
Reduction Techniques for Distributed Applications

May 18, 2015

In this section, we explain two different reduction techniques to reduce the state space
of distributed multithreaded applications. These techniques are exploited in our work. One
technique (Section 1) is a slight modification of a reduction technique presented by Godefroid
in [1, Section 2]. This reduction technique by Godefroid reduces the state space of a system
consisting of a single process that has multiple threads. These threads are assumed to be
deterministic. We apply a similar technique to a system with multiple processes (Section
2). We also show that applying such a technique on the state space of a distributed system
preserves deadlocks and assertion violations.

Moreover, we propose a partial order reduction technique for distributed systems (Sec-
tion 3). Our technique relies on the fact that each process has its own local data which is not
shared with any other processes in the system. We show that applying our POR algorithm
on a system, which is constructed by the former reduction technique, allows for detecting
deadlocks. We use the persistent set technique of Godefroid [2] to prove the correctness of
our algorithm. Using this technique, we show that in each state, our algorithm explores a
sufficient subset of all possible transitions leading out of the state, preserving deadlocks.

The reduction techniques are presented in general settings. In the last section (Section
??), we specialize these techniques to JPF. We show that JPF applies the reduction tech-
nique of Godefroid [1] for model checking single process Java applications which preserves
deadlocks and assertion violations. Moreover, we show that applying our POR algorithm
within JPF allows for detecting global deadlocks in distributed Java applications.

1 Reduction of Single Process Systems

Consider a system consisting of a single process composed of a set Φ of threads. The system
is modeled by a transition system TS. The transition system is a tuple (S,Act, Lab,−→, β, s0)
such that

• S is a set of states,

• Act is a set of actions,

• −→⊆ S × Lab× S is the transition relation,

• Lab is a set of transition labels,

• β : S → 2Lab is the blocking function where,

if α ∈ β(s) then 6 ∃s′ ∈ S where (s, α, s′) ∈−→, and

1



• s0 ∈ S is the initial state.

Each thread T ∈ Φ executes a sequence of actions. Each action captures an operation,
and it is uniquely identified by two elements: 1) the thread executing the action, 2) the
position of the action in the sequence executed by the thread. We define the function
τ : Act −→ Φ which given an action returns its associated thread. Consider the sequence of
actions a1a2 executed by T . Let both a1 and a2 capture the operation read x. Although
they capture the same operation, since they take different positions in the sequence, they
are referred to as two different actions. Consider the two threads T1 and T2 where each
executes the sequence of actions ab. The action a to be executed by T1 is considered to be
a different action from a executed by T2. The same applies to the action b.

The set Act of actions is partitioned into the set V of visible actions, and the set I
of invisible actions. The set Lab includes actions that can be associated with transitions,
where for the transition system TS, Lab = Act.

Instead of (s, α, s′) ∈ −→ we write s
α−→ s′. The action α is said to be enabled in the state

s, if
∃s′ ∈ S : s

α−→ s′.

When there is a need to identify the thread T which executes the transition (s, α, s′), we
use s

α−→
T
s′ in which the thread name is specified as a transition label. Note that by defining

the function τ this information is redundant, however, for the sake of readability we use the
thread as a transition label.

We use enabled(s) to denote the set of all enabled actions in s, that is,

enabled(s) = {α ∈ Lab | ∃s′ ∈ S : s
α−→ s′}.

The action α ∈ Lab is said to be blocking at s, if α ∈ β(s).
The set Φ of threads is assumed to be finite. This is expressed by Assumption 1.1.

Assumption 1.1. The set Φ is finite.

Each thread is assumed to be deterministic. At any state s, for each thread T , there is
at most one action α and state s′, where s

α−→
T
s′. This is expressed by Assumption 1.2.

Assumption 1.2. If s
α1−→
T

s1 and s
α2−→
T

s2 then α1 = α2 and s1 = s2.

A state s is called a global state if,

enabled(s) ⊆ V

We denote the set of global states by g(S).
We also assume that all actions to be executed from the initial state are visible. That

is expressed by Assumption 1.3.

Assumption 1.3. enabled(s0) ⊆ V

As a consequence, s0 ∈ g(S).
We assume that invisible actions of one thread do not have any effect on actions per-

formed by other threads.

Assumption 1.4. If s1
α1−→
T1

s2
α2−→
T2

s3 where T1 6= T2 and α1 ∈ I or α2 ∈ I then s1
α2−→
T2

s′2
α1−→
T1

s3 for some s′2 ∈ S.

