
Automatic Handling of Native Methods
in Java PathFinder

Nastaran Shafiei∗† and Franck van Breugel∗‡
∗DisCoVeri Group, Department of Computer Science and Engineering

York University, 4700 Keele Street, Toronto, M3J 1P3, Canada
†NASA Ames Research Center
Moffett Field, CA 94035, USA
‡Department of Computer Science

University of Oxford, Parks Road, Oxford, OX1 3QD, UK

Abstract—Java is currently one of the most popular program-
ming languages and Java PathFinder (JPF) is the most popular
model checker for Java. Despite its popularity, JPF cannot check
a simple property such as the absence of uncaught exceptions
for any realistic Java application without a nontrivial amount
of work done by its user. This seriously hinders the uptake
of JPF by developers. In this paper, we focus on the factor
that causes the most trouble: native methods. Since JPF can
only handle Java bytecode instructions, calls to native methods
need to be intercepted and handled differently. Although JPF
provides support for some native methods, the vast majority
of native methods is not handled and, hence, JPF crashes on
almost any realistic Java application unless its user handles the
native methods that cause it to crash. This amounts to the user
modelling the behaviour of the native methods in Java. This is
generally a time consuming, tedious and error prone task. In this
paper we present an extension of JPF that alleviates the user from
this burden by automating this task. We showcase our tool by
applying it to a variety of simple yet realistic Java applications
that JPF, without our extension, cannot handle. Our extension
of JPF clears a major hurdle for JPF towards becoming part of
every Java developer’s toolkit.

I. INTRODUCTION

According to the TIOBE programming community index1,
C and Java are currently the most popular programming
languages. Although there are several model checkers for
Java, including Bandera [6], Bogor [14] and an extension of
SAL [13] to name a few, Java PathFinder (JPF) is the most
popular one. Its popularity is reflected by several statistics. For
example, the conference paper [18] and its extended journal
version [17] have been cited more than 1200 times according
to Google scholar, making it the most cited work on a Java
model checker.

Most of the Java applications that come with the JPF distri-
bution2 are classic concurrency examples such as a solution to
the dining philosophers problem and a concurrent implementa-
tion of a bounded buffer. Although these examples demonstrate

1www.tiobe.com
2babelfish.arc.nasa.gov/trac/jpf

that JPF is a powerful tool to find intricate bugs such as
deadlocks, these examples cannot be considered realistic. They
lack ingredients today’s Java applications contain such as
a graphical user interface, interaction with a database, and
communication over the Internet. If we apply JPF to such
applications, it crashes. In most cases, the culprit is a call to a
native method, that is, a method written in a language different
from Java, such as C and C++. Since JPF can only handle Java
bytecode instructions, it crashes as soon as it encounters a call
to a native method unless the call is intercepted by JPF and
handled differently.

JPF provides two different mechanisms, which can be
combined, to handle calls to native methods. We shall discuss
these in more detail below. However, both approaches are
labour intensive, tedious, and error prone. Nevertheless, both
approaches have been successfully applied to handle a large
variety of native methods. We shall discuss some of them in
Section V on related work. Unfortunately, the vast majority
of native methods is not yet handled by JPF. Moreover, Java
applications may contain user defined native methods. As a
consequence, JPF crashes when checking a Java application
that contains a call to such a native method.

Currently, the only option to the Java developer is to exploit
the mechanisms provided by JPF. However, as we already
mentioned, this will take a lot of time and, hence, will make
JPF of less interest to most developers. In this paper, we shall
present an extension of JPF, which we call jpf-nhandler3. It
automates the use of both mechanisms to handle calls to native
methods. The only thing left to the developer is a single simple
configuration file.

As is well known, there is no such thing as a free lunch.
It will come as no surprise that replacing a time consuming,
tedious and error prone task with the task of creating a single
simple configuration file comes at a price. In Section IV we
shall discuss the limitations of our approach. To mitigate the

3bitbucket.org/nastaran/jpf-nhandler

www.tiobe.com
babelfish.arc.nasa.gov/trac/jpf
bitbucket.org/nastaran/jpf-nhandler

package sun.misc;

public final class Unsafe {
 ...

}

package gov.nasa.jpf.vm;

public class JPF_sun_misc_Unsafe {

}

public static int
 allocateInstance__Ljava_lang_Class_2__Ljava_lang_Object_2
 (...) {
 ...
 }

public native Object
 allocateInstance(Class cls) {
 ...
}

Fig. 1. Naming pattern used by JPF’s model Java interface.

impact of these limitations, our extension can generate Java
classes that can be modified by the user. In most cases the user
only has to create a configuration file, as we shall demonstrate
with a wide range of examples in Section II. In those cases
where the user needs to modify the generated Java classes,
these classes already contain a lot of useful code that the user
can exploit, rather than having to start from scratch. Therefore,
even in these cases, our extension is of help to the developer.

Before we outline our approach to automatically handle
calls to native methods in JPF, we first discuss how a Java
virtual machine (JVM) handles calls to native methods. Most
JVMs include a native method interface (JNI) [11]. This
interface takes care of calls to native methods by trans-
ferring the execution from the JVM to the operating sys-
tem (OS). For example, the method allocateInstance
of the class Unsafe, which is part of the package
sun.misc, is native. Let unsafe be an Unsafe ob-
ject and let clazz be a Class object. Then the call
unsafe.allocateInstance(clazz) allocates an in-
stance of the class clazz but does not run any construc-
tor and returns the created uninitialized object. Although
most developers never use this native method, we use it as
our running example in this introduction because it is non-
static, it takes an object as an argument and it returns an
object. These three characteristics allow us to illustrate all
aspects of our approach. Once the JVM reaches the call
unsafe.allocateInstance(clazz), it transfers the
execution to the OS. JNI makes the objects unsafe and
clazz accessible to the native code. Once the native code
has been executed by the OS, JNI makes the result accessible
to the JVM and the execution is transferred back to the JVM.
As we shall see, our approach to handle native methods shows
several similarities to the way JNI handles them.

