
Towards Model Checking of Computer Games
with Java PathFinder
Nastaran Shafiei∗ and Franck van Breugel∗†

∗DisCoVeri Group, Department of Computer Science and Engineering
York University, 4700 Keele Street, Toronto, M3J 1P3, Canada

†Department of Computer Science
University of Oxford, Parks Road, Oxford, OX1 3QD, UK

Abstract—We show that Java source code of computer games
can be checked for bugs such as uncaught exceptions by the
model checker Java PathFinder (JPF). To model check Java
games, we need to tackle the state space explosion problem and
handle native calls. To address those two challenges we use our
extensions of JPF, jpf-probabilistic and jpf-nhandler. The former
deals with the randomization in the source code of the game,
which is a cause of the state space explosion problem. The latter
handles native calls automatically. We show how JPF enhanced
with our extensions can check games such as the text based game
Hamurabi and a graphics based version of rock-paper-scissors.

I. INTRODUCTION

Numerous clips showing bugs in computer games can be
found on YouTube. A notorious example is the so-called
“Jesus shot”, where Tiger Woods is able to walk on water. EA
Sports, who developed the game, subsequently posted a clip
in which Tiger Woods does walk on water with the message
“It’s not a glitch. He’s just that good.” These clips demonstrate
that, as in other types of software, bugs are omnipresent in the
code of games. Therefore, tools that can detect those bugs are
valuable to game developers.

Testing is the most commonly used method to detect bugs
and it is also used for games. Although test suites may be
developed for some components of the game, there is not a
lot of automated testing [14]. The game as a whole is tested
as well. The latter is often done manually by humans simply
playing the game [25]. Overall, very few tools are used to test
games.

The source code of most games contains some sort of ran-
domization.1 This provides games with the ability to surprise
players, which is a key factor to their long-term appeal [23,
page 350–353], but which is also a source of nondeterminism:
although the player uses the same strategy, the game may
evolve differently due to the randomization.

It is well known that nondeterminism causes difficulties
for testing. First of all, tests usually cannot control the non-
determinism and, hence, running a test multiple times does
not guarantee that different executions are tested. Secondly,
if a test detects a bug, it may be difficult to reproduce the

1The way in which randomization is used in games is fundamentally
different from the way it is used in systems verified by model checkers such
as PRISM [15]. Whereas the probabilities that capture the AI logic of a game
are hard coded in the source code of the game, the probabilities in systems
checked by PRISM are estimates obtained by experiments.

bug. Model checking is an alternative to testing. Rather than
checking a single execution, as is done in testing, model
checking attempts to systematically check all potential exe-
cutions. However, the number of potential executions can be
exponential in the number of nondeterministic choices in the
code. The problem of dealing with such a huge number of
executions is known as the state space explosion problem.
Tackling this problem is one of the major challenges in model
checking.

Due to the presence of nondeterminism, we believe that
alternatives to testing, such as model checking, will be useful
for detecting bugs in the source code of games. Our aim is to
develop tools, based on model checking, that can automatically
detect bugs in the source code of games. This paper describes
our first attempt towards that goal.

Until recently, software that uses randomization was only
verified by analyzing a model of the software, rather than
the source code itself. A model is usually simpler than the
source code and, hence, the model is generally easier to
verify. However, the model abstracts from certain details
not considered relevant to the verification effort and, hence,
violations of certain properties might not be detected. But
such violations might well be detected if we consider the
source code. Only recently, tools have been developed that
work directly with the source code (see [13], [28]). Whereas
a tool that checks properties of a model is usually exploited to
find errors in algorithms, a tool that considers the source code
is generally used to detect coding errors. Hence, both types
of tool play their role in the verification process.

In this paper, we focus on model checkers that work directly
with the source code. We restrict our attention to Java. This is
one of the most popular programming languages.2 Although
C++ is most widely used for games, many, in particular
online games, are written in Java. For example, Minecraft, of
which more than nine million copies have already been sold,
is written in Java.3 According to Guinness World Records,
RuneScape, also implemented in Java, is the world’s most
popular free massively multiplayer online role-playing game
with more than 200 million registered accounts.