2



From the transition system TS, we construct a reduced system, denoted as r(TS). The
transition system r(TS) describes the behavior of the system by its set of global states
and the transitions (sequence of actions) that take the system from one global state to
another. A transition of r(TS) is one visible action followed by a finite maximal sequence
of invisible actions performed by a single thread. The transition system r(TS) is the tuple

(g(S), Act, Lab,=⇒, β, s0) such that s
α1...αn====⇒ s′ if,

• s = s1
α1−→ s2

α2−→ · · · αn−−→ sn = s′,

• α1 ∈ V, α2 ∈ I, . . . , αn ∈ I,

• s′ ∈ g(S), and

• τ(α1) = τ(α2) . . . = τ(αn).

The set Lab ⊆ V I∗ of all possible transitions labels includes the sequences of actions that
can be associated with the transitions. The transition t ∈ Lab where t = α1 . . . αn is said
to be blocking at the state s, if α1 ∈ β(s). We use Blocked(s) to denote all the transitions
that are blocking in s, that is,

Blocked(s) = {α1 . . . αn ∈ Lab | α1 ∈ β(s)}.

Let t ∈ Blocked(s) where t = α1α2 . . . αn and α1 ∈ β(s). Towards contradiction suppose

that ∃s′ where s
t

=⇒ s′. This implies that s = s1
α1−→ s2

α2−→ · · · αn−−→ sn = s′ which contradicts
that α1 ∈ β(s). Thus, it can be concluded that if t ∈ Blocked(s), then

6 ∃s′ ∈ S where s
t

=⇒ s′.

The example illustrated in Figure 1 compares the transition systems TS and r(TS),
composed of two threads T1 and T2. The code of T1 includes the sequence of actions a1; a2,
and the code of T2 includes the sequence of actions b1; b2;. The state of the system is
composed of three variables (v, i, j) where v is shared, i is local to T1, and j is local to T2.
The initial state of the system is (−1,−1,−1). The actions a1 and b1 are visible actions
which set v to 0 and 1, respectively. The actions a2 and b2 are invisible where a2 sets i to
1, and b2 sets j to 1. Figure 1(a) illustrates the transition system TS, whereas Figure 1(b)
illustrates the reduced system r(TS).

The state s ∈ S is deadlocked in TS if,

enabled(s) = ∅

In the system r(TS), t ∈ Lab is said to be enabled in the state s ∈ g(S), if

∃T ∈ Φ : ∃s′ ∈ g(S) : s
t

=⇒
T
s′

We use Enabled(s) to denote the set of all enabled actions in s, that is,

Enabled(s) = {t ∈ Lab | ∃T ∈ Φ : ∃s′ ∈ g(S) : s
t

=⇒
T
s′}

The state s ∈ g(S) is deadlocked in r(TS) if,

Enabled(s) = ∅

3



(-1,-1,-1)

(0,-1,-1) (1,-1,-1)

a1 b1

(0,1,-1)

a2

(1,-1,-1)

b1

b1

(1,1,1)

(1,1,-1)

a2

(1,-1,1)

b2

b2 a2

(0,-1,-1)

a1

(1,-1,1)

b2

(0,1,-1)

a2

(0,-1,1)

b2

(0,1,1)

b2 a2

a1

(-1,-1,-1)

(0,1,-1)

a1 a2

(1,1,1)

b1 b2

(1,-1,1)

a1 a2

(0,1,1)

b1 b2

(a) (b)

Figure 1: Comparing the transition systems (a) TS and (b) r(TS) for a system composed of two threads
with actions a1; a2 and b1; b2, where a1 and b1 are visible and a2 and b2 of the actions are invisible

Note that in our model, states at which the system terminates are also identified as deadlock
states. Since these final states can easily be identified, we do not distinguish between final
and deadlocked states. This simplifies our model and the proofs that follow, without any
loss of generality.

It can be shown that r(TS) preserves deadlocks and assertion violations which are
reachable from s0 in TS. This is captured by the theorems presented next. First, we
present Lemma 1.1, which is used to prove these two theorems. This lemma implies that
any global state which is reachable from s0 in TS is also reachable from s0 in r(TS).

