Quantitative Bisimulation for Probabilistic Processes: a counterexample (note)

Franck van Breugel

York University, Department of Computer Science 4700 Keele Street, Toronto, Canada M3J 1P3

franck@cs.yorku.ca

September 21, 1998

In [GJS90], Giacalone, Jou and Smolka introduce a quantitative notion of bisimulation for deterministic probabilistic processes. In the conclusion of their paper, they suggest a generalization for arbitrary (i.e. nondeterministic probabilistic) processes. In the presence of only one label, their definition boils down to the following

DEFINITION 1 An equivalence relation \mathcal{R} on processes is an ϵ -bisimulation if $P \mathcal{R} Q$ implies that for all \mathcal{R} -equivalence classes S,

- * if $P \xrightarrow{\kappa} S$ then $Q \xrightarrow{\lambda} S$ for some λ such that $|\kappa \lambda| \leq \epsilon$, and
- * if $Q \xrightarrow{\kappa} S$ then $P \xrightarrow{\lambda} S$ for some λ such that $|\kappa \lambda| \leq \epsilon$.

Processes P and Q are ϵ -bisimilar, written $P \stackrel{\epsilon}{\sim} Q$, if $P \mathcal{R} Q$ for some ϵ -bisimulation \mathcal{R} .

This leads to a natural notion of distance between processes.

DEFINITION 2 The distance function d on processes is given by

$$d(P,Q) = \begin{cases} \inf \{ \epsilon \mid P \stackrel{\epsilon}{\sim} Q \} & \text{if } P \stackrel{\epsilon}{\sim} Q \text{ for some } \epsilon \\ 1 & \text{otherwise.} \end{cases}$$

Giacalone, Jou and Smolka mention that this distance function does not satisfy the triangle inequality. Here, we given a counterexample.

EXAMPLE 1 Consider the following processes and their transitions.

One can easily verify that the smallest equivalence relations containing $\{\langle 1, 2 \rangle, \langle 4, 5 \rangle, \langle 6, 7 \rangle\}$ and $\{\langle 2, 3 \rangle, \langle 5, 6 \rangle\}$ are .1-bisimulations. Therefore, $1 \stackrel{1}{\sim} 2$ and $2 \stackrel{1}{\sim} 3$. Hence, $d(1, 2) \leq .1$ and $d(2, 3) \leq .1$. If the triangle inequality would hold for d, then $d(1, 3) \leq .2$. However, we will show next that there exists no ϵ -bisimulation \mathcal{R} , with $\epsilon \leq .25$, such that $1 \mathcal{R} 3$. This is proved in the following three steps.

- 1. Let \mathcal{R} be an ϵ -bisimulation, with $\epsilon \leq .25$. Let S be the \mathcal{R} -equivalence class with $8 \in S$. Since $8 \xrightarrow{0} S$ and $9 \xrightarrow{1} S$, we can conclude that $8 \mathcal{R}9$.
- 2. Let \mathcal{R} be an ϵ -bisimulation, with $\epsilon \leq .25$. Let S be the \mathcal{R} -equivalence class with $8 \in S$. According to $1, 9 \notin S$. Because $4 \xrightarrow{.1} S$ and $7 \xrightarrow{.4} S$, we can deduce that $4 \not \mathcal{R}7$.
- 3. Let \mathcal{R} be an ϵ -bisimulation, with $\epsilon \leq .25$. Towards a contradiction, assume that $1 \mathcal{R} 3$. Let S be the \mathcal{R} -equivalence class with $4 \in S$. Clearly, $6 \in S$. Let T be the \mathcal{R} -equivalence class with $7 \in T$. Then $4 \in T$ or $6 \in T$. Hence, 4 and 7 are in the same \mathcal{R} -equivalence class, which contradicts 2.

References

[GJS90] A. Giacalone, C.-C. Jou, and S.A. Smolka. Algebraic Reasoning for Probabilistic Concurrent Systems. In Proceedings of the IFIP WG 2.2/2.3 Working Conference on Programming Concepts and Methods, Sea of Gallilee, April 1990. North-Holland.