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Abstract

A metric on the set of Borel probability measures on a metric space, introduced by
Kantorovich in the early fourties, is shown to be the metric to model the computa-
tional effect of probabilistic nondeterminism. This metric gives rise to robust models,
since small changes in the probabilities result in small changes in the distances.
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1 Introduction

It is well known that there is a close correspondence between computational

effects and monads (see, for example, [6,44,47]). In this paper, we focus on
monads related to the computational effect of probabilistic nondeterminism.
Such a monad was introduced for the category Mes of measurable spaces
and measurable functions by Lawvere [40] 2 and Giry [29]. Jones and Plotkin
[34,35] presented such a monad for the category Cont of domains (also known
as continuous directed complete partial orders) and Scott continuous func-
tions. To see these monads in action, we refer the reader to, for example,
[35,50]. In this paper, we introduce such a monad for the category CMet1 of
1-bounded complete metric spaces and nonexpansive functions.

1 Supported by Natural Sciences and Engineering Research Council of Canada.
2 This paper dealt with the fact that the functor P : Mes → Mes forms a monad,
although of course Lawvere did not use the term monad then. In [40], the functor P
is shown to be the composite of two adjoints, which gives a “standard construction.”
[42]



1.1 Why metrics?

As far as we know, Giacalone, Jou and Smolka [26] were the first to advo-
cate metric spaces as a basis to model probabilistic nondeterminism. They
consider a probabilistic variant on labelled transition systems. Their model
induces distances on the states of the system. The distance between states,
a real number between 0 and 1, is used to express the similarity of the be-
haviour of those states. The smaller the distance, the more the states behave
alike. In particular, the distance between states is 0 if they are behaviourally
indistinguishable.

The main advantage of such a metric model over behavioural equivalences
like probabilistic bisimilarity [39] is its robustness. Behavioural equivalences
are not robust, since they are too sensitive to the exact probabilities of the
various transitions. Two states are either behaviourally equivalent or they are
not. A slight change in the probabilities associated to the transitions may
cause behaviourally equivalent states to become inequivalent and vice versa.
However, in the proposed metric model of Giacalone et al. slight changes of
the probabilities will only result in slight changes of the distances. For a more
detailed discussion of the merits of such a metric model, we refer the reader
to, for example, [26].

Recently, there has been a renewed interest in metric models a la Giacalone
et al. Desharnais, Gupta, Jagadeesan and Panangaden [18–21,30] introduced
metric analogues of strong and weak bisimilarity for probabilistic transition
systems. Van Breugel and Worrell also presented a metric analogue of strong
probabilistic bisimilarity in [13,14]. De Alfaro, Henzinger and Majumdar [15,16]
and Deng, Chothia, Palamidessi and Pang [17] studied very similar metrics.
Ying [56] introduced a continuous spectrum of behavioural equivalences which
induces a metric model for probabilistic systems. Also Baier and Kwiatkowska
[3], Den Hartog [31], Kwiatkowska and Norman [38] and De Vink and Rutten
[54] exploited metrics to model probabilistic nondeterminism. However, they
used their metrics mainly as a tool to model infinite behaviour, rather than
to provide a robust model.

1.2 How to relate monads?

Let us compare the monad of Lawvere and Giry and the monad of Jones and
Plotkin. The monad of Lawvere and Giry consists of a functor P : Mes → Mes

and two natural transformations. The functor P maps a measurable space to
the set of probability measures on the space (provided with a suitable σ-field
that we will define later). For now, we restrict the monad of Jones and Plotkin
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to the subcategory ωCoh of ω-coherent domains and Scott continuous func-
tions. This restricted monad consists of a functor V : ωCoh → ωCoh and two
natural transformations. The functor V is known as the probabilistic powerdo-

main. It maps each ω-coherent domain to the set of continuous valuations on
the Scott topology of the domain (equipped with an appropriate order that
we introduce later). As we will see, valuations bear a close resemblance to
subprobability measures. Since each subprobability measure on a measurable
space X can be viewed as a probability measure on 1 + X, we consider the
composition of the monads 1 + − and P. Because there exists a distributive
law [5] of 1 + − over P, this composition is a monad as well. We denote this
monad by P ′.

The forgetful functor U : ωCoh → Mes provides the obvious way to medi-
ate between ω-coherent domains and measurable spaces. This functor maps
an ω-coherent domain to the Borel measurable space generated by the Scott
topology of the domain. As Van Breugel, Mislove, Ouaknine and Worrell have
already shown in [11, Proposition 19], the diagram

ωCoh
V //

U
��

ωCoh

U
��

Mes P ′
// Mes

commutes (when identifying Borel subprobability measures and continuous
valuations). As we will see, also the two natural transformations, the unit
and the multiplication, of both monads “coincide.” The commutativity of the
above diagram and the “coincidence” of the units and multiplications can
be captured in categorical terms. The functor U : ωCoh → Mes and the
natural transformation id : P ′U

·
→ UV, which restricts a Borel subprobability

measure on the Scott topology of an ω-coherent domain to its open sets, form
a morphism in the category of monads [52]. This captures that the monad
(with functor) V extends the monad (with functor) P ′.

The monad V can be characterized as the monad on ωCoh that extends the
monad P ′ with the following universal property. Consider another monad on
ωCoh, say F , that extends P ′. That is, the functor U : ωCoh → Mes and
the natural transformation id : P ′U

·
→ UF also form a monad morphism

from monad F to monad P ′. If F1 is isomorphic to [0, 1] then the natural
transformation id : F

·
→ V is a morphism in the category of monads on ωCoh

from monad F to monad V.
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1.3 Which metric?