Lemma 1.1. Let s1
α1−→
T1

s2
α2−→
T2
· · · αn−−→

Tn
sn+1 and s1, sn+1 ∈ g(S). Let αr(1), · · · , αr(m)

be the subsequence of α1, · · · , αn of visible actions. Then s1 = s′1
t1===⇒

Tr(1)
s′2

t2===⇒
Tr(2)

· · · tm===⇒
Tr(m)

s′m+1 = sn+1 for some s′1, · · · , s′m+1 ∈ g(S) and ti ∈ αr(i)I∗.

Proof. Note that to prove this lemma we use Assumption 1.4. We prove this lemma by
induction on the number m of visible actions in α1, . . . , αn.

• Base case: m = 1. Since s1 ∈ g(S), enabled(s1) ⊆ V . As a consequence α1 ∈ V .
Therefore, α2, . . . , αn ∈ I.

Next, we show that Ti = T1 for all 2 ≤ i ≤ n. Towards a contradiction, let j be
the smallest index in [2, n] such that Tj 6= T1. Since αj ∈ I, we can conclude from

Assumption 1.4 that s1
αj−→
Tj

s′2
α1−→
T1
· · ·

αj−1−−−→
T1

sj+1 for some s′2, . . . , s′j ∈ S. Hence,

αj ∈ enabled(s1). But this contradicts that s1 ∈ g(S).

Combining the above, we get that s1
α1...αn====⇒
T1

sn+1.

• Inductive step: let m > 1. Since αr(1) is the first visible action, as in the base case,
α1 = αr(1). Note that αr(2) is the second visible action in α1, . . . , αn. Let r(2) = k.
As in the base case, we can show that Ti = T1 for all 2 ≤ i < k. Let ` be the smallest

4



index in the interval [k, n+1] such that either enabled(s`) = ∅ (in which case ` = n+1)
or s`

α−→
T1

s for some α ∈ V and s ∈ S. Note that such an ` exists, since sn+1 ∈ g(S).

Let i be the number of invisible actions performed by T1 in αk+1, . . . , α`−1. Let αf(1),
. . . , αf(i) be the subsequence of αk+1, . . . , α`−1 of invisible actions performed by T1.
Let αg(1), . . . , αg(`−k−i−1) be the subsequence of αk+1, . . . , α`−1 of the remaining
actions. We will prove that

sk
αf(1)−−−→
T1
· · ·

αf(i)−−−→
T1

s′k+i
αk−→
Tk

s′k+i+1

αg(1)−−−→
Tg(1)

· · ·
αg(`−k−i−1)−−−−−−−→
Tg(`−k−i−1)

s` (1)

for some s′k+1, . . . , s′`−1 ∈ S by induction on i.

– The base case, i = 0, is trivial.

– Let i > 0. Using Assumption 1.4, we can conclude

sk
αf(1)−−−→
T1

s′k+1
αk−→
Tk
· · ·

αf(1)−1−−−−−→
Tf(1)−1

· · ·
αf(1)+1−−−−−→
Tf(1)+1

· · ·
α`−1−−−→
T`−1

s`

for some s′k+1, . . . , s′`−1 ∈ S. By induction,

s′k+1

αf(2)−−−→
T1
· · ·

αf(i)−−−→
T1

s′k+i
αk−→
Tk

s′k+i+1

αg(1)−−−→
Tg(1)

· · ·
αg(`−k−i−1)−−−−−−−→
Tg(`−k−i−1)

s`

for some s′k+2, . . . , s′`−1 ∈ S. Hence, (1) immediately follows.

Next, we will show that s′k+i ∈ g(S) by showing that enabled(s′k+i) ⊆ V . From the
choice of ` and the construction of the subsequence αf(1), . . . , αf(i) we can conclude

that if s′k+i
α−→
T
s where T = T1 then α ∈ V . Let T 6= T1. Towards a contradiction,

assume that s′k+i
α−→
T
s for some s ∈ S and α ∈ I. Again using Assumption 1.4, we can

conclude that s1
α−→
T
s′ for some s′ ∈ S. This contradicts that s1 ∈ g(S). Therefore

s′k+i ∈ g(S).

From the above we can conclude that s1
t1===⇒

Tr(1)
s′k+i for some s′k+i ∈ g(S) and

t1 ∈ αr(1)I
∗. By induction, s′k+i = s′2

t2===⇒
Tr(2)

s′3
t3===⇒

Tr(3)
· · · tm===⇒

Tr(m)

s′m = sn+1 for

some s′2, · · · , s′m ∈ g(S) and tj ∈ αr(j)I
∗ for 1 < j ≤ m. Hence, s1 = s′1

t1===⇒
Tr(1)

s′2
t2===⇒

Tr(2)
s′3

t3===⇒
Tr(3)

· · · tm===⇒
Tr(m)

s′m = sn+1 for some s′1, · · · , s′m ∈ g(S) and tj ∈ αr(j)I∗ for

1 ≤ j ≤ m.

