.

The potential execution paths of the system being veri- tion ¢,,.; has been explored by the model-checker, we can
fied are represented by means of a probabilistic transitionconstruct the new searched system from the old one in con-
system. We use a sequence of transitions to represent thetant time.
verification effort, or search, of the model-checker. Explicit-state model-checkers such as JPF can check

To capture the progress made by the model-checker, in-the transitions in different orders by using, for example,
stead of counting the number of execution paths, we endowa depth-first search (DFS) or a breadth-first search (BFS).
the set of potential execution paths witlraalgebra and a ~ These search strategies do not take the probabilities of the
probability measure. In this way, we obtain a probability transitions into account. In this paper, we will propose sev-
space of execution paths. The measure of a particular seeral new search strategies which use the probabilities asso-
of execution paths relevant to the property being checkedciated with the transitions. To let transitions with the high-
gives us a number in the interval [0, 1]. This number pro- est probability be searched first, our probability-first search
vides us a quantitative measure of the amount of progresdPFS) strategy sorts the enabled transitions by their proba-
the model-checker has made verifying the property. The bility. Our breadth-first probability-second search (BFPSS)
larger the number, the more progress the model-checker haés an enhancement of BFS in which transitions at the same
made. level are sorted by their probability. Our randomized search

For the case that the property being verified is an invari- (RS) randomly selects an enabled transition. The chance
ant, we will present an alternative characterization of the that a transition is selected is proportional to its probability.
progress measure. We will show that the amount of progress Our progress measure allows us to compare the amount

for invariants is the measure of the set of execution pathsOf progress these different search strategies make. As we
that have been checked. will show, the different search strategies are incomparable.

That is, for each pair of search strategies, we can construct

From the probabilistic transition system representing the
a small complete system such that the one strategy makes

system under verification, we construct another probabilis-
tic transition system. To distinguish the two systems, we faster progress than the other. _
refer to the probabilistic transition system representing the W& have implemented several well-known randomized
system under verification as the complete system and the?!90rithms and compared their progress when being verified
other system as the searched system. Assume that the tra/fiSing different search strategies. We observed that different
sitionsty, ts, ..., ¢, are those transitions of the complete algorlthms'are best verified using different search strgtegles.
system that have been explored by the model-checker. Theri1€nCe, being able to determine how much progress is made
the states of the searched system are the source and targdfith @ particular search strategy is useful for choosing an
states ofty, ts, ..., ¢, and a “sink” states,. For those aPPropriate search strategy. _

statess of which the sum of the probabilities of the outgo- 1 1€ two main contributions of this paper are the follow-
ing transitions is less than one, that is, those states that hav&9- First of all, we introduce the notion of a progress mea-
outgoing transitions which have not been explored yet, we Suré- Secondly, we show how this progress measure can
add a transition from to s, with the remaining probability ~ °€ computed when checking invariants. Furthermore, we

(so that the transition probabilities add up to one). The statePrOPOS€ several new search strategies. Our proposed the-
s, has a transition to itself with probability one. oretical framework has been implemented within JPF. The

details of our implementation are discussed in [10].

When we verify the implementation of a randomized al-
gorithm with JPF and the model-checker runs out of mem-
ry, our progress measure provides us with an indication
ow much progress the model-checker has made with its

As we will show, to compute the amount of progress
made by the model-checker after having explored the tran-
sitionsty, ..., t, when checking an invariant, it suffices to
consider the searched system as described in the previou%

aragraph. Let the “sink” state; be the only state that e
paragrap + y verification effort. In some examples, we have seen that

satisfies the atomic proposition. We will prove that the DFS makes no oroar the proar m re is still zer
measure of the complement of the set of those executions akes no progress (the progress measure is still zero

of the searched system that satisfy the temporal logic for-When it runs out of memory) whereas the progress of PFSis

mula true/ | corresponds to the progress measure of the VerY close to one. We believe that this type of information

searchty, fy, ..., 1, in the complete system. Note that, ac- is u.sefulwhen verifying implementations of randomized al-
cording to [7, Corollary 2.4], this set of executions is mea- gorithms.
surable. To compute the measure of this set, we can use, for
example, the algorithm of Courcoubetis and Yannakakis [2, 2. Probabilistic Transition Systems
Lemma 3.1.1.1].