One may wonder if the monad P ′ can also be extended to a monad on a
category of metric spaces. For now, let us restrict our attention to the category
KMet1 of 1-bounded compact metric spaces and nonexpansive functions. This
time we use the forgetful functor U : KMet1 → Mes to mediate between
1-bounded compact metric spaces and measurable spaces. This functor maps
each 1-bounded compact metric space to the Borel measurable space generated
by the ǫ-ball topology of the metric space. Now we can formalize our question
as follows.

Does there exist a monad B′ on KMet1 that extends the monad P ′ with the
same universal property as the monad V?

If such a monad exists, then the diagram

KMet1
B′

//

U
��

KMet1

U
��

Mes
P ′

// Mes

should commute. As a consequence, the functor B′ should map a 1-bounded
compact metric space X to the set of Borel subprobability measures on X.
These Borel subprobability measures on X can be seen as Borel probability
measures on 1 + X. As we will see, the monad B′ is the composition of the
monad 1+− and a monad B. The functor B maps a 1-bounded compact metric
space X to the set of Borel probability measures on X. Many different metrics
on the set of Borel probability measures have been proposed in the literature
(see, for example, [49] for an overview). In this paper, we will consider a met-
ric on Borel probability measures independently proposed by Dobrushin [23],
Hutchinson [33], Kantorovich [37] and Vaserstein [53], and known under many
different names including the Hutchinson metric, the Kantorovich metric, the
Vaserstein metric and the Wasserstein metric (we will name the metric after
Kantorovich who was the first, as far as we know, to discover it). We will show
that the Kantorovich metric is the metric with the desired property. That is,
the monad consisting of the functor B : KMet1 → KMet1, which maps each
1-bounded compact metric space to the set of Borel probability measures on
the space endowed with the Kantorovich metric, and corresponding unit and
multiplication is the monad on KMet1 such that the monad B′ extends the
monad P ′ with the same universal property as the monad V. Therefore, one
may view this monad as the metric monad of probabilistic nondeterminism.

All the metrics presented in [10,13–21,30] are either directly or indirectly based
on the Kantorovich metric. Although numerous results in op. cit. already sug-
gest that the Kantorovich metric is a suitable candidate for modelling proba-
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bilistic nondeterminism, our results show that it is the metric to model proba-
bilistic nondeterminism. Furthermore, we establish a relationship between the
Kantorovich functor and the probabilistic powerdomain.

1.4 The complete picture

So far, we have restricted our attention to monads on the categories ωCoh and
KMet1. Now let us discuss how these monads can be extended to monads on
the categories Cont and CMet1. The monad V can be extended to a monad
on Cont in the obvious way. We denote the extended monad also by V. Since
ωCoh is a subcategory of Cont and the monad on Cont restricted to ωCoh

coincides with the monad on ωCoh, we have that the diagram

ωCoh
V //

� _

��

ωCoh_�

��

Cont V
// Cont

commutes. One can also easily verify that the inclusion functor and the iden-
tity natural transformation form a monad morphism between the monads. A
related monad morphism is considered in [35].

Also the monad B on KMet1 can be extended to a monad B on CMet1. To pre-
serve completeness, we restrict ourselves to tight Borel probability measures.
Since every measure on a compact metric space is tight (see, for example, [46,
Section II.3]), the diagram

KMet1
B //

� _

��

KMet1_�

��

CMet1 B
// CMet1

commutes. Also in this case, the inclusion functor and the identity natural
transformation form a monad morphism between the monads.

Note that the forgetful functors from Cont to Mes and from CMet1 to Mes

do not give rise to monad morphisms.

In [29], Giry introduced also a monad on the category Pol of Polish spaces and
continuous functions (see, also [22]). The corresponding functor maps a Polish
space to the set of Borel probability measures on the space equipped with the
weak topology. For this monad, we can prove a characterization similar to the
characterizations of V and B described above. In this paper, we will not study
this monad in any detail as we focus on metric spaces.
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2 Monads

We assume that the reader is familiar with the basics of category theory. Those
basics can be found in, for example, [43]. Here we only review the notion of a
monad, that will play a key role in our development, two categories of monads,
and a distributive law that allows us to compose monads.

Below, we use I to denote the identity functor.

Definition 1 A monad on a category C is a triple 〈F , η, µ〉 where F : C → C

is a functor, and the unit η : I
·
→ F and the multiplication µ : F2 ·

→ F are

natural transformations which make the following diagrams commute.

F3 Fµ
//

µF

��

F2

µ

��

F2
µ

//F

F
Fη

//

BB
BB

BB
BB

BB
BB

BB
BB

F2

µ

��

F
ηFoo

||
||

||
||

||
||

||
||

F

Given a category C, the monads on C form a category. The morphisms between
monads on C are defined as follows.

Definition 2 A morphism from monad 〈F , η, µ〉 on category C to monad

〈F ′, η′, µ′〉 on C consists of a natural transformation φ : F
·
→ F ′ which makes

the following diagrams commute.

F

φ

��

I

η 77pppppp

η′ &&NNNNNN

F ′

FF ′
φF′

//F ′2

µ′

��

F2

Fφ 77nnnnnn

µ ((QQQQQQQ

F φ
//F ′

Also all monads form a category. In this case, the morphisms are defined as
follows.

Definition 3 A morphism from monad 〈F , η, µ〉 on category C to monad

〈F ′, η′, µ′〉 on category C
′ consists of a tuple 〈G, φ〉 where G : C → C

′ is

a functor and φ : F ′G
·
→ GF is a natural transformation which make the

following diagrams commute.

