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In [Hut81], John Hutchinson introduced a metric on the set of Borel probability measures on a metric space.
In this note, I present the Hutchinson metric and prove several properties of this metric. I restrict my
attention to 1-bounded metric spaces. Most of the material in this note is based on [Par67] and [Edg98].
Proposition 7, 8 and 9 may be new.

Let X be a 1-bounded metric space. I denote the set of Borel probability measures on X by M (X). The

Hutchinson metric on M (X) is introduced in

DEFINITION 1 The function d (x) : M (X) x M (X) — [0,1] is defined by

Ayt () (w)zsup{‘ [ gdu [ gav

First, I show that the above introduced distance function is a metric. My proof is based on [Edg98, Propo-
sition 2.5.14].
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PROPOSITION 2 daq (x) Is a metric.

ProoF Since for all nonexpansive f € X — [0, 1],

0= [ odu< [ gap< [ 1dp=1,
JX JX X

dpt(x) (mv) <1

Obviously, da (x) (@, p) = 0.

Towards a contradiction, assume that u # v and fx fdu = fx fdv for all nonexpansive f € X — [0,1].
Since Borel probability measures on X are completely determined by their restrictions to the closed subsets

of X, u(C) # v (C) for some closed subset C' of X. For each n € IN, the function f, : X — [0,1] is defined
by

fn (2) = max {0, L — C12(fJ dx (z,c)}.

Since for all z, y € X,
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= ‘ Clgg dX (QZ,C) - Clgg dX (y7C)‘
< dx (x,y) [see [Par67, Theorem I.1.1]]

fn is nonexpansive. One can easily verify that the set {z € X :inf.cc dx (z,¢) < % } is open and that

S|=

1
"X < fn S 5 X{zexXiinfoce dx (ze)<t )}
Therefore,
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Similarly, one can show that v (C') < u (C') which leads to a contradiction.

Clearly, da (x) (1, v) = daq (x) (v, ).
For each nonexpansive f € X — [0,1],
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Hence,
da(x) (1,w) < dagx)y (1, v) + dpg(x) (Vs w).
O

The metric space X can be isometrically embedded into the metric space M (X) (cf. [Par67, Lemma I1.6.1]
and [Edg98, page 108]). For each = € X, let 0, be the Dirac measure at .

PROPOSITION 3 § is isometric.
ProoF Let z,y € X.



sup{ | a5~ [ sas,

sup{|f (z) — f (y)| : f € X — [0,1] is nonexpansive }
S dX (337y)

The function g : X — [0, 1] defined by

cfeX —]0,1]is nonexpansive}

9(2) = d (s, 7)
is nonexpansive and

‘/ gdéz—/gdéy
X X

g (z) —g(y)
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As a consequence, if M (X) is complete then so is X.

I denote the set of tight Borel probability measures on X by M; (X). Since the Dirac measures are
tight, the metric space X can be isometrically embedded into the metric space M, (X). As a consequence,
if M; (X) is complete then so is X.

PRrROPOSITION 4 If X is complete then M, (X) is complete.
PRrOOF I refer the reader to [Edg98, Theorem 2.5.25] for the moment. O

M can be extended to an endofunctor on the category CMS of 1-bounded complete metric spaces and
nonexpansive functions as follows.

DEFINITION 5 Let X and Y be 1-bounded complete metric spaces. Let f : X — Y be nonexpansive. The
function M; (f) : M (X) —» M (Y) is defined by

My (f)(n) = po f71.

PROPOSITION 6 Let f: X — Y be nonexpansive. If p € M, (X) then po f=* € M, (V).

PrROOF Let € > 0. Since p is tight, there exists a compact subset K. of X such that p(X \ K.) < e.
Because f is nonexpansive, f (K.) is a compact subset of Y. Since f~' (Y \ f (K,.)) is a subset of X \ K,
(uo fH (Y \ f(K.)) <e. Hence, po f~' is tight. O

PROPOSITION 7 M, (f) is nonexpansive.

Proor For all u, v € My (X),
dpm, (v) (M (f) (), M (f)(v))

= suP{ /Ygd(MOf’l)—/Ygd(VOf’l)
/X(QOf)du—/X(gOf)dv

< sup{ /hduf/hdu
Jx Jx

= dam, (x) (1, v).
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This functor is locally nonexpansive (see [RT92, Definition 4.2]).

PROPOSITION 8 M, is locally nonexpansive.

Proor For all nonexpansive f, g € X —» Y and pu € M, (X),
dpm, (Y) (M (f) (), M (9) (1))

{ [ natwo s = [ ndweg)

= Sup{ /X(hof)du—/x(hog)du:hGY—)[O,]] is nonexpansive}
{
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(f,9),

since for all nonexpansive h € Y — [0,1] and z € X,

(hof—hog)(x)
< (hof)(z) = (hog)(z)|
< dy (f(x),g(z)) [his nonexpansive]
< dxoy (f,9)
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The terminal object and the coproduct of the category CMS are denoted by 1 and +, respectively. Let
0 < e < 1. The operation € on metric spaces leaves the set unchanged and multiplies the metric by e. This
operation can be extended straightforwardly to an endofunctor on CMS.

PROPOSITION 9 For all 0 < € < 1, there exists a terminal 1 + € - M, (—)-coalgebra.

Proor Let 0 < e < 1. Since the functor M; is locally nonexpansive, the functor 1 + € - M;(—) is locally
contractive. According to [RT92, Theorem 4.8], there exists a terminal 1 + e - M;(—)-coalgebra. O
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