Assume that we have constructed the searched system We represent the system to be verified by the explicit-
for the searchy, ..., t,. As we will show, rather than con- state model-checker as a probabilistic transition system.
structing a new searched system from scratch after transi-The model-checker explores the (states and) transitions of

the probabilistic transition system in a systematic way. Note Definition 3 A state s is final in S if > {probs(t) |
that the set of transitions of a probabilistic transition system sourcg (¢t) = s } = 0.

may be infinite. In that case, not all transitions can be ex-

plored by the model-checker.

Definition 1 A probabilistic transition system is a tuple
(S, T, AP, so, sourcetarget prob, label) consisting of

e asetS of states,
e a setT of transitions,
e a set AP of atomic propositions,
e an initial statesy,
¢ afunctionsource: T — S,
e afunctiontarget: T' — S,
e a functionprob: T — (0, 1], and
e afunctionlabel: § — 2AP
such that
e 5o € Sand
e forall s € S, > {proh(t) | sourcét) = s} € {0,1}.

Instead of(S, T, sq, sourcetarget prob, AP, L) we usu-

ally write S and we denote, for example, its set of states by

Ss.

We will use the following probabilistic transition system
as the running example for the rest of this paper.
Example 2 The probabilistic transition system depicted by

S0

0.7

§1 3 59
0.3

has 3 states and 4 transitions and a single atomic proposi-
tion p. In this example, we use the indexes of the source an
target to name the transitions. For example, the transition

from sg to s is namedty,. Given this naming convention,
the functionssourceand targetare defined in the obvious
way. For examplesourcétos) = so andtargettos) = so.
The functionprob can be easily extracted from the above
diagram. For exampleprob(tp2) = 0.5. Atomic propo-
sition p is satisfied in all states. Hence, for example,
labels1) = {p}.

For the remainder of this section, we fix a probabilistic
transition systens.

A state is final inS if it has no outgoing transitions. In
Example 2, the stats, is final.

Next, we formalize the potential execution paths of a
probabilistic transition system. We classify them into two
categories: infinite execution paths and finite execution
paths.

Definition 4 An infinite execution path is an infinite se-
guencefyts . .. such that

e foralli>1,t; € Ts,
e sourcg(t;) = sg, and
o forall i > 1, target (¢;) = source (t;+1).

The set of all infinite execution paths is denotedekgcs.
A finite execution path is either a finite sequence of tran-
sitionst; .. .t, for somen > 1 such that

e foralll <i<n,t; €Ts,

e sourcg(t1) = so,

e targeg(t,) is final inS and

o forall 1 <i < n,target(t;) = sourcg(t;+1),

or the empty sequeneeif sq is final in S. The set of all
finite execution paths is denoted Byec;.

The set of all execution pathExegs is defined by
Exeg = Execs U Exec.

For the probabilistic transition system of Example 2, the
sequencegtigtoitio - - . IS an example of an infinite exe-
cution path and the sequenggt;, is an example of a finite
execution path.

We denote the set of finite prefixes of Exedy
pref(Execs).

dDefinition 5 The functiontarget, : pref(Exeg) — S is

defined by

targeg(e) =
targek (ty...t,) =

S0

targek (¢,,)

Many proofs, which are based on probability theory, rely
on sets being countable. The sets (fEgbgs) and Exe§
play a key role in our theory. Both are countable.

Proposition 6 The sepref(Exegs) is countable.

Corollary 7 The seExec; is countable.

3. Searches and their Progress For the probabilistic transition system introduced in Ex-
ample 2tg1, too, t12 IS a search.

Before formalizing the search of a model-checker andits If the model-checker has checked the transitions
progress measure, we first turn the set Exito a proba- ty,...,t, of S, it of course is not aware of the remain-
bility space. The probability space we define below is simi- ing transitions ofS. To capture this, we formalize how
lar to the ones studied by Segala [5] and Sokolova, De Vink 1, - - - , t» can be extended.

and Woracek [6]. We start by identifying particular subsets

of Exegs.

Definition 8 Lett; ...t, € pref(Exegs). Its basic cylinder
set By, ..+, is defined by

By, ..+, = {e € Exeg | e starts withty ... ¢, }.
The set3s is defined by
Bs ={By .+, |t1...t, € pref(Exeg) } U {0}.

Note thatB, = Exeg. The collectionB8s can be shown
to satisfy the following properties:

e e Bs,
e if Aec BsandB € Bs,thenAN B € Bs, and

e if A€ BsandB € Bs, whereB C A, then there exist
finitely or countably many mutually disjoirt,, € Bs
such thatd \ B = |JC,,.

