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Abstract

A compositional encoding of the w-calculus into infinitary CCS is given that maps reduction bisimilarity
in w-calculus onto bisimilarity in CCS in a fully abstract way.

Introduction

In concurrent programming languages like CML [Rep97], Facile [TLK96] and Pict [PT97], which contain a
scoping mechanism for channels and allow the communication of channels names, one can write programs
with mobility: sending (the name of) a local channel out of its scope and, as a result, enlarging its scope with
the receiver. Mobility is an abstraction of a crucial programming idiom. This phenomenon will be discussed
in more detail in the next paragraph. Most implementations of concurrent programming languages with
mobility contain a phase in which a language with mobility is translated into a language without mobility.
For example, CML and Facile are both built on top of Standard ML [MTHM97] and Pict is compiled into C.
In this paper, we address the question whether this translation can be done in a modular (or compositional)
way. For that purpose, we consider the m-calculus [MPW92], a basic calculus with mobility as its key
feature, and CCS, the w-calculus’ predecessor without mobility. We investigate whether the w-calculus can
be expressed in CCS. In a trivial sense, the m-calculus and CCS have the same expressiveness, since they are
Turing-equivalent (cf. [Mil89, Section 6.1]). However, Turing-equivalence fails to capture the relative power
of concurrency mechanisms and is therefore of little interest in comparing the expressiveness of concurrent
calculi. What is more to the point is the extent to which semantic equivalences are preserved by an encoding
and the encoding is compositional. According to Milner [Mil83, page 291], the passing of communication
links as values, which is one of the key features of the w-calculus, cannot obviously be expressed in a general
form in CCS. Sangiorgi [San96, page 235] even claimed that this phenomenon gives the w-calculus a much
greater expressiveness than CCS. This claim was supported by a proof of Palamidessi [Pal97] that there
does not exist a compositional and ‘uniform’ encoding of the w-calculus into CCS preserving a ‘reasonable’
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semantics. Nestmann [Nes97] showed that either the ‘uniformity’ of the encoding or the ‘reasonableness’ of
the semantics is necessary for Palamidessi’s other! negative result. In this paper, we present a compositional,
vet not ‘uniform’, encoding of the w-calculus into CCS. We follow the scheme proposed by Sangiorgi in his
thesis [San92, page 8 and 9]: we treat the formal definition of the semantics of the two calculi, the definition of
the compositional encoding of the one calculus into the other, and a proof of the correctness of the encoding
with respect to the semantics given. We show that the encoding maps reduction bisimilarity in w-calculus
onto bisimilarity in CCS. Reduction bisimilarity does not satisfy Palamidessi’s ‘reasonableness’ condition.
We will discuss Palamidessi’s additional conditions, ‘uniformity’ and ‘reasonableness’, in some detail later.

Let us discuss mobility further now by means of an example. Consider the CML program below. It
implements a request-reply protocol, where one process, the server, provides some service to other processes,
called the clients. Each client creates a dedicated channel, the reply_channel, sends the request
together with (the name of) this local reply_channel along the global request_channel to the server
and then waits for a reply from the sender along its created reply_channel. The server is structured
as a loop in which each iteration corresponds to the handling of a client’s request: the server waits
for a request and a reply_channel, sent along the request_channel by a client, and spawns a process
which sends the reply_to the request—the function reply_to actually implements the service—along the
client’s reply_channel. Every client has its own reply_channel to ensure that the server returns each
reply to the right client (for more details we refer the reader to [Rep92, Chapter 4]).

val request_channel = channel ()

fun client request = let
val reply_channel = channel ()
in
send (request_channel, (request, reply_channel));
accept reply_channel
end

fun reply_to request =

fun server () = let
val (request, reply_channel) = accept request_channel

in
spawn (fn () => send (reply_channel, reply_to request));
server ()

end

In CML, the let construct allows the programmer to define the scope of a channel (for example, the
reply channel of a client). Furthermore, one can send a channel name along a channel in CML (for
example, the client sends its reply_channel along the request_channel). In the above example, mobility
arises when a client’s local reply _channel is communicated, enlarging its scope to the server. As a
consequence, the communication topology changes. Initially, the three processes can communicate along
the global request_channel. However, after both clients have created their own reply_channel and
have sent their reply _channel to the server, the server can communicate with each client along their

reply_channel.
server
client; clients

1Palamidessi also showed that there does not exist a compositional and ‘uniform’ encoding of the 7w-calculus into the
asynchronous n-calculus preserving a ‘reasonable’ semantics.




