
Let Numbers Point Students the Way:
Address-Based Memory Diagrams for OOP

Franck van Breugel and Hamzeh Roumani
Department of Computer Science and Engineering

York University
Toronto, Ontario, Canada

{franck, roumani}@cse.yorku.ca

ABSTRACT
We argue that the conventional approach of representing pointers
as arrows in memory diagrams may have certain limitations for
internalizing the semantics of OOP in CS1/CS2. We introduce a
new set of memory diagrams that are based on addresses rather
than arrows. We show how these diagrams can be applied to
reason about object manipulation in a variety of settings, from the
simple one-component case to multiclass applications involving
inheritance, aggregation, and arrays.

Categories and Subject Descriptors
K.3.2 [Computer and Education]: Computer and Information
Science Education – Computer science education.

General Terms
Languages.

Keywords
Memory diagram; reference; address; CS1; OOP; Computer
science education.

1. INTRODUCTION
 A picture is worth a thousand words and a good diagram can be a
powerful tool to learn complex ideas. For a diagram to be “good”,
however, it must not only enable the teacher to convey ideas, it
must also provide a mental framework in which the student can
reason about the ideas and answer self-posed questions. The key
to success here is abstraction: the diagram should hide details
deemed irrelevant. If the abstraction captures the correct details, it
enables the student to internalize the material and empowers her

to apply it to new situations. But if the abstraction hides relevant
details then it may limit the student’s ability to reason about
certain aspects of OOP in terms of the diagram.

One area in which diagrams can be extremely powerful is the
conceptual foundation of OOP. In particular, understanding the
difference between an object and an object reference is a
threshold concept for the student: Get it right, and everything falls
into place; get it wrong, and object manipulation becomes likes
magic: assignments of object references, equality of objects,
passing or returning an object, all become unrelated concepts
rather than manifestations of the same idea. Because of this, most
CS1 textbooks like, for example, [1,5,6] use diagrams of one sort
or another to explain the difference between an object and an
object reference. And although the usage of diagrams in textbooks
tends to be ad hoc, it invariably relies on representing the
reference and the object as floating shapes connected by an arrow
that emanates from the reference and ends at the object. In an
attempt to develop such memory diagrams in a uniform and
consistent way, Holliday and Luginbuhl [3,4] introduce several
types of shapes, e.g. rectangle, oval, diamond, rectangle-in-oval,
etc., to represent a larger set of entities. They capture instantiation
and invocation using different arrow shapes, e.g. straight, wavy,
and double arrows. Nevertheless, the abstraction theme of all
these works remains the same: a two dimensional plane represents
memory, geometrical shapes represent entities (e.g. objects and
references), and arrows connote pointing at an object or invoking
a method.

It is our conjecture that this abstraction omits relevant details;
namely, the value of references. We rely on these values when we
argue that two variables are equal, and we use it to reason about
parameter passing. When an abstraction omits the value and
replaces it with an artifact such as an arrow, one can no longer
appeal to the student’s preexisting knowledge, such as the
intuitive notion of equality. We therefore believe that the notion
of a memory address must survive the abstraction process and be
captured in the diagrams. To demonstrate this, we introduce new,
address-based, memory diagrams and then compare their
pedagogical roles with conventional ones.

We introduce our address-based memory diagrams in Section 2
and apply them in Section 3. Section 4 and 5 demonstrate that our
diagrams can be used in complicated multiclass applications
involving inheritance, aggregation, and multi-dimensional arrays.
In Section 6 we present a comparison between our address-based
diagrams and arrow-based ones.

2

2. DIAGRAM TYPES
Suppose that there is a class named Square and a class named
Client that uses it. The situation is depicted in Fig. 1 using a
standard UML diagram. Square has two static (underlined)
features: a private attribute count to keep track of the number of
times the class has been instantiated and a corresponding public
accessor getCount(). We will use this scenario as a basic
example throughout the paper.

A memory diagram provides a pictorial abstraction of a snapshot
of the memory used by a Java application at some point during its
execution. We depict memory as a sequence of blocks each of
which has an address, an arbitrary yet unique non-negative
integer. As the application executes, and depending on the
encountered statements, new blocks may get allocated and
existing blocks may get updated or de-allocated. There are three
types of blocks: class, object, and invocation.

2.1 Class Blocks
A class block is allocated when a class name is first encountered
and is never de-allocated thereafter. For example, a class block is
allocated when the name Square is first encountered in the
main method of Client. In our model, the "cover story" is that
a class block is thought to contain all the static attributes of the
class along with their values, the class constructors, and all the
methods of the class (whether static or not). Not all these features,
however, need to be included in the diagram. As in UML class
diagrams, one chooses what to include based on the level of
details that needs to be revealed. A minimal class block contains
only a title compartment, as shown in Fig. 2 for the Square class
using the (arbitrary) memory address 200.