A collection satisfying the above properties is called a semi-

ring in [9, page 25}
Proposition 9 The sets is a semi-ring.

Next, we define a function that assigns to each s&sin
a real number.

Definition 10 The functiorvs : Bs — IR is defined by

Vs (Btl.‘.tn)
vs(0)

Note thatvs(B.) = 1.

[1i<;<, Probs(t:)
=0

Proposition 11 The functiorvs is a measure.

According to [9, Chapter 2], the measurg on the
semi-ring5s can be extended to a measure amralgebra

Definition 13 The probabilistic transition systen§’ ex-
tends the search,...,t, of the probabilistic transition
systents if

{t1,...
sourcey (t;) = sourcg(t;),

target;, (t;) = target (¢;),

proby, () = probs (t;),

labels/ (sourcey (¢;)) = labels(sourceg (¢;)), and
labels (target, (¢;)) = labels (target; (¢;)).

,tn} CTs,andforalll <i<mn,

Obviously, the probabilistic transition syste$nextends
the searchi, ..., t, of S.

For the definition of linear time properties and the defi-
nition of e =5 ¢, capturing that execution pathof proba-
bilistic transition systen® satisfies linear time property,
we refer the reader to, for example, [1].

Proposition 14 Let the probabilistic transition syste’

extend the searchy, ..., t, of the probabilistic transition
systemsS and let¢ be a linear time property. Then
Exeg N{t1,...,t,}" = Exeq N {t1,...,tn}"
and
us(Exeg N{t1,...,tn}*) = pns (Exegs N{t1,...,tn}")
and for alle € Exegs N {t1,...,tn}",
eks ¢iffe s ¢.

We only define our progress measure in case no violation
of the property has been found yet. The latter is formalized
as follows.

Definition 15 The searchtq,...,t, of the probabilistic

Y5 containing the semi-ring. We denote the extended transition systen has not found a violation of the linear

measure byus. We will exploit the measurable space
(Exegs, ¥s, us) to capture our progress measure. But first
we formalize the notion of a search of a model-checker.

Definition 12 A search of a probabilistic transition system
S is a sequence of distinct transitions, . . . , ¢,, for some
n > 0suchthat; € Tsforall 1 <i <n.

1This definition of a semi-ring is non-standard.

time property if

o foralle € {¢,..
and

. atn}wy ife e Exng’ thene ':S QS,

o foralle € {t1,...,t,}*, if e € pref(Execs) then there
exists a probabilistic transition systefi that extends
t1,...,t, such thate’ =g ¢ for all ¢ € B, and
B, € Bs.

Note that the search, ..., t, has found a violation of it only knows that it is checking some probabilistic transi-

the linear time property if tion systemS’ that extends;,...,t,. For each of those
. o] extensions,us (Bg’, (t1,...,t,)) captures the amount of
e either we can form an infinite execution path from the progress oft,...,t, for ¢. Those amounts of progress
transitionsty, . . ., t,, that violatesp can be combined as follows.

e or we can form a prefix of an execution path from the

transitionsty, . . . , t, which gives rise to a violation of Dgfinition 19, .Consider the search, ..., ¢, of the proba-
¢ no matter how we extend i, bilistic tra.nS|t|.on systerqS‘. As;ume thaty, ..., ¢, has not
found a violation of the linear time proper#y Theprogress
For the probabilistic transition system of Example 2, the ofty,...,t, for ¢ is defined by
searchy, t1o has found a violation of the propertyp and
the searchy, t1o has not found a violation afip. progs(ti, ... tn, @)
d.t.In all our proofs, we only need the following weaker con- ~ _ ¢ { L (Bf;,(tl, ., t2) | S extends, ..., t, of S } .
ition.

