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Abstract. In this paper we investigate the complexity of computing
bisimulation pseudometrics on Markov decision processes (MDPs). Our
first main result is that such pseudometrics can be computed in the
complexity class PPAD. We show that another well-known problem
in PPAD—computing the value of a simple stochastic game (SSG)—
can be reduced in logarithmic space to the problem of computing the
bisimulation pseudometric on a given MDP. In the other direction, we
reduce the problem of computing the bisimulation pseudometric to that
of computing the value of an SSG. This reduction uses a construction
similar to the classical attacker-defender game for bisimulation in the
non-probabilistic case, and works in polynomial time for MDPs of a
fixed branching degree. Finally, we investigate whether the above bound
on the branching degree can be dropped, relating it to the question of
whether there is a family of polynomial size SSGs that solve the linear
assignment problem.

1 Introduction

Recently, a family of pseudometrics on labelled Markov chains, Markov decision
processes (MDPs for short), and stochastic games has been proposed to measure
behavioural equivalence of states (see, for example, [8,9,14,19]). These pseudo-
metrics can be seen as quantitative generalizations of probabilistic bisimilarity,
a fundamental notion of equivalence for probabilistic systems [23,27] that gener-
alises lumpability for Markov chains. Specifically, states have zero distance under
the pseudometric if and only if they are bisimilar. A major motivation for such
a quantitative relaxation of the notion of probabilistic bisimilarity is robustness:
the resulting notion is less sensitive to numerical imprecision in modelling or
computation [21]. The price to pay for this is that efficient computation of the
pseudometrics becomes more challenging.

In the simplest setting, labelled Markov chains, the authors in collaboration
with Chen [9] have shown that the pseudometric is rational and computable
in polynomial time using the ellipsoid algorithm. In the most complex setting,
stochastic games, the pseudometric has been shown to be irrational, and as hard
as the sum-of-square-roots problem by Chatterjee, de Alfaro, Majumdar and
Raman [8]. In this paper, we consider a pseudometric on MDPs, i.e., we are
in the intermediate setting. De Alfaro, Majumdar, Raman and Stoelinga have
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provided a logical characterization of this pseudometric in [13]. Chatterjee, de
Alfaro, Majumdar and Raman have considered a closely related pseudometric in
[8]. They have shown that deciding whether the distance of two states is smaller
than or equal to some given rational is in PSPACE. This decision procedure
can be used to approximate the distance of two states by exploiting binary
search. Fu [19] has shown that the pseudometric is rational and computable in
NP ∩ coNP. It is even in UP ∩ coUP [20]. His proofs can easily be adapted
to our setting [20]. Ferns, Panangaden and Precup [17,18] have considered a
pseudometric on MDPs that discounts the future. They have shown that their
pseudometric can be approximated in polynomial time.

In this paper, we investigate the computational complexity of the above-
mentioned bisimulation pseudometric on MDPs in the undiscounted case. We
show that the value of the pseudometric is rational and can be computed in
PPAD, thus improving the bounds given in [8,20]. Our proof relies on a connec-
tion between bisimulation pseudometrics and simple stochastic games (SSGs for
short). This generalises the classical game-theoretic formulation of bisimulation
on labelled transition systems as a two-player turn-based finite game between
“Attacker”, who is trying to prove the systems are not bisimilar, and “Defender”,
who is trying to prove that the systems are bisimilar [28].

Recall that an SSG consists of a directed graph with a designated start
vertex and two distinguished vertices, known as 0-sink and 1-sink, that have no
outgoing edges. All other vertices have outdegree two and are classified either
as max-vertices, min-vertices or as average-vertices. The game is played by two
players, Player 0 and Player 1, with a single token. Initially, the token is placed
on the start vertex of the graph. At each step of the game, the token is moved
from a vertex to one of its two successors. At a min-vertex Player 0 chooses the
successor, at a max-vertex Player 1 chooses the successor, and at an average-
vertex the successor is chosen randomly. Player 1 wins the game if the token
reaches the 1-sink. If the token reaches the 0-sink or the token never reaches
a sink, Player 0 wins. As we will discuss below, one can assign a value, a real
number in the unit interval, to each vertex of the graph. For the start vertex,
this value captures the probability that Player 1 wins if both play optimally.

Computing the value of an SSG is a natural extension of linear programming.
The decision version of the problem also generalises the problem of computing
the winner of a parity game. It was shown to be in NP∩ coNP by Condon [11]
and, in fact, is known to be in UP ∩ coUP (see, for example, the paper [30] by
Yannakakis). However, after 20 years, the exact complexity remains unknown.
Computing the value of an SSG was shown to be in PLS by Yannakakis [29],
PPAD by Etessami and Yannakakis [16], and CLS and CCLS by Daskalakis
and Papadimitriou [12]. It is still not known whether this problem is complete
for any complexity class.

We reduce the problem of computing the bisimulation pseudometric on an
MDP to that of computing the value of an SSG derived from the MDP. The size
of this game depends exponentially on the branching degree of the MDP and so
our reduction is not polynomial-time in general. Nevertheless we are still able to
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inherit the PPAD complexity from SSGs. Here we use the result of Etessami
and Yannakakis [16] that a fixed point of polynomial piecewise linear functional
on Rn can be computed in PPAD.

The exponential blow up in the reduction from bisimulation pseudometrics to
SSGs can be avoided if one can encode an arithmetic circuit to solve the linear
assignment problem as an SSG. Recall that in the linear assignment problem
there are n agents and n tasks and a cost matrix specifying the cost for each
agent to perform each task. One has to assign exactly one agent to each task
while minimizing the total cost (see, for example, [7] for a detailed discussion).
Note that this is a quantitative generalization of the perfect matching problem.

We show that one can construct an MDP from a cost matrix such that the
bisimulation distance of two designated states of the MDP coincides with the
minimal total cost. Thus a polynomial transformation of bisimulation pseudo-
metrics on MDPs to SSGs would imply that there are polynomial size SSGs that
solve the linear assignment problem (i.e., for each n there would be an SSG Gn
such that if the cost matrix of a linear assignment problem with n agents and n
tasks is represented in the values of the sink nodes of Gn, then the value of the
start vertex gives the value of the optimal assignment). Note here the restriction
that all vertices of an SSG compute monotone functions (min, max, or average).
As shown by Razborov [25], there is a superpolynomial gap between the size of
monotone and non-monotone (boolean-valued) circuits for computing a perfect
matching. If there also exists a superpolynomial gap between the size of mono-
tone and non-monotone (real-valued) circuits for solving the linear assignment
problem (a problem that we leave for future research), then this may shed more
light on the relative complexity of computing the bisimulation pseudometric on
an MDP and computing the value of an SSG. Schwiegelshohn and Thiele [26]
have presented an arithmetic circuit to solve the linear assignment problem.
However, the circuit contains subtraction, which is a non-monotone operator.

In summary, the main contributions of this paper are the following.

– We prove that computing the bisimulation pseudometric on an MDP is in
PPAD, thus improving the bounds given in [8,20].

– We show that computing the value of an SSG can be reduced in logarithmic
space to computing the bisimulation pseudometric on an MDP.

– We prove that the above two problems are polynomial time equivalent if
there is an absolute bound on the branching degree of the MDP.

– We show that the linear assignment problem can be reduced in logarithmic
space to computing the bisimulation pseudometric on an MDP.

Due to lack of space, no proofs have been included. These can be found in [6].

Acknowledgements We would like to thank Rainer Burkard for discussions about
the linear assignment problem and for pointing us to [26]. We would also like to
thank Taolue Chen and Hongfei Fu for helpful discussions.
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2 Orders and Metrics

Both value assignments to the vertices of an SSG and distance functions on
the states of an MDP are functions mapping tuples to the unit interval. Such
functions carry a natural order and metric which will play a key role in our
technical development.

Let X be a set and n ∈ N. The relation v ⊆ [0, 1]X
n × [0, 1]X

n

is defined by

f1 v f2 iff f1(x1, . . . , xn) ≤ f2(x1, . . . , xn) for all x1, . . . , xn ∈ X.