Next, we introduce those readers unfamiliar with JPF to
those features that are key to our work. JPF is itself a JVM.
In contrast to an ordinary JVM, which simply executes a Java
application, JPF systematically checks all potential executions

of a Java application. Since JPF is implemented in Java, it
runs on top of an ordinary JVM, which we will call the host
JVM. The latter runs on top of the OS.

Let us now dive into more details by discussing the two
mechanisms that JPF provides to handle calls to native meth-
ods and how we exploit them in jpf-nhandler. Whenever JPF
encounters a call to a native method, it intercepts that call and
tries to handle it differently. If JPF supports the native method,
then it will exploit either of the mechanisms to deal with the
native method. Otherwise, it will crash.

JPF’s model classes provide a way to handle calls to
native methods. These classes model the behaviour of ac-
tual classes. Often the model classes abstract from partic-
ular details of the actual classes. These model classes are
part of JPF. A model class has the same name as the
actual class it models. JPF contains a model class named
sun.misc.Unsafe. Whenever JPF encounters a class for
which it has a model class, it model checks the model class
instead of the actual class. Hence, when JPF encounters
the call unsafe.allocateInstance(clazz) it model
checks the allocateInstance method of the model class
Unsafe. Modelling a class can be a daunting task, especially
if only the bytecode of the class is available and that code
has been obfuscated. In that case, the decompiled Java code
contains no comments and lacks descriptive names. Also,
neither the source code nor a specification of the native
code may be available, making it very difficult to model its
behaviour in Java.

JPF’s model Java interface (MJI) can be used to transfer
the execution from JPF to the host JVM. The so called native
peer classes play a key role in MJI. JPF uses a specific name
pattern to associate the native peer classes and their methods
with the corresponding classes and methods. For example,
the native peer class associated with sun.misc.Unsafe is
named JPF_sun_misc_Unsafe (see Figure 1). Whenever
JPF gets to a call associated with a native peer method, it
delegates the call to the host JVM. Hence, the native call is

2

Converter c = new Converter(env);

Object unsafe = c.getJVMObj(jpfUnsafeObj);
Object clazz = c.getJVMObj(jpfClazzObj);

unsafe.allocateInstance(clazz)

 JPF

Class<?> callerClass = Unsafe.class;

Method method = callerClass.
 getDeclaredMethod("allocateInstance",...);

Object returnVal =
 method.invoke(unsafe, new Object[]{clazz});

jpf-nhandler

 JVM

 OS

MJI JNI

Native
code

1

int result = c.getJPFObj(returnVal);

return result;

OTF peer

2

3

Fig. 2. Handling of unsafe.allocateInstance(clazz) by jpf-nhandler.

not model checked, which is impossible since JPF can only
handle Java bytecode, but executed on the host JVM. Great
care has to be taken when developing a native peer class. For
example, since classes and objects are represented differently
in JPF than in an ordinary JVM, in a native peer class one
often has to translate from the one representation to the other
and back.

JPF and its extensions currently include a few hundred
model classes and native peer classes. However, there are
many more classes with native methods that are not handled.
Rather than putting the heavy burden of implementing model
classes or native peer classes on the developer, we provide the
developer with our extension jpf-nhandler that deals with calls
to native methods automatically. Next, we will briefly discuss
our extension.

The approach taken by jpf-nhandler mainly relies on MJI
and native peer classes. Whenever JPF encounters a call to a
native method, jpf-nhandler automatically intercepts the call
and delegates its execution from JPF to the host JVM. It cre-
ates bytecode for native peer classes on-the-fly (referred to as
OTF peer classes from now on) using the bytecode engineering
library (BCEL)4. To delegate the execution of a native method
to the host JVM, jpf-nhandler creates an OTF peer class (if it
does not exist yet) and adds a native peer method to the OTF
peer class (if it does not exist yet). This native peer method
implements the following three main steps. Let us consider

4commons.apache.org/bcel

again the call unsafe.allocateInstance(clazz).

1) First, the JPF representation of the objects unsafe and
clazz are transformed to corresponding JVM objects.

2) Then the execution is delegated to the host JVM by call-
ing the original native method allocateInstance
on the JVM representation of unsafe with the JVM
representation of clazz as its argument.

3) Finally, the result of the method call, which is an
object in our example, is transformed from its JVM
representation to its JPF representation.

Note that jpf-nhandler has to transform classes and objects
from JPF to the host JVM and back. Our class Converter
accomplishes that. Its method getJVMObj transforms JPF
objects to JVM objects and getJPFObj transforms objects
in the other direction. It also contains similar methods for
converting classes and arrays.

Figure 2 shows how the native method call
unsafe.allocateInstance(clazz) is handled
by jpf-nhandler. The left column is executed by JPF. The
middle column is executed by the host JVM. It includes the
code generated on-the-fly by jpf-nhandler as the body of the
allocateInstance native peer method. In part (1) of the
code, the JVM representations of the objects unsafe and
clazz are generated from their JPF representations using
the Converter class. In part (2), using Java reflection, the
method allocateInstance is invoked on the Unsafe
object with the Class object as its argument. Since

3

commons.apache.org/bcel

allocateInstance is a native method, its execution is
delegated from the host JVM to the OS, using JNI. The
right column is executed by the OS. Finally, in part (3),
the result from allocateInstance is transformed to its
JPF representation, which is returned to JPF. This part also
includes updating the objects unsafe and clazz in JPF
from their JVM representation, since these objects may have
changed due to side effects of the native method executed in
part (2).