Proposition 16 If the searcht,, ..., ¢, of the probabilis- In the above definition, we consider the worst case by

tic transition systens has not found a violation of the lin- taking the mﬂmu(;n.d 'Hﬁnce, EIO m?tter T}OW the search

ear time propertys, thene —s ¢ for all ¢ & Exegs N 111+ ln IS €xtended, it has made at least the given amount

({t, £} Ut £ 1) of progress. We could also consider the best case by replac-
b yvn b s vn .

ing inf with sup in the above definition. However, in that
In the definition of our progress measure we make use of€8S€ We can show that the progress is always one.

the following sets. Consider the probabilistic transition system of Exam-
ple 2 and the linear time propertyp. At the beginning,

Definition 17 Let the probabilistic transition syste§f ex- ~ When the model-checker has not explored any transitions,

tend the search, ..., t, of probabilistic transition sys- the progress is zero. After checking the transitin the

tem S and let ¢ be a linear time property. The set progress increases to 0.6. Checking the transttiprdoes

Bg’, (t1,...,tn) is defined by not increase the progress, and the progress of the search
to1,t12,to2 is one. Now consider the linear time property

Bfé, (t1y. oy tn) Op. Again, the empty search has not made any progress.

Checking the transitioty; does not increase the progress.

— * 1 L

= (B €Bs [ee{ti,.. ta} AV € Be: ¢ msr & rer also checking the transitian,, the progress increases
t00.6 x 0.3 = 0.18. Furthermore, the progress of the search

The setBY, (1, ..., t,) contains a basic cylinder s&, to1,t12,t02 180.18 + 0.4 = 0.58.

¢. Inthat caseB,. does not contain a counterexamplefof probability that the linear time property is satisfied.
Hence, the selﬁﬁ, (t1,...,t,) consists of those basic cylin-

der sets that do not contain a counterexamplg.dfhis set pronosition 20 If the searchty, .. ., #,, of the probabilistic
is measurable, as is stated in the following proposition. ansition systens has not found a violation of the linear

. I . time propertyp, then
Proposition 18 Let the probabilistic transition syste®’ property;

extend the search,...,t, of probabilistic transition
systemS and let ¢ be a linear time property. Then
Bg,(tl, . ,tn) € Xgr.

Progs(t, ..., tn,¢) < ps({e € Exeg | e =5 ¢ }).

4. Progress for Invariants

Since the ser;, (t1,...,t,) Is measurable, its measure
1S (B‘j’;, (t1,...,t,)) is defined. The latter is a number in In case the property under verification is an invariant, we
the interval[0, 1] which represents the “size” of the basic can characterize our progress measure in terms of the set of
cylinder sets that do not contain a counterexamples.of execution paths that solely consist of transitions that have
This number captures the amount of progress, of. . , ¢, been explored by the model-checker. This set is measurable,
for ¢, provided thathe probabilistic transition system under as is stated in the following proposition.
consideration iss’.

Now consider the searchi, ..., t, of the probabilistic Proposition 21 Letty,...t, be a search of the probabilis-
transition systens$ for the linear time property. Since the tic transition systemS. ThenExeg N ({¢t1,...,t,}* U
model-checker has only checked the transitions. ., ,,, {t1,...,tp}¥) € Ts.

Since the above set is measurable, its measure is definedefinition 23 The setSs: is defined by
As shown in the following theorem, it captures the progress

of the search for invariants. Ssr = U {source (:), target (£:)} U {s0, 5.1 }-
1<i<n
Theorem 22 If the searchty, ..., t, of the probabilistic A states is partial if s is not final inS and
transition systend has not found a violation of the invari-]
ant ¢, then outs(s) = Y _{probs(t;) | 1 <i < nAsourcg(t;) = s} € [0,1).

The sefl’s: is defined by

progs(ti, .- tn, ¢) e :
— us(Exees N ({t1, .ot} Ut oo b)), Ts = {t1,...,tn}U{ts | s € SssisfinalinS or partial }U{¢, }.

The set AR: is defined by
Proof Due to lack of space, we only present a sketch of the

proof. We prove the above equality by proving two inequal- APs: = APs U {L}.

ities. The functiorsourcg: : T'ss — Ss is defined by
To prove that prog(t1, ..., t,, ¢) is smaller than or equal S| ift =1,

to ps(Exeg N ({t1,...,tn}* U {t1,...,t,}*)), we con- sourcey (t) = { s if ¢t = t,

struct a probabilistic transition systed’ that extends

source(t) ifte {t1,...,t,
t1,...,t, of S such thatpus (B% (t1,...,t,)) equals &) {h }

ps(Execs N ({t1, ..., ta}* U{ts, ..., t,}*)). The functiortarget, : Tss — Ss is defined by

The proof thapus (Exeg N ({t1, ..., tn} U{t1,...,t,}¥)) Sy ift=1,

is smaller than or equal to prg¢ts, . . ., t,,) consists of target, (£) = { ° if t =t, ands is final
two major steps. Le§’ extendty, ... ,t, of S. Assume that ' S1 if t = t, ands is partial
t1, ..., t, has not found a violation ap. First, we show targeg(t) ift e {ti,...tn}

that Exeg N{t1,...,t,}" is a subset oBf;, (t1,. - tn, @).