One can easily verify that 〈[0, 1]X
n

,v〉 is a complete lattice.
The function ‖ · − · ‖ : [0, 1]X

n × [0, 1]X
n → [0, 1] is defined by

‖f1 − f2‖ = sup
x1,...,xn∈X

|f1(x1, . . . , xn)− f2(x1, . . . , xn)|.

One can also easily check that 〈[0, 1]X
n

, ‖ · − · ‖〉 is a nonempty complete metric
space.

To define the bisimulation pseudometric on the states of an MDP, we will use
two key ingredients: a distance function on finite sets and a distance function
on probability distributions. The former captures the nondeterministic choices
in an MDP, whereas the latter deals with the probabilistic choices in an MDP.

We denote the set of finite subsets of a set X by P(X). We define max ∅ = 0
and min ∅ = 1. We lift a distance function on X to a distance function on P(X)
as follows.

Definition 1. Let X be a set. The function P : [0, 1]X×X → [0, 1]P(X)×P(X) is
defined by

P(d)(A1, A2) = max
{

max
x1∈A1

min
x2∈A2

d(x1, x2), max
x2∈A2

min
x1∈A1

d(x2, x1)
}
.

The above is known as the Hausdorff metric (in case d is a metric). One can
show that the singleton sets isometrically embed X into P(X), that is, for all
x1, x2 ∈ X, P(d)({x1}, {x2}) = d(x1, x2).

One can show that P preserves both the order and the metric: for all d1,
d2 ∈ [0, 1]X×X , if d1 v d2 then P(d1) v P(d2), that is, P is monotone, and
‖P(d1)− P(d2)‖ ≤ ‖d1 − d2‖, that is, P is nonexpansive.

Recall that d ∈ [0, 1]X×X is a pseudometric if for all x1, x2, x3 ∈ X,
d(x1, x1) = 0, d(x1, x2) = d(x2, x1), and d(x1, x3) ≤ d(x1, x2) + d(x2, x3). If
d is a pseudometric then P(d) is a pseudometric as well (see, for example, [3,
Proposition A.25]).

We denote the set of probability distributions on a set X by D(X). To lift
a distance function on X to a distance function on D(X), we use the set of
nonexpansive functions from the set X endowed with the distance function d to
the unit interval, which we denote by (X, d) ------< [0, 1].
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Definition 2. Let X be a set. The function D : [0, 1]X×X → [0, 1]D(X)×D(X) is
defined by

D(d)(µ1, µ2) = sup

{∑
x∈X

f(x)(µ1(x)− µ2(x))

∣∣∣∣∣ f ∈ (X, d) ------< [0, 1]

}
.

The above is known as the Kantorovich metric (in case d is a metric). We
denote the Dirac distribution centered on x by δx. Recall that this probability
distribution maps x to one and all other elements to zero. One can show that
these Dirac distributions isometrically embed X into D(X), that is, for all x1,
x2 ∈ X, D(d)(δx1 , δx2) = d(x1, x2) (see, for example, [15, page 108]). One can
show that D is monotone (see, for example, [5, Proposition 38]) and nonexpansive
(see, for example, [4, Section 3]). One can also prove that D(d) is a pseudometric
if d is a pseudometric (see, for example, [15, Proposition 2.5.14]).

Definition 3. Let X be a set. Let µ1, µ2 ∈ D(X). Then ω ∈ D(X × X) is a
coupling of µ1 and µ2 if for all x1 x2 ∈ X,∑

x2∈X
ω(x1, x2) = µ1(x1) and

∑
x1∈X

ω(x1, x2) = µ2(x2).

In other words, ω is a joint probability distribution whose marginals are
µ1 and µ2. We denote the set of couplings of µ1 and µ2 by Ωµ1,µ2 . Using the
duality theorem of linear programming (see, for example, [10, Theorem 5.1]) we
can characterise D as follows:

D(d)(µ1, µ2) = min

 ∑
x1,x2∈X

ω(x1, x2)d(x1, x2)

∣∣∣∣∣ ω ∈ Ωµ1,µ2

 .

In [9, Lemma 1], a characterization of probabilistic bisimilarity (to be defined
in Definition 8) in terms of permutations is given. The following proposition
can be viewed as a quantitative analogue of that result. We denote the set of
permutations of the set {1, . . . , n} by Sn.

Proposition 4. Let n ∈ N. Let X be a set with xi, yi ∈ X for all 1 ≤ i ≤ n.
Let d ∈ [0, 1]X×X be a pseudometric. Then

D(d)

 ∑
1≤i≤n

1
nδxi ,

∑
1≤i≤n

1
nδyi

 = min

 ∑
1≤i≤n

1
n · d(xi, yσ(i))

∣∣∣∣∣ σ ∈ Sn
 .

3 MDPs and SSGs

Next, we formally introduce the two main players in this paper: MDPs and SSGs.
Furthermore, we define a pseudometric on the states of an MDP and show that
it indeed generalizes probabilistic bisimilarity and, therefore, deserves the name
bisimulation pseudometric. Finally, we define a value assignment of the vertices
of an SSG.
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Definition 5. A Markov decision process (MDP) is a tuple (S,L,→, `) consist-
ing of

– a finite set S of states,
– a finite set L of labels,
– a finite transition relation → ⊆ S ×D(S), and
– a labelling function ` : S → L.

For the remainder of this section, we fix an MDP (S,L,→, `). As we will see
below, the bisimulation pseudometric is defined as the least fixed point of the
following function.

Definition 6. The function ∆ : [0, 1]S×S → [0, 1]S×S is defined as follows. If
`(s1) 6= `(s2) then ∆(d)(s1, s2) = 1. Otherwise

∆(d)(s1, s2) = P(D(d))({µ1 | s1 → µ1 }, {µ2 | s2 → µ2 }).

Fu [19] also defines his pseudometric as a least fixed point. He considers sets
of convex combinations of transitions, also known as combined transitions, rather
than just sets of transitions as we do. For a discussion of the difference between
transitions and combined transitions we refer the reader to, for example, [27].

From the facts that P and D are monotone, we can conclude that ∆ is mono-
tone as well. According to Tarski’s fixed point theorem, a monotone function on
a complete lattice has a least fixed point. Hence, ∆ has a least fixed point, which
we denote by δ. This is our bisimulation pseudometric.

From the facts that P and D are nonexpansive, we can conclude that ∆ is
nonexpansive as well. Since ∆ is monotone and nonexpansive, we can conclude
from [4, Corollary 1] that the closure ordinal of ∆ is ω, that is, δ =

⊔
n∈N ∆

n(0),
where the distance function 0 maps every pair of states to zero. The latter
characterization of δ allows for inductive proofs. For example, to conclude that
δ is a pseudometric, it suffices to prove by induction on n that ∆n(0) is a
pseudometric.

Next, we introduce the notion of probabilistic bisimilarity. To define this
notion, we first show how to lift a relation on states to a relation on probability
distributions on states.

Definition 7. The lifting of a relation R ⊆ S × S is the relation R̄ ⊆ D(S) ×
D(S) defined by µ1R̄µ2 if there exists a coupling ω ∈ Ωµ1,µ2 such that ω(s1, s2)>0
implies s1 R s2 for all s1, s2 ∈ S.

Definition 8. R ⊆ S × S is a probabilistic bisimulation if s1 R s2 implies

– `(s1) = `(s2),
– if s1 → µ1 then there exists s2 → µ2 such that µ1 R̄ µ2,
– if s2 → µ2 then there exists s1 → µ1 such that µ1 R̄ µ2.

States s1 and s2 are probabilistic bisimilar, denoted s1 ∼ s2, if s1 R s2 for some
probabilistic bisimulation R.
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One can show that distance zero captures probabilistic bisimilarity, that is,
for all s1, s2 ∈ S, δ(s1, s2) = 0 if and only if s1 ∼ s2.