Note that the above communication topology could not have been accomplished if the scoping of channels
was static.

Bisimilarity [Mil80, Par81] is the most commonly used semantic equivalence on CCS-processes. For
m-processes, a large variety of different notions of bisimilarity have been introduced (see, e.g., [BS96]).
Reduction bisimilarity focuses on the key feature of concurrency: interaction. Although this semantic
equivalence is rather weak—in general, reduction bisimilarity is not preserved by composition—it allows us
to give a compositional encoding. Reduction (bisimilarity) is often used in more practical applications (cf.
the abstract machine implementation of the m-calculus [Tur95, Chapter 7] and the modelling of stores as
processes in CML [BMT92]). In the conclusion, we will sketch how we expect to change our encoding to
deal with early bisimilarity. This semantic equivalence is the one that corresponds to barbed bisimilarity
[MS92]—a canonical semantic equivalence for calculi like CCS and the w-calculus.

In our encoding, the w-calculus is mapped into infinitary CCS. The latter calculus contains two infinite
constructs, namely countably infinite summations and restrictions, and countably infinitely many recursive
definitions. As we will see, we use these infinite constructs in a controlled way in our encoding. To smooth the
encoding of replication, we extend the w-calculus with two infinite constructs: countably infinite restrictions
and compositions. These infinite restrictions and compositions show some resemblance with the infinite
existential quantifications and conjunctions in infinitary logic [Kar64] as we will point out later.

Let us briefly discuss the basic ideas of our encoding. It is based on Milner’s encoding of value passing
CCS into pure CCS [Mil89]. To overcome some complications caused by w-calculus’ alpha-conversion, we
focus on clash-free m-processes. Clash-freeness is a minor variation on Barendregt’s variable convention for
the A-calculus [Bar84]. In the encoding, we exploit the fact that all restrictions in a clash-free m-process
can be pulled out—the phenomenon is also known as scope extrusion—preserving reduction bisimilarity.
Here it 1s essential that we have countably infinite restrictions and compositions to handle replication, since
restrictions under a replication cannot be pulled out in general.

The main contributions of the present paper are the following. First of all, the encoding of the #-
calculus into CCS. This result does not contradict Palamidessi’s negative result. It shows that if we drop
the ‘uniformity’ and ‘reasonableness’ conditions, then we can give a compositional encoding. Second, the
study of clash-freeness. Several papers are rather vague on this point. As far as we are aware, the only
other papers which consider this notion are [FMQ96, NS97]. Finally, the investigation of countably infinite
restrictions and compositions in the w-calculus. As far as we know, these infinite constructs have not been
considered. Several algebraic laws for these constructs are exploited, extending laws of, e.g., [PS95] to our
infinite setting.

In the rest of this paper we do the following. Section 1 describes the m-calculus and reduction bisimilarity.
For more details on the w-calculus we refer the reader to Milner’s tutorial [Mil91]. A good introduction to
CCS is Milner’s book [Mil89]. Section 2 introduces the clash-free fragment of the w-calculus. Section 3 gives
the encoding of the restriction-free part of the w-calculus. Section 4 focuses on scope extrusion. Section b
considers the incorporation of restriction in the encoding. The final section concludes and discusses related
and future work.

1 w-Calculus

We present the coinfinite fragment of the monadic? 7-calculus extended with countable restrictions and
countably infinite compositions. Furthermore, we introduce reduction bisimilarity. Our presentation is
based on Sangiorgi’s thesis [San92, Subsection 2.2.2 and Section 3.2].