2The TIOBE programming community index is an indicator of the popu-
larity of programming languages and can be found at http://www.tiobe.com/
index.php/content/paperinfo/tpci.

3http://www.joystiq.com/2012/05/25

978-1-4673-6263-4/13 c© 2013 IEEE GAS 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

15

Several model checkers for Java have been developed.
Most of those, including Bandera [9], Borgor [22], and an
extension of SAL [19], translate the Java code to a model
and subsequently verify properties of that model. The model
checker Java PathFinder4 (JPF) [27] is an example of a tool
that works directly with Java bytecode.

The development of JPF started at NASA in 1999. Initially,
JPF also translated Java bytecode to a model, which was
subsequently passed to the SPIN model checker. In 2000, JPF
was refactored as a Java virtual machine (JVM). Since JPF
itself has been written in Java, it runs on top of another JVM,
which we call the underlying JVM. In contrast to an ordinary
JVM, JPF systematically explores all potential executions of
the code, rather than a single one. While exploring those
executions, JPF tries to find violations of properties such as
uncaught exceptions.

JPF can easily be extended to check for further properties.
A number of such extensions are available. For example, the
extension jpf-numeric5 checks for arithmetic overflows and
underflows and the extension jpf-ltl6 allows for the verification
of properties expressed in linear temporal logic (LTL). For
example, the property that players can always reach the end of
the game, no matter how they have played so far—something
that is desirable in many games—can be expressed in LTL.
Many other interesting properties can be expressed in LTL.
Zhang and Van Breugel’s extension jpf-probabilistic7 [29] is
essential for our approach. It extends JPF so that it can handle
Java code with randomization. Another reason to focus on JPF
is that it is an open-source project.

The Java code of most games contains native calls. Such a
native call invokes code that is written in a language different
from Java such C. Calls related to graphics, networking and
sound are usually native. To make our tools of use to game
developers, native calls should be handled automatically: in
addition to battling the state space explosion problem, this is a
second major challenge. We base our solution on our extension
jpf-nhandler8 [24] which provides support for native calls.

Rather than developing our tools from scratch, we extend
JPF. This approach allows us to develop prototypes quickly.
The development of similar tools for C++ would take consid-
erably more time. However, we believe that our techniques
should be transferable to model checkers for C++ and we
consider that a promising direction for future research. As we
have already mentioned, in this extension we need to address
two major issues: the notorious state space explosion problem
and handling native calls. Although numerous techniques have
been developed to combat the state space explosion problem,
none of them suffice when considering the source code of
games. Hence, a new approach that complements existing
ones is needed. Several ways to handle native calls have been
proposed, but none of them is automatic, something that is

4http://babelfish.arc.nasa.gov/trac/jpf
5http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-numeric
6https://bitbucket.org/michelelombardi/jpf-ltl
7http://bitbucket.org/discoveri/jpf-probabilistic
8https://bitbucket.org/nastaran/jpf-nhandler

 JPF

native call

state space
explosion

result

source
code of
game

property
to be

verified

Fig. 1. Overview of our tool

essential if we want to increase the productivity of game
developers. Therefore, we aim for an automatic method to
deal with native calls.

There are numerous types of bugs in games. A taxonomy
of these bugs can be found in [17]. Here, we focus on coding
errors such as uncaught exceptions, arithmetic overflows and
underflows, since JPF already provides support to detect such
bugs. Other types of bugs are left for future research.

An overview of our tool is given in Fig. 1. Starting from JPF,
we extend it in such a way that we can combat the state space
explosion problem as manifested in games, and handle native
calls, which are omnipresent in games. This extension of JPF
takes as input the Java bytecode of the game and a property
to be verified. The latter could for example be the absence
of uncaught exceptions. The result of the verification effort of
the extended model checker can be either confirmation that
the property is satisfied by the code (in the case that JPF does
not run out of memory), a lower-bound of the probability
that the property holds (in the case that JPF runs out of
memory without detecting a violation of the property), or a
counterexample showing that the property does not hold. All
three types of result are useful. Obviously, a counterexample
is useful to correct the bug that has been detected. But also
the lower-bound provides us with useful information. It can
be viewed as a measure of reliability of the game. As far as
we know, no such tool, which forms the basis for a valuable
addition to every game developer’s toolbox, exists yet.