F ′G

φ

��

G

η′
G 77oooooo

Gη ''OOOOOO

GF

F ′GF
φF //GF2

Gµ

��

F ′2G

F ′φ 66llllll

µ′
G

((RRRRRRR

F ′G
φ

//GF
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Monads on a category C can be composed if there is a distributive law.

Definition 4 A distributive law of a monad 〈F , η, µ〉 on category C over a

monad 〈F ′, η′, µ′〉 on C is a natural transformation λ : FF ′ ·
→ F ′F which

makes the following diagrams commute.

F ′

ηF′

����
��

�� F ′η

��
66

66
66

FF ′
λ

//F ′F

F
Fη′

��		
		

		 η′
F

��
55

55
55

FF ′
λ

//F ′F

F2F ′ Fλ //

µF′

��

FF ′F
λF //F ′F2

F ′µ

��

FF ′
λ

//F ′F

FF ′2
λF′

//

Fµ′

��

F ′FF ′ F ′λ //F ′2F

µ′
F

��

FF ′
λ

//F ′F

Proposition 5 Let 〈F , η, µ〉 and 〈F ′, η′, µ′〉 be monads on a category C. If

λ : FF ′ ·
→ F ′F is a distributive law, then 〈F ′F , (Fη′)η, (F ′µ)µ′

F2(F ′λF)〉
is a monad.

3 The monads P and P ′

In [29], Giry presented a monad P on the category Mes of measurable spaces
and measurable functions. This monad was also studied by Lawvere in [40].
We assume that the reader is familiar with basic notions of probability theory
as can be found in, for example, [7]. The functor P : Mes → Mes maps a
measurable space to the set of probability measures on the space. To equip
this set with a σ-field we introduce the following evaluation functions.

Definition 6 Let X be a measurable space. Let B be a measurable subset of

X. The function εB : PX → [0, 1] is defined by

εB(µ) = µ(B)

for µ a probability measure on X.

We turn the set of probability measures into a measurable space by giving it
the smallest σ-field Σ such that εB is Σ-measurable for each measurable subset
B of the space. The functor P acts on morphisms as follows.

Definition 7 Let X and Y be measurable spaces. Let f : X → Y be a mea-

surable function. The measurable function Pf : PX → PY is defined by

(Pf)(µ)(B) = µ(f−1(B))
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for µ a probability measure on X and B a measurable subset of Y .

Next, we present the unit η and the multiplication µ of the monad P.

Definition 8 Let X be a measurable space. The measurable function ηX :
X → PX is defined by

ηX(x)(B) =











1 if x ∈ B

0 otherwise

for x ∈ X and B a measurable subset of X. The measurable function µX :
P2X → PX is defined by

µX(µ)(B) =
∫

PX

εB dµ

for µ a probability measure on PX and B a measurable subset of X.

Note that ηX(x) is the Dirac measure at x. For a proof that 〈P, η, µ〉 is indeed
a monad we refer the reader to [29, Theorem 1].

Proposition 9 Let X be a measurable space. Let f : X → [0, 1] be a measur-

able function. For each probability measure µ on PX,

∫

X

f dµX(µ) =
∫

PX

if dµ

where the measurable function if : PX → [0, 1] is defined by

if (ν) =
∫

X

f dν

for ν a probability measure on X.

PROOF. See, for example, the proof of [29, Theorem 1]. 2

Next, we present the monad P ′. The functor P ′ : Mes → Mes can be viewed
as mapping a measurable space to the set of subprobability measures on the
space. To define this functor, we exploit the terminal object and the coproduct
in Mes . The category Mes has a terminal object 1 consisting of a singleton
set, whose single element we denote by 0, and the unique σ-field on this
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singleton set. Given measurable spaces 〈X, ΣX〉 and 〈Y, ΣY 〉, the coproduct
〈X, ΣX〉+〈Y, ΣY 〉 consists of the disjoint union of the sets X and Y and the σ-
field generated by the disjoint union of the σ-fields ΣX and ΣY . Since Mes has
a terminal object and a coproduct, we have the functor 1 + − : Mes → Mes .
This functor can be extended in a straightforward way to a monad (see, for
example, [4, Section 3.1]). To combine the monads P and 1 +−, we exploit a
distributive law.

Definition 10 Let X be a measurable space. The measurable function λX :
1 + PX → P(1 + X) is defined by

λX(0)(B) =











1 if 0 ∈ B

0 otherwise

λX(µ)(B) = µ(B ∩ X)

for µ a probability measure on X and B a measurable subset of 1 + X.

Note that λX(0) = η1+X(0) and λX(µ) = P(ιX)(µ), where ιX is the injection
from X to 1 + X.

For the natural transformation λ, we can prove the following result.

Proposition 11 λ is a distributive law of 1 + − over P.

PROOF. We have to prove that the four diagrams of Definition 4 commute.
We only consider the last one. Proving the commutativity of the other dia-
grams is fairly straightforward and left to the reader. Let X be a measurable
space. Then, the last diagram amounts to following.

1 + P2X
λPX //

1+µX

��

P(1 + PX)
PλX //P2(1 + X)

µ1+X

��

1 + PX
λX

//P(1 + X)

where µ is the multiplication of the monad P. Let B be a measurable subset
of 1 + X. We distinguish two cases. First of all,

µ1+X(P(λX)(λPX(0)))(B)

=
∫

P(1+X)

εB d(P(λX)(λPX(0)))

=
∫

1+PX

(εB ◦ λX) d(λPX(0))
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=
∫

1+PX

(εB ◦ λX) d(η1+PX(0))

= εB(λX(0))

=λX(0)(B)

=λX((1 + µX)(0))(B).