Definition 9. A simple stochastic game (SSG) is a tuple (V,E, vs) such that

– (V,E) is a finite directed graph,
– vs ∈ V ,
– V is the disjoint union of the sets {v0, v1}, Vmax, Vmin, and Vavg,
– the indegree of v0 and v1 is zero, and
– the indegree of v is two for all v ∈ V \ {v0, v1}.

Whenever the start vertex vs does not play a role, we write (V,E) instead of
(V,E, vs). We denote the predecessors of vertex v ∈ V \ {v0, v1} by v` and vr.
For the remainder of this section, we fix an SSG (V,E, vs). It is a bit of folklore
that the value of an SSG, as described in the introduction, can be defined as the
least fixed point of the following function (see, for example, [22]).

Definition 10. The function Φ : [0, 1]V → [0, 1]V is defined by

Φ(f)(v) =


0 if v = v0
1 if v = v1
max{f(v`), f(vr)} if v ∈ Vmax

min{f(v`), f(vr)} if v ∈ Vmin
1
2f(v`) + 1

2f(vr) if v ∈ Vavg

It follows immediately from the definitions that Φ is monotone. Again using
Tarski’s fixed point theorem, we can conclude that Φ has a least fixed point
which we denote by φ. This function assigns to each vertex of the SSG its value.
Hence, φ(vs) is the value of the SSG.

One can prove that Φ is nonexpansive. Since Φ is also monotone, we can con-
clude from [4, Corollary 1] that the closure ordinal of Φ is ω, that is,
φ =

⊔
n∈N Φ

n(0), where the function 0 maps every vertex to zero. Again, this
characterization allows for inductive proofs.

4 Computing Bisimulation Pseudometrics is in PPAD

In this section we show that the least fixed point of the functional ∆ can be
computed in PPAD.

Proposition 11. ∆ is piecewise linear.

Proof. Writing out the definition of ∆ explicitly, we have that if `(s1) = `(s2)
then

∆(d)(s1, s2) = max
{

max
s1→µ1

min
s2→µ2

min
ω∈Ωµ1,µ2

∑
u,v∈S

ω(u, v)d(u, v),

max
s2→µ2

min
s1→µ1

min
ω∈Ωµ1,µ2

∑
u,v∈S

ω(u, v)d(u, v)
}
. (1)
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Observe, moreover, that the innermost minima in (3) are achieved at the vertices
of each polytope Ωµ1,µ2 .

Next we reformat the definition of ∆, essentially by currying. To this end,
define the set of attacker strategies AS to comprise all functions

σ : S × S → D(S)× S

such that either σ(s1, s2) = (µ1, s2), where s1 → µ1, or σ(s1, s2) = (µ2, s1),
where s2 → µ2. Define the set of defender strategies DS to comprise all functions

σ : D(S)× S → D(S)×D(S)

such that σ(µ1, s2) = (µ1, µ2), where s2 → µ2. Finally, the set of coupling strate-
gies CS comprises all functions σ : D(S)×D(S)→ D(S×S) such that σ(µ1, µ2)
is a vertex of the set of couplings Ωµ1,µ2 .

Given an attacker strategy σ1 ∈ AS, defender strategy σ2 ∈ DS, and coupling
strategy σ3 ∈ CS, we define∆σ1,σ2,σ3 : [0, 1]S×S → [0, 1]S×S by∆σ1,σ2,σ3(d)(s1, s2) =
1 if `(s1) 6= `(s2), and otherwise

∆σ1,σ2,σ3(d)(s1, s2) =
∑
u,v∈S

ω(u, v)d(u, v) ,

where ω = (σ3 ◦ σ2 ◦ σ1)(s1, s2).
Currying the definition of ∆ in (3) we have that

∆(d) = max
σ1∈AS

min
σ2∈DS

min
σ3∈CS

∆σ1,σ2,σ3 . (2)

But each function ∆σ1,σ2,σ3 is clearly piecewise linear and the class of piecewise
linear functions [0, 1]S×S is closed under finite pointwise maxima and minima.
It follows that ∆ is piecewise linear. ut

In fact we have a stronger result than Proposition 11: the functional ∆ is
polynomial piecewise linear in the sense of [16]. This means that ∆’s domain
can be divided into polyhedral cells, and given d ∈ [0, 1]S×S we can output in
polynomial time (in the representation of d and the underlying MDP) a system
of linear inequalities defining the cell Cd ⊆ [0, 1]S×S containing d and a linear
function coinciding with ∆ �Cd .

Proposition 12. ∆ is polynomial piecewise linear.

It is shown in [16] that one can compute a fixed point of a polynomial piece-
wise linear map in PPAD. To compute specifically the least fixed point δ of
∆ we use a similar strategy to that employed for SSGs in [16]. We consider a
contractive map ∆ε(d) = ∆(ε · d) for some ε sufficiently close to 1. We compute
the (unique) fixed point of ∆ε in PPAD and round using continued fractions to
obtain δ. This relies on the fact that the unique fixed point of ∆ε converges to δ
as ε converges to 1, as well as the fact that there is a polynomial bound on the
bit size of the rational numbers occurring in δ. Thus we obtain the following.

Theorem 13. The problem of computing δ on a given MDP is in PPAD.
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5 From SSGs to MDPs

For the remainder of this section, we fix an SSG (V,E). Next, we will construct
a corresponding MDP. Before formally defining this MDP, let us provide the
intuition behind its construction. For each vertex v and its outgoing edges of the
SSG, we include a gadget consisting of states and their outgoing transitions in
the MDP. Each gadget contains states v0 and v1 such that δ(v0, v1) = φ(v). Let
us informally describe the MDP by giving gadgets for each type of vertex. The
gadget for vertex v0 is as follows.

v0 v0
0v
0
0 v1

0v
1
0

The gadget for vertex v1 is shown below.

v1 v0
1v
0
1 v1

1v
1
1

The gadget for a min vertex is as follows.

v

v` vr

v0v0 v1v1

v2v2 v3v3 v4v4

v0
`v
0
` v1

`v
1
` v0

rv
0
r v1

rv
1
r

Next, we consider the gadget for a max vertex.

v

v` vr

v0v0 v1v1

v0
`v
0
` v1

`v
1
` v0

rv
0
r v1

rv
1
r

Finally, we present the gadget for an average vertex.
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v

v` vr

v0v0 v1v1

v0
`v
0
` v1

`v
1
` v0

rv
0
r v1

rv
1
r

This completes the description of the gadgets. The MDPM(V,E) is obtained by
composing the gadgets for each vertex of the SSG (V,E). The transduction of an
SSG to an MDP is done vertex by vertex. To produce the gadget corresponding
to each vertex one only needs to store the vertex and its two predecessors, and the
states of the gadget. Thus the reduction can be done in deterministic logarithmic
space.

Definition 14. The MDP M(V,E) is defined by M(V,E) = (S,L,→, `) where

– the set S of states is defined by

S = { v0, v1 | v ∈ V } ∪ { v2, v3, v4 | V ∈ Vmin },

– the set L of labels is defined by

L = V,

– the transition relation → is defined by

→ =
⋃
{→v | v ∈ V },

where
• →v0 = ∅,
• →v1 = {(v0

1 , δv01 )},
• for each v ∈ Vmin,
→v = {(v0, δv2), (v0, δv3), (v1, δv2), (v1, δv3), (v1, δv4), (v2, δv0` ), (v2, δv1` ),

(v2, δv1r ), (v3, δv1` ), (v3, δv0r ), (v3, δv1r ), (v4, δv1` ), (v4, δv1r )},
• for each v ∈ Vmax,
→v = {(v0, δv0` ), (v0, δv0r ), (v1, δv1` ), (v1, δv1r )},

• for each v ∈ Vavg,
→v = {(v0, 1

2δv0` + 1
2δv0r ), (v1, 1

2δv1` + 1
2δv1r )},

– the labelling function ` : S → L is defined by

`(vi) = v.