Although we concentrate on games, focus on model check-
ers that work directly with source code, restrict our attention to
Java code, and implement our ideas in JPF, we should stress
that many of our objectives and results are applicable to a
much wider range of software and model checkers.

II. LIMITATIONS OF EXISTING WORK

The only work on tools for finding bugs in the source code
of games of which we are aware is the paper by Lewis and
Whitehead [16]. In their paper, they describe a tool called
Lakitu which detects and corrects bugs. To use the tool, one
has to manually insert events into the source code of the game.
A bug is captured by a violation of an invariant specified in
terms of the events that have been inserted. One has to specify
these invariants and the code that corrects the bug. They
successfully applied Lakitu to the computer game Super Mario

16

World. As already pointed out by the authors, a drawback of
their approach is that the events have to be added manually.
Also, a run of their tool only checks a single execution of the
game and Lakitu does not guarantee that multiple runs of the
system check different executions of the game. In contrast,
we aim for tools that are automatic and that explore as many
(fragments of) executions of the game as possible.

A. State Space Explosion Problem

Numerous approaches have been developed to combat the
state space explosion problem (see, for example, [4, Sec-
tion 2.3]). Two commonly used techniques are partial order re-
duction and state compression. Partial order reduction reduces
the number of executions that need to be checked by consider-
ing concurrently executed instructions that do not affect each
other. Many model checkers, including JPF, implement some
form of partial order reduction. In state compression, each state
is decomposed into several components so that different states
that agree on a component can share that component. JPF also
implements some form of state compression. As argued in, for
example [21], the best way to combat the state space explosion
problem is to combine several techniques.

Since the source code of games usually contains randomiza-
tion, the state space explosion problem is unavoidable despite
the powerful techniques that have been developed to combat
the problem. As a consequence, when we model check the
source code of a game, the model checker usually runs out of
memory after some time. Having waited for several minutes,
hours or even days, a message like “out of memory” is not
very informative, not to mention also frustrating. To address
this problem, Zhang and Van Breugel [30] developed a general
notion of progress measure for a model checker. This notion
is defined in terms of a Markov chain and the property under
verification. The Markov chain captures the randomization in
the source code under verification. The amount of progress
made by a model checker towards verification of the property
is captured by a real number between 0 and 1. The larger the
number, the more progress the model checker has made. A
similar notion has been proposed by Pavese et al. [20].

A progress measure provides a lower-bound on the mass of
the set of executions satisfying the given property. For exam-
ple, assume that the progress towards verifying the property ϕ
is 0.9999. Then, the probability that we encounter a violation
of ϕ when we run the code is at most 0.0001. The property that
players can always reach the end of the game, no matter how
they have played so far is in general undecidable. However,
using the progress measure we can provide an upper-bound
of the probability that this property is violated. Hence, even
if the model checker fails by running out of memory due
to the state space explosion problem, this progress measure
provides useful information about the code, possibly making
the verification a success.

B. Native Calls

Several different approaches have been developed to handle
native calls. For example, let us consider two such approaches

developed for JPF. In [5], Barlas and Bultan introduce a
framework called NetStub to model check distributed Java
applications. The framework consists of several packages that
reimplement those parts of the Java standard library related
to network communication and containing native calls. These
reimplemented packages simulate a network. Each component
of the distributed application is represented by a thread so that
the whole distributed application runs in a single JVM and,
hence, can be verified by JPF.

Artho et al. [3] propose a different approach to model
check distributed Java applications. Only one component of
the distributed application is model checked, the other ones are
simply executed. Since the model checker attempts to system-
atically check all potential executions of that one component,
one has to be careful to prevent communications between that
component and the other components from being repeated.
To address that problem, Artho et al. introduce a cache that
keeps track of those communications. As in the work of
Barlas and Bultan, those classes that contain native calls are
reimplemented.

To apply either of these approaches to our setting, one
would have to reimplement those classes used by the game
that contain native calls. Since native calls are omnipresent in
the source code of games, this would be a huge amount of
work. Furthermore, for some classes only the Java bytecode
may be available (and not the Java code), making it even
harder to reimplement the class. In Section IV we describe
an alternative to the above described approaches that handles
native calls automatically.