DerFINITION 1.1 Let ' = {z,y,2,...} be a (countably infinite) set of names. The set of m-processes is
defined by

Pu=0]2y.P|2(y).P | wX)P|P+Q|P|Q]| [] Pn
neIN

where X 1s a set of names. 2

2We are confident that the results of the present paper can be extended straightforwardly to deal with the polyadic r-calculus.



To simplify some of the subsequent proofs (e.g., the one of Lemma 2.2) we restrict our attention to coinfinite
T-Processes.

DEFINITION 1.2 A #-processes P is coinfinite if the set A"\ n (P) is infinite. J

In the rest of this paper, all m-processes are assumed to be coinfinite. Note that coinfiniteness is not preserved
by alpha-conversion in general.

DEFINITION 1.3 The set of m-actions is given by

a=zy |2y | zy| T
The labelled transition relation® — is defined by the following axioms and rules.
P

1. m
P—qQ

P and @ are alpha-variants of P’ and @’

9. Fy.P — P

3. 2(y).P —— P{y}

p-L p
4. - XNn(a)#0
wvX)P — (vX)P'
Ty
P — P
5. ) yeXande g X
(vX)P —— (vX \{y}H
i} /
6. —P - P
P+@Q— P
i} /
7. P = P bn(a)Nfn(Q)=10
PlQ—P|Q
. pp oLy
PlQ-—P|Q
z(y) ry
p_"" pt .0
9. _ C—0  em(Q)
PlQ— (v{yh(P' Q")
10 P1|HHEH\IP”+1—>P/

HnE]N P” i) P/
_

We have omitted the symmetric versions of the rules 6, 7, 8 and 9. The only differences from the axioms
and rules given in [San92] are that rule 1 is a little more general (like in, e.g., [ACS96]), the rules 4, 5, and
9 have been changed to deal with sets of names, and rule 10 has been added to handle countably infinite
compositions

3Since we will focus on reduction bisimilarity (see Definition 1.4), the early and late instantiation schemes give rise to the
same T-transitions (straightforward modification of [MPW93, Lemma 2.5]), and some results are easier to prove for the early
scheme, we have chosen the former.



The rule for replication is
plp L pr
p = pr

Obviously, one can view !P as syntactic sugar for [ [, ;¢ P. Note that a m-process without countably infinite
restrictions and compositions, possibly containing replications, is coinfinite.
We conclude this section by introducing reduction bisimilarity.

DEeFINITION 1.4 A relation R on m-processes is a reduction bisimulation if P R () implies that
« if P P’ then Q _ Q' for some @’ such that P’ R @', and

* 1f @ N Q' then P . P’ for some P’ such that P’ R Q.

Processes P and @) are reduction bisimilar, written P~ @, if PR ) for some reduction bisimulation R. _

Palamidessi calls a semantics reasonable if it distinguishes processes P and () whenever in some transition
sequence of P the names sent or received along certain intended names are different from those of any
transition sequence of (). Since reduction bisimilarity only takes r-transitions into account, it does not
satisfy Palamidessi’s ‘reasonableness’ condition

ProrosiTiON 1.5 Alpha convertibility is a reduction bisimulation.

Proor Immediate consequence of rule 1. a

It i1s important to notice the following. Although we restrict our attention to reductions, i.e. T-transitions,
we still have to deal with inputs zy, free outputs Zy and bound outputs Z(y) in our compositional encoding.
For example, by compositionality the encoding of (v{z})yz.P | y(z).Q should be defined in terms of the
encodings of (v{z})yx.P and y(z).Q, and we have the following transition proof

(=)

({z})ga. P —= (WP y(2).Q — Q{7/:)
(rz)ge.P | y(2).Q — ({z}) ()P | Q{z/:})
provided that # # y and z &€ fn (@) \ {z}.