In the remainder of this section, Φ and φ correspond to the SSG (V,E), and
∆ and δ correspond to the MDP M(V,E). ∆ and Φ are related as follows.

Lemma 15. For all n ∈ N and v ∈ V ,

∆n(0)(v0, v1) ≤ Φn(0)(v) ≤ ∆2n(0)(v0, v1).
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From the above lemma and the fact that for all n ∈ N, ∆n(0) v ∆n+1(0)
and Φn(0) v Φn+1(0), we can conclude the following result.

Theorem 16. For all v ∈ V , δ(v0, v1) = φ(v).

Hence, computing the value of an SSG can be reduced in deterministic log-
arithmic space to computing the bisimulation pseudometric on an MDP.

6 From MDPs to SSGs

For the remainder of this section, we fix an MDP (S,L,→, `). Next, we will
construct an SSG that corresponds to the MDP. Before formally defining this
SSG, let us provide the intuition behind its construction. For each pair of states
s and t there is a max vertex vs,t, with φ(vs,t) = δ(s, t). For each state s and
transition t → ν, there is a min vertex vs,ν with φ(vs,ν) = mins→µD(δ)(µ, ν)
and for each pair of transitions s→ µ and t→ ν, there is a min vertex vµ,ν with
φ(vµ,ν) = D(δ)(µ, ν).

s, t

s, ν1 · · · s, νj · · · s, νn t, µ1 · · · t, µi · · · t, µm

µ1, ν1 · · · µi, νj · · · µm, νn

With each each vertex vν,µ we associate the set of couplings Ωµ,ν . This set of
couplings forms a convex polytope. Let Vµ,ν be the set of its vertices. For each
ω ∈ Vµ,ν , we can construct an SSG (Vω, Eω) along the lines of the constructions
in [2, Section 4.1].

Proposition 17. For each ω ∈ Vµ,ν there exists an SSG (Vω, Eω) with

– vω ∈ Vω,
– { vs1,s2 | (s1, s2) ∈ support(ω) } ⊆ Vω, and
– φ(vω) =

∑
s1,s2∈S ω(s1, s2)φ(vs1,s2)

of size polynomial in ω.

Combining the above we arrive at the following construction.
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Definition 18. The SSG G(S,L,→, `) is defined by G(S,L,→, `) = (V,E) where
the set V of vertices is defined by

V =
⋃{

Vω

∣∣∣∣∣ ∃s→ µ : ∃t→ ν : ω ∈ Vµ,ν

}
∪ Vmin ∪ Vmax

with
Vmin = { vs,ν | s ∈ S ∧ ∃t ∈ S : t→ ν }∪

{ vµ,ν | ∃s ∈ S : s→ µ ∧ ∃t ∈ S : t→ ν }
Vmax = { vs,t | s, t ∈ S }

and the set E of edges is defined by

E =
⋃{

Eω

∣∣∣∣∣ ∃s→ µ : ∃t→ ν : ω ∈ Vµ,ν

}
∪

{(vs,t, vt,µ) | s→ µ ∧ t ∈ S ∧ `(s) = `(t) } ∪
{(vs,t, vs,ν) | s ∈ S ∧ t→ ν ∧ `(s) = `(t) } ∪
{(vs,t, v1) | s ∈ S ∧ t ∈ S ∧ `(s) 6= `(t) } ∪
{ (vs,ν , vµ,ν) | s→ µ ∧ ∃t ∈ S : t→ ν } ∪
{ (vµ,ν , vω) | vµ,ν ∈ Vmin ∧ ω ∈ Vµ,ν }

Let δ be the bisimulation pseudometric of the MDP (S,L,→, `) and let φ be
the value assignment of the SSG G(S,L,→, `). These are related as follows.

Theorem 19. For all s1, s2 ∈ S, φ(vs1,s2) = δ(s1, s2).

Note that, in general, the size of Vµ,ν may be exponential in the branching
degree of the MDP. To obtain a polynomial time reduction we restrict ourselves
to the following class of MDPs.

Definition 20. Let n ∈ N. An MDP (S,L,→, `) has n-bounded support if for
all (s, µ) ∈ →, |support(µ)| ≤ n.

If we restrict ourselves to MDPs with n-bounded support for some fixed
n ∈ N, the size of Vµ1,µ2 is polynomial in the size of the MDP and, hence, we
obtain a polynomial time reduction.

7 From Linear Assignment Problems to MDPs

Given a cost matrix c : Q{1,...,n}×{1,...,n}, the linear assignment problem boils
down to computing

min

 ∑
1≤i≤n

c(i, σ(i))

∣∣∣∣∣ σ ∈ Sn
 .

Without loss of generality we may assume that the costs are rationals in the unit
interval. For the remainder of this section, we fix c ∈ (Q ∩ [0, 1]){1,...,n}×{1,...,n}.
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ss

s1s1 · · · snsn

s0,1s0,1 · · · s0,ns0,n

s′s′

t1,1t1,1 · · · t1,nt1,n · · · tn,1tn,1 · · · tn,ntn,n

t1t1 · · · tntn

tt

t′t′

Definition 21. The MDP M(c) is defined by M(c) = (S,L,→, `) where

– the set S is states is defined by

S = {s, t, s′, t′} ∪
{ si | 1 ≤ i ≤ n } ∪ { ti | 1 ≤ i ≤ n } ∪
{ s0,j | 1 ≤ j ≤ n } ∪ { ti,j | 1 ≤ i, j ≤ n }

– the set L of labels is defined by

L = {l} ∪ {li | 1 ≤ i ≤ n },

– the transition relation → is defined by

→ =


s, ∑

1≤i≤n

1
nδsi

 ,

t, ∑
1≤i≤n

1
nδti

 ∪
{ (sj , δs0,j ) | 1 ≤ j ≤ n } ∪ { (sh, δti,j ) | 1 ≤ h, i, j ≤ n ∧ h 6= j } ∪
{ (ti, δti,j ) | 1 ≤ i, j ≤ n } ∪
{ (s0,j , δs′) | 1 ≤ j ≤ n } ∪
{ (ti,j , c(j, i)δt′ + (1− c(j, i))δs′) | 1 ≤ i, j ≤ n } ∪
{ (s′, δs′) | 1 ≤ i ≤ n },

– the labelling function ` : S → L is defined by

`(s′′) =
{
lj if s′′ = s0,j or s′′ = ti,j
l otherwise



14 Franck van Breugel and James Worrell

Let δ be the bisimulation pseudometric of the MDP M(c). Using Proposi-
tion 4, we can show the following.

Theorem 22. δ(s, t) = 1
n min{

∑
1≤i≤n c(i, σ(i)) | σ ∈ Sn }.

Hence, the linear assignment problem can be reduced in deterministic loga-
rithmic space to computing a bisimulation pseudometric.
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A Proofs of Section 2

Proposition 23. Let X be a set and n ∈ ω. 〈[0, 1]X
n

,v〉 is a complete lattice.

Proof. Obviously, v is a partial order. The bottom element assigns to every tuple
zero and the top element assigns to every tuple one. Let F be a nonempty subset
of [0, 1]X

n

. The meet of F is defined by (
d
F )(x1, . . . , xn) = inff∈F f(x1, . . . , xn)

and the join of F is defined by (
⊔
F )(x1, . . . , xn) = supf∈F f(x1, . . . , xn). ut

Proposition 24. Let X be a set. For all d ∈ [0, 1]X×X , A1, A2 ∈ P(X), if
A1 ⊆ A2 then P(d)(A1, A2) = maxx2∈A2\A1 minx1∈A1 d(x1, x2).

Proof.

P(d)(A1, A2) = max
{

max
x1∈A

min
x2∈A2

d(x1, x2), max
x2∈A2

min
x1∈A1

d(x1, x2)
}

= max
x2∈A2

inf
x1∈A1

d(x1, x2)

= max
x2∈A2\A1

min
x1∈A1

d(x1, x2).

ut

Proposition 25. P is nonexpansive.