If additional details need to be exposed then additional compart-
ments are added as needed, exactly as in UML. For example, Fig.
3 shows the same class block but with three additional com-

partments for the static attribute count and its value 0; the
constructor; and the three methods.

2.2 Object Blocks
An object block is allocated whenever an object is created and is
de-allocated when that object is orphaned. This block is thought
to contain the state of the object, i.e. the non-static attributes and
their corresponding values. Again, the level of details exposed in
the diagram depends on the situation being analyzed. For
example, if all we know is that an instance of Square has been
created, we draw a diagram similar to the one shown in Fig. 4. It
shows that an object block has been allocated at address 300.

On the other hand, the execution of the statement:

new Square(3);

will trigger the allocation of the object block of Fig. 5.

2.3 Invocation Blocks
An invocation block is allocated when a method is invoked and is
de-allocated when that method returns. It is thought to contain all
the parameters of the method along with their values and all the
local variables of the method along with their values. Note that
for non-static methods, the parameters include the implicit
parameter this (the value of which is the address of the object
on which the method was invoked). Note also that the level of
details exposed in invocation blocks depends on the concern (or
role): Clients can only see the method parameters whereas imple-
menters can also see its local variables. We will see examples of
this type of block in the next section.

Figure 5. An object block with state.

300 Square object

side 3

Figure 3. A class block with three compartments.

200 Square class

count 0

Square(int)
compareTo(Square): int
getCount(): int
toString(): String

Figure 2. A minimal class block for Square.

200 Square class

Square

+ compareTo(Square): int
+ getCount(): int
+ toString(): String

- count: int
- side: int

+ main(): void

Client

Figure 1. UML of the basic example.

Figure 4. A minimal object block.

300 Square object

3

3. AN APPLICATION
Suppose that the main method of Client contains the
following code fragment:

1 int length = 3;
2 Square first;
3 first = new Square(length);
4 Square second = first;
5 second = new Square(5);
6 int flag = first.compareTo(second);

How does a student reason about this fragment and internalize the
role of each of its statements? The diagram in Fig. 6 depicts
memory when execution reaches the end of Line 2. Since an
application always starts by invoking main, we have an invoca-
tion block at address 100 (for example). The invocation block
shows the local variables of main and their values. When Line 1
is executed, a local variable length is declared and is initialized
to 3. Line 2 declares first but does not initialize it, and hence,
the diagram leaves its value blank. Furthermore, Line 2 is where
we first encounter the Square class name, and this leads us to
allocate a class block for it at address 200, for example, with the
count attribute initialized to 0.

Next, let us reason about the next two lines in the fragment, Line
3 and 4, and amend the memory diagram as shown in Fig. 7. The
right-hand side of Line 3 creates an object so we allocate an
object block with state (side = 3) at address 300. The
assignment in that line assigns the address of the created object to
the object reference first so we can now fill in the blank value
of that reference and write 300. The creation of the object also
leads to incrementing the count attribute in the class block at
200. Line 4 declares a new object reference but does not create an
object. Hence, no new blocks are allocated and we simply copy
the value of first (i.e. 300) to second. Note that the model
leaves no doubt in the mind of the student as to the difference
between the object reference and the object at which it points.

Fig. 8 is drawn after executing the next two lines of the fragment,
Line 5 and 6, but just before the method compareTo(Square
other) returns. The new operator in Line 5 leads to the creation
of the object block at address 500 as shown. And the assignment
in that line would then replace the value of second with 500. At
that point no value has yet been assigned to flag, and that is
why it is left blank in the figure. The invocation block at 600

assigns 300 (the value of first) to the implicit parameter this
and 500 (the value of second) to the parameter other. Note
how the invocation block models call-by-value: the client’s
variables first and second are not in the invocation block,
only their values are. Note that once compareTo returns and
Line 6 gets executed, the invocation block at 600 will be de-
allocated and the flag variable will pick up a value.

100 Client.main invocation

length
first
second
flag

3
300
500

200 Square class

count 2

300 Square object

side 3

500 Square object

side 5

600 compareTo invocation

this
other

300
500

Figure 8. Memory just before compareTo returns.

100 Client.main invocation

length
first
second

3
300
300

200 Square class

count 1

300 Square object

side 3

Figure 7. The memory model after Line 4.

100 Client.main invocation

length
first

3

200 Square class

count 0

Figure 6. The memory model after Line 2.

4

4. INHERITANCE AND AGGREGATION
In this section we show how multiclass applications can be
captured in our diagrams. Consider the class ColoredSquare
that encapsulates a colored square by extending the Square
class. The situation is depicted in the UML diagram in Fig. 9. We
see that the subclass features a (private) color attribute, provides a
public accessor for that attribute, and overrides the toString
method of its superclass.