. oo The functiorprobe, : T's/ 0, 1] is defined b
Since itis in general not the case that Exedtq, . .., ¢, }* rProbs 50— (0.1] y

is a subset ofB% (1, ...,tn,¢), We show that the set 1 ift=1t, o

B, (t1,. .. tn, ®) \ (Exeg N {t,...,t,}*) has measure probg, (t) = ! if ¢ = 1, ands is final
zero. The latter proof is quite involved. We defifieas 1 —outs(s) ift =i, andsis partial
min{ probg, (t) | source (t) € {target, (t;) | 1 < i < probs(t) ifte{ti,.. tn}

nyUfso}} VE € {tr... ta}). Fore € preflExeG) g fynctionabels: : Ss — 2APs is defined by
andn € IN, we usee[n] to denotee truncated at length.

One of the key ingredients of this part of the proof is the labels: (s) — { {L} if s = 51
proof that for allk € IN, ps/ (U{ Bejr(n+1) € Bs' | € € labels(s) otherwise

BS(tr, - tn)\(ExeGsN{ts, ..., t,}*) }) < (1=6"*1)*. proposition 24 S is a probabilistic transition system.

For the complete system of Example 2 and the sefich
Note that the above theorem does not hold for all linear ¢y, t12, the corresponding searched system can be depicted
time properties. For example, consider probabilistic transi- as
tion system of Example 2, the searhi and the property S0
Op. As we have already seen, the progresg,pfor Op is) V \Y)
0.6. However, the set Exea ({to1}* U {to1}¥) is empt
€0 ({to1}* U {to1}*) pty Q 01, _ s{)

and, hence, its measure is zero.

i) Note that the probabilistic transition systefii only
5. Progress Computation for Invariants gives rise to infinite execution paths. Let us denote the set
of execution paths of this system by ExecAs we turned
In this section, we fix a probabilistic transition systém the set Exeg into a measurable space, we can also turn the
which we call the complete system, a seatch .., t, of set Exeg: into a measurable spa¢Exegs, X/, pis/).
this system and an invariant Next, we construct a proba- To prove that we can indeed use the searched system to
bilistic transition systen$’, which we call the searched sys- compute the progress of the search in the complete system,
tem. This searched system is usually considerably smallemwe relate the complete and the searched system. We relate
than the complete system. We will exploit the searched sys-the systems by linking the execution paths of the two sys-
tem to compute the progressiaf. . ., ¢, for ¢. tems.

Definition 25 The function; : Exegs — Exegs: is defined complete systens, this can be captured by the following

by diagram.
e(ttargete))w ife e {tl,...7tn}* t1,coytn —— b1, .oyttt
(e) = e ifee{t,...,tn}" l J{
U - elttargete/)(tl)w if e = e’te” ande’ S {tl, [N 7tn}*
andt g {th e 7tn} S’n Sn+1

Rather than constructing the searched system from scratch
after a new transition has been explored by the model-
checker, we show that we can construct the new searched
systemsS,, ., from the old searched systef) and the tran-
sitiont,, 1 in constant time.

But first we characterize the searched system corre-
sponding to the empty search.

Next, we characterize those execution paths of the com-
plete system, which solely consist of transitions of the
search, in terms of execution paths in the searched system.

Proposition 26 The sets Exegs N ({t1,...,tn}* U
{t1,...,t,}*¥)and{ e’ € Exeg | ¢ does not contait }
are isomorphic viay.