Our extension jpf-nhandler has been successfully applied to
a variety of simple yet realistic Java applications. In Section II
we present several examples which confirm that jpf-nhandler
can be used to model check Java applications that contain calls
to native methods. For all these examples, JPF without our
extension crashes. The examples are all small5, but do contain
ingredients found in today’s applications such as a graphical
user interface, interaction with a database, and communication
over the Internet. All but one example have less than 100 lines
of code. The one example with a few hundred lines of code
is a Java implementation of the game Hamurabi. This is
one of the very first computer games. It was implemented
in BASIC by Ahl in the seventies [1, page 128] and we
ported the BASIC code to Java. Since the handling of native
methods is independent of the type of property being checked,
in our examples we used the standard configuration of JPF
which checks for uncaught exceptions. As an aside, our initial
implementation of Hamurabi contained a bug which caused
an exception. This bug was found by JPF in combination with
our extension jpf-nhandler within seconds.

II. APPLICATION OF JPF-NHANDLER

Below, we discuss a variety of simple Java applications.
The majority of these applications are part of the jpf-nhandler
distribution. None of these applications can be model checked
by JPF without our extension jpf-nhandler. We describe how
to configure jpf-nhandler so that they can be model checked
successfully.

A. Allocating an Object

We start with the example that we presented in the intro-
duction. In the main method of our application, we use

object = unsafe.allocateInstance(clazz);

which is a call to a native method. Since JPF does not handle
this native method, it crashes when it verifies our application.
To configure jpf-nhandler, we modify the application proper-
ties file by adding the following to it.

@using=jpf-nhandler

5The difficulty of model checking a Java application is not proportional to
the number of lines of code of the application. There are Java applications
consisting of less than a dozen lines of code for which JPF either crashes,
runs out of memory, or does not complete its verification effort within a day.

nhandler.delegateUnhandledNative=true

The first line specifies that we are using the
extension jpf-nhandler. By setting the property
nhandler.delegateUnhandledNative to true,
jpf-nhandler deals with any call to a native method that is
not yet handled by JPF. As a consequence, it deals with the
allocateInstance method and verifies the application
successfully.

B. Manipulating Java Archive Files

As is well known, jar files play a central role in the devel-
opment of Java applications. The package java.util.jar
contains classes to manipulate jar files. Our application uses
the classes JarFile and JarEntry to print the names
of the files in a given jar file. The application gives rise to
several calls to native methods which cause JPF to crash. To
enable and configure jpf-nhandler, we modify the application
properties file by adding the following to it.

@using=jpf-nhandler
nhandler.resetVMState=false
nhandler.spec.delegate=\
java.util.zip.ZipFile.*,\
java.util.jar.JarFile.*

Our class Converter, which we already mentioned in the
introduction and will discuss in more detail in Section III-C,
contains two maps: one from JPF objects to JVM objects
and the other from JVM objects to JPF objects. By de-
fault, both maps are cleared after a call to a native method
has been handled by jpf-nhandler. By setting the property
nhandler.resetVMState to false, those maps are not
cleared. As a consequence, jpf-nhandler does not recreate JVM
objects for JPF objects it has already transformed earlier. We
will come back to this later in the paper. The last three lines
specify which methods, constructors, and static initializers
should be delegated from JPF to the host JVM. In this
particular case, all methods, constructors, and static initializers
of the classes ZipFile and JarFile should be delegated.
In this case, we also delegate methods that are not native.
Delegating all methods, constructors, and static initializers of a
class such as JarFile simplifies matters since all operations
on a JarFile object are executed on the host JVM. We will
come back to this in Section IV.

C. Communicating over a Network

Many applications communicate over a network. For exam-
ple, sockets provide network communication. In Java, the class
Socket of the package java.net implements sockets. We
implemented a client application and a server application. Both
contain calls to native methods that are not handled by JPF. We
run the server application on one machine and model check

4

* DELEGATING Unhandled Native -> jcuda.driver.JCudaDriver.cuInitNative

* DELEGATING Unhandled Native -> jcuda.driver.JCudaDriver.cuDeviceGetNative

* DELEGATING Unhandled Native -> jcuda.driver.JCudaDriver.cuCtxCreateNative

* DELEGATING Unhandled Native -> jcuda.driver.JCudaDriver.cuModuleLoadNative

* DELEGATING Unhandled Native -> jcuda.driver.JCudaDriver.cuModuleGetFunctionNative

* DELEGATING Unhandled Native -> jcuda.driver.JCudaDriver.cuMemAllocNative

* DELEGATING Unhandled Native -> jcuda.driver.JCudaDriver.cuMemcpyHtoDNative

* DELEGATING Unhandled Native -> jcuda.driver.JCudaDriver.cuLaunchKernelNative

* DELEGATING Unhandled Native -> jcuda.driver.JCudaDriver.cuCtxSynchronizeNative

* DELEGATING Unhandled Native -> jcuda.driver.JCudaDriver.cuMemcpyDtoHNative

* DELEGATING Unhandled Native -> jcuda.driver.JCudaDriver.cuMemFreeNative
At index 1 found 1.07374182E9 but expected 2.0
Test FAILED

Fig. 3. Part of JPF’s output when model checking JCudaVectorAdd.

the client application on another machine. To the application
properties file, we add the following.

@using=jpf-nhandler
nhandler.delegateUnhandledNative=true
nhandler.spec.filter=\

java.io.FileDescriptor.close0

The method close0 is a native method in JPF’s model class
java.io.FileDescriptor. Since this method is not part
of the original FileDescriptor class, we have to make
sure that jpf-nhandler does not delegate a call to this native
method to the host JVM. This is done by means of the property
nhandler.spec.filter.