Secondly, let µ be a probability measure on PX. Since for each probability
measure ν on X,

εB(λX(ιPX(ν)))

=λX(ιPX(ν))(B)

= ιPX(ν)(B ∩ X)

= ν(B ∩ X)

= εB∩X(ν),

we have that

µ1+X(P(λX)(λPX(µ)))(B)

=
∫

P(1+X)

εB d(P(λX)(λPX(µ)))

=
∫

1+PX

(εB ◦ λX) d(λPX(µ))

=
∫

1+PX

(εB ◦ λX) d(P(ιPX)(µ))

=
∫

PX

(εB ◦ λX ◦ ιPX) dµ

=
∫

PX

εB∩X dµ

=µX(µ)(B ∩ X)

=λX(µX(µ))(B)

=λX((1 + µX)(µ))(B).

2

From Proposition 5 we can conclude that the functor P(1+−) forms a monad
as well. We denote this monad by P ′. The functor P ′ maps a measurable
space X to the set of probability measures on 1 + X. These probability mea-
sures on 1 + X can be viewed as subprobability measures on X.
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4 The monad V

In [51], Saheb-Djahromi introduced a functor on the category of domains and
Scott continuous functions, mapping a domain X to the Borel probability
measures on the Scott topology of X. We assume that the reader is familiar
with the basics of domain theory. For more details on domain theory, we refer
the reader to, for example, [28]. Instead of Borel probability measures, Jones
and Plotkin [34,35] considered continuous valuations. Recall that a continuous
valuation on a topological space X is a function ν : OX → [0, 1], where OX

denotes the set of open sets of the topology X, satisfying

• ν(∅) = 0,
• if U ⊆ V then ν(U) ≤ ν(V ),
• ν(U) + ν(V ) = ν(U ∪ V ) + ν(U ∩ V ), and
• for every directed (with respect to the inclusion relation) subset U of OX ,

ν(
⋃

U) = supU∈U ν(U).

Jones and Plotkin introduced a monad V on the category Cont of domains
and Scott continuous functions. Recall that a domain is a directed complete
partial order which is continuous, that is, which has a basis. The functor
V : Cont → Cont maps a continuous domain X to the set of continuous
valuations on (the Scott topology of) X with the partial order ⊑VX defined
by

µ ⊑VX ν if for all Scott open subsets U of X, µ(U) ≤ ν(U)

for µ and ν continuous valuations on X. This functor acts on morphisms
similar to the functor P. Let X and Y be domains and let f : X → Y be a
Scott continuous function. The Scott continuous function Vf : VX → VY is
defined by

(Vf)(ν)(U) = ν(f−1(U))

for ν a continuous valuation on X and U a Scott open subset of X. Also the
unit η and the multiplication µ of the monad V are defined analogous to those
of the monad P.

Jones [34, Corollary 5.5] has proved that the functor V preserves ω-continuity:
if the domain X is ω-continuous, that is, it has a countable basis, then VX is ω-
continuous as well. Furthermore, Jung and Tix [36, Theorem 4.2] have shown
that V preserves Lawson compactness: if the domain X is Lawson compact,
that is, its Lawson topology is compact, then VX is Lawson compact as well.
Hence, we can restrict the functor V : Cont → Cont to the category ωCoh

of ω-coherent domains, that is, ω-continuous domains whose Lawson topology
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is compact, and Scott continuous functions. In this way we obtain a functor
V : ωCoh → ωCoh and a monad V on ωCoh.

Valuations bear a close resemblance to Borel subprobability measures. In fact,
any valuation on a domain can be uniquely extended to a measure on the
Borel σ-field generated by the Scott topology of the domain [1, Corollary 4.3].
Conversely, any Borel subprobability measure on the Scott topology of an ω-
continuous domain defines a continuous valuation when restricted to the open
sets [1, Lemma 2.5]. These results allow us to relate the monad V on ωCoh to
the monad P ′ on Mes in the following way.

Proposition 12 The forgetful functor U : ωCoh → Mes and the natural

transformation id : P ′U
·
→ UV form a monad morphism from the monad V

to the monad P ′ and ε{0} : V1 → [0, 1] is an isomorphism.

Furthermore, we have the following universal property.

Proposition 13 Let F be a monad on ωCoh such that the forgetful functor

U : ωCoh → Mes and the natural transformation id : P ′U
·
→ UF form a

monad morphism from the monad F to the monad P ′. If ε{0} : F1 → [0, 1] is

an isomorphism then the natural transformation id : F
·
→ V forms a monad

morphism from the monad F to the monad V.

Since our focus is on metric spaces, we refrain from presenting proofs of Propo-
sition 12 and 13 and we refer the reader to the very similar proofs of their
metric counterparts Proposition 18 and 23. We will discuss the condition that
ε{0} : F1 → [0, 1] is an isomorphism in Section 6.

5 The monads B and B′

In [37], Kantorovich introduced a metric on the set of Borel probability mea-
sures on a metric space. Below, we present the Kantorovich metric and the
corresponding monads on KMet1 and CMet1. We assume that the reader is
familiar with basic metric topology. Those basics can be found in, for exam-
ple, [25]. Given a 1-bounded metric space X, we use BX to denote the set of
Borel probability measures on X and X →

1
[0, 1] to denote the set of nonex-

pansive functions from X to [0, 1]. Recall that a metric space X is 1-bounded
if dX(x, y) ≤ 1 for all x, y ∈ X, and a function f : X → Y on metric spaces
is nonexpansive if dY (f(x), f(y)) ≤ dX(x, y) for all x, y ∈ X. To turn the
set BX into a metric space we introduce the following distance function.

