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semantics. Nestmann [Nes97] showed that either the `uniformity' of the encoding or the `reasonableness' ofthe semantics is necessary for Palamidessi's other1 negative result. In this paper, we present a compositional,yet not `uniform', encoding of the �-calculus into CCS. We follow the scheme proposed by Sangiorgi in histhesis [San92, page 8 and 9]: we treat the formal de�nition of the semantics of the two calculi, the de�nition ofthe compositional encoding of the one calculus into the other, and a proof of the correctness of the encodingwith respect to the semantics given. We show that the encoding maps reduction bisimilarity in �-calculusonto bisimilarity in CCS. Reduction bisimilarity does not satisfy Palamidessi's `reasonableness' condition.We will discuss Palamidessi's additional conditions, `uniformity' and `reasonableness', in some detail later.Let us discuss mobility further now by means of an example. Consider the CML program below. Itimplements a request-reply protocol, where one process, the server, provides some service to other processes,called the clients. Each client creates a dedicated channel, the reply channel, sends the requesttogether with (the name of) this local reply channel along the global request channel to the serverand then waits for a reply from the sender along its created reply channel. The server is structuredas a loop in which each iteration corresponds to the handling of a client's request: the server waitsfor a request and a reply channel, sent along the request channel by a client, and spawns a processwhich sends the reply to the request|the function reply to actually implements the service|along theclient's reply channel. Every client has its own reply channel to ensure that the server returns eachreply to the right client (for more details we refer the reader to [Rep92, Chapter 4]).val request_channel = channel ()fun client request = letval reply_channel = channel ()insend (request_channel, (request, reply_channel));accept reply_channelendfun reply_to request = ...fun server () = letval (request, reply_channel) = accept request_channelinspawn (fn () => send (reply_channel, reply_to request));server ()endIn CML, the let construct allows the programmer to de�ne the scope of a channel (for example, thereply channel of a client). Furthermore, one can send a channel name along a channel in CML (forexample, the client sends its reply channel along the request channel). In the above example, mobilityarises when a client's local reply channel is communicated, enlarging its scope to the server. As aconsequence, the communication topology changes. Initially, the three processes can communicate alongthe global request channel. However, after both clients have created their own reply channel andhave sent their reply channel to the server, the server can communicate with each client along theirreply channel. server'& %$ ! "#client1'& %$ ! "# client2'& %$ ! "#1Palamidessi also showed that there does not exist a compositional and `uniform' encoding of the �-calculus into theasynchronous �-calculus preserving a `reasonable' semantics. 2



Note that the above communication topology could not have been accomplished if the scoping of channelswas static.Bisimilarity [Mil80, Par81] is the most commonly used semantic equivalence on CCS-processes. For�-processes, a large variety of di�erent notions of bisimilarity have been introduced (see, e.g., [BS96]).Reduction bisimilarity focuses on the key feature of concurrency: interaction. Although this semanticequivalence is rather weak|in general, reduction bisimilarity is not preserved by composition|it allows usto give a compositional encoding. Reduction (bisimilarity) is often used in more practical applications (cf.the abstract machine implementation of the �-calculus [Tur95, Chapter 7] and the modelling of stores asprocesses in CML [BMT92]). In the conclusion, we will sketch how we expect to change our encoding todeal with early bisimilarity. This semantic equivalence is the one that corresponds to barbed bisimilarity[MS92]|a canonical semantic equivalence for calculi like CCS and the �-calculus.In our encoding, the �-calculus is mapped into in�nitary CCS. The latter calculus contains two in�niteconstructs, namely countably in�nite summations and restrictions, and countably in�nitely many recursivede�nitions. As we will see, we use these in�nite constructs in a controlled way in our encoding. To smooth theencoding of replication, we extend the �-calculus with two in�nite constructs: countably in�nite restrictionsand compositions. These in�nite restrictions and compositions show some resemblance with the in�niteexistential quanti�cations and conjunctions in in�nitary logic [Kar64] as we will point out later.Let us briey discuss the basic ideas of our encoding. It is based on Milner's encoding of value passingCCS into pure CCS [Mil89]. To overcome some complications caused by �-calculus' alpha-conversion, wefocus on clash-free �-processes. Clash-freeness is a minor variation on Barendregt's variable convention forthe �-calculus [Bar84]. In the encoding, we exploit the fact that all restrictions in a clash-free �-processcan be pulled out|the phenomenon is also known as scope extrusion|preserving reduction bisimilarity.Here it is essential that we have countably in�nite restrictions and compositions to handle replication, sincerestrictions under a replication cannot be pulled out in general.The main contributions of the present paper are the following. First of all, the encoding of the �-calculus into CCS. This result does not contradict Palamidessi's negative result. It shows that if we dropthe `uniformity' and `reasonableness' conditions, then we can give a compositional encoding. Second, thestudy of clash-freeness. Several papers are rather vague on this point. As far as we are aware, the onlyother papers which consider this notion are [FMQ96, NS97]. Finally, the investigation of countably in�niterestrictions and compositions in the �-calculus. As far as we know, these in�nite constructs have not beenconsidered. Several algebraic laws for these constructs are exploited, extending laws of, e.g., [PS95] to ourin�nite setting.In the rest of this paper we do the following. Section 1 describes the �-calculus and reduction bisimilarity.For more details on the �-calculus we refer the reader to Milner's tutorial [Mil91]. A good introduction toCCS is Milner's book [Mil89]. Section 2 introduces the clash-free fragment of the �-calculus. Section 3 givesthe encoding of the restriction-free part of the �-calculus. Section 4 focuses on scope extrusion. Section 5considers the incorporation of restriction in the encoding. The �nal section concludes and discusses relatedand future work. 1 �-CalculusWe present the coin�nite fragment of the monadic2 �-calculus extended with countable restrictions andcountably in�nite compositions. Furthermore, we introduce reduction bisimilarity. Our presentation isbased on Sangiorgi's thesis [San92, Subsection 2.2.2 and Section 3.2].Definition 1.1 Let N = fx; y; z; : : :g be a (countably in�nite) set of names. The set of �-processes isde�ned byP ::= 0 j �xy:P j x(y):P j (�X)P j P + Q j P j Q j Yn2INPn;where X is a set of names.2We are con�dent that the results of the present paper can be extended straightforwardly to deal with the polyadic�-calculus.3