Red Hat’s JGroups6 provides a framework for reliable
multicast communication. JGroups is used in hundreds of Java
projects. In our simple example, two applications communi-
cate by using a org.jgroups.JChannel. One application
sends a message which is received by the other one. We
execute the receiver application on one machine while we
model check the sender application on another machine. We
refrain from providing the configuration details since they are
similar to the previous example.

D. Exploiting Graphics Processing Units

Graphics processing units (GPUs) provide generally a much
simpler instruction set than ordinary CPUs, but they are
generally much faster due to the much larger number of
cores. Therefore, it sometimes makes sense to run parts of
an application on the GPU and the remainder on the CPU.
NVIDIA’s compute unified device architecture (CUDA) con-
tains an environment to program their GPUs. The package
jcuda7 enables Java applications to run CUDA code on the
GPU. We consider the application JCudaVectorAdd which

6www.jgroups.org
7jcuda.org

is part of the jcuda distribution. The application creates two
100,000 element arrays, runs some CUDA code on the GPU to
add the arrays, and finally checks the result. It will come as no
surprise that several native methods are needed to bridge the
gap between the Java code and the CUDA code. To enable jpf-
nhandler to model check the application, we add the following
to the application properties file.

@using=jpf-nhandler
classpath=.../jcuda-0.5.0a.jar
native_classpath=.../jcuda-0.5.0a.jar
nhandler.delegateUnhandledNative=true
nhandler.resetVMState=false
nhandler.spec.filter=\
java.lang.Class.getByteArray...Stream

The classpath includes paths to classes and libraries that
are model checked by JPF and the native_classpath
includes paths to classes and libraries that are executed by the
host JVM. Since jpf-nhandler switches between JPF the host
JVM, we need to make the jcuda library accessible to both.

When we model check the application JCudaVectorAdd
with JPF and our extension jpf-nhandler, we obtain some
output, part of which is given in Figure 3. Our extension
informs the developer which native methods are handled by
jpf-nhandler. Note that the test failed. This failure is not caused
by jpf-nhandler but by a bug in JPF. It turns out that arrays
of floats are not converted correctly within JPF itself. After
fixing the bug, the test passes.

E. Querying a Database

Many applications interact with a database. Apache Derby8

is a relational database implemented entirely in Java. It is one
of the popular choices for database applications written in
Java. In our application, we connect to a database, create a new

8db.apache.org/derby

5

www.jgroups.org
jcuda.org
db.apache.org/derby

table, insert two records into the table, and finally close the
connection to the database. Despite the fact that the database
is implemented in Java, our application gives rise to several
calls to native methods that are not handled by JPF. However,
jpf-nhandler is able to model check the database application
successfully.

F. Scraping the Web

We have developed a web scraper which simply reads the
HTML of the conference web page. Of course, one could
subsequently try to extract interesting information from the
read data such as, for example, the paper submission deadline.
However, since such string manipulation can be easily handled
by JPF, we refrain from doing that. Our application contains
several calls to native methods that are not handled by JPF.
For example, we create a URL object which gives rise to
a call to the native method doPrivileged of the class
java.security.AccessController. By configuring
jpf-nhandler appropriately, we can successfully model check
this application as well.

G. Invoking Web Services

Google’s translate web service9 translates phrases between
natural languages. In our application, we use this web service
to translate a phrase from English to French. JPF is not
able to model check this application. When we configure
jpf-nhandler to delegate the method retrieveJSON of the
class com.google.api.GoogleAPI (this method forms
an HTTP request, sends it, and returns the request result as
an instance of org.json.JSONObject) to the host JVM,
the application can be model checked successfully.

H. Playing Games

The Java code of computer games is full of calls to native
methods since games extensively use graphics and sound,
often communicate over the Internet, etcetera. In [15] the
authors describe how they have successfully used jpf-nhandler
to model check two simple computer games. The one game is
Hamurabi which we already discussed in the introduction. The
other game is a graphics based version of rock-paper-scissors.

I. Solving Ordinary Differential Equations

The Apache Commons mathematics library10 provides a
large variety of packages related to mathematics and statis-
tics. In our application, we use the library to numerically
solve ordinary differential equations. Without jpf-nhandler,
JPF crashes due to unsupported native methods in the
class java.lang.StrictMath, such as log. Using jpf-
nhandler, JPF model checks our application successfully where
jpf-nhandler is configured to delegate all unhandled calls to
native methods.

9code.google.com/p/google-api-translate-java
10commons.apache.org/math

III. IMPLEMENTATION OF JPF-NHANDLER

Our extension jpf-nhandler has been implemented in such
a way that no changes to the core of JPF are required. It
consists of three main components. Before discussing those
components in some detail, let us first paint the overall picture
of jpf-nhandler. The first component is a listener which is
notified by JPF whenever a class is loaded. The second
component generates the bytecode and Java code of the OTF
peer classes. The third and final component translates objects
and classes from JPF to the host JVM and back.

A. Listener

The listener is implemented in our class
ExecutionForwarder, which is part of the package
gov.nasa.jpf.vm. Before going through the details of
this class, let us first discuss how JPF captures native methods
and how it executes their corresponding native peer methods
on the host JVM.

isUnsatisfiedLinkError(): boolean

DelegatedMethodInfo

MethodInfo

isUnsatisfiedLinkError(): boolean

peer: NativePeer
mth: Method

NativeMethodInfo

methods: Map<String,MethodInfo>

ClassInfo

*

Fig. 4. A UML diagram of the classes representing classes and methods in
JPF and jpf-nhandler.