Corollary 1.1 can be directly derived from Lemma 1.1.

Corollary 1.1. If s1
α1−→
T1

s2
α2−→
T2
· · · αn−−→

Tn
sn+1 and s1, sn+1 ∈ g(S) then s1 ⇒∗ sn+1.

Theorem 1.1. All deadlocked states which are reachable from s0 in TS are also deadlocked
states, reachable from s0, in r(TS).

5



Proof. Note that to prove this theorem we use Assumption 1.4 and 1.3. Consider that the
state s reachable from s0 in TS is deadlocked. According to the definition of a deadlocked
state, we have enabled(s) = ∅. Therefore, enabled(s) ⊆ V which implies that s is a global
state, that is, s ∈ g(S). According to Corollary 1.1 and Assumption 1.3, since s is reachable
from s0 in TS, it is also reachable from s0 in r(TS). Since enabled(s) = ∅, Enabled(s) = ∅.
Therefore, s is a deadlocked state in r(TS).

Theorem 1.2 captures the converse case. To prove this theorem, we need to assume that
each thread cannot do a sequence of infinitely many invisible actions.

Assumption 1.5. If si
αi−→
T

si+1 for all i ∈ N then for all n ∈ N there exists m > n such

that αm ∈ V .

The following lemma is also needed to prove Theorem 1.2. As we will show next, from
any state we can reach a global state by doing only invisible actions.

Lemma 1.2. For all s1 ∈ S there exists s1
α1−→
T1

s2
α2−→
T2
· · · αn−−→

Tn
sn+1 where α1, . . . , αn ∈ I

and sn+1 ∈ g(S).

Proof. Note that to prove this lemma we use Assumption 1.1, 1.4, and 1.5. Consider the
following algorithm.

s← s1
while s 6∈ g(S) do

pick α ∈ I, s′ ∈ S and T ∈ Φ such that s
α−→
T
s′

s← s′

end while

Note that if s 6∈ g(S), then enabled(s) 6⊆ V . Hence, we can find α ∈ I, s′ ∈ S and T ∈ Φ
such that s

α−→
T
s′. If the algorithm terminates, then the lemma obviously holds.

Towards a contradiction, assume that the algorithm does not terminate. Then for all
i ∈ N, there exist si ∈ S, αi ∈ I and Ti ∈ Φ such that si

αi−→
Ti

si+1. Since the set Φ is finite,

one thread, say T , takes infinitely many transitions. Let (Tf(i))i∈N be the subsequence of
the transitions taken by thread T . Let (Tgn(i))i∈N be the subsequence obtained by removing
Tf(1), . . . , Tf(n−1) from (Ti)i∈N.

Next, we show that for each n ∈ N there exists a sequence (sn,i)i∈N such that

• sn,1 = s1,

• for all 1 ≤ i < n, sn,i
αf(i)−−−→
Tf(i)

sn,i+1

• for all i ≥ n, sn,i
αgn(i−n+1)−−−−−−−→
Tgn(i−n+1)

sn,i+1

by induction on n. Note that this contradicts Assumption 1.5.

• Base case: n = 1. We simply take s1,i = si for all i ∈ N.

• Inductive step: let n > 1. We define for all 1 ≤ i ≤ n− 1, sn,i = sn−1,i. Let j be such

that sn−1,j
αf(n−1)−−−−−→
Tf(n−1)

sn−1,j+1. Then for all n − 1 ≤ i < j, sn−1,i
αgn−1(i−n+2)

−−−−−−−−→
Tgn−1(i−n+2)

sn−1,i+1

6



and Tgn−1(i−n+2) 6= T . Hence, according to Assumption 1.4, there exist sn,i, for

n ≤ i ≤ j, such that sn−1,n−1
αf(n−1)−−−−−→
Tf(n−1)

sn,n and sn,i
αgn−1(i−n+1)

−−−−−−−−→
Tgn−1(i−n+1)

sn,i+1 for all n ≤ i ≤ j

and sn,j
αgn−1(j−n+1)

−−−−−−−−−→
Tgn−1(j−n+1)

sn−1,j+1. For all i > j, define sn,i = sn−1,i. The sequence

(sn,i)i∈N satisfies the properties by construction.