III. HANDLING RANDOMIZATION WITH
JPF-PROBABILISTIC

If we model check Java code that contains randomiza-
tion, JPF does not take into account any probabilities as-
sociated with the probabilistic choices in the code. The
extension jpf-probabilistic [29] takes the probabilities seri-
ously. To express those probabilistic choices in the Java
code, the class Choice has been introduced. This class
which contains the static method make(double[] p).
Given an array p, which represents a probability distribu-
tion on the set {0, . . . ,p.length − 1}, the method call
Choice.make(p) returns i with probability p[i]. For exam-
ple, the call Choice.make(0.5, 0.5) returns either 0 or
1, each with probability 0.5. For convenience, the extension
also contains the classes Coin, Die and UniformChoice.

The extension has been developed in a modular way such
that it can deal with other methods that can be used to express
probabilistic choices such as the nextInt(int n) method
of the Random class in the future in the same way as it
handles the make method. For now, method calls such as
nextInt need to be replaced manually with a corresponding
code snippet using make. Game developers can also use,
for example, (int) (Math.random() * n) to express
probabilistic choices. Detecting all probabilistic choices in the
source code is a challenge that we leave for future research.

17

JPF can traverse the state space in different ways by using,
for example, a depth-first search or a breadth-first search. Since
jpf-probabilistic takes the probabilities into account, it can
use them to guide the search. For example, jpf-probabilistic
contains a random search strategy which randomly selects
the next state to explore. The probability that a particular
state is further explored is proportional to the probability of
the path along which the state was discovered by the search
(see [28, Chapter 5] for more details). Since our ultimate
goal is to handle multiplayer real-time games with huge
state spaces, efficiency is key. Therefore, we reimplemented
Zhang’s random search.

In Zhang’s implementation of random search, which pro-
vided just a proof of concept, the potential states to be
explored next are stored in a list. Each state is associated
with a probability, which is the probability of the path along
which the state was discovered during the search. During the
search, these probabilities need to be summed regularly. To
reduce the effects of rounding errors, it is beneficial to keep
the probabilities sorted. As a consequence, updating the list
takes time linear in the size of the list. Instead of a list, we
use a red-black tree, the nodes of which are decorated with
probabilities. The update operations become logarithmic in the
size of the tree. A similar data structure has been proposed by,
for example, Stoelinga [26, page 133].

As we already mentioned earlier, Zhang and Van Breugel’s
progress measure provides a quantitative notion of reliability
of the code in case the model checker runs out of memory
before detecting any bugs. In jpf-probabilistic, the progress can
be computed when verifying invariants. These invariants form
an important class of properties. In particular, for source code
this class plays a key role. For example, we may want to check
that the code never gives rise to any uncaught exceptions,
or that it never causes overflow. These types of property are
all expressed as invariants. During JPF’s verification effort,
the extension jpf-probabilistic builds a Markov chain repre-
senting the probabilistic choices in the code. It hands this
Markov chain to the probabilistic model checker MRMC [12].
Subsequently, MRMC computes the probability of reaching a
particular (so-called sink) state in the Markov chain (for more
details, see [28, Chapter 7]). It has been shown in [30] that this
probability coincides with the progress measure for invariants
(for properties other than invariants see [11]).

In comparison to Zhang’s implementation, we slightly sim-
plify the representation of the Markov chain that is built.
Furthermore, instead of handing the Markov chain to MRMC,
we serialize the Java object representing the Markov chain.
This has several advantages. First of all, MRMC need not
be installed to use jpf-probabilistic, since jpf-probabilistic
now contains the application Progress which computes the
progress. Furthermore, the serialized Java object can also be
fed to other tools that can compute the reachability probabil-
ity. For example, one could exploit a GPU to compute the
reachability probability (see [6], [10]).

The application Progress uses a standard approach to
compute the reachability probability (see, for example, [4,

Section 10.1.1] for details). First, those states that cannot reach
the sink state are computed. Next, those states that always
reach the sink states are computed. Finally, Jacobi’s algorithm
is applied to the remaining states. Improving the efficiency of
this application is left for future work.