2 Clash-freeness

We introduce the clash-free fragment of the m-calculus. Clash-freeness is a minor variation on Barendregt’s
variable convention for the A-calculus [Bar84, page 26] and coincides with the non-homonymy condition
of [FMQ96, page 57] and a-freeness of [NS97, Definition 3]. This notion will turn out to be essential in
Proposition 3.3 and Lemma 4.2. A 7w-process is clash-free if each binder in the process 1s named distinctly
from any other binder in the process, and each binder also differs from any free name in the process. Clash-
freeness is formalised as follows.

DEFINITION 2.1
* (0 1s clash-free.

* zy.P is clash-free if P is clash-free and z, y ¢ bn (P).

*

z(y).P is clash-free if P is clash-free and #, y & bn (P) and = # y.

*

(vX)P is clash-free if P is clash-free and X Nbn(P) = 0.
P + @Q is clash-free if P and @ are clash-free and bn (P)Nn(Q) =0 and bn (Q)Nn(P) = 0.

*



* P | @ is clash-free if P and @ are clash-free and bn (P)Nn (@) = @ and bn (Q) Nn (P) = 0.

* Hne]N P, is clash-free if all P,’s are clash-free and bn (P,,) Nn (F,) = 0 for all m # n.

LEMMA 2.2 Every w-process has a clash-free alpha-variant.

ProorF We define the relation |} by the following axiom and rules.

*+ 040
% x, y & bn(Q)
’ l‘(@/)ﬁ ﬁ g(z)~(Q{Z/y}) v g bn(Q) and z g n(Q) U{x}
Pl
* wX)P § (vY)Q{Y/x} Yon(@Q)=10
* PUl@ Pl Qs bn (@1) Nn(Q2) = 0 and bn (Q2) Nn(Q1) =0

Pr+P Q1 +@o

PLQ Pl @s
PPl Q| Q2

. Py I Qn
Hne]N P” U Hne]N Qn

We can show that

bn (Q1) Nn(Q2) =0 and bn (Q2) Nn(Q1) =0

bn (@) Nn(Q,) =0 for all m # n

*x 1f P | @ then @ 1s an alpha-variant of P,
* 1f P | @ then @ 1s clash-free, and

* for every m-process P and infinite set of names X satisfying n (P) N X = @ there exists a m-process Q)

such that P | @ and bn (@) C X

by induction on the proof of P |} Q. a

An alternative approach to distinguish free and bound names in the w-calculus is presented in [BDP96].

Because we can construct for every m-process a clash-free alpha-variant in a compositional way (proof
of Lemma 2.2) and alpha-convertibility is a reduction bisimulation (Proposition 1.5), we will restrict our
attention in the sequel to clash-free #-processes. Furthermore, we can also confine ourselves to clash-free
proofs, i.e. proofs in which all #-processes are clash-free. This 1s a consequence of

ProrosiTION 2.3 IfP = @ and P and @) are clash-free then there exists a clash-free proof of P . Q.

PROOF We can show that if P —— () then there exists a clash-free proof of P’ B Q', with P’ and @’
clash-free alpha-variants of P and ), by transition induction. An application of rule 1 of Definition 1.3
completes the proof. a

3 Encoding

We focus on the restriction-free fragment of the m-calculus. How to encode restriction we will consider later.
The w-calculus has inaction, summation and composition and so does CCS, so it’s clear how we might want
to deal with those. To handle the output and input prefixes of the w-calculus, we emulate the trick used for
encoding value passing CCS into pure CCS [Mil89, Section 2.8]. We design the set of CCS channels as pairs
(z,y), with the first entry of the pair holding the w-calculus name along which is communicated, and the



second entry containing the m-calculus name being transmitted. In the encoding £, the w-calculus output
Zy becomes (x,y) in CCS:

E(xy.P) = (z,y).£(P).