Suppose now that the main method of a client of these classes
contains the following code:

 1 int x = 7;
 2 Color c = Color.RED;
 3 Square s = new ColouredSquare(x, c);
 4 System.out.println(s.toString());

That ColoredSquare aggregates Color is readily handled by
our blocks. For inheritance, we extend our class and object
blocks. To that end, we adopt the same approach used, for
example, by javadoc, to create an API document (see Fig. 10): the
non-static features of the superclass are appended, without
duplication, to those of the subclass1. Hence, the methods
compartment of the class block at 2100 lists the methods of
ColoredSquare followed by the non-static methods of its
superclass except for toString (since it is overridden).

1 Static features are treated differently in our diagrams than in

javadoc since they are not depicted in the subclass block.

Similarly the object block at 2200 lists the state of the subclass
(color) followed by that of the parent (side). The invocation
block at 2500 represents an invocation of a toString method
on the object at 2200. As the diagram shows this object is a
ColoredSquare object. Hence, the toString method being
invoked resides in the class block at 2100. Because of the way the
class block is constructed, and because toString appears in the
first method compartment of the class block, it is the toString
method defined in the ColoredSquare class that gets invoked,
rather than the one in Square.

Figure 9. UML for Section 4.

Square

+ compareTo(Square): int
+ getCount(): int
+ toString(): String

- count: int
- side: int

ColoredSquare

+ getColor(): Color
+ toString(): String

- color: Color

java::awt::Color

+ RED: Color

1200 Client.main invocation

x
c
s

7
1600
2200

1500 Color class

1600 Color object

2000 Square class

count 1

Square(int)

compareTo(Square): int
getCount(): int
toString(): String

2100 ColoredSquare class

ColoredSquare(int,Color)

getColor(): Color
toString(): String

compareTo(Square): int

2200 ColoredSquare object

color 1600

side 7

2500 toString invocation

this 2200

Figure 10. Memory just before toString returns.

5

5. ARRAYS
Our model can also handle arrays of multiple dimensions. As an
example, consider the following code fragment:

 1 Square[][] matrix = new Square[3][2];
 2 matrix[0][1] = new Square(5);

The corresponding diagram is shown in Fig. 11. The array object
block has an attribute length plus as many attributes as there
are elements. Uninitialized elements default to a value appropriate
for the type, which is null for class types.

6. RELATED WORK
In this section we compare our diagrams with those based on
arrows. Fig. 12 is based on the work of [3,4] but it typifies all the
memory diagrams that we have seen in the literature.

A student looks at this figure and asks a legitimate question:

“What is the value of first?”

There does not seem to be a convincing answer to this question. If
the answer is “The value is the arrow”, then first and second
cannot be equal since there are two different arrows in the
diagram. And if the answer is “The value is the object”, then this
blurs the very distinction that the diagram was meant to assert,
namely, that the object and the reference are two different entities.
And although the answer “The reference does not really have a
value” may be tempting, in OOP languages such as Java
references do have values [2, Section 4.3.1]. This seems to leave
only one answer: “The value is the endpoint of the arrow”, but
this requires that we reason about and manipulate arrows,
something new to students, rather than reasoning about and
manipulating numbers, something students already know.
Contrast all these answers with the one derived from our version
of the same diagram, Fig. 7: “The value is 300”.

7. CONCLUSION
We presented a new type of memory diagrams characterized by
simplicity, intuitiveness, and endurance. The model is simple
because it upholds the premise that every variable has a value,
and hence, enables the treatment of all variables on equal footing
in assignment and parameter passing. It is intuitive because it
leverages the student’s understanding and/or familiarity with API
documents, UML, and computer memory. And as we showed, it
can be applied to simple as well as complex scenarios involving
multiple, inter-related classes. We think it is important that a
model endures and scales across courses and we believe ours
does. We are exploring the usage of its invocation blocks to
reason about recursion, stack frames, and multithreading in CS2
and the O/S course.

8. REFERENCES
[1] Cohoon J. and Davidson J. Java 5.0 Program Design: an

introduction to programming and object-oriented design,
McGraw-Hill, 2006.

[2] Gosling, J., Joy, B., Steele, G., Bracha, G. The Java
Language Specification, Third Edition, Addison-Wesley,
2005.

[3] Holliday, M. and Luginbuhl, D. CS1 Assessment Using
Memory Diagrams. In Proceedings of the SIGCSE Technical
Symposium on Computer Science Education, ACM Press,
2004, 200-204.

[4] Holliday, M. and Luginbuhl, D. Using Memory Diagrams
When Teaching Java-Based CS1, In Proceedings of the 41st
Annual ACM Southeast Conference, ACM Press, 2003, 376-
381.

[5] Horstmann C. Java Concepts, John Wiley & Sons, 2005.
[6] Wu, C. T. An Introduction to Object-Oriented Programming

with Java, McGraw-Hill, 2006.

Figure 12. An arrow-based equivalent to Fig. 7.

3
side

Square

second

first

Figure 11. Memory diagram for a 2-D array.

10 Client.main invocation

matrix 40

20 Square class

30 Square object

side 5

40 Square[][] object

length
0
1
2

3
50
null
null

50 Square[] object

length
0
1

2
null
30