IV. HANDLING NATIVE CALLS WITH JPF-NHANDLER

If we model check Java code that contains native calls,
JPF generally crashes by throwing an error. Fortunately, JPF
provides two ways to handle native calls. Both approaches
require the user of JPF to reimplement the classes containing
the native methods. This is tedious and error prone since
native methods are often not documented, or even only the
Java bytecode is available (and not the Java code). Since
we cannot expect game developers to reimplement numerous
classes containing native calls in order to find bugs in their
game, we exploit the extension jpf-nhandler [24] to handle
native methods automatically.

Model classes provide a way to handle native calls in
JPF. It uses these classes as alternatives to actual classes
from Java libraries. For example, including the model class
java.lang.System forces JPF to ignore the System
class from the standard Java library, and instead model check
the model class. To handle a native call, one can model its
implementation in the corresponding model class.

Another way to handle native calls is to use JPF’s model
Java interface (MJI). JPF uses MJI to transfer the execu-
tion from JPF to the underlying JVM. The so-called na-
tive peer classes play a key role in the MJI implemen-
tation. JPF uses a specific name pattern to associate the
native peer classes and their methods with the correspond-
ing classes containing native methods. For example, the na-
tive peer associated with java.lang.System is named
JPF_java_lang_System. Whenever JPF gets to a call
associated with a native peer method, it delegates the call
to the underlying JVM. Hence, the native call is not model
checked (which is impossible since JPF can only handle Java
bytecode), but executed in the underlying JVM.

To handle native calls automatically, jpf-nhandler relies on
MJI and native peers. Whenever JPF encounters a native
call, jpf-nhandler automatically intercepts and delegates the
execution of the native method from JPF to the underlying
JVM. It creates bytecode for native peers on-the-fly (referred
to as OTF peers from now on) using the BCEL library9. To
delegate the execution of a method to the underlying JVM, jpf-
nhandler adds a method in the corresponding OTF peer which
implements the following three main steps. For example,
consider the native call System.mapLibraryName(s).
This call is delegated by jpf-nhandler as follows.

1) First, the JPF representation of the string s is trans-
formed to a corresponding JVM object. (For non-static
method, the object on which the method is called needs
to be transformed as well.)

9The byte code engineering library: http://commons.apache.org/bcel

18

Converter c = new Converter(env);

Object s = c.getJVMObj(jpfObj);

System.mapLibraryName(s)

 JPF

Class<?> caller=System.class;

Method method = caller.
 getDeclaredMethod("mapLibraryName",...);

Object returnVal = method.invoke(caller,...);

jpf-nhandler

 JVM

 OS

MJI JNI

Native
code

1

int result = c.getJPFObj(returnVal);

return result;

OTF peer

2

3

Fig. 2. Overview of the handling of native calls by jpf-nhandler

2) Then the execution is delegated to the
underlying JVM by calling the original native
method mapLibraryName with the JVM
representation of s as its argument.

3) Finally, the result of the method call, which is a string in
our example, is transformed from its JVM representation
to its JPF representation.

Since objects are represented differently in JPF and the
underlying JVM, jpf-nhandler has to be able to transform
objects from JPF to the underlying JVM and back. Our class
Converter accomplishes that. Its method getJVMObj
transforms JPF objects to JVM objects and getJPFObj
transforms objects in the other direction.

Fig. 2 shows how jpf-nhandler copes with the native call
System.mapLibraryName(s). Note that the execution
of mapLibraryName is transferred all the way down to
the native level where it is eventually executed. jpf-nhandler
provides a way for the user of JPF to specify which (native
and non-native) methods need to be delegated. This feature is
essential when we model check games by means of JPF and
its extension jpf-nhandler.

V. MODEL CHECKING OF HAMURABI

As a first game, we consider the text-based game Hamurabi.
This is one of the very first computer games. It was imple-
mented in BASIC by Ahl in the seventies [1, page 128]. We
ported the BASIC code to Java (see Fig. 3). Although this
game does not use any graphics, it still uses native calls to
read from the keyboard and write to the console. Although
the latter native calls are handled by JPF, the former are not.
Therefore, if we were to model check this Java game with JPF
(even with our extensions jpf-probabilistic and jpf-nhandler
enabled), JPF would crash.