To simplify some of the subsequent proofs (e.g., the one of Lemma 2.2) we restrict our attention to coin�nite�-processes.Definition 1.2 A �-processes P is coin�nite if the set N n n (P ) is in�nite.In the rest of this paper, all �-processes are assumed to be coin�nite. Note that coin�niteness is not preservedby alpha-conversion in general.Definition 1.3 The set of �-actions is given bya ::= �xy j �x(y) j xy j �:The labelled transition relation3 ! is de�ned by the following axioms and rules.1. P 0 a�! Q0P a�! Q P and Q are alpha-variants of P 0 and Q02. �xy:P �xy��! P3. x(y):P xz��! Pfz=yg4. P a�! P 0(�X)P a�! (�X)P 0 X \ n (a) 6= ;5. P �xy��! P 0(�X)P �x(y)���! (�X n fyg)P 0 y 2 X and x 62 X6. P a�! P 0P +Q a�! P 07. P a�! P 0P j Q a�! P 0 j Q bn (a) \ fn (Q) = ;8. P �xy��! P 0 Q xy��! Q0P j Q ��! P 0 j Q09. P �x(y)���! P 0 Q xy��! Q0P j Q ��! (�fyg)(P 0 j Q0) y 62 fn (Q)10. P1 jQn2IN Pn+1 a�! P 0Qn2IN Pn a�! P 0We have omitted the symmetric versions of the rules 6, 7, 8, and 9. The only di�erences from the axiomsand rules given in [San92] are that rule 1 is a little more general (like in, e.g., [ACS96]), the rules 4, 5, and9 have been changed to deal with sets of names, and rule 10 has been added to handle countably in�nitecompositions3Since we will focus on reduction bisimilarity (see De�nition 1.4), the early and late instantiation schemes give rise to thesame � -transitions (straightforward modi�cation of [MPW93, Lemma 2.5]), and some results are easier to prove for the earlyscheme, we have chosen the former. 4



The rule for replication isP j !P a�! P 0!P a�! P 0Obviously, one can view !P as syntactic sugar for Qn2IN P . Note that a �-process without countably in�niterestrictions and compositions, possibly containing replications, is coin�nite.We conclude this section by introducing reduction bisimilarity.Definition 1.4 A relation R on �-processes is a reduction bisimulation if P RQ implies that� if P ��! P 0 then Q ��! Q0 for some Q0 such that P 0RQ0, and� if Q ��! Q0 then P ��! P 0 for some P 0 such that P 0 RQ0.Processes P and Q are reduction bisimilar, written P �� Q, if P RQ for some reduction bisimulationR.Palamidessi calls a semantics reasonable if it distinguishes processes P and Q whenever in some transitionsequence of P the names sent or received along certain intended names are di�erent from those of anytransition sequence of Q. Since reduction bisimilarity only takes � -transitions into account, it does notsatisfy Palamidessi's `reasonableness' conditionProposition 1.5 Alpha convertibility is a reduction bisimulation.Proof Immediate consequence of rule 1. 2It is important to notice the following. Although we restrict our attention to reductions, i.e. � -transitions,we still have to deal with inputs xy, free outputs �xy and bound outputs �x(y) in our compositional encoding.For example, by compositionality the encoding of (�fxg)�yx:P j y(z):Q should be de�ned in terms of theencodings of (�fxg)�yx:P and y(z):Q, and we have the following transition proof(�fxg)�yx:P �y(x)���! (�;)P y(z):Q yx��! Qfx=zg(�fxg)�yx:P j y(z):Q ��! (�fxg)((�;)P j Qfx=zg)provided that x 6= y and x 62 fn (Q) n fzg.2 Clash-freenessWe introduce the clash-free fragment of the �-calculus. Clash-freeness is a minor variation on Barendregt'svariable convention for the �-calculus [Bar84, page 26] and coincides with the non-homonymy conditionof [FMQ96, page 57] and �-freeness of [NS97, De�nition 3]. This notion will turn out to be essential inProposition 3.3 and Lemma 4.2. A �-process is clash-free if each binder in the process is named distinctlyfrom any other binder in the process, and each binder also di�ers from any free name in the process. Clash-freeness is formalised as follows.Definition 2.1� 0 is clash-free.� �xy:P is clash-free if P is clash-free and x, y 62 bn (P ).� x(y):P is clash-free if P is clash-free and x, y 62 bn (P ) and x 6= y.� (�X)P is clash-free if P is clash-free and X \ bn (P ) = ;.� P + Q is clash-free if P and Q are clash-free and bn (P ) \ n (Q) = ; and bn (Q) \ n (P ) = ;.5