Classes are represented in JPF by instances of
gov.nasa.jpf.vm.ClassInfo. The ClassInfo
class includes a map, called methods, which keeps track of
all the methods declared in the class. The keys of this map are
string representations of the method signatures. The values of
this map are gov.nasa.jpf.vm.MethodInfo objects.
The class gov.nasa.jpf.vm.NativeMethodInfo is
a subclass of MethodInfo. It represents native methods.
The NativeMethodInfo class declares a field of type of
gov.nasa.jpf.vm.NativePeer, called peer, which

6

code.google.com/p/google-api-translate-java
commons.apache.org/math

contains the corresponding native peer class. It also declares
the field mth of type of java.lang.reflect.Method,
which contains the corresponding native peer method.
Whenever JPF encounters a call to a method represented by
a NativeMethodInfo object, instead of model checking
it, JPF delegates its execution to the host JVM. JPF uses Java
reflection to invoke the method mth of the class peer on
the host JVM. After the method mth has been executed by
the host JVM, JPF resumes its model checking effort.

As we already mentioned earlier, the class
ExecutionForwarder is a listener. It receives
notifications from JPF whenever a class is loaded. By
the time ExecutionForwarder receives the notification,
JPF has already created a ClassInfo object that represents
the loaded class and initialized its methods field with a
MethodInfo object for each method of the loaded class.
Once the ExecutionForwarder receives a notification,
it goes through the collection of MethodInfo objects of
the loaded class. For each native method, it checks if the
method is already handled by JPF. That is, it checks if JPF
has associated a native peer method with it. If the native
method is not handled by JPF, the ExecutionForwarder
replaces its corresponding MethodInfo object with a
gov.nasa.jpf.vm.DelegatedMethodInfo object.
The class DelegatedMethodInfo is a subclass of
NativeMethodInfo (see Figure 4 for the relationships
between these classes). This class is part of jpf-nhandler.

The class NativeMethodInfo contains the method
isUnsatisfiedLinkError. This method checks
whether a native peer method is associated with
a NativeMethodInfo object, that is, it checks
whether its mth field is null. JPF executes this method
before it attempts to invoke the native peer method
represented by mth. In our DelegatedMethodInfo
we override the isUnsatisfiedLinkError method.
Consider, for example, the unhandled native method
allocateInstance from the introduction. The first time
the method isUnsatisfiedLinkError is invoked on
allocateInstance’s DelegatedMethodInfo object,
jpf-nhandler creates the corresponding OTF peer class and
method (if they do not already exist) and initializes the
fields peer and mth of the DelegatedMethodInfo
object to the OTF peer class and method, respectively.
As a consequence, whenever JPF encounters a call to
allocateInstance, it delegates the execution of its OTF
peer method mth of its OTF peer class peer to the host
JVM.

B. On-the-fly Native Peer Classes Generator

The generation of the OTF peer classes is implemented in
the package nhandler.peerGen. By default, jpf-nhandler
generates both bytecode and Java code for the OTF peer

classes. To only generate bytecode, the user can set the prop-
erty nhandler.genSource to false in the configuration
file.

The OTF peer classes and methods follow the same naming
pattern as the JPF native peer classes and methods, with the
exception that the name of the OTF peer classes is prefixed
by OTF_. The files containing the bytecode and Java code
generated by jpf-nhandler can be found in the onthefly
directory of jpf-nhandler. The user can configure jpf-nhandler
to reuse the existing OTF peer classes for future runs of
JPF by setting the property nhandler.clean to false in
the configuration file. Since generating the bytecode and Java
code is expensive, using this feature can speed up jpf-nhandler
considerably.

A key class in our package nhandler.peerGen is
PeerClassGen. As we already mentioned in Section III-A,
the method isUnsatisfiedLinkError of the class
DelegatedMethodInfo creates OTF peer classes. In par-
ticular, it creates an instance of the class PeerClassGen.
For every OTF peer class, there exists one instance of
PeerClassGen. This object is created the first time that
jpf-nhandler attempts to handle a method of the class. Before
generating the OTF peer class, the PeerClassGen object
checks whether the onthefly directory of jpf-nhandler
already contains the OTF peer class. If so, it loads the class.
Otherwise, it generates the OTF peer class.

begin

C.m() is
handled?

OTF for C
exists?

m() peer OTF
exists?

invoke m() peer

end

add m() peer to
OTF

create OTF
for C

Yes

Yes

YesNo

No No

Fig. 5. A UML diagram depicting how PeerClassGen decides to handle
a call to the native method m of the class C.

To extend an OTF peer class with a native
peer method, jpf-nhandler invokes the method
createMethod(NativeMethodInfo) on the
appropriate PeerClassGen. This method first checks
if the OTF peer class already contains the native peer method.
If not, it adds it to the OTF peer class. The diagram in
Figure 5 shows how PeerClassGen decides to handle a

7

point: ElementInfo

name: "Point"

ci: ClassInfo

values: {0, 1}

fields: Fields
x: 0
y: 1

point: Point

(a) (b)

11

Fig. 6. UML diagrams of a Point object represented in a JVM (a) and JPF (b).

native method.
As we have already seen in the introduction, to handle

the call unsafe.allocateInstance(clazz), the body
of the OTF native peer method includes the following three
main steps. The first step includes representing all the relevant
JPF objects and classes in the host JVM. In our example,
these are the JPF objects unsafe and clazz and their JPF
classes Unsafe and Class. In the second step, using Java
reflection, the method allocateInstance is invoked on
the JVM representation of unsafe with as argument the JVM
representation of clazz. Finally, in the third step, the return
value of the invocation is translated to a JPF object. This step
also includes updating the JPF objects unsafe and clazz
and the JPF classes Unsafe and Class.

One may wonder why we did not generate the OTF peer
classes before running JPF. In that case, one would have
to statically analyze the Java application to determine which
native methods it may call. This may include native methods
that will not be encountered during the model checking of
the application and, hence, we may generate many more OTF
peer classes and methods than are actually needed. Note also
that we can configure jpf-nhandler to reuse existing OTF peer
classes.