Fig. 3. Screenshot of Hamurabi

In Java, reading from the keyboard is done by reading from
the “standard” input stream. This stream is captured by the
attribute in of the class System. This class provides also
static methods that can manipulate the JVM (for example,
gc() runs the garbage collector). Since JPF itself is a JVM,
it should come as no surprise that JPF reimplements this class
(partly as a model class, partly as a native peer). Although
JPF’s System model class contains a declaration of the
in attribute of type InputStream, this attribute is not
initialized. Hence, JPF throws a NullPointerException
when it encounters System.in.

To address this problem, we have modified JPFs’
System model class. Its attribute in is initialized
as in = new ConsoleInputStream(). The class

19

ConsoleInputStream is a model class that we have
added to JPF. We also added a corresponding native peer to
JPF. The model class extends the class InputStream (to
ensure that the above assignment is valid), it contains a default
constructor with an empty body, and all its methods are
declared native. As a consequence, whenever JPF encounters
a method called on System.in, it does not model check
it but, instead, delegates the execution of the corresponding
native peer method to the underlying JVM. The methods
in the native peer simply call the method on the JVM’s
System.in. For example, the body of the native peer
method read() simply returns System.in.read().

After having made these adjustments to JPF and enabling
our extensions jpf-probabilistic and jpf-nhandler, we are able
to model check Hamurabi with JPF. Each game of Hamurabi
needs at least one and at most fourty integers as input from the
player. Rather than providing the player’s input to the game
by means of the keyboard, we created a file consisting of a
sufficient number of integers (roughly half a million integers—
recall that JPF attempts to explore all potential executions of
the game) and redirected the input so that JPF gets it from the
file instead of the keyboard.

In the default configuration, JPF uses depth-first search
and checks for uncaught exceptions. JPF, with the default
configuration, ran out of memory after four hours. In that time,
it had checked almost half a million different executions of the
game and found no uncaught exceptions.10 It took less than
two minutes to compute the progress: 0.80. Hence, from this
verification effort by JPF we can conclude that the probability
of encountering an uncaught exception, provided that the game
is played as specified in the input file, is at most 20%.

We also configured JPF to use our random search. In this
case, JPF ran on average out of memory in less than ten
minutes. JPF ran out memory much faster due to the extra
memory needed for the decorated red-black tree used by our
random search. In this case, JPF checked on average only
50,000 different executions of the game and again found no
uncaught exceptions. However, the progress only took a few
seconds to compute and was on average 0.97. Despite the fact
that random search checks considerably fewer executions, it
checks a more important (from a probabilistic perspective) part
of them and, hence, provides a much better upper bound on the
probability of encountering an uncaught exception (3% rather
than 20%).

VI. MODEL CHECKING OF ROCK-PAPER-SCISSORS

We consider rock-paper-scissors as our second example. We
model check a simple version of the game in Java (see Fig. 4).
Instead of implementing metastrategies which defeat second-
guessing, triple-guessing, etcetera, we simply randomly select
rock, paper or scissors. Since the game uses graphics, it relies
heavily on native calls. Although our extension jpf-nhandler
takes care of native calls, if we were to model check this

10Our initial implementation of Hamurabi contained a bug which caused
an exception. This bug was found by JPF within seconds.

Fig. 4. Screenshot of rock-paper-scissors

game using JPF with the extensions jpf-nhandler and jpf-
probabilistic, JPF would crash.

To model check this game, we first configured jpf-
nhandler to delegate all native calls. The part of the code
that creates the GUI of the game includes a native call
loadNativeDirFonts(). The current version of jpf-
nhandler can only handle a native call if its side effects are
limited to its return value, its arguments, and the class or
object on which the native method is called. But the side
effects of loadNativeDirFonts() go beyond that, since
it initializes some attributes in the underlying JVM. This
causes JPF to throw a NullPointerException, because
these attributes have not been initialized by JPF, but they are
used by JPF. To solve this problem, we configured jpf-nhandler
to delegate the whole (non-native) method that contains the
native call loadNativeDirFonts().