Theorem 1.2. All deadlocked states which are reachable from s0 in r(TS) are also dead-
locked states, reachable from s0, in TS

Proof. To prove this theorem, we need Assumption 1.1, 1.4, and 1.5. Suppose that s ∈ g(S)
is a deadlocked state reachable from s0 in r(TS). It is clear that s is reachable from s0 in
TS through the same sequence of actions. Now we need to show that s is also a deadlocked
state in TS.

Since s is a deadlocked state in r(TS), Enabled(s) = ∅. Towards contradiction, assume

that s is not a deadlocked state in TS which implies that enabled(s) 6= ∅. Hence, s
α0−→
T0

s1

for some T0 ∈ Φ, α0 ∈ Lab, and s1 ∈ S. According to Lemma 1.2, there exists

s1
α1−→ s2

α2−→ . . .
αn−1−−−→ sn where α1, . . . , αn−1 ∈ I and sn ∈ g(S).

Moreover, according to Corollary 1.1, since s, sn ∈ g(S), and there exists a path from s to
sn, then s ⇒∗ sn. However, this contradicts that s is a deadlocked state in r(TS). Thus
enabled(s) = ∅.

Consider the system TS which can only perform the following sequence of transitions

s0
a1−→
T1

s1
a2−→
T2

s2
b1−→
T1

s3
b2−→
T2

s4

where a1, a2 ∈ V and b1, b2 ∈ I. Note that Assumption 1.4 is not satisfied. The following
sequence of transitions in r(TS) reaches a deadlock.

s0
a1=⇒
T1

s1
a2=⇒
T2

s2 6=⇒

Hence, without Assumption 1.4, Theorem 1.1 may not hold.
Consider the system TS which can only perform the following sequence of transitions

s0
a1−→
T1

s1
a2−→
T2

s1

where a1 ∈ V and a2 ∈ I. Note that Assumption 1.5 is not satisfied. Since Enabled(s0) = ∅,
the state s0 is deadlocked in r(TS). However, s0 is not a deadlock in TS, since enabled(s0) =
{a1}. Hence, without Assumption 1.5, Theorem 1.1 may not hold.

In our model, an assertion is defined as an action assert(A), where A ⊆ S. The set A
consists of those states in which the assertion holds. In TS, the assertion A is said to be
violated in s ∈ S, if

assert(A) ∈ enabled(s) ∧ s /∈ A

In r(TS), the assertion A is said to be violated in s ∈ g(S), if there exists t =
assert(A); a1; . . . ; an, t ∈ Lab such that

t ∈ Enabled(s) ∧ s /∈ A

7



In our model, it is assumed that the action assert(A) is visible which is expressed by
Assumption 1.6.

Assumption 1.6. assert(A) ∈ V

Moreover, we assume that invisible actions cannot affect assertion results. This is ex-
pressed by Assumption 1.7

Assumption 1.7. If s
α−→
T

s′ where α ∈ I and assert(A) ∈ enabled(s) then assert(A) ∈
enabled(s′) and s ∈ A iff s′ ∈ A

The assert(A) action can be thought of as an evaluation of variables whose values cannot
be changed by invisible actions.

Theorem 1.3. If there is an assertion, A, violated in a state reachable from s0 in TS, then
there is a state reachable from s0 in r(TS) at which A is violated.

Proof. Note that to prove this lemma we use Assumption 1.1, 1.4, 1.6, 1.7, and 1.5. Suppose
that s is a reachable state from s0 in TS where an assertion A is violated. Then there is

a thread T ∈ Φ where s
assert(A)−−−−−−→

T
s′ for s /∈ A and some s′ ∈ S. From Lemma 1.2 we can

conclude that
s = s1

α1−→
T1

s2
α2−→
T2
· · · αn−−→

Tn
sn+1 (2)

where α1, . . . , αn ∈ I and sn+1 ∈ g(S). From Assumption 1.7, since assert(A) ∈ enabled(s1)
then assert(A) ∈ enabled(sn+1) and since s /∈ A then sn+1 /∈ A. From Corollary 1.1, since
sn+1 ∈ g(S), we can conclude that sn+1, at which A is violated, is reachable from s0 in
r(TS).