It turns out that we do not need to generate the OTF peer
classes at all. We can implement the invocation of the native
method using Java reflection. However, the major advantage
of generating the OTF peer classes only reveals itself when
jpf-nhandler fails to automatically handle all calls to native
methods. In that case, the developer can modify the generated
Java code of the OTF peer classes, rather than having to start
from scratch.

C. Converter

As we already mentioned in the introduction, the way that
objects and classes are represented in JPF is different from the
way they are represented by the host JVM. As discussed in
Section III-A, JPF uses instances of the class ClassInfo
to represent classes. To represent objects it uses instances

of the class gov.nasa.jpf.vm.ElementInfo. Figure 6
contains an example, contrasting the different representations
for a simple object.

Since jpf-nhandler interacts with the host JVM, as shown
in Figure 2, we need to convert objects and classes from JPF
to the host JVM and back. Such a conversion is implemented
in the package nhandler.conversion. The earlier men-
tioned class Converter is part of this package.

The class Converter contains methods that convert a JPF
object or a JPF class to a corresponding JVM object or JVM
class. The class is used in the OTF peer methods. Such a
method starts by creating a Converter object. This object is
subsequently used to convert JPF objects and classes to their
JVM counterparts. Furthermore, just before the OTF native
peer method returns, the Converter object is used to convert
the result of the call back to JPF, and also to update some of
the objects and classes that may have changed as a result of
the call to the native method.

IV. LIMITATIONS OF JPF-NHANDLER

As we have shown in Section II, jpf-nhandler is applicable
to a large variety of applications. However, there are some
limitations to our extension. We will discuss them below. How
we plan to address some of these limitations is discussed in
the concluding section of this paper.

Native code can modify arbitrary objects and classes
through JNI. Currently, we only reflect in JPF the
changes made by the native code to some objects
and classes. For example, consider again the call
unsafe.allocateInstance(clazz). Only changes
made by the method allocateInstance to the
objects unsafe and clazz and the classes Unsafe
and Class are reflected in JPF. However, if the method
allocateInstance were to change any other objects
or classes, then their JPF representations and JVM
representations would be out of sync. As a consequence,
in such a case JPF could for example incorrectly report
an uncaught exception. In our case studies, we have not

8

encountered such a scenario. If such a case were to arise, the
developer could modify the Java code of the generated OTF
peer class to reflect the changes.

Delegation of a method to the host JVM amounts to the
assumption that its execution is atomic. However, this need not
be the case. For example, consider an application consisting
of two threads that share an integer variable x which is
initialized to zero. The one thread simply consists of the
statement assert x % 2 == 0. The other thread calls a
method whose body consists of x++; x++;. JPF detects an
uncaught exception, since there exists an interleaving of the
two threads in which the assertion is not true. However, if we
delegate the method to the host JVM, the method is assumed
to be atomic and JPF does not consider the troublesome
interleaving. Hence, one has to be careful if one uses jpf-
nhandler to delegate non-native methods.

Since JPF considers all potential executions of an appli-
cation, it may delegate a method multiple times. This may
have undesirable consequences. Consider, for example, an
application that prompts the user for the amount to donate
to a charity. After the user has entered the amount (A),
the application starts two threads. The one thread calls a
method that debits the user’s credit card (B), whereas the other
thread calls a method that interacts with a database to extract
information about the user (C). Now assume that both methods
are delegated to the host JVM. In that case, JPF checks two
interleavings: ABC and ACB. Hence, B is executed twice and,
therefore, the user’s credit card is debited twice.11 We will
come back to this limitation in the concluding section.

As we have seen in Section II-C and II-D, some of JPF’s
model classes are incompatible with the classes they model. In
these two cases, we could configure jpf-nhandler appropriately
so that we could still model check the application. However,
we have also encountered situations where we had to make
changes to JPF’s model classes. Also this limitation will be
discussed in the conclusion.

Recall that by setting the property resetVMState to
false, the maps storing JPF and JVM objects are not cleared
after handling a native method. However, if JPF changes an
object that is stored in the maps, then the corresponding
JVM object is not updated accordingly. In this way, the JPF
representation of an object and its JVM representation may
get out of sync. We will also come back to this limitation in
the conclusion.

We cannot apply jpf-nhandler to certain classes such as
java.lang.Thread as it would compromise the consis-
tency of JPF. Luckily, we never need to apply jpf-nhandler to
any of these classes since JPF already provides model classes
and native peer classes for them.

11Obviously, this example is a bit contrived. When model checking such
an application, a credit card should never be debited.

V. RELATED WORK

The work most closely related to ours is that of d’Amorim
et al. [8]. Although their extension of JPF also model checks
some parts of the code and executes the other parts of the code,
their objective is not handling native methods but reducing
the execution time of JPF. Despite that they have a different
objective, their approach shares several ingredients with ours.
First of all, they also translate JPF objects to JVM objects
and back. However, their translations have several limitations
from which ours do not suffer. For example, their translation
from JPF objects to JVM objects handles neither arrays nor
instances of classes without a default constructor. In our case
studies, we have to handle both. Secondly, they also use
reflection to invoke methods on the host JVM. Whereas they
only handle methods, we also deal with several other elements
of Java such as constructors and static initializers. For our
examples presented in Section II it is essential to handle those
other Java elements as well.

In the remainder of this section, we shall discuss some
of the other extensions of JPF that also deal with native
methods. Gligoric and Majumdar [10] have developed DPF, an
extension of JPF to model check database applications. They
consider both in-memory databases and on-disk databases. For
the former, they reimplemented the native methods used by the
database H212. For the latter, they intercept all native method
calls and those method calls that access the database. All these
methods were reimplemented as well. In Section II, we already
mentioned that jpf-nhandler can deal with a simple database
application without having to reimplement any Java class.