Moreover, to handle rock-paper-scissors we had to extend
the functionality of jpf-nhandler. To model check this game
it is essential that jpf-nhandler keeps track of all the JVM
objects that it creates using the getJVMObj method of the
Converter class. By keeping a reference to these objects,
JPF can observe (some of the) changes made to these objects
by the underlying JVM. This turned out the be essential to
deal with rock-paper-scissors.

After having extended and configured jpf-nhandler, we can
successfully model check rock-paper-scissors with JPF. For
this very simple game, the major challenge is to handle the
native calls automatically: whereas our extension of JPF can
do this, neither JPF nor any of its other extensions can. Since
the state space is small, JPF does not run out of memory.
Hence, there is no need to compute the progress.

VII. CONCLUSION

We have presented a model checker that can verify proper-
ties of computer games. We believe this to be the first such
tool. We have shown that our extension of JPF can handle
simple games such as Hamurabi and rock-paper-scissors. Al-
though our initial results are promising, a lot of work remains
to be done as most games are much more complex.

Even for a considerably simplified version11 of Hamurabi,
there are more than 1010 different plays. For each play, it takes
JPF more than two minutes to verify the game for, for example,
uncaught exceptions. Verifying all different plays one by one

11Instead of ten years, the player is only in office for one year.

20

would take more than four millennia. Hence, in such a case,
we have to restrict ourselves to “interesting” plays. As pointed
out by, for example, Cadar and Engler [7], generating input (in
our case, plays) that will explore all the “interesting” behaviour
in the tested program (in our case, the game) remains an
important open problem in software testing research. In the
case of our simplified version of Hamurabi, there are only
six different “interesting” plays, which can be checked by
JPF within 15 minutes. Identifying those “interesting” plays,
possibly with the help of the game developer, is a topic we
plan to address in the future.

One obvious way to reduce the number of plays is to
represent them symbolically. However, jpf-symbc12 [2], a sym-
bolic extension of JPF, when applied to the source code of
our considerably simplified version of the text-based game
Hamurabi runs out of memory in our experiments. We con-
jecture that this is caused by the randomization in the code
of the game. Recently, Claret et al. [8] proposed a novel
way to symbolically execute probabilistic programs. A key
ingredient of their approach is the use of algebraic decision
diagrams. These are a generalization of the well-known binary
decision diagrams. They allow for a compact representation
of probability distributions and an efficient implementation
of operations on probability distributions. By extending jpf-
symbc so that the randomization of the game is represented by
algebraic decision diagrams, we may obtain a symbolic model
checker that does not run out of memory when confronted with
a simple game such as Hamurabi.

Games typically implement sophisticated graphical user
interfaces (usually much more complicated than the one for
rock-paper-scissors). The extension jpf-awt13 [18] of JPF pro-
vides a framework to model check graphical user interfaces.
In op. cit., Mehlitz et al. propose a scripting language that
captures the interactions with the graphical user interface.
These scripts are interpreted by JPF. This approach is not
automatic as the scripts describing the interactions need to
be written. The approach is also limited to graphical user
interfaces, whereas most games also read from the keyboard.
We aim to extend this approach so that it can applied to
games and we also intend to automate the approach as much
as possible.

Acknowledgements

The authors would like to thank Chris Kingsley, Daniel
Kroening and Peter Mehlitz for discussion, Steven Xu and Xin
Zhang for their help with the development of jpf-probabilistic,
and the referees for their numerous and constructive com-
ments.

REFERENCES

[1] David H. Ahl, editor. 101 BASIC Computer Games. DEC, 1973.
[2] Saswat Anand, Corina S. Pǎsǎreanu, and Willem Visser. JPF-SE: a

symbolic execution extension to Java PathFinder. In TACAS, pages 134–
138, 2007.

12http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-symbc
13http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-awt

[3] Cyrille Artho, Watcharin Leungwattanakit, Masami Hagiya, and Yoshi-
nori Tanabe. Efficient model checking of networked applications. In
TOOLS, pages 22–40, 2008.

[4] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking.
The MIT Press, 2008.

[5] Elliot D. Barlas and Tevfik Bultan. NetStub: a framework for verification
of distributed Java applications. In ASE, pages 24–33, 2007.