� P j Q is clash-free if P and Q are clash-free and bn (P ) \ n (Q) = ; and bn (Q) \ n (P ) = ;.� Qn2IN Pn is clash-free if all Pn's are clash-free and bn (Pm) \ n (Pn) = ; for all m 6= n.Lemma 2.2 Every �-process has a clash-free alpha-variant.Proof We de�ne the relation + by the following axiom and rules.� 0 + 0� P + Q�xy:P + �xy:Q x, y 62 bn (Q)� P + Qx(y):P + x(z):(Qfz=yg) x 62 bn (Q) and z 62 n (Q) [ fxg� P + Q(�X)P + (�Y )QfY=Xg Y \ n (Q) = ;� P1 + Q1 P2 + Q2P1 + P2 + Q1 +Q2 bn (Q1) \ n (Q2) = ; and bn (Q2) \ n (Q1) = ;� P1 + Q1 P2 + Q2P1 j P2 + Q1 j Q2 bn (Q1) \ n (Q2) = ; and bn (Q2) \ n (Q1) = ;� Pn + QnQn2INPn + Qn2INQn bn (Qm) \ n (Qn) = ; for all m 6= nWe can show that� if P + Q then Q is an alpha-variant of P ,� if P + Q then Q is clash-free, and� for every �-process P and in�nite set of names X satisfying n (P ) \X = ; there exists a �-process Qsuch that P + Q and bn (Q) � Xby induction on the proof of P + Q. 2An alternative approach to distinguish free and bound names in the �-calculus is presented in [BDP96].Because we can construct for every �-process a clash-free alpha-variant in a compositional way (proofof Lemma 2.2) and alpha-convertibility is a reduction bisimulation (Proposition 1.5), we will restrict ourattention in the sequel to clash-free �-processes. Furthermore, we can also con�ne ourselves to clash-freeproofs, i.e. proofs in which all �-processes are clash-free. This is a consequence ofProposition 2.3 If P a�! Q and P and Q are clash-free then there exists a clash-free proof of P a�! Q.Proof We can show that if P a�! Q then there exists a clash-free proof of P 0 a�! Q0, with P 0 and Q0clash-free alpha-variants of P and Q, by transition induction. An application of rule 1 of De�nition 1.3completes the proof. 23 EncodingWe focus on the restriction-free fragment of the �-calculus. How to encode restriction we will consider later.The �-calculus has inaction, summation and composition and so does CCS, so it's clear how we might wantto deal with those. To handle the output and input pre�xes of the �-calculus, we emulate the trick used forencoding value passing CCS into pure CCS [Mil89, Section 2.8]. We design the set of CCS channels as pairshx; yi, with the �rst entry of the pair holding the �-calculus name along which is communicated, and the6



second entry containing the �-calculus name being transmitted. In the encoding E , the �-calculus output�xy becomes hx; yi in CCS:E (�xy:P ) = hx; yi:E (P ):To reect the fact that the �-calculus input x(y) can receive any name z, we encode it by a summationPz2N hx; zi:E (x(y):P ) =Xz2N hx; zi:E (Pfz=yg):Note that the encoding of x(y):P is not fully compositional, since it is de�ned in terms of the encoding ofPfz=yg, rather than P . We cannot simply pull the substitution fz=yg out of the encoding, resulting inE (x(y):P ) =Xz2N hx; zi:(E (P )fz=yg);since it leads to an unsound encoding4. To obtain full compositionality, we de�ne the following operation onCCS-processes. Let � be a substitution with �nite support, i.e. a function from names to names for which theset dom(�) = fx j � (x) 6= x g is �nite. The two essential clauses of the de�nition of [�] on CCS-processesare (hx; yi:M ) [�] = h� (x); � (y)i:(M [�])(hx; yi:M ) [�] = h� (x); yi:(M [�fy=yg]):Notice that [�] treats the input pre�x hx; yi like it is a binder (binding y) whose bindings should be preserved(but not necessarily reected). This operation is exploited in the encoding of the input pre�x as follows:E (x(y):P ) =Xz2N hx; zi:(E (P )[fz=yg]):The use of [fz=yg] in our encoding is reminiscent to the explicit substitutions in the ��-calculus [FMQ96].In the in�nite summation, we only encounter (guarded or normal) CCS-processes of the form hx; zi:M (cf.