Proof. Let d1, d2 ∈ [0, 1]X×X and let A1, A2 ∈ P(X). Then

P(d1)(A1, A2)− P(d2)(A1, A2)

= max
{

max
x1∈A1

min
x2∈A2

d1(x1, x2), max
x2∈A2

min
x1∈A1

d1(x2, x1)
}
−

max
{

max
x1∈A1

min
x2∈A2

d2(x1, x2), max
x2∈A2

min
x1∈A1

d2(x2, x1)
}

≤ max
{

max
x1∈A1

min
x2∈A2

d1(x1, x2)− max
x1∈A1

min
x2∈A2

d2(x1, x2),

max
x2∈A2

min
x1∈A1

d1(x2, x1)− max
x2∈A2

min
x1∈A1

d2(x2, x1)
}

Furthermore, there exist x′1, x′2 ∈ X,

max
x1∈A1

min
x2∈A2

d1(x1, x2)− max
x1∈A1

min
x2∈A2

d2(x1, x2)

= max
x1∈A1

min
x2∈A2

d1(x1, x2)− min
x2∈A2

d2(x′1, x2)

≤ min
x2∈A2

d1(x′1, x2)− min
x2∈A2

d2(x′1, x2)

= d1(x′1, x
′
2)− min

x2∈A2
d2(x′1, x2)

≤ d1(x′1, x
′
2)− d2(x′1, x

′
2)

≤ ‖d1 − d2‖.
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By symmetry, we can conclude that

P(d1)(A1, A2)− P(d2)(A1, A2) ≤ ‖d1 − d2‖.

ut

Proposition 26. Let X be a set. For all d ∈ [0, 1]X×X , x1, x2, y1, y2 ∈ X, if
d is a pseudometric and

d(x1, x2) = 1
d(x1, y2) = 1
d(y1, x2) = 1
d(y1, y2) = 1

then D(d)( 1
2δx1 + 1

2δx2 ,
1
2δy1 + 1

2δy2) = 1
2 (d(x1, y1) + dX(x2, y2)).

Proof. We have that

D(d)( 1
2δx1 + 1

2δx2 ,
1
2δy1 + 1

2δy2)
= sup
f∈X------<[0,1]

( 1
2f(x1) + 1

2f(x2))− ( 1
2f(y1) + 1

2f(y2))

= 1
2 sup
f∈X------<[0,1]

(f(x1)− f(y1)) + (f(x2)− f(y2))

= 1
2 (d(x1, y1) + d(x2, y2)),

since f(x1) − f(y1) ≤ d(x1, y1) and f(x2) − f(y2) ≤ d(x2, y2) for all f ∈ X ------<
[0, 1], and function g : {x1, x2, y1, y2} → [0, 1] defined by

g(z) =

d(x1, y1) if z = x1

d(x2, y2) if z = x2

0 otherwise

is nonexpansive and g(x1) − g(y1) = d(x1, y1) and g(x2) − g(y2) = d(x2, y2).
Note that every nonexpansive function {x1, x2, y1, y2} to [0, 1] can be extended
to a nonexpansive function from X to [0, 1] (see, for example, [24, page 162] for
such a McShane-Whitney extension theorem). ut

Proposition 27. Let X be a set. For all q ∈ [0, 1], d ∈ [0, 1]X×X , x, y ∈ X, if
d is a pseudometric then D(d)(δx, (1− q)δx + qδy) = qd(x, y).

Proof. We have that

D(d)(δx, (1− q)δx + qδy)
= sup
f∈X------<[0,1]

f(x)− ((1− q)f(x) + qf(y))

= q sup
f∈X------<[0,1]

f(x)− f(y)

= qd(x, y),

since f(x)−f(y) ≤ d(x, y) for all f ∈ X ------< [0, 1], and function g : {x, y} → [0, 1],
defined by g(x) = d(x, y) and g(y) = 0, is nonexpansive and g(x)−g(y) = d(x, y)
(again using a McShane-Whitney extension theorem). ut
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Proposition 4. Let m ∈ ω. Let X be a set with xi, yi ∈ X for all 1 ≤ i ≤ m.
Let d ∈ [0, 1]X×X be a pseudometric. Then

D(d)

 ∑
1≤i≤m

1
mδxi ,

∑
1≤i≤m

1
mδyi

 = min

 ∑
1≤i≤m

1
m · d(xi, yσ(i))

∣∣∣∣∣ σ ∈ Sm
 .

Proof. By definition,

D(d)

 ∑
1≤i≤m

1
mδxi ,

∑
1≤i≤m

1
mδyi


= sup

 ∑
1≤i≤m

1
mf(xi)−

∑
1≤i≤m

1
mf(yi)

∣∣∣∣∣ f ∈ X ------< [0, 1]


= 1

m sup

 ∑
1≤i≤m

f(xi)− f(yi)

∣∣∣∣∣ f ∈ X ------< [0, 1]


By the above mentioned McShane-Whitney extension theorem, every nonex-
pansive function from {xi, yi | 1 ≤ i ≤ m } to [0, 1] can be extended to a
nonexpansive function from X to [0, 1] and, hence, we can restrict our attention
to the former. The above is equal to 1

m times the value of the following linear
programming problem. In the problem we use the variables fi and gi for the
values of f(xi) and f(yi), respectively.

maximize
∑

1≤i≤m

fi − gi

such that fi − fj ≤ d(xi, xj) 1 ≤ i, j ≤ m
gi − gj ≤ d(yi, yj) 1 ≤ i, j ≤ m
fi − gj ≤ d(xi, yj) 1 ≤ i, j ≤ m
gi − fj ≤ d(yi, xj) 1 ≤ i, j ≤ m
fi ≥ 0 1 ≤ i ≤ m
gi ≥ 0 1 ≤ i ≤ m

If all fi’s and gi’s are zero then the constraints are satisfied and, hence, the
linear programming problem has a feasible origin. Since the distance function d
is bounded by one, all fi’s and gi’s are bounded by one. Therefore,

∑
1≤i≤m fi−gi

is bounded. According to the fundamental theorem of linear programming (see,
for example, [10, Theorem 3.4]), the linear programming problem has an optimal
solution.

Next, we show that the constraints fi− fj ≤ d(xi, xj) and gi− gj ≤ d(yi, yj)
are redundant. For example,

fi − fj = (fi − gj)− (fj − gj)
≤ d(xi, yj)− d(xj , yj)
≤ d(xi, xj) [d satisfies the triangle inequality]
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The dual of this simplified linear programming problem is

minimize
∑

1≤i,j≤m

d(xi, yj)vij

such that
∑

1≤j≤m

vij ≤ 1 1 ≤ i ≤ m∑
1≤i≤m

vij ≥ 1 1 ≤ j ≤ m

vij ≥ 0 1 ≤ i, j ≤ m

According to the duality theorem of linear programming (see, for example, [10,
Theorem 5.1]), this dual problem also has an optimal solution with the same
optimal value as the original problem.

From the above constraints we can conclude that∑
1≤i,j≤m

vij ≤ m and
∑

1≤i,j≤m

vij ≥ m.

Hence, we can replace the inequalities in those constraints by equalities resulting
in the following.

minimize
∑

1≤i,j≤m

d(xi, yj)vij

such that
∑

1≤j≤m

vij = 1 1 ≤ i ≤ m∑
1≤i≤m

vij = 1 1 ≤ j ≤ m

vij ≥ 0 1 ≤ i, j ≤ m

The value of the above problem does not change if we replace the constraints
vij ≥ 0 with vij ∈ {0, 1} (see, for example, [7, Chapter 4]). This modified linear
programming problem is known as the linear assignment problem. According to,
for example, [7, Chapter 4], its value is min{

∑
1≤i≤m d(xi, yσ(i)) | σ ∈ Sm }. ut

B Proofs of Section 3

Proposition 28. ∆ is monotone.