Definition 14 Let X be a 1-bounded metric space. The distance function
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dBX : BX × BX → [0, 1] is defined by

dBX(µ, ν) = sup







∣

∣

∣

∣

∣

∣

∫

X

fdµ −
∫

X

fdν

∣

∣

∣

∣

∣

∣

: f ∈ X →
1

[0, 1]







for µ and ν Borel probability measures on X.

For a proof that the distance function dBX is a metric we refer the reader
to, for example, [24, Proposition 2.5.14]. As shown in, for example, [46, The-
orem II.6.4], if the metric space X is compact, then the metric space BX

is compact as well. For a proof that B preserves completeness if we restrict
ourselves to tight measures, we refer the reader to, for example, [24, Theo-
rem 2.5.25].

5.1 Compact metric spaces

The functor B : KMet1 → KMet1 on the category KMet1 of 1-bounded com-
pact metric spaces and nonexpansive functions maps each 1-bounded compact
metric space to the set of Borel probability measures on the space endowed
with the Kantorovich metric. This functor acts the same way on morphisms
as the functor P. In [14, Proposition 16], it is shown that if the function f is
nonexpansive then the function Bf is nonexpansive as well.

The unit η and the multiplication µ of the monad B on KMet1 are defined
analogous to those of the monad P. For example, the component of the unit
η for the 1-bounded compact metric space X is defined by

ηX(x)(B) =











1 if x ∈ B

0 otherwise

for x ∈ X and B a Borel subset of X. As is shown in, for example, [46,
Lemma II.6.1], ηX is an isometric embedding of X into BX. Hence, each com-
ponent of the unit is nonexpansive. Also the components of the multiplication
are nonexpansive.

Proposition 15 For each 1-bounded compact metric space X, the function

µX is nonexpansive.

PROOF. Let g : X → [0, 1] be a nonexpansive function. First, we show that
the function ig, introduced in Proposition 9, is nonexpansive. Let µ and ν be
Borel probability measures on X. Then
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|ig(µ) − ig(ν)|

=

∣

∣

∣

∣

∣

∣

∫

X

g dµ −
∫

X

g dν

∣

∣

∣

∣

∣

∣

≤ sup







∣

∣

∣

∣

∣

∣

∫

X

f dµ −
∫

X

f dν

∣

∣

∣

∣

∣

∣

: f ∈ X →
1

[0, 1]







[g is nonexpansive]

= dBX(µ, ν).

As a consequence, for µ and ν Borel probability measures on BX,

dBX (µX(µ), µX(ν))

= sup







∣

∣

∣

∣

∣

∣

∫

X

g dµX(µ) −
∫

X

g dµX(ν)

∣

∣

∣

∣

∣

∣

: g ∈ X →
1

[0, 1]







= sup







∣

∣

∣

∣

∣

∣

∫

BX

ig dµ −
∫

BX

ig dν

∣

∣

∣

∣

∣

∣

: g ∈ X →
1

[0, 1]







[Proposition 9]

≤ sup







∣

∣

∣

∣

∣

∣

∫

BX

f dµ −
∫

BX

f dν

∣

∣

∣

∣

∣

∣

: f ∈ BX →
1

[0, 1]







[each ig is nonexpansive]

= dB2X(µ, ν).

Therefore, the function µX is nonexpansive as well. 2

Hence, 〈B, η, µ〉 forms a monad on KMet1.

5.2 Complete metric spaces

When we consider the category CMet1 of 1-bounded complete metric spaces
and nonexpansive functions, we restrict ourselves to tight measures. That is,
the functor B : CMet1 → CMet1 maps each 1-bounded complete metric space
to the set of tight Borel probability measures on the space endowed with the
Kantorovich metric. Recall that a Borel probability measure µ on a metric
space X is tight if for every ǫ > 0 there exists a compact subset K of X such
that µ(K) > 1 − ǫ.

Since the Dirac measures are obviously tight, each component of the unit maps
an element of the space to a tight Borel probability measure on the space. Also
the components of the multiplication give rise to tight measures.

Proposition 16 For each 1-bounded complete metric space X and tight Borel
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probability measure µ on the tight Borel probability measures on X, the Borel

probability measure µX(µ) is tight.

PROOF. Let ǫ>0. By the definition of tightness, it suffices to show that there
a compact subset K of X such that µX(µ)(K) > 1 − ǫ. Since the measure µ

is tight, by definition there exists a compact subset Kµ of BX such that

µ(Kµ) > 1 − ǫ
2
. (1)

According to Prohorov’s theorem (see, for example, [8, Section 1.5]), a compact
set of tight measures on a complete space is uniformly tight. Hence, there exists
a compact subset K of X such that

for all ν ∈ Kµ, ν(K) > 1 − ǫ
2
. (2)

Therefore,

µX(µ)(K) =
∫

BX

εK dµ

≥
∫

Kµ

εK dµ

>

∫

Kµ

(1 − ǫ
2
) dµ [(2)]

=
∫

BX

(1 − ǫ
2
) dµ −

∫

BX\Kµ

(1 − ǫ
2
) dµ

≥ 1 − ǫ
2
−

∫

BX\Kµ

1 dµ

≥ 1 − ǫ
2
− ǫ

2
[(1)]

2

Hence, also the functor B on CMet1 gives rise to a monad.