In [3], Barlas and Bultan introduce a framework to model
check distributed Java applications called NetStub13. The
framework consists of several model classes that model those
parts of the Java standard library related to network commu-
nication and containing native methods. Each component of
the distributed application is represented by a thread so that
the whole distributed application runs in a single JVM and,
hence, can be verified by JPF.

Artho et al. [2] developed the JPF extension jpf-net-
iocache14 It provides a different approach to model check
distributed Java applications. Only one component of the
distributed application is model checked, the other ones are
simply executed. Clearly, this approach is similar in flavour
to jpf-nhandler. Since JPF attempts to systematically check
all potential executions of that one component, one has to be
careful to prevent communications between that component
and the other components from being repeated. To address
that problem, Artho et al. introduce a cache that keeps track of
those communications. As in the work of Barlas and Bultan,

12h2database.com
13www.cs.ucsb.edu/∼bultan/netstub
14babelfish.arc.nasa.gov/trac/jpf/wiki/projects/net-iocache

9

h2database.com
www.cs.ucsb.edu/~bultan/netstub
babelfish.arc.nasa.gov/trac/jpf/wiki/projects/net-iocache

those classes that contain native calls are reimplemented as
model classes. As we have seen in Section II, jpf-nhandler
can also deal with simple distributed applications fully auto-
matically without the need to reimplement any class.

JPF’s extension jpf-awt15 [12] provides a framework to
model check graphical user interfaces. In op. cit., Mehlitz
et al. replace classes of the packages java.awt and
javax.swing, which contain native methods, with model
classes. In [15] the authors show that jpf-nhandler can model
check simple computer games, including games with graphical
user interfaces, without having to develop any model classes.

In [16], Umja and the first author of this paper discuss the
extension jpf-concurrent16. In this extension, numerous classes
of the package java.util.concurrent are modelled.
Although their main aim is to improve the performance of
JPF when model checking applications that use this pack-
age, they also handle several native methods. JPF itself also
models some other classes of java.util.concurrent.
Even if we disable all these model classes, our extension jpf-
nhandler can model check Java applications that use classes
of java.util.concurrent. For example, we have suc-
cessfully model checked the Java implementation17 [4] of the
concurrent binary search tree of Ellen et al. [9].

VI. CONCLUSION

Our extension jpf-nhandler of JPF automates the handling
of native methods. It accomplishes this by automatically
delegating the execution of the native method to the host JVM.
Therefore, it automates the intertwining the model checking
of Java code and the execution of native code. In a way, jpf-
nhandler is similar to concolic execution.

As we have seen in Section II, jpf-nhandler can deal with
a large variety of native methods. However, as we pointed
out in Section IV, our extension has some limitations. In the
remainder of this section we shall outline how we plan to
address some of those limitations.

Assume that list is a List object consisting of 100,000
integers. When we use jpf-nhandler to delegate the execution
of the call list.get(0) to the host JVM, we convert
the List object list and its 100,000 elements from their
JPF representation to the corresponding JVM representation.
Obviously, this is very expensive. It is also clear that one does
not need to convert all 100,000 elements of list. In [8],
d’Amorim et al. propose a lazy translation that only converts
those parts of the objects involved that are needed in the
delegated method. This is achieved by code instrumentation
of the Java code of the delegated method. Hence, it is only
applicable to the delegation of non-native methods. We plan
to incorporate lazy translation into jpf-nhandler. Once we

15babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-awt
16babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-concurrent
17bitbucket.org/discoveri/concurrent

consider code instrumentation of the Java code of the delegated
method, we may also ensure that changes to objects and
classes made by the delegated method are reflected in JPF.

To avoid that a call to a method is delegated more than
once, we plan to use the technique developed by Artho et al.
in [2]. We intend to cache the effects of a delegated method
call. If we encounter the same call later in JPF’s verification
effort, then we simply reflect the cached effects in JPF, rather
than delegating the method call again.

As we have seen in Section II, incompatibilities between
some of JPF’s model classes and the corresponding JVM
classes limit the applicability of jpf-nhandler. The JPF exten-
sion jpf-conformance-checker18 [5], developed by Ceccarello
and the first author of this paper, checks whether a model
class of JPF is compatible with its JVM counterpart. We plan
to incorporate such a check in our Converter class to detect
incompatibilities. In case such incompatibilities are detected,
we would like to take care of them automatically, rather than
leaving it to the developer to handle them in the configuration
file.

When we set resetVMState to false and JPF modifies
an object that is stored in the maps used for conversion, the
JPF object and its JVM counterpart may get out of sync.
This discrepancy can be addressed in different ways. For
example, although expensive, one could update the JVM object
whenever it is used. To offset the cost, one could use a lazy
update strategy, similar to the above mentioned lazy translation
scheme.

As we mentioned earlier, objects are represented in JPF by
ElementInfo objects. These objects contain more informa-
tion than their corresponding JVM counterparts. Hence, in the
vocabulary of abstract interpretation [7], the JPF representa-
tions form the concrete domain and the JVM representations
form the abstract domain. The conversion from JPF represen-
tations to JVM representations is the abstraction function, and
the conversion in the opposite direction is the concretization
function. We are interested to see whether we can transfer
results from abstract interpretation to our setting.

Acknowledgements

We would like to thank Marcelo d’Amorim for providing us
with the source code of his tool described in [8] and Vladimir
Blagojevic for his help with JGroups. We are thankful to Jason
Keltz for answering our numerous questions about system
related matters. A special thanks to Peter Mehlitz for all his
help and feedback. Finally, we thank NVIDIA for providing
a GPU that we used in one of our case studies.