Proof. Let d1, d2 ∈ [0, 1]S×S with d1 v d2. Let s1, s2 ∈ S. We distinguish two
cases. If `(s1) 6= `(s2) then

∆(d1)(s1, s2) = 1 = ∆(d2)(s1, s2).

Otherwise,

∆(d1)(s1, s2)
= P(D(d1))({µ1 | s1 → µ1 }, {µ2 | s2 → µ2 })
≤ P(D(d2))({µ1 | s1 → µ1 }, {µ2 | s2 → µ2 }) [Proposition ?? and ??]
= ∆(d2)(s1, s2).

ut
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Proposition 29. ∆ is nonexpansive.

Proof. Let d1, d2 ∈ [0, 1]S×S . Let s1, s2 ∈ S. We distinguish two cases. If `(s1) 6=
`(s2) then

|∆(d1)(s1, s2)−∆(d2)(s1, s2)| = |1− 1| = 0 ≤ ‖d1 − d2‖.

Otherwise,

|∆(d1)(s1, s2)−∆(d2)(s1, s2)|
= |P(D(d1))({µ1 | s1 → µ1 }, {µ2 | s2 → µ2 })− P(D(d1))({µ1 | s1 → µ1 }, {µ2 | s2 → µ2 })|
≤ ε‖d1 − d2‖ [Proposition 25 and ??]

ut

Proposition 30. δ is a pseudometric.

Proof. Obviously, 0 is a pseudometric. Using Proposition ??, we can show that
for all n ∈ ω, ∆n(0) is a pseudometric by induction on n. By Proposition ??,
δ =

⊔
{∆n(0) | n ∈ ω }. From this, we easily derive that δ is a pseudometric as

well. ut

Proposition 31. Φ is nonexpansive.

Proof. Let f1, f2 ∈ [0, 1]V . Let v ∈ V . distinguish five cases.

– Let v = v0. Then

|Φ(f1)(v)− Φ(f2)(v)| = |0− 0| = 0 ≤ ‖f1 − f2‖.

– Let v = v1. Then

|Φ(f1)(v)− Φ(f2)(v)| = |1− 1| = 0 ≤ ‖f1 − f2‖.

– Let v be a min vertex.

|Φ(f1)(v)− Φ(f2)(v)| = |min{f1(v`), f1(vr)} −min{f2(v`), f2(vr)}|
≤ max{|f1(v`)− f2(v`)|, |f1(vr)− f2(vr)|}
≤ ‖f1 − f2‖.

– Let v be a max vertex.

|Φ(f1)(v)− Φ(f2)(v)| = |max{f1(v`), f1(vr)} −max{f2(v`), f2(vr)}|
≤ max{|f1(v`)− f2(v`)|, |f1(vr)− f2(vr)|}
≤ ‖f1 − f2‖.

– Let v be an avg vertex.

|Φ(f1)(v)− Φ(f2)(v)| = |( 1
2f1(v`) + 1

2f1(vr))− ( 1
2f2(v`) + 1

2f2(vr))|
≤ | 12 (f1(v`)− f2(v`)) + 1

2 (f1(vr)− f2(vr))|
≤ ‖f1 − f2‖.

ut
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C Proofs of Section 4

Proposition 11. ∆ is piecewise linear.

Proof. Writing out the definition of ∆ explicitly, we have that if `(s1) = `(s2)
then

∆(d)(s1, s2) = max
{

max
s1→µ1

min
s2→µ2

min
ω∈Ωµ1,µ2

∑
u,v∈S

d(u, v) · ω(u, v),

max
s2→µ2

min
s1→µ1

min
ω∈Ωµ1,µ2

∑
u,v∈S

d(u, v) · ω(u, v)
}
. (3)

Observe, moreover, that the innermost minimum in (3) are achieved at the ver-
tices of each polytope Ωµ1,µ2 .

Next we reformat the definition of ∆, essentially by currying. To this end,
define the set of attacker strategies AS to comprise all functions

σ : S × S → D(S)× S

such that either σ(s1, s2) = (µ1, s2), where s1 → µ1, or σ(s1, s2) = (µ2, s1),
where s2 → µ2. Define the set of defender strategies DS to comprise all functions

σ : D(S)× S → D(S)×D(S)

such that σ(µ1, s2) = (µ1, µ2), where s2 → µ2. Finally, the set of coupling strate-
gies CS comprises all functions σ : D(S)×D(S)→ D(S×S) such that σ(µ1, µ2)
is a vertex of the set of couplings Ωµ1,µ2 .

Given an attacker strategy σ1 ∈ AS, defender strategy σ2 ∈ DS, and coupling
strategy σ3 ∈ CS, we define∆σ1,σ2,σ3 : [0, 1]S×S → [0, 1]S×S by∆σ1,σ2,σ3(d)(s1, s2) =
1 if `(s1) 6= `(s2), and otherwise

∆σ1,σ2,σ3(d)(s1, s2) =
∑
u,v∈S

d(u, v) · ω(u, v) ,

where ω = (σ3 ◦ σ2 ◦ σ1)(s1, s2).
Currying the definition of ∆ in (3) we have that

∆(d) = max
σ1∈AS

min
σ2∈DS

min
σ3∈CS

∆σ1,σ2,σ3 . (4)

But each function ∆σ1,σ2,σ3 is clearly piecewise linear and the class of piecewise
linear functions [0, 1]S×S is closed under finite pointwise maxima and minima.
It follows that ∆ is piecewise linear. ut

Proposition 12. ∆ is polynomial piecewise linear.

Proof. Suppose we are given a pseudometric d ∈ [0, 1]S×S . Given distributions
µ1, µ2 ∈ D(S), using the Network Simplex Algorithm [1] we can compute in
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polynomial time (in the representation of d and the MDP M) a coupling ω∗ ∈
Ωµ1,µ2 that minimises ∑

u,v∈S
d(u, v) · ω(u, v) . (5)

Without loss of generality we can assume that ω∗ is a vertex of Ωµ1,µ2 . Let
ω1, . . . , ωk be the adjacent vertices of ω∗ in Ωµ1,µ2 (also computable in polyno-
mial time). Define

Cµ1,µ2
d :=

{
d′ ∈ [0, 1]S :

∑
u,v∈S

(ω∗(u, v)− ωi(u, v)) · d′(u, v) ≥ 0, i = 1, . . . , k
}
.

By convexity of Ωµ1,µ2 , for all d′ ∈ Cd we have that the linear function (5) is
maximised on Ωµ1,µ2 at the vertex ω∗.

Write
Cd =

⋂
s1∈S
s2∈S

⋂
s1→µ1
s2→µ2

Cµ1,µ2
d .

Then Cd is a polyhedral cell containing d, computable in polynomial time, on
which ∆ restricts to a linear functional (also computable in polynomial time).

D Proofs of Section 5

Proposition 32. For all n ∈ ω,

∆n(0) v ∆n+1(0).

Proof. We prove this proposition by induction on n. Obviously, it holds in the
case that n = 0. Let n>0. By induction, ∆n−1(0) v ∆n(0). Since ∆ is monotone
(Proposition 28), we can conclude that ∆n(0) v ∆n+1(0). ut

Lemma 15. For all n ∈ ω and v ∈ V ,

∆n(0)(v0, v1) ≤ Φn(0)(v) ≤ ∆2n(0)(v0, v1).

Proof. We prove this lemma by induction on n. The result obviously holds for
n = 0. Let n > 0. We distinguish the following cases.

– Let v = v0. Then

∆n(0)(v0
0 , v

1
0) = P(D(∆n−1(0)))(∅, ∅)

= 0
= Φn(0)(v0)
= 0
= P(D(∆2n−1(0)))(∅, ∅)
= ∆2n(0)(v0

0 , v
1
0).
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Let v = v1. Then

∆n(0)(v0
1 , v

1
1) = P(D(∆n−1(0)))({δv01}, ∅)

= 1
= Φn(0)(v1)
= 1
= P(D(∆2n−1(0)))({δv01}, ∅)
= ∆2n(0)(v0

1 , v
1
1).