Proposition 30 LetS, be the searched system correspond-

. As we show next, to cpmpu_te the progress of the searching to the empty search. Thefy, = {so,s.}, To =
in the complete system, it suffices to compute the measure tosti), APy —=
S0 1

i = APs U {l}, sourcg(ts,) = So,
tht'hﬁ Zet of those.exre;cutlon pgths of the searched syste ourcg(t.) = s., targef(tL) = s, proby(ts,) = 1,
which do not contain the transitian . proh,(t.) = 1, labeb (so) = labels(so) andlabeh (s) =

{L}. If s is final thentargeft,,) = so. Otherwise,

Theorem 27 progs (t1, - . - targetts,) = s1
so/) — N

¢’ does not contain, }).

stn, @) = ps({ e’ € Exeg |

] Theorem 31 LetS,, andS,, 1 be the searched systems re-
The set of those execution paths of the searched sysigtedtothe searches, ..., t, andty, ..., tn, tyy1, reSpec-

tem which contain the transition can be captured as the tjvely. Lets, = sourcét,,, ;) ands; = targett,). Then

set of execution paths satisfying the linear time property

truedd L. Snt1 = Sp U{ss, st}

Proposition 28 For all ¢’ € Execs, and
, . . , Tn U {tn+1} U {tss} U {tsf}
e’ containst | iff ' =g/ trueld L .

. Tn U {tn+1} U {tst}
From Theorem 27 and Proposition 28 we can conclude

the following. To U{tns1} U {ts,}

T, U {tn+1} U {tst} \ {tss}

T, U {thrl} U {tss}

Corollary 29 progs(ti,...,tn,¢) =
Exeg: | €' s/ trueld L }).

1 — pus({e €

Tn+1 =
Hence, to compute the progress of the search in the com-
plete system, it suffices to compute the measure of the set
of those execution paths in the searched system that satisfy
the property true/ L. An algorithm to compute the lat-
ter has been presented by Courcoubetis and Yannakakis [2,
Lemma 3.1.1.1].

Tn U {tn—i-l}
T, U {tn+1}

T, U {thrl} \ {tss}

6. Maintaining the Searched System d
an

As we have seen in the previous section, to compute APpi1 = AP,
the progress measure of a search of a complete system foand the functiorsource, ,
an invariant, we construct the corresponding searched sys-

if 55 ¢ Sn A 8¢ ¢ SpA
probg(t,41) <1

if s, € S, A sy gSn/\
prob, (t...) > probs (1)
if s; &€ S, Asy & SpA
probg(t,4+1) =1

if s € Sy Asy & SpA
prob, (t..) = probs (t, 1)
if s¢ & Sp A s¢ € SpA
probg(t,+1) <1

if s € S, Asg € SpA
prob, (.,) > probs (f,1)
if ss € Sp A s € SpA
probs (th+1) =1

if ss € S, Asg € SpA
prob, (t..) = probs (t,+1)

: Thy1 — Spyq Satisfies

tem (and compute the measure of the set of those execu- Ss ift=tn41
tion paths in the searched system that satisfy a particular source, 4 (t) = Ss if t =tg,
property). As the search of the model-checker continues, G+1ll) = St if t =t
we would like to keep track of the progress. For a given sourcg (t) otherwise

and the functiontargef, , , : 7,11 — S, 11 satisfies if probs(t) < prob(s,)
proh(ts,) < prob(t,,) — probs(t)

St if t= tn+1 e|Se
S1 ift =t removeT, t,.)
targef, , ,(t) = s¢ if t =ts, A seisfinal if s, &8
s if t =t5, A s, is partial inser{(.S, s;)
target,(t) otherwise if s; is final
. - targetts,) < st
and the functiorprob, , : T),11 — (0, 1] satisfies else
targe(tSt) 51
prObai?f(i”“t) SOUrcéts,) < s;; prob(ts,) < 1
= tntl inser(7, t,,)
prob, (.,) — probs (tu1) !
if e = t;S N 8s € ‘g”/; Proposition 32 The worst-case running time of Initialize is
1 ppri)obbn((t Ss))> probs (tn+1) constant. The amortized expected running time per Add is
prob, ., (t) = . t:+/1\ 60 & Sun constant.
probg (tp+1) <1]
1 7. Search Strategies
ift =ts, ANst & Sp,
prob,(t) Explicit-state model-checkers like JPF exploit search
otherwise strategies such as depth-first search (DFS) and breadth-first
_ AP o search (BFS) to visit the transitions of the system under
and the functiodabel, 1 : S,41 — 277+ satisfies verification. Next, we present three new search strategies.

In contrast to DFS and BFS, our search strategies take the

label, (s) if s € S, probabilities of the transitions into account.

label, +1(s) = { labels(s) otherwise

The above results provide the correctness proof of the7-1. Probability-First Search
algorithm below.

To let transitions with the highest probability be searched
first, our probability-first search (PFS) strategy sorts the en-
abled transitions by their probability. For the probabilistic
transition system of Example 2, PFS visits the transitions in
the fO”OWing Order:t()l, t10, to2, t12.