18bitbucket.org/nastaran/jpf-conformance-checker

10

babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-awt
babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-concurrent
bitbucket.org/discoveri/concurrent
bitbucket.org/nastaran/jpf-conformance-checker

REFERENCES

[1] David H. Ahl, editor. 101 BASIC Computer Games. DEC, 1973.
[2] Cyrille Artho, Watcharin Leungwattanakit, Masami Hagiya, and Yoshi-

nori Tanabe. Efficient model checking of networked applications. In
Richard F. Paige and Bertrand Meyer, editors, Proceedings of the 46th
International Conference on Objects, Models, Components, Patterns,
volume 11 of Lecture Notes in Business Information Processing, pages
22–40, Zurich, Switzerland, June/July 2008. Springer-Verlag.

[3] Elliot D. Barlas and Tevfik Bultan. NetStub: a framework for verification
of distributed Java applications. In R.E. Kurt Stirewalt, Alexander
Egyed, and Bernd Fischer, editors, Proceedings of the 22nd IEEE/ACM
International Conference on Automated Software Engineering, pages
24–33, Atlanta, GA, USA, November 2007. ACM.

[4] Trevor Brown and Joanna Helga. Non-blocking k-ary search trees. In
Antonio F. Anta, Giuseppe Lipari, and Matthieu Roy, editors, Proceed-
ings of the 15th International Conference on Principles of Distributed
Systems, volume 7109 of Lecture Notes in Computer Science, pages
207–221, Toulouse, France, December 2011. Springer-Verlag.

[5] Matteo Ceccarello and Nastaran Shafiei. Tools to generate and check
consistency of model classes for Java PathFinder. ACM SIGSOFT
Software Engineering Notes, 37(6):1–5, November 2012.

[6] James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn Laubach,
Corina S. Pǎsǎreanu, Robby, and Hongjun Zheng. Bandera: extracting
finite-state models from Java source code. In Carlo Ghezzi, Mehdi
Jazayeri, and Alexander L. Wolf, editors, Proceedings of the 22nd
International Conference on Software Engineering, pages 439–448,
Limerick, Ireland, June 2000. ACM.

[7] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction or ap-
proximation of fixpoints. In Robert M. Graham, Michael A. Harrison,
and Ravi Sethi, editors, Proceedings of the 4th ACM Symposium on
Principles of Programming Languages, pages 238–252, Los Angeles,
CA, USA, January 1977. ACM.

[8] Marcelo d’Amorim, Ahmed Sobeih, and Darko Marinov. Optimized
execution of deterministic blocks in Java PathFinder. In Zhiming Liu
and Jifeng He, editors, Proceedings of the 8th International Conference
on Formal Engineering Methods, volume 4260 of Lecture Notes in
Computer Science, pages 549–567, Macao, China, November 2006.
Springer-Verlag.

[9] Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel.
Non-blocking binary search trees. In Proceedings of the 29th Annual
ACM Symposium on Principles of Distributed Computing, pages 131–
140, Zurich, Switzerland, July 2010. ACM.

[10] Milos Gligoric and Rupak Majumdar. Model checking database appli-
cations. In Nir Piterman and Scott A. Smolka, editors, Proceedings
of the 19th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, volume 7795 of Lecture Notes in
Computer Science, pages 549–564, Rome, Italy, March 2013. Springer-
Verlag.

[11] Sheng Liang. The Java Native Interface: Programmer’s Guide and
Specification. Addison-Wesley, Reading, MA, USA, 1999.

[12] Peter Mehlitz, Oksana Tkachuk, and Mateusz Ujma. JPF-AWT: Model
checking GUI applications. In Perry Alexander, Corina S. Pǎsǎreanu,
and John G. Hosking, editors, Proceedings of the 26th IEEE/ACM
International Conference on Automated Software Engineering, pages
584–587, Lawrence, KS, USA, November 2011. IEEE.

[13] David Y.W. Park, Ulrich Stern, Jens U. Skakkebæk, and David L. Dill.
Java model checking. In Proceedings of the 15th IEEE International
Conference on Automated Software Engineering, pages 253–256, Greno-
ble, France, September 2000. IEEE.

[14] Robby, Matthew B. Dwyer, and John Hatcliff. Bogor: an extensible and
highly-modular software model checking framework. In Proceedings
of the 11th ACM SIGSOFT Symposium on Foundations of Software
Engineering, pages 267–276, Helsinki, Finland, September 2003. ACM.

[15] Nastaran Shafiei and Franck van Breugel. Towards model checking
of computer games with Java PathFinder. In Proceedings of the 3rd
International Workshop on Games and Software Engineering, pages 15–
21, San Francisco, CA, USA, May 2013. IEEE.

[16] Mateusz Ujma and Nastaran Shafiei. jpf-concurrent: an extension of
Java PathFinder for java.util.concurrent. In Proceedings of the Java
Pathfinder Workshop, Lawrence, KS, USA, November 2011.

[17] Willem Visser, Klaus Havelund, Guillaume Brat, Seungjoon Park, and
Flavio Lerda. Model checking programs. Automated Software Engineer-
ing, 10(2):203–232, April 2003.

[18] Willem Visser, Klaus Havelund, Guillaume P. Brat, and Seungjoon
Park. Model checking programs. In Proceedings of the 15th IEEE
International Conference on Automated Software Engineering, pages 3–
12, Grenoble, France, September 2000. IEEE.

11

	Introduction
	Application of jpf-nhandler
	Allocating an Object
	Manipulating Java Archive Files
	Communicating over a Network
	Exploiting Graphics Processing Units
	Querying a Database
	Scraping the Web
	Invoking Web Services
	Playing Games
	Solving Ordinary Differential Equations

	Implementation of jpf-nhandler
	Listener
	On-the-fly Native Peer Classes Generator
	Converter

	Limitations of jpf-nhandler
	Related Work
	Conclusion
	References