5.3 Subprobability measures

We can extend the monad B to a monad B′ of subprobability measures in
the same way we extended P to P ′. In the categories KMet1 and CMet1, the
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terminal object 1 is a singleton set. Given metric spaces 〈X, dX〉 and 〈Y, dY 〉,
the coproduct 〈X, dX〉 + 〈Y, dY 〉 consists of the disjoint union of the sets X

and Y endowed with the metric dX+Y defined by

dX+Y (v, w) =



























dX(v, w) if v, w ∈ X

dY (v, w) if v, w ∈ Y

1 otherwise.

To compose the monads B and 1 +−, we introduce a distributive law similar
to the one introduced in Definition 10.

Proposition 17 For each 1-bounded complete metric space X, the function

λX is nonexpansive.

PROOF. It suffices to show that for all tight Borel probability measures µ

and ν on X,

dB(1+X)(λX(µ), λX(ν)) ≤ dBX(µ, ν).

Let µ and ν be tight Borel probability measures on X. Then

dB(1+X)(λX(µ), λX(ν))

= sup











∣

∣

∣

∣

∣

∣

∣

∫

1+X

f d(λX(µ)) −
∫

1+X

f d(λX(ν))

∣

∣

∣

∣

∣

∣

∣

: f ∈ 1 + X →
1

[0, 1]











= sup











∣

∣

∣

∣

∣

∣

∣

∫

1+X

f d(P(ιX)(µ)) −
∫

1+X

f d(P(ιX)(ν))

∣

∣

∣

∣

∣

∣

∣

: f ∈ 1 + X →
1

[0, 1]











= sup







∣

∣

∣

∣

∣

∣

∫

X

(f ◦ ιX) dµ −
∫

X

(f ◦ ιX) dν

∣

∣

∣

∣

∣

∣

: f ∈ 1 + X →
1

[0, 1]







≤ sup







∣

∣

∣

∣

∣

∣

∫

X

g dµ −
∫

X

g dν

∣

∣

∣

∣

∣

∣

: g ∈ X →
1

[0, 1]







[f ◦ ιX is nonexpansive]

= dBX(µ, ν).

2

The rest of the proof that λ is a distributive law is very similar to the proof
of Proposition 11. We denote the composition of the monads 1 +− and B by
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B′. The functor B′ can be viewed as mapping a space X to the set of Borel
subprobability measures on X.

6 Relating P and B

First, we will show that the monad B on KMet1 extends the monad P on
Mes . That is, we will prove that the forgetful functor U : KMet1 → Mes and
the natural transformation id : PU

·
→ UB form a monad morphism from the

monad B on KMet1 to the monad P on Mes . In [12, Lemma 1], Van Breugel,
Shalit and Worrell already sketched a proof of

Proposition 18 PU = UB.

Here, we provide some more details. Let X be a 1-bounded compact metric
space. Clearly, both PUX and UBX are the set of Borel probability measures
on X equipped with a σ-field. Next, we prove that their σ-fields, denoted ΣB

and ΣK below, coincide. According to, for example, [25, Theorem 4.1.15], a
compact metrizable space is second-countable. That is, the topology induced
by X has a countable basis, say A. Without loss of generality, we may as-
sume that A is closed under finite intersections. The set of Borel probability
measures on X can be provided with a σ-field in the following ways.

• ΣB is the smallest σ-field Σ such that εB is Σ-measurable for each Borel
subset B of X.

• ΣO is the smallest σ-field Σ such that εA is Σ-measurable for each open
subset A in A.

• ΣK is the Borel σ-field of the metric space BX.

Next, we show that these three σ-fields coincide. The proof of this result is
split into following parts.

Proposition 19 ΣB ⊆ ΣO.

PROOF. By minimality of ΣB, it suffices to show that εB is ΣO-measurable
for each Borel subset B of X.

Consider

L = {B is a Borel subset of X : εB is ΣO-measurable }.

We only need to prove that each Borel subset of X is an element of the set L.
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One can easily verify that ∅ ∈ L and that L is closed under complement, and
finite and countable disjoint unions. Hence, L is a λ-system. Since the collec-
tion A is closed under finite intersections, A is a π-system. By the definition
of ΣO, we have that A ⊆ L. According to the λ−π theorem (see, for example,
[7, Theorem 3.2]), if a π-system is a subset of a λ-system then the σ-field
generated by the π-system is also a subset of the λ-system. Hence, the σ-field
generated by A is a subset of L.

Since A is a countable basis of the topology induced by X, the σ-field generated
by A equals the Borel σ-field of X according to [46, Theorem I.1.8]. Hence,
each Borel subset of X is an element of L. 2

Proposition 20 ΣO ⊆ ΣB.

PROOF. Since each open subset A in A is a Borel subset of X, we can
conclude that ΣO ⊆ ΣB by minimality of ΣO. 2

Proposition 21 ΣO ⊆ ΣK .

PROOF. By minimality of ΣO, it suffices to prove that εA is ΣK-measurable
for each open subset A in A.

Let A be an open subset in A. To show that a function is measurable, it
suffices to prove that the inverse images of those sets that generate the σ-field
(rather than all sets of the σ-field) are measurable sets. Since the Borel σ-field
of [0, 1] is generated by the sets (q, 1] where q is a rational in [0, 1], we have
left to prove that

ε−1
A (q, 1] = {µ ∈ BX : µ(A) > q }

is in ΣK .

Let q be a rational in [0, 1]. Since the Kantorovich metric metrizes the weak
topology, as is proved in, for example, [46, Theorem 6.2], it suffices to show
that the set ε−1

A (q, 1] is open in the weak topology. We conclude this proof by
showing that the complement of ε−1

A (q, 1] is closed in the weak topology.