[Mil91, page 6] and [San92, page 19]).By analogy with the encoding of replication in terms of constants, we can encode countably in�nitecompositions byE (Yn2INPn) = A1;where the constants A1, A2, : : : are fresh andAn def= E (Pn) j An+1:However, to deal correctly with [�] applied to constants, we consider constants of the form A[�];n5 and de�nethe application of [�] to such a constant byA[�1 ];n[�2] = A[�2��1 ];n:In�nite compositions are now treated as follows.E (Yn2INPn) = A[id];1;where for every substitution �, the constants A[�];1, A[�];2, : : : are fresh andA[�];n def= E (Pn)[�] j A[�];n+1:Combining the above leads us to4We leave it to the reader to verify that in this setting the encoding of the �-process x(y1):x(y2):0 cannot make an hx; y1i-transition after having done an hx; y2i-transition.5Since we restrict ourselves to substitutions with �nite support, the set of constants is countable.7



Definition 3.1 The encoding E of a restriction-free �-process is de�ned byE (0) = 0E (�xy:P ) = hx; yi:E (P )E (x(y):P ) =Pz2N hx; zi:(E (P )[fz=yg])E (P + Q) = E (P ) + E (Q)E (P j Q) = E (P ) j E (Q)E (Qn2IN Pn) = A[id ];1;where for every substitution �, the constants A[�];1, A[�];2, : : : are fresh andA[�];n def= E (Pn)[�] j A[�];n+1:The encoding E of a free �-action is de�ned byE (�xy) = hx; yiE (xy) = hx; yiE (� ) = �:Although the encoding of a countably in�nite composition de�nes in�nitely many constants, only one de�ni-tion schema is introduced, where the substitution � and the natural number n can be viewed as parameters.Because di�erent choices for the constants A[�];1, A[�];2, : : : are allowed, the above introduced encoding isnot a function but a relation.Definition 3.2 CCS-processes are chi-variants if they only di�er in the choice of constants.According to [Mil89, Proposition 4.12], chi-variants are bisimilar. Di�erent choices for the constants in the�nal clause of the encoding give rise to chi-variants, and hence to bisimilar CCS-processes.The encoding maps alpha-variants to chi-variants. This is a consequence ofProposition 3.3 Let P1 and P2 be restriction-free �-processes and let �1 and �2 be substitutions withbn (P1)\ dom(�1) = ; and bn (P2)\ dom(�2) = ;. If P1�1 and P2�2 are alpha-variants then E (P1)[�1] andE (P2)[�2] are chi-variants.Proof Structural induction on P1 and P2, exploiting the fact that if dom(�1) \ dom(�2) = ; then(M [�1])[�2] = M [�2 � �1]. 2According to the above proposition, E (P�) and E (P )[�] are chi-variants, and hence bisimilar. Note thatthe equality of E (P�) and E (P )�, one of the two conditions a uniform6 encoding has to satisfy, does nothold in general.The proposition is also useful for proving the following operational correspondence between a restriction-free �-process and its encoding.Proposition 3.4� If P a�! Q then E (P ) E (a)���!M for some M such that M �ccs E (Q).� If E (P ) c�! N then P a�! Q for some a and Q such that E (a) = c and E (Q) �ccsN .Proof Transition induction exploiting Proposition 3.3 and [Mil89, Proposition 4.10, 4.11, and 4.12]. 2Reduction bisimilarity on restriction-free �-processes and bisimilarity on their encodings are linked as follows.6Instead of requiring E (P�) and E (P )� to be equal, it seems more natural to ask that E (P�) and E (P )[�], where [�] issome operation on substitutions, are semantically equivalent. 8