To implement PFS, we use a priority queuyeEach key

Initialize ()

S «— empty set

T — empty set

inser{.S, so); inser(S, s)

sourcét) « s ;targett) <« sy;prob(t,) «— 1

inser{(l’, ¢ . . ity

if 59 i(s f;ngl) is a real, which represents a probability. The keys are or-
targett,,) < so dered as follows:

else

=< poif p1 > po.
targetts,) — s. P12 p2lTp1 2 p2

SOurcet,,) < so; prob(t,,) «— 1

) The elements of the priority queugare transitions. An
inser(T, ts,) P Y queus

algorithm for PFS can be found below.

Precondition: t ¢ T Precondition: no state is marked visited
Add(t) q < empty priority queue
ss < sourcét); s, — targett) for all transitionst from s
inser(T, t) insertg, (prob(t), t))
if s &8 mark sq visited
inser{.S, ss) while ¢ is nonempty
if probg(t) <1 (p, t) — deleteMir(q) > ¢ is visited
sSourcét,_) < sg;targetts,) <« si if target() is not visited
prol(ts,) « 1 — probg () for all transitionst’ from target()
inser(7,ts_) insert@, (prob(t’) x p,t'))
else mark target() visited

7.2. Breadth-First Probability-Second Search 7.4. Properties of Search Strategies

Like DFS and BFS, also PFS, BFPSS and RS visit each

Our breadth-first probability-second search (BFPSS) is
state at most once.

an enhancement of BFS in which transitions at the same
level are sorted by their probability. For the probabilistic
transition system of Example 2, BFPSS visits the transitions
in the following order:to1, too, t10, t12-

To implement BFPSS, we also use a priority qugue
This time, each key is a pair consisting of an integer, which
represents a level, and areal, which represents a probability. - Since PFS, BFPSS and RS take the probabilities into ac-
The keys are ordered as follows: count, these search strategies are not as efficient as DFS and

BFS.

Proposition 33 In PFS, BFPSS and RS, each transition is
visited at most once. Lé&f, be the set of those transitions
that can be reached fromy. If T} is finite then PFS, BFPSS
and RS visit all transitions iff.

(01, p1] = [lo,po] if £y < LoV (€y = Ly A1 > p2).
Proposition 34 If
The elements of the priority queugare transitions. An

algorithm for BFPSS can be found below. * astate can be marked visitedn(1),

o . - e a state can be checked to be markedifi),
Precondition: no state is marked visited

q < empty priority queue ¢ the outgoing transitions of a statecan be enumerated
for all transitionst from sq in O(n), wheren is the number of outgoing transitions
insertg, {[1, prob(t)], t)) of s,

mark sg visited

while ¢ is nonempty then the worst-case running time of PFS, BFPSS and RS is

([¢,—],t) < deleteMin(q) >t is visited O(|To| log [To|).
if targetf) is not visited
for all transitions’ from target() 7.5. Comparison
insertg, ([¢ + 1, prob(t')],t'))
mark targetf) visited Our progress measure allows us to compare the amount

of progress these different search strategies make. Next we
will provide examples that show that DFS, BFS, PFS and
BFPSS are incomparable. That is, for each pair of search
strategies, we will construct a complete system such that
Our randomized search (RS) randomly selects an en-the one strategy makes faster progress than the other. Obvi-
abled transition. The chance that a transition is selected isously, RS is incomparable with the other four search strate-

7.3. Randomized Search

proportional to its probability. gies.
To implement RS, we use a set The elements of the The first example shows that DFS can make faster
set are pairs, each consisting of a real, representing a probprogress than BFS.
ability, and a transition. The operation selartemoves an
DFS BFS
element(p, t) from the sets and returns the element. The 0.5 0.5 —0 o
robability that the elemenip, t) is selected '3277’ . O/
p lity lem b, t) i is~—2— 0E 0
An algorithm for RS is given below. 1,0% %1,0 05 05
Precondition: no state is marked visited 1o 10
s < empty set The second example shows the opposite, that is, BFS can

for all transitionst from s make faster progress than DFS.
insert(s, (prob(t), t))
BFS DFS

mark sg visited o 0.6
while s is nonempty Q/ 0 0
(p, t) — selects) >t is visited) 0% 06 04

if targetf) is not visited 10 10
for all transitionst’ from target()
insert(s, (prob(t’') x p,t’)) Our third example show that both DFS and BFS can
mark target{) visited make progress faster than PFS and BFPSS.

number of randomized algorithms in Java and used our ex-
tension of JPF to model-check them while keeping track
0.6 of JPF's progress at the same time. Also these exam-
d/ ples showed that the search strategies are incomparable, al-
though our new search strategies made progress faster than

DFS BFS PFS BFPSS depth-first search and breadth-first search for most exam-

04 04 0 0 ples.