According to, for example, [25, Corollary 1.6.4], a set is closed if and only if
the set contains all limits of each net in the set. Let {µα} be a net consisting
of measures not in ε−1

A (q, 1] with limit µ. We have left to show that µ is not in
ε−1

A (q, 1] either, that is, µ(A) ≤ q. This follows immediately from the fact that
the net {µα} converges to µ in the weak topology if and only if lim infα µα(B) ≥
µ(B) for all open subsets B of X as shown in [46, Theorem II.6.1]. 2
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Proposition 22 ΣO = ΣK .

PROOF. According to the unique structure theorem (see, for example, [2,
Theorem 3.3.5]), on a compact metric space any countably generated σ-field
of Borel sets which separates points is in fact equal to the whole Borel σ-field.

As we already mentioned, B preserves compactness. Since X is compact, the
metric space BX is compact as well. ΣK is the Borel σ-field of this compact
metric space. As we have shown in the proof of Proposition 21, ΣO is a subfield
of ΣK . Therefore, we have left to prove that ΣO is countably generated and
separates points.

By definition, ΣO is the smallest σ-field Σ such that εA is Σ-measurable for
all A ∈ A. As we have seen in the proof of Proposition 21 εA is Σ-measurable
if ε−1

A (q, 1] ∈ Σ for each rational q in [0, 1]. Therefore, ΣO is generated by the
countable collection of sets ε−1

A (q, 1] where A ∈ A and q is a rational in [0, 1].

Finally, we show that ΣO separates points. Let µ and ν be different measures.
Without loss of generality we may assume that µ(B) ≤ q < ν(B) for some
Borel set B and rational q. Clearly, µ 6∈ ε−1

B (q, 1] and ν ∈ ε−1
B (q, 1]. Hence,

ε−1
B (q, 1] separates µ and ν. 2

We can easily check that id : PU
·
→ UB is a natural transformation. Fur-

thermore, we can easily verify that the diagrams of Definition 3 commute
for the forgetful functor U : KMet1 → Mes and the natural transformation
id : PU

·
→ UB. Hence, U and id form a monad morphism from the monad B

on KMet1 to the monad P on Mes . Note that ε{0} : B2 → [0, 1] is an isomor-
phism.

Second, we will show that the monad B can be characterized as the monad on
KMet1 that extends the monad P with the following universal property.

Proposition 23 Let F be a monad on KMet1 such that the forgetful functor

U : KMet1 → Mes and the natural transformation id : PU
·
→ UF form a

monad morphism from the monad F to the monad P. If ε{0} : F2 → [0, 1] is

an isomorphism then the natural transformation id : F
·
→ B forms a monad

morphism from the monad F to the monad B.

PROOF. Since the forgetful functor U : KMet1 → Mes and the natural
transformation id : PU

·
→ UF form a monad morphism from the monad F

19



to the monad P, the diagram

KMet1
F //

U
��

KMet1

U
��

Mes P
// Mes

commutes. As a consequence, the functor F maps a 1-bounded compact met-
ric space X to the set of Borel probability measures on X endowed with a
metric dFX .

Next, we will prove that dBX ≤ dFX . By definition, dBX is the smallest distance
function for which integration of nonexpansive functions is nonexpansive. That
is, for each nonexpansive function f : X → [0, 1], the function if : BX → [0, 1],
as introduced in Proposition 9, is nonexpansive. (A similar characterization
of the probabilistic powerdomain can be found in [34, Theorem 4.2].) Hence,
it suffices to show that integration of nonexpansive functions is nonexpansive
with respect to dFX , that is, if : FX → [0, 1] is nonexpansive.

Let f : X → [0, 1] be a nonexpansive function. Let µ be a probability measure
on X. Then

ε{0}(µ2(F(ε−1
{0} ◦ f)(µ)))

=µ2(F(ε−1
{0} ◦ f)(µ))({0})

=
∫

FX

ε{0} d(F(ε−1
{0} ◦ f)(µ))

=
∫

FX

ε{0} ◦ ε−1
{0} ◦ f dµ

= if .

Since ε{0} is an isomorphism, both ε{0} and ε−1
{0} are nonexpansive. Since µ2

and f are also nonexpansive, if is nonexpansive as well. 2

Let us briefly discuss the condition that F2 and [0, 1] are isomorphic via ε{0}.
Notice that if ε{0} is an isomorphism, then ε{1} is an isomorphism as well.
Obviously, the sets underlying F2 and [0, 1] are isomorphic via ε{0}. Hence,
it is natural to require that ε{0} is an isomorphism. One encounters a similar
condition when contrasting categories of deterministic and stochastic models.
In that case, F2 is the “unit interval” [42]. Integration of a “real-valued”
function f : X → F2 can be defined as µ2 ◦ Ff : FX → F2.
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Since every measure on a compact metric space is tight (see, for example, [46,
Section II.3]), the diagram

KMet1
B //

� _

��

KMet1_�

��

CMet1 B
// CMet1

commutes. Also in this case, the inclusion functor and the identity natural
transformation form a monad morphism between the monads. Note, however,
that the diagram

CMet1
B //

U
��

CMet1

U
��

Mes P
// Mes

does not commute. Consider, for example, the set R endowed with the dis-
crete metric (different real numbers have distance 1). The Borel probability
measure µ defined by

µ(B) =











0 if B is countable

1 otherwise

is not tight, since µ(B) = 0 for each compact (in this case, finite) subset B of
R.