To reflect the fact that the w-calculus input #(y) can receive any name z, we encode it by a summation
2cenl®, 2):
E(a(y).P) =Y (v,2).£(P{#h)).
2EN

Note that the encoding of x(y).P is not fully compositional, since it is defined in terms of the encoding of
P{#y}, rather than P. We cannot simply pull the substitution {#/y} out of the encoding, resulting in

E(x(y)P) =D (x,2).(E(P){h}),

ZEN

since it leads to an unsound encoding®*. To obtain full compositionality, we define the following operation on
CCS-processes. Let o be a substitution with finite support, i.e. a function from names to names for which the
set dom (o) = {x | o(x) # x } is finite. The two essential clauses of the definition of [¢] on CCS-processes
are

((z,y). M) [o] = {0 (x), 0 (y)).(M[o])
((z,9). M) [o] = (o (2), y).(M[o{¥s}]).

Notice that [¢] treats the input prefix {z,y) like it is a binder (binding y) whose bindings should be preserved
(but not necessarily reflected). This operation is exploited in the encoding of the input prefix as follows:

E(x(y)P) =Y {,2).(E (P
ZEN

The use of [{##}] in our encoding is reminiscent to the explicit substitutions in the w&-calculus [FMQ96].
In the infinite summation, we only encounter (guarded or normal) CCS-processes of the form (x, z). M (cf.
[Mil91, page 6] and [San92, page 19]).

By analogy with the encoding of replication in terms of constants, we can encode countably infinite
compositions by

(I Po) = 4,
neIN
where the constants Ay, As, ... are fresh and

A (P | Apyr.

However, to deal correctly with [o] applied to constants, we consider constants of the form A[U]yn‘r’ and define
the application of [¢] to such a constant by

A[Ul],n [02] = A[UQOUl],n .
Infinite compositions are now treated as follows.
E(II Po) = Apara,
neIN
where for every substitution o, the constants A[y) 1, Ag},2, ... are fresh and

def
Al = € (Pn)lo] | Als] -

Combining the above leads us to

4 We leave it to the reader to verify that in this setting the encoding of the m-process x(y;).2(y2).0 cannot make an (z,y }-
transition after having done an (z, y»)-transition.
5Since we restrict ourselves to substitutions with finite support, the set of constants is countable.



DEeFINITION 3.1 The encoding & of a restriction-free m-process is defined by

£(0) =0
E(ry.P) = (2,9).E(P)
E(x(y).P) = enle, ) (EP){FHID
E(P+Q) =&(P)+&E(Q)
EPlQ)  =&(P)1EQ)
E([Tnew Pr) = Apay1,
where for every substitution o, the constants A[y) 1, Ag},2, ... are fresh and

def
A = E(P)[o] | At

The encoding & of a free m-action is defined by

&(zy) = (z,y)
E(zy) = (z,y)
E(r) =

J

Although the encoding of a countably infinite composition defines infinitely many constants, only one defini-
tion schema is introduced, where the substitution ¢ and the natural number n can be viewed as parameters.
Because different choices for the constants Ap,y1, Afg 2, ... are allowed, the above introduced encoding is
not a function but a relation.

DEFINITION 3.2 CCS-processes are chi-variants if they only differ in the choice of constants. _

According to [Mil89, Proposition 4.12], chi-variants are bisimilar. Different choices for the constants in the
final clause of the encoding give rise to chi-variants, and hence to bisimilar CCS-processes.
The encoding maps alpha-variants to chi-variants. This is a consequence of

PRrROPOSITION 3.3 Let P; and P, be restriction-free w-processes and let o1 and o5 be substitutions with
bn (P1)Ndom (o1) = 0 and bn (P2) Ndom (02) = 0. If Pyoy and Paos are alpha-variants then £ (Py)[c1] and
& (Py)[o2] are chi-variants.

ProOF  Structural induction on P; and Ps, exploiting the fact that if dom(oy) N dom(oz) = @ then
(M[o1])[o2] = Moz 0 04]. 0

According to the above proposition, £ (Po) and £ (P)[o] are chi-variants, and hence bisimilar. Note that
the equality of £ (Pc) and & (P)o, one of the two conditions a uniform® encoding has to satisfy, does not
hold in general.