Lemma 3.5 For all restriction-free �-processes P and Q,P �� Q if and only if E (P ) n N 2 �ccs E (Q) n N 2:Proof From Proposition 3.4 and [Mil89, Proposition 4.10] we can deduce that f hE (P ) nN 2; E (Q) nN 2i jP �� Q g is a bisimulation and that f hP;Qi j E (P ) n N 2 �ccs E (Q) n N 2 g is a reduction bisimulation up toalpha-conversion. 24 Scope extrusionWe introduce the normal form of a �-process. This normal form is obtained by pulling all the restrictionsout of the �-process|this is also known as scope extrusion. As we will see in Lemma 5.2, the encoding E 0of an arbitrary �-process can be expressed in terms of the encoding E of its normal form stripped of itsrestriction.Definition 4.1 The normal form of a �-process is de�ned bynf (0) = (�;)0nf (�xy:P ) = (�X)�xy:P 0nf (x(y):P ) = (�X)x(y):P 0nf ((�Z)P ) = (�X [ Z)P 0nf (P +Q) = (�X [ Y )(P 0 + Q0)nf (P j Q) = (�X [ Y )(P 0 j Q0)nf (Qn2IN Pn) = (�Sn2INXn)Qn2IN P 0n;wherenf (P ) = (�X)P 0nf (Q) = (�Y )Q0nf (Pn) = (�Xn)P 0n:Lemma 4.2 For all �-processes P , P �� nf (P ).Proof We can prove that� bn (nf (P )) = bn (P ),� n (nf (P )) = n (P ), and� nf (P ) is clash-freeby structural induction on P . Furthermore, we can show that P is early congruent to nf (P ), again bystructural induction on P . The de�nition of early congruence is given in, e.g., [PS95, De�nition 2.5]. Besidesthe fact that early congruence is also a congruence for our extended calculus, we use the fact that it satis�esseveral laws includingIf x, y 62 X then �xy:(�X)P = (�X)�xy:P (1)If x 62 X then x(y):(�X)P = (�X)x(y):P (2)If fn (Q) \X = ; then ((�X)P ) + Q = (�X)(P +Q) (3)If fn (Q) \X = ; then ((�X)P ) j Q = (�X)(P j Q) (4)Qn2IN(�Xn)Pn = (�Sn2INXn)Qn2INPn. (5)The observation that early congruence is a reduction bisimulation concludes the proof. 2Law (5) seems closely related to the law of independent choice in in�nitary logic (see, e.g., [Kar64, Subsec-tion 11.1.1]). Further study is needed to make this correspondence precise.Observe that we cannot pull a restriction out of a replication, i.e. !(�X)P �� (�X)!P does not hold ingeneral. This is the reason why we added countably in�nite restrictions and compositions to the calculus.Since restriction preserves and reects (up to alpha-conversion) � -transitions, we have9



Lemma 4.3 For all restriction-free �-processes P , (�X)P �� P .Proof From rule 4 of De�nition 1.3 we can conclude that restriction preserves � -transitions. We can alsoshow that restriction reects � -transitions up to alpha-conversion exploiting straightforward modi�cationsof [MPW92, Lemma 1 and 3]. From these facts we can easily deduce that the corresponding relation is areduction bisimulation up to alpha-conversion. 25 RestrictionWe present the encoding of the full calculus.Definition 5.1 The encoding E 0 of a �-process is de�ned byE 0 (0) = 0 n N 2E 0 (�xy:P ) = (hx; yi:M ) n N 2E 0 (x(y):P ) = (Pz2N hx; zi:(M [fz=yg])) n N 2E 0 ((�X)P ) = M n N 2E 0 (P +Q) = (M + N ) n N 2E 0 (P j Q) = (M j N ) n N 2E 0 (Qn2INPn) = A[id];1 n N 2;whereE 0 (P ) = M n N 2E 0 (Q) = N n N 2E 0 (Pn) = Mn n N 2;where for every substitution �, the constants A[�];1, A[�];2, : : : are fresh andA[�];n def= Mn[�] j A[�];n+1:The only way we use in�nite restrictions in CCS is by internalising all CCS channels of the form hx; yi.Note that our encoding E 0 does not satisfy E 0 (P j Q) = E 0 (P ) j E 0 (Q), the second condition a uniformencoding has to satisfy. It might be reasonable strengthen the notion of compositionality in this way for adistributed implementation (but not for a centralised one). Observe that our encoding preserves the amountof concurrency.The encoding E 0 can be expressed in terms of the encoding E as follows (cf. the two-level encoding in[Nes97, Section 4.1]).Lemma 5.2 If nf (P ) = (�X)P 0 then E 0 (P ) = E (P 0) n N 2.Proof Structural induction on P . 2Combining the above results, we arrive atTheorem 5.3 For all �-processes P and Q,P �� Q if and only if E 0 (P ) �ccs E 0 (Q):Proof Let nf (P ) = (�X)P 0 and nf (Q) = (�Y )Q0. Then10