[6] Dragan Bos̆nac̆ki, Stefan Edelkamp, Damian Sulewski, and Anton Wijs.
Parallel probabilistic model checking on general purpose graphics pro-
cessors. International Journal on Software Tools for Techology Transfer,
13(1):21–35, 2011.

[7] Cristian Cadar and Dawson Engler. Execution generated test cases: how
to make systems code crash itself. In SPIN, pages 2–23, 2005.

[8] Guillaume Claret, Sriram K. Rajamani, Aditya V. Nori, Andrew D.
Gordon, and Johannes Borgström. Bayesian inference for probabilistic
programs via symbolic execution. Report MSR-TR-2012-86, 2012.

[9] James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn Laubach,
Corina S. Pasareanu, Robby, and Hongjun Zheng. Bandera: extracting
finite-state models from Java source code. In ICSE, pages 439–448,
2000.

[10] Elise Cormie-Bowins. A comparison of sequential and GPU implemen-
tations of iterative methods to compute reachability probabilities. In
GRAPHITE, pages 20–34, 2012.

[11] Elise Cormie-Bowins and Franck van Breugel. Measuring progress of
probabilistic LTL model checking. In QAPL, pages 33–47, 2012.

[12] Joost-Pieter Katoen, Ivan S. Zapreev, Ernst Moritz Hahn, Holger Her-
manns, and David N. Jansen. The ins and outs of the probabilistic model
checker MRMC. Performance Evaluation, 68(4):90–104, 2011.

[13] Mark Kattenbelt. Automated Quantitative Software Verification. PhD
thesis, University of Oxford, 2010.

[14] Chris Kingsley. Personal communication, 2012.
[15] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0:

verification of probabilistic real-time systems. In CAV, pages 585–591,
2011.

[16] Chris Lewis and Jim Whitehead. Runtime repair of software faults using
event-driven monitoring. In ICSE, pages 275–280, 2010.

[17] Chris Lewis, Jim Whitehead, and Noah Wardrip-Fruin. What went
wrong: a taxonomy of video game bugs. In FDG, pages 108–115, 2010.

[18] Peter C. Mehlitz, Oksana Tkachuk, and Mateusz Ujma. JPF-AWT:
model checking GUI applications. In ASE, pages 584–587, 2011.

[19] David Y. W. Park, Ulrich Stern, Jens U. Skakkebæk, and David L. Dill.
Java model checking. In ASE, pages 253–256, 2000.

[20] Esteban Pavese, Victor Braberman, and Sebastian Uchitel. My model
checker died!: how well did it do? In QUOVADIS, pages 33–40, 2010.

[21] Radek Pelánek. Fighting state space explosion: review and evaluation.
In FMICS, pages 37–52, 2008.

[22] Robby, Matthew B. Dwyer, and John Hatcliff. Bogor: an extensible and
highly-modular software model checking framework. In FSE, pages
267–276, 2003.

[23] Katie Salen and Eric Zimmerman. Rules of Play: Game Design
Fundamentals. The MIT Press, 2004.

[24] Nastaran Shafiei and Franck van Breugel. Automatic on-demand
delegation of calls in Java PathFinder. Available at http://www.cse.yorku.
ca/∼franck/research/drafts, 2013.

[25] Karla Starr. Testing video games can’t possibly be harder than an
afternoon with Xbox, right? Seattle Weekly, 2007.

[26] Mariëlle Stoelinga. Alea jacta est: Verification of probabilistic, real-time
and parametric systems. PhD thesis, Katholieke Universiteit Nijmegen,
2002.

[27] Willem Visser, Klaus Havelund, Guillaume Brat, SeungJoon Park,
and Flavio Lerda. Model checking programs. Automated Software
Engineering, 10(2):203–232, 2003.

[28] Xin Zhang. Measuring progress of model checking randomized algo-
rithms. Master’s thesis, York University, 2010.

[29] Xin Zhang and Franck van Breugel. Model checking randomized
algorithms with Java PathFinder. In QEST, pages 157–158, 2010.

[30] Xin Zhang and Franck van Breugel. A progress measure for explicit-
state probabilistic model-checkers. In ICALP, pages 283–294, 2011.

21