The proposition is also useful for proving the following operational correspondence between a restriction-
free m-process and its encoding.

ProrosiTION 3.4
a €(a)
* If P — @Q then £ (P) —— M for some M such that M ~ £(Q).

* IfS(P);N thenPLQforsomea and Q) such that £ (a) = ¢ and £(Q) ~ N.

ccs

Proor Transition induction exploiting Proposition 3.3 and [Mil89, Proposition 4.10, 4.11, and 4.12]. a

Reduction bisimilarity on restriction-free m-processes and bisimilarity on their encodings are linked as follows.

Instead of requiring £ (Ps) and £ (P)o to be equal, it seems more natural to ask that £ (Po) and & (P)[s], where [—] is
some operation on substitutions, are semantically equivalent.



LEMMA 3.5 For all restriction-free w-processes P and @),
P~ Q@ ifand only if £ (P)\ N? ~ £(Q)\ N*.

PrROOF From Proposition 3.4 and [Mil89, Proposition 4.10] we can deduce that { (£ (P)\ N?,&(Q)\ N?) |
P~ @} is a bisimulation and that { (P, Q) | £(P)\ N? ~ £(Q) \ N?} is a reduction bisimulation up to

ccs

alpha-conversion. a

4 Scope extrusion

We introduce the normal form of a #-process. This normal form is obtained by pulling all the restrictions
out of the m-process—this is also known as scope extrusion. As we will see in Lemma 5.2, the encoding &’
of an arbitrary w-process can be expressed in terms of the encoding £ of its normal form stripped of its
restriction.

DEFINITION 4.1 The normal form of a w-process is defined by

nf (0) = (v0)0

nf (zy.P) = wX)zy.P'

nf (z(y).P) = (wX)z(y).P'

nf (vZ)P) = @wWXUZ)P'

nf (P+Q) =@wXUY) P +Q)

nf (P]Q)  =@XUY)(P'|Q)

nf (HnE]N Pp) = (v UnE]N Xy) HnE]N Py,
where

nf (P) = (@wX)P’

LEMMa 4.2 For all m-processes P, P~ nf (P).

ProoF We can prove that

* bn(nf (P)) = bn (P),

* n(nf (P)) =n(P), and

* nf (P) is clash-free
by structural induction on P. Furthermore, we can show that P is early congruent to nf (P), again by
structural induction on P. The definition of early congruence is given in, e.g., [PS95, Definition 2.5]. Besides

the fact that early congruence is also a congruence for our extended calculus, we use the fact that it satisfies
several laws including

If 2,y ¢ X then zy.(vX)P = (vX)zy.P (1)
If £ € X then 2(y).(vX)P = (vX)z(y).P (2)
If fn (@) N X =0 then (¢X)P)+ Q= (v X)(P+Q) (3)
(4)
(5)

[LenXn)Pr = (vUpew Xn) [Lnew Po-

The observation that early congruence is a reduction bisimulation concludes the proof. a

Law (5) seems closely related to the law of independent choice in infinitary logic (see, e.g., [Kar64, Subsec-
tion 11.1.1]). Further study is needed to make this correspondence precise.
Observe that we cannot pull a restriction out of a replication, i.e. (¢vX)P ~ (v X)!P does not hold in
general. This is the reason why we added countably infinite restrictions and compositions to the calculus.
Since restriction preserves and reflects (up to alpha-conversion) r-transitions, we have



LEmMa 4.3 For all restriction-free m-processes P, (vX)P ~ P.

ProoF From rule 4 of Definition 1.3 we can conclude that restriction preserves r-transitions. We can also
show that restriction reflects 7-transitions up to alpha-conversion exploiting straightforward modifications
of [MPW92, Lemma 1 and 3]. From these facts we can easily deduce that the corresponding relation is a
reduction bisimulation up to alpha-conversion. a

5 Restriction

We present the encoding of the full calculus.