– Let v be a min vertex. Then

∆n(0)(v0, v1)
= P(D(∆n−1(0)))({δv2 , δv3}, {δv2 , δv3 , δv4})
= min{D(∆n−1(0))(δv2 , δv4),D(∆n−1(0))(δv3 , δv4)} [Proposition 24]
= min{∆n−1(0)(v2, v4), ∆n−1(0)(v3, v4)} [Proposition ??]

Hence, if n = 1 then

∆n(0)(v0, v1) = 0
≤ Φn(0)(v)
= min{Φn−1(0)(v`), Φn−1(0)(vr)}
= 0
≤ ∆2n(0)(v0, v1).

Let n > 1.

∆n−1(0)(v2, v4)
= P(D(∆n−2(0)))({δv0` , δv1` , δv1r}, {δv1` , δv1r})

= min{D(∆n−2(0))(δv0` , δv1` ),D(∆n−2(0))(δv0` , δv1r )} [Proposition 24]

= min{∆n−2(0)(v0
` , v

1
` ), ∆n−2(0)(v0

` , v
1
r)} [Proposition ??]

and

∆n−1(0)(v3, v4)
= P(D(∆n−2(0)))({δv1` , δv0r , δv1r}, {δv1` , δv1` , δv1r})

= min{D(∆n−2(0))(δv0r , δv1` ),D(∆n−2(0))(δv0r , δv1r )} [Proposition 24]

= min{∆n−2(0)(v0
r , v

1
` ), ∆n−2(0)(v0

r , v
1
r)} [Proposition ??]

Combining the above, we arrive at

∆n(0)(v0, v1) = min{∆n−2(0)(v0
` , v

1
` ), ∆n−2(0)(v0

` , v
1
r), ∆n−2(0)(v0

r , v
1
` ), ∆n−2(0)(v0

r , v
1
r)}.

If n = 2, then
∆n(0)(v0, v1) = 0 ≤ Φn(0)(v).
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Let n > 2. Due to the labelling, we have that ∆n−2(0)(v0
` , v

1
r) = 1 and

∆n−2(0)(v0
r , v

1
` ) = 1. Hence,

∆n(0)(v0
1 , v

1
1) = min{∆n−2(0)(v0

` , v
1
` ), ∆n−2(0)(v0

r , v
1
r)}.

Therefore,

∆n(0)(v0
1 , v

1
1)

= min{∆n−2(0)(v0
` , v

1
` ), ∆n−2(0)(v0

r , v
1
r)}

≤ min{Φn−2(0)(v`), Φn−2(0)(vr)} [induction]
= Φn−1(0)(v)
≤ Φn(0)(v) [Proposition ??]

Furthermore, for n > 1 we have that

Φn(0)(v) = min{Φn−1(0)(v`), Φn−1(0)(vr)}
≤ min{∆2n−2(0)(v0

` , v
1
` ), ∆2n−2(0)(v0

r , v
1
r)} [induction]

= ∆2n(0)(v0, v1).

– Let v be a max vertex. Then

∆n(0)(v0, v1)
= P(D(∆n−1(0)))({δv0` , δv0r}, {δv1` , δv1r})

= max{max{min{D(∆n−1(0))(δv0` , δv1` ),D(∆n−1(0))(δv0` , δv1r )},

min{D(∆n−1(0))(δv0r , δv1` ),D(∆n−1(0))(δv0r , δv1r )}}

max{min{D(∆n−1(0))(δv0r , δv1` ),D(∆n−1(0))(δv0` , δv1` )},

min{D(∆n−1(0))(δv0` , δv1r ),D(∆n−1(0))(δv0r , δv1r )}}}

= max{max{min{∆n−1(0)(v0
` , v

1
` ), ∆n−1(0)(v0

` , v
1
r)},

min{∆n−1(0)(v0
r , v

1
` ), ∆n−1(0)(v0

r , v
1
r)}}

max{min{∆n−1(0)(v0
r , v

1
` ), ∆n−1(0)(v0

` , v
1
` )},

min{∆n−1(0)(v0
` , v

1
r), ∆n−1(0)(v0

r , v
1
r)}}} [Proposition ??]

If n = 1, then

∆n(0)(v0, v1) = 0
≤ Φn(0)(v)
= max{Φn−1(0)(v`), Φn−1(0)(vr)}
= 0
≤ ∆2n(0)(v0, v1).
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Let n > 1. Due to the labelling, we have that ∆n−1(0)(v1
` , v

1
r) = 1 and

∆n−1(0)(v0
r , v

1
` ) = 1. Hence,

∆n(0)(v0, v1) = max{∆n−1(0)(v0
` , v

1
` ), ∆n−1(0)(v0

r , v
1
r)}

≤ max{Φn−1(0)(v`), Φn−1(0)(vr)} [induction]
= Φn(0)(v)
= max{Φn−1(0)(v`), Φn−1(0)(vr)}
≤ max{∆2n−2(0)(v0

` , v
1
` ), ∆2n−2(0)(v0

r , v
1
r)} [induction]

= ∆2n−1(0)(v0, v1)
≤ ∆2n(0)(v0, v1).

– Let v be an avg vertex. Then

∆n(0)(v0, v1) = P(D(∆n−1(0)))({ 1
2δv0` + 1

2δv0r}, {
1
2δv1` + 1

2δv1r})

= D(∆n−1(0))( 1
2δv0` + 1

2δv0r ,
1
2δv1` + 1

2δv1r )

Let n = 1. Note that 0 ------< [0, 1] are the constant functions. Hence,

∆n(0)(v0, v1) = D(∆n−1(0))( 1
2δv0` + 1

2δv0r ,
1
2δv1` + 1

2δv1r )

= sup
f∈0------<[0,1]

( 1
2f(v0

` ) + f(v0
r))− ( 1

2f(v1
` ) + f(v1

r))

= 0
≤ Φn(0)(v0)
= max{Φn−1(0)(v`), Φn−1(0)(vr)}
= 0
≤ ∆2n(0)(v0, v1).

Let n > 1. Due to the labelling, we have that ∆n−1(0)(v1
` , v

1
r) = 1 and

∆n−1(0)(v0
r , v

1
` ) = 1. Hence,

∆n(0)(v0, v1) = D(∆n−1(0))( 1
2δv0` + 1

2δv0r ,
1
2δv1` + 1

2δv1r )

= 1
2∆

n−1(0)(v0
` , v

1
` ) + 1

2∆
n−1(0)(v0

r , v
1
r) [Proposition 26]

≤ 1
2Φ

n−1(0)(v`) + 1
2Φ

n−1(0)(vr) [induction]
= Φn(0)(v)
= 1

2Φ
n−1(0)(v`) + 1

2Φ
n−1(0)(vr)

≤ 1
2∆

2n−2(0)(v0
` , v

1
` ) + 1

2∆
2n−2(0)(v0

r , v
1
r) [induction]

= ∆2n−1(0)(v0, v1)
≤ ∆2n(0)(v0, v1).

ut

E Proofs of Section 6

Theorem 19. For all s1, s2 ∈ S, δ(s1, s2) = φ(vs1,s2).



26 Franck van Breugel and James Worrell

Proof. We first show that for all s1, s2 ∈ S, δ(s1, s2) ≤ φ(vs1,s2).

We define the distance function dφ : S × S → [0, 1] by

dφ(s1, s2) = φ(vs1,s2).

It suffices to show that dφ is a fixed point of ∆. Let s1, s2 ∈ S. We distinguish
two cases. If `(s1) 6= `(s2) then

∆(dφ)(s1, s2) = 1 = φ(vs1,s2) = dφ(s1, s2).

According to Proposition ??,

D(d)(µ1, µ2) = min
ω∈Ωµ1,µ2

∑
s′1,s

′
2∈S

ω(s′1, s
′
2)d(s′1, s

′
2).