The converse is true as well. Suppose that s ∈ g(S) is a state reachable from s0
in r(TS), at which A is violated. The state s is reachable from s0 in TS through the
same sequence of actions. Since A is violated at s, s /∈ A and t ∈ Enabled(s) for some
t = assert(A); a1; . . . ; an. Therefore, assert(A) ∈ enabled(s). Since s /∈ A, the assertion A
is also violated in the state s of TS.

Consider the system TS which can perform the following sequence of transitions.

s0
a1−→
T1

s1
assert(∅)−−−−−→

T1
s2

Since s1 /∈ ∅, the assertion is violated at s1. Assume that a1 ∈ V and assert(∅) ∈ I. Note
that Assumption 1.6 is violated. Then the system r(TS) includes the following transition.

s0
a1;assert(∅)
=======⇒

T1
s2

The only state at which the assertion is violated is s1, however, s1 /∈ g(S). Hence without
Assumption 1.6, Theorem 1.3 may not hold.

Consider the system TS that performs the sequence of transitions

s0
a1∈V−−−→
T1

s1
a2∈I−−−→
T1

s2

where a1 ∈ V and a2 ∈ I. Assume that

assert(∅) /∈ enabled(s0) ∧ assert(∅) ∈ enabled(s1) ∧ assert(∅) /∈ enabled(s2)

8



Note that Assumption 1.7 is violated. The system r(TS) includes the following transition.

s0
a1;a2
===⇒
T1

s2

An assertion is violated at s1 and there is no state of r(TS) at which the assertion is
violated. Hence without Assumption 1.7, Theorem 1.3 may not hold.

Consider the system TS that performs the infinite sequence of transitions

s0
assert(∅)−−−−−→

T1
s1

a1−→
T1

s2
a2−→
T1

. . .

where ai ∈ I. Note that Assumption 1.5 is violated. Since this sequence never reaches a
global state, it does not belong to the system r(TS). That implies Enabled(s0) = ∅. There-
fore, the assertion A is not violated in r(TS). Hence, without Assumption 1.5, Theorem 1.3
may not hold.

2 Reduction of Distributed Systems

Consider a distributed system composed of a set of (multithreaded) processes. Let the set Φ
of threads include all threads in the system regardless of which process they belong to. The
behavior of such a distributed system can be captured by a single process system composed
of the set Φ of threads which can be modeled by the transition system TS. Therefore,
we can use the reduced system r(TS) to model the distributed system which allows for
detecting deadlocks and assertion violations. Note that the distributed system is required
to satisfy Assumption 1.2-1.5, otherwise there is no guarantee that deadlocks and assertion
violations are preserved by r(TS).

Let P denote a set of (multithreaded) processes. The set P of processes is assumed to
be finite. This is expressed by Assumption 2.1.

Assumption 2.1. The set P is finite.

We use Φp to denote the finite set of threads that belong to the process p ∈ P . These
sets are disjoint. That is expressed by Assumption 2.2.

Assumption 2.2. If p1 6= p2 then Φp1 ∩ Φp2 = ∅

When it comes to distributed systems, two different types of deadlocked states can be
distinguished: globally deadlocked states and locally deadlocked states. The definition for
deadlocked states, given in Section 1, represents globally deadlocked states. In globally
deadlocked states, the entire system is prevented from progressing, whereas in locally dead-
locked states one process is prevented from progressing. Next we formalize the definition of
locally deadlocked states.

We use enabled(s, p) to denote the set of all enabled actions in s ∈ S which belong to
the process p ∈ P , that is,

enabled(s, p) = {α ∈ lab | ∃T ∈ Φp : ∃s′ ∈ S : s
α−→
T
s′}

We use a definition similar to enabled(s, p) for the set Enabled(s, p), which denotes the set of
all enabled transitions in s ∈ g(S) which belong to the process p ∈ P , except Enabled(s, p)
is defined over the relation =⇒ instead of −→.

Enabled(s, p) = {t ∈ Lab | ∃T ∈ Φp : s′ ∈ g(S) : s
t

=⇒
T
s′}

9



A state s′ ∈ S is said to be reachable from s if there exists a finite execution fragment

s = s1
α1−→
T1

s2
α2−→
T2
· · · αn−−→

Tn
sn = s′.

Let reach(s) denote the set of all states reachable from s in TS which also includes s. That
is, reach(s) is the smallest set R ⊆ S such that

• s ∈ R, and

• if s′ ∈ R and s′
α−→
T
s′′ for some α ∈ lab and T ∈ Φ then s′′ ∈ R.