04 04 04 0.4 Our framework only considers probabilistic choices. As
0.76 0.76 0.76 0.76 a consequence, it is only applicable to implementations of

10 10 10 1.0 sequential randomized algorithms. One direction of future

The fourth example shows the opposite, that is, both PFSWOrk is to extend our framework so that it can handle con-

and BFPSS can make faster progress than DFS and BFS. currentrandomized algorithms as well. In that case, we also
have to deal with nondeterministic choices and, hence, we

0.6

oy

04 0.6 PFS BFPSS DFS BFS may have to consider schedulers.
O/ 0.6 06 04 04 Here, we focused on explicit-state probabilistic model-
1.0 10 10 10 checkers. However, we believe that our developed theory
Next, we present an example of a system for which BF- €an pe adapted to symbolic probabilistic model-checkers.
PSS makes faster progress than PFS. This is another direction for future research.
576\)@6 —BFPSOS P'(:)S References
0.4 0 . . :
1.0 0.4 0.4 [1] C. Baier and J.-P. KatoenPrinciples of Model Checking
The MIT Press, 2008.
0.4 0.6 0.76 0.76 [2] C. Courcoubetis and M. Yannakakis. The complexity of
d/ 10 10 probabilistic verification. Journal of the ACM42(4):857—

907, July 1995.
Finally, we show that PFS can make progress faster than [3] C. Eisner and D. Peled. Comparing symbolic and explicit

BFPSS. model checking of a software system. Mmoceedings of
the 9th International SPIN Workshop on Model Checking of
o3 Q o PFS BFPSS Software volume 2318 ofLecture Notes in Computer Sci-
O/ 0 0 ence pages 230—239. Springer-Verlag, Apr. 2002.
0.5 0.5 0.35 0 [4] M. Kwiatkowska, G. Norman, and D. Parker. Probabilis-
1-0% O/ ' 07 0.3 tic symbolic model checking with PRISM: A hybrid ap-
0.7 0.65 proach. International Journal on Software Tools for Tech-
1.0 1.0 nology Transfer6(2):128-142, Sept. 2004.
[5] R. Segala. Modeling and Verification of Randomized Dis-
. tributed Real-Time SystemsPhD thesis, Laboratory for
8. Conclusion Computer Science, Massachusetts Institute of Technology,
June 1995.
To measure the amount of progress made by an explicit- [6] A. Sokolova, E. de Vink, and H. Woracek. A compan-
state probabilistic model checker when checking a linear ion to coalgebraic weak bisimulation for action-type sys-
time property, we introduced the notion of a progress mea- tems. Technical Report CSR-07-12, Eindhoven University

of Technology, 2007.

sure. Although our notion is based on a probability space [7] M. Y. Vardi. Automatic verification of probabilistic finite-

that has been used by Others t_o St_Udy probabilistic sys- state programs. IRroceedings of the 26th IEEE Symposium
tems, as far as we know this notion is new. We .have.also on Foundations of Computer Scienpages 327-338. IEEE,
shown how to compute the progress measure for invariants. Oct. 1985.

Furthermore, we introduced several new search strategies [8] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda.
and compared them with depth-first search and breadth-first Model checking programsAutomated Software Engineer-
search. Although these search strategies are not the main ing, 10(2):203-232, Apr. 2003.

focus of the paper and most likely have already been intro- [9] A. C. Zaanen.Integration North-Holland, 1967. _
duced in different contexts, we believe that they show that [10] X. Zhang and F. van Breugel. Probabilistic model checking

. with Java PathFinder. Submitted to theternational
our theoretical framework allows us to study new search) e
. Conference on Computer Aided Verificatiolvailable at
strategies and compare them.

. . . www.cse.yorku.ca/ ~ franck/research/drafts/ ,
We have implemented our theoretical framework within Jan. 2010.

JPF. The details can be found in [10]. We implemented a

10