Since a linear function on a convex polytope attains its minimum at a vertex of
the polytope, the above is equal to

D(d)(µ1, µ2) = min
ω∈Vµ1,µ2

∑
s′1,s

′
2∈S

ω(s′1, s
′
2)d(s′1, s

′
2).
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Now we consider the second case, that is, `(s1) = `(s2). Then

∆(dφ)(s1, s2)
= P(D(dφ))({µ1 | s1 → µ1 }, {µ2 | s2 → µ2 })
= max{ max

s1→µ1
min
s2→µ2

D(dφ)(µ1, µ2), max
s2→µ2

min
s1→µ1

D(dφ)(µ1, µ2)}

= max

 max
s1→µ1

min
s2→µ2

min
ω∈Vµ1,µ2

∑
s′1,s

′
2∈S

ω(s′1, s
′
2)dφ(s′1, s

′
2),

max
s2→µ2

min
s1→µ1

min
ω∈Vµ1,µ2

∑
s′1,s

′
2∈S

ω(s′1, s
′
2)dφ(s′1, s

′
2)


= max

 max
s1→µ1

min
s2→µ2

min
ω∈Vµ1,µ2

∑
s′1,s

′
2∈S

ω(s′1, s
′
2)φ(vs′1,s′2),

max
s2→µ2

min
s1→µ1

min
ω∈Vµ1,µ2

∑
s′1,s

′
2∈S

ω(s′1, s
′
2)φ(vs′1,s′2)


= max

{
max
s1→µ1

min
s2→µ2

min
ω∈Vµ1,µ2

φ(vω), max
s2→µ2

min
s1→µ1

min
ω∈Vµ1,µ2

φ(vω)
}

= max
{

max
s1→µ1

min
s2→µ2

Φ(φ)(vµ1,µ2), max
s2→µ2

min
s1→µ1

Φ(φ)(vµ1,µ2)
}

= max
{

max
s1→µ1

min
s2→µ2

φ(vµ1,µ2), max
s2→µ2

min
s1→µ1

φ(vµ1,µ2)
}

= max
{

max
s1→µ1

Φ(φ)(vs2,µ1), max
s2→µ2

Φ(φ)(vs1,µ2)
}

= max
{

max
s1→µ1

φ(vs2,µ1), max
s2→µ2

φ(vs1,µ2)
}

= Φ(φ)(vs1,s2)
= φ(vs1,s2)
= dφ(s1, s2).

Next, we conclude that for all s1, s2 ∈ S, δ(s1, s2) ≥ φ(vs1,s2) by proving
∆n(0)(s1, s2) ≥ Φn(0)(vs1,s2) for all n ∈ ω by induction. Obviously, the result
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holds when n = 0. Let n > 0. Then

∆n(0)(s1, s2)

= max

 max
s1→µ1

min
s2→µ2

min
ω∈Vµ1,µ2

∑
s′1,s

′
2∈S

ω(s′1, s
′
2)∆n−1(0)(s′1, s

′
2),

max
s2→µ2

min
s1→µ1

min
ω∈Vµ1,µ2

∑
s′1,s

′
2∈S

ω(s′1, s
′
2)∆n−1(0)(s′1, s

′
2)


≥ max

 max
s1→µ1

min
s2→µ2

min
ω∈Vµ1,µ2

∑
s′1,s

′
2∈S

ω(s′1, s
′
2)Φn−1(0)(vs′1,s′2),

max
s2→µ2

min
s1→µ1

min
ω∈Vµ1,µ2

∑
s′1,s

′
2∈S

ω(s′1, s
′
2)Φn−1(0)(vs′1,s′2)

 [induction]

≥ max
{

max
s1→µ1

min
s2→µ2

Φn(0)(vµ1,µ2),

max
s2→µ2

min
s1→µ1

Φn(0)(vµ1,µ2)
}

≥ max
{

max
s1→µ1

min
s2→µ2

Φn−1(0)(vµ1,µ2),

max
s2→µ2

min
s1→µ1

Φn−1(0)(vµ1,µ2)
}

[Proposition ??]

= max
{

max
s1→µ1

Φn−1(0)(vs2,µ1), max
s2→µ2

Φn−1(0)(vs1,µ2)
}

≥ max
{

max
s1→µ1

Φn(0)(vs2,µ1), max
s2→µ2

Φn(0)(vs1,µ2)
}

[Proposition ??]

= Φn(0)(vs1,s2)

ut

F Proofs of Section 7

Theorem 22. δ(s, t) = 1
n minσ∈Sn

∑
1≤i≤n c(i, σ(i)).

Proof. We have that

δ(s′, t′) = ∆(δ)(s′, t′) = P(D(δ))({δs′}, ∅) = 1. (6)
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Furthermore, for all 1 ≤ i, j ≤ n,

δ(s0,i, tj,i) (7)
= ∆(δ)(s0,i, tj,i)
= P(D(δ))({δs′}, {c(i, j)δt′ + (1− c(i, j))δs′})
= D(δ)(δs′ , c(i, j)δt′ + (1− c(i, j))δs′) [Proposition ??]
= c(i, j)δ(s′, t′) [Proposition 27]
= c(i, j) [Equation (6)]

From the labelling, we can conclude that for all 1 ≤ i, j, k ≤ n with i 6= k,

δ(s0,i, tj,k) = ∆(δ)(s0,i, tj,k) = 1. (8)

Also, for all 1 ≤ i, j ≤ n,

δ(si, tj) (9)
= ∆(δ)(si, tj)
= P(D(δ))({δs0,i} ∪ { δtj,k | 1 ≤ j, k ≤ n ∧ k 6= i }, { δtj,k | 1 ≤ k ≤ n })
= min

1≤k≤n
D(δ)(δs0,i , δtj,k)

= min
1≤k≤n

δ(s0,i, tj,k) [Proposition ??]

= δ(s0,i, tj,i) [Equation (8)]
= c(i, j) [Equation (7)]

Finally,

δ(s, t)
= ∆(δ)(s, t)

= P(D(δ))

 ∑
1≤i≤n

1
nδsi

 ,

 ∑
1≤i≤n

1
nδti




= P(D(δ))

 ∑
1≤i≤n

1
nδsi ,

∑
1≤i≤n

1
nδti

 [Proposition ??]

= min
σ∈Sn

∑
1≤i≤n

1
nδ(si, tσ(i)) [Proposition 4]

= min
σ∈Sn

∑
1≤i≤n

1
nc(i, σ(i)) [Equation (9)]

= 1
n min
σ∈Sn

∑
1≤i≤n

c(i, σ(i))

ut
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Theorem 33. For all s1, s2 ∈ S,

δ(s1, s2) = 0 iff s1 ∼ s2.

Proof. We prove two implications.
Let R = { (s1, s2) | δ(s1, s2) = 0 }. It suffices to prove that R is a probabilistic

bisimulation. Let s1, s2 ∈ S. Since δ(s1, s2) = 0, we can conclude that `(s1) =
`(s2). Assume that if s1 → µ1. Since δ(s1, s2) = 0, there exists a s2 → µ2

such that D(δ)(µ1, µ2) = 0. According to Proposition ??, there exists a coupling
ω of µ1, µ2 such that

∑
s′1,s

′
2∈S

ω(s′1, s
′
2)δ(s′1, s

′
2). Hence, ω(s′1, s

′
2) > 0 implies

δ(s′1, s
′
2) = 0 and, hence, µ1 R̄ µ2.

Let s1, s2 ∈ S with s1 ∼ s2. From Proposition ?? and ?? we can conclude
that it suffices to show that

∀n ∈ ω : ∆n(0)(s1, s2) = 0.

We prove this by induction on n. The above obviously holds for n = 0. Let n>0.
Then for each s1 → µ1 there exists a s2 → µ2 and a coupling ω of µ1, µ2 such that
for all s′1, s′2 ∈ S, ω(s′1, s

′
2)>0 implies s′1 ∼ s′2. By induction,∆n−1(0)(s′1, s

′
2) = 0.

From Proposition ?? we can conclude that ∆n−1(0)(s1, s2) = 0. ut
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