DEFINITION 5.1 The encoding &' of a m-process is defined by
&' (0) =0\ N?

& (ey.P) = ({z,y) M)\ N?

Exw).P) = (Coenlr o). (M{H}])) \ N?

E((wX)P) =M\N?
(
(
(

=]

E(P+Q) =(M+N)\N?
E(P1Q) = (M|N)\N?

E' ([Thew Pn) = Apiggr \ N?,
where

E'(P) = M\ N?

E(Q) = N\ N?

& (Py) = My \ N2,
where for every substitution o, the constants A[y) 1, Ag},2, ... are fresh and
def

A[U]n - M [ ] |A[U],n+1~

The only way we use infinite restrictions in CCS is by internalising all CCS channels of the form (z, y).
Note that our encoding &£’ does not satisfy £ (P | @) = &' (P) | £'(Q), the second condition a uniform
encoding has to satisfy. It might be reasonable strengthen the notion of compositionality in this way for a
distributed implementation (but not for a centralised one). Observe that our encoding preserves the amount
of concurrency.
The encoding &’ can be expressed in terms of the encoding & as follows (cf. the two-level encoding in

[Nes97, Section 4.1]).

LEMMA 5.2 Ifnf (P) = (vX)P' then & (P) = £ (P')\ N2

Proor Structural induction on P. ad
Combining the above results, we arrive at

THEOREM 5.3 For all m-processes P and @),
P~ Q ifand only if &' (P) ~ £'(Q).

ProoF Let nf (P) = (¢X)P’ and nf (Q) = (¢Y)Q'. Then

10
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O

(vX)P'~ (vY)Q [Lemma 4.2]
P’ ~ Q' [Lemma 4.3]
& (P/) \N2 ~& (Q/) \N2 [Lemma 3.5]

& (P) o~ & (@). [Lemma 5.2]

rres

Conclusion

Ever since 1ts introduction, the expressiveness of the #-calculus and related calculi has attracted a consid-
erable amount of attention (see, e.g., [Bou92, Bor96, HT91, NP96, San93]). Here, we have shown that the
m-calculus can be encoded in CCS is a compositional way. From this result we should not conclude that we
can therefore focus on CCS. In contrast to CCS, the w-calculus is a calculus with mobility. Our study has
shown that we can exploit this mobility without having to give up modularity.

The work of Palamidessi [Pal97], which is closely related to ours, has already been discussed in detail.
Another paper that addresses a related problem is [FMQ96]. Ferrari, Montanari and Quaglia present an
alternative formulation of the w-calculus in which substitution is handled explicitly via the introduction of a
suitable operator. This explicit handling of substitution gives rise to a labelled transition system for the #-
calculus which is much closer to the ordinary labelled transition system for CCS. Hence, their study provides
another way to map the gap between the w-calculus and CCS. In [FO91], Fredlund and Orava study how
mobility can be specified in LOTOS. Although LOTOS differs from CCS, it also does not support mobility.

As the semantics for the w-calculus we chose reduction bisimilarity. In the introduction we already
motivated this choice. We are confident that we can exploit the techniques developed in this paper to
define a compositional encoding of the m-calculus into CCS that maps early bisimilarity in #-calculus into
bisimilarity in CCS. Handling free outputs is easy: we just have to change the (outermost) restriction. To
deal with free inputs, we introduce for each name two copies: one which is restricted (by the outermost CCS
restriction) and one which is not. Bound outputs are handled similarly, although we have to be careful to
always pick a fresh name.

The results of Section 4 might be exploited in register allocation. The smaller the scope of a channel, the
less pressure it puts on the registers. Note that the construction of normal forms does exactly the opposite.

Whether our encoding of the m-calculus into CCS has any impact on the existing denotational models for
the m-calculus, like e.g. [FMS96, Sta96, CSW97], needs further study. These models are much more complex
than the ones for CCS and the encoding might give us some insight how the models for the #-calculus can
be simplified.
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