P �� Q() (�X)P 0 �� (�Y )Q0 [Lemma 4.2]() P 0 �� Q0 [Lemma 4.3]() E (P 0) n N 2 �ccs E (Q0) n N 2 [Lemma 3.5]() E 0 (P ) �ccs E 0 (Q): [Lemma 5.2] 2ConclusionEver since its introduction, the expressiveness of the �-calculus and related calculi has attracted a consid-erable amount of attention (see, e.g., [Bou92, Bor96, HT91, NP96, San93]). Here, we have shown that the�-calculus can be encoded in CCS is a compositional way. From this result we should not conclude that wecan therefore focus on CCS. In contrast to CCS, the �-calculus is a calculus with mobility. Our study hasshown that we can exploit this mobility without having to give up modularity.The work of Palamidessi [Pal97], which is closely related to ours, has already been discussed in detail.Another paper that addresses a related problem is [FMQ96]. Ferrari, Montanari and Quaglia present analternative formulation of the �-calculus in which substitution is handled explicitly via the introduction of asuitable operator. This explicit handling of substitution gives rise to a labelled transition system for the �-calculus which is much closer to the ordinary labelled transition system for CCS. Hence, their study providesanother way to map the gap between the �-calculus and CCS. In [FO91], Fredlund and Orava study howmobility can be speci�ed in LOTOS. Although LOTOS di�ers from CCS, it also does not support mobility.As the semantics for the �-calculus we chose reduction bisimilarity. In the introduction we alreadymotivated this choice. We are con�dent that we can exploit the techniques developed in this paper tode�ne a compositional encoding of the �-calculus into CCS that maps early bisimilarity in �-calculus intobisimilarity in CCS. Handling free outputs is easy: we just have to change the (outermost) restriction. Todeal with free inputs, we introduce for each name two copies: one which is restricted (by the outermost CCSrestriction) and one which is not. Bound outputs are handled similarly, although we have to be careful toalways pick a fresh name.The results of Section 4 might be exploited in register allocation. The smaller the scope of a channel, theless pressure it puts on the registers. Note that the construction of normal forms does exactly the opposite.Whether our encoding of the �-calculus into CCS has any impact on the existing denotational models forthe �-calculus, like e.g. [FMS96, Sta96, CSW97], needs further study. These models are much more complexthan the ones for CCS and the encoding might give us some insight how the models for the �-calculus canbe simpli�ed. AcknowledgementsThe early inspiration for this work originated during a visit by Juraj Bal�azs to the �rst author in Manchester.Both authors would like to express their thanks to Juraj for his ideas at that time. Furthermore, we arethankful to Michele Boreale, Pierpaolo Degano, Gianluigi Ferrari, Laurie Hendren, Claudio Hermida, MichaelMakkai, Uwe Nestmann, Vincent van Oostrom, Prakash Panangaden, Paola Quaglia, and Davide Sangiorgifor discussion. References[ACS96] R.M. Amadio, I. Castellani, and D. Sangiorgi. On Bisimulation for the Asynchronous �-Calculus.In U. Montanari and V. Sassone, editors, Proceedings of CONCUR'96, volume 1119 of LectureNotes in Computer Science, pages 147{162, Pisa, August 1996. Springer-Verlag. To appear inTheoretical Computer Science.[Bar84] H.P. Barendregt. The Lambda Calculus, its Syntax and Semantics, volume 103 of Studies inLogic and the Foundations of Mathematics. North-Holland, Amsterdam, revised edition, 1984.11
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