To show that the monad B′ on KMet1 extends the monad P ′ on Mes , it suffices
to show that the monad 1 + − on KMet1 extends the monad 1 + − on Mes .
Obviously, (1 + −)U = U(1 + −). The forgetful functor U : KMet1 → Mes

and the natural transformation id : (1 + −)U
·
→ U(1 + −) form a monad

morphism from the monad 1 + − on KMet1 to the monad 1 + − on Mes .
Composing this monad morphism with the monad morphism from B to P
gives us a monad morphism from B′ to P ′. Note that B′1 = B(1 + 1) = B2.
Therefore, ε{0} : B′1 → [0, 1] is an isomorphism. For the monad B′ we can
prove a universal characterization similar to Proposition 13.

7 Conclusion

Let us first summarize our main contributions, before discussing some related
and future work. We have shown that the functor B can be extended to a
monad on the categories KMet1 and CMet1. Furthermore, we have demon-
strated that the monad B′ extends the monad P ′ in the same way as the
monad V extends P ′.
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As advocated in, for example, [47], computational effects like probabilistic
nondeterminism determine monads, where such a monad is generated by a
family of operations and their equational theory. Therefore, one may try to
relate the monads P, V and B by comparing the operations and equations
determining P, V and B. However, there are many different families of op-
erations (and corresponding equational theories) that determine one and the
same monad (see, for example, [32] for a number of different axiomatizations of
the probabilistic powerdomain). Furthermore, the equational theory often also
captures properties of the underlying category. The monad B can, however,
be captured by a 1

2
-contractive binary operation, say ⊕, and the equations

x ⊕ x = x

x ⊕ y = y ⊕ x

(v ⊕ w) ⊕ (x ⊕ y) = (x ⊕ w) ⊕ (v ⊕ y)

The operation ⊕ can be viewed as a probabilistic choice. That is, in x⊕y, the
x is chosen with probability 1

2
and so is the y. Note that we require ⊕ to be

1
2
-contractive (rather than nonexpansive). That is,

dX(v ⊕ w, x⊕ y) ≤ 1
2
(dX(v, x) + dX(w, y)).

Now consider

y0 = y z0 = z

yn+1 = x ⊕ yn zn+1 = x ⊕ zn

In yn, the x is chosen with probability 1 − 2−n and the y is chosen with
probability 2−n. Since ⊕ is 1

2
-contractive, we have that

dX(yn, zn) ≤ 2−ndX(y, z).

Hence, the metric dX takes the probabilities into account. If ⊕ were nonex-
pansive, then we would have that

dX(yn, zn) ≤ dX(y, z).

In that case, the probabilities would not be reflected in the metric dX . Some
more details can be found in [10]. A very similar characterization of the prob-
abilistic powerdomain can be found in [32].
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An alternative approach to relate the monads V and B′ would be to consider
generalized metric spaces. These spaces are a common generalization of partial
orders and metric spaces (see, for example, [41]). Generalized metric spaces
have been successfully exploited to reconcile numerous fundamental notions
and constructions for partial orders and metric spaces. For example, in [9],
a completion, two topologies, and three powerdomains are studied. In [55,
Section 4.8], the functor B′ is defined for the category GMet of generalized
metric spaces and nonexpansive functions. This functor can be extended to a
monad on GMet alike the construction given in Section 5. We conjecture that
this monad reconciles the monads V and B′.

Let C be a category and F : C → C a functor. An F -coalgebra is a pair
〈C, f〉 consisting of an object C in C and a morphism f : C → FC in C. Let
F be one of the functors studied in this paper. Then the F -coalgebras can
be seen as probabilistic transition systems (see, for example, [54]). The ob-
ject C represents the state space and the morphism f : C → FC captures the
transitions. As shown in [12,45], the category of P ′-coalgebras has a terminal
object. This terminal P ′-coalgebra captures probabilistic bisimilarity [39] in
the following way. The kernel of the unique morphism from a P ′-coalgebra
to the terminal P ′-coalgebra is probabilistic bisimilarity. Since the functor V
is locally continuous, also the category of V-coalgebras has a terminal ob-
ject (see, for example, [11]). Van Breugel, Hermida, Makkai and Worrell [10]
have recently proved that the category of B′-coalgebras also has a terminal
object. Both the terminal V-coalgebra and the terminal B′-coalgebra capture
probabilistic bisimilarity.

Recall that the monad B satisfies the following universal property: for every
monad F on KMet1 that extends the monad P, the natural transformation id :
F

·
→ B is a morphism in the category of monads on KMet1. Since F extends

P, it has to map a 1-bounded compact metric space X to the set of Borel
probability measures on X endowed with a metric dFX . Because id : F

·
→ B

is a natural transformation in KMet1, each component idX : FX → BX

is nonexpansive, that is, dBX ≤ dFX . Hence, the Kantorovich metric is the
smallest among all those that extend the monad P. Since the unit of the
monad F is a natural transformation in KMet1, each component, mapping an
element to its Dirac measure, has to be nonexpansive. Because each component
of the unit of B is an isometric embedding, we can conclude that dBX ≥ dFX

when restricted to the Dirac measures. Therefore, the Kantorovich metric
restricted to the Dirac measures is the largest among all those that extend
the monad P. Hence, one may wonder whether the Kantorovich metric is the
unique extension. We have not been able to prove this yet. Neither have we
been able to find a metric different from the Kantorovich metric that extends
the monad P. The Prokhorov metric [48], which like the Kantorovich metric
metrizes the weak topology, seems a candidate. However, if we were able to
prove that each component of the multiplication is nonexpansive with respect
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to the Prokhorov metric, then we would not only show that the Kantorovich
metric is not the unique extension. At the same time we would also improve
the known bound between the Kantorovich metric dK and the Prokhorov
metric dP , since it is only known that dP

2 ≤ dK ≤ 2dP (see, for example,
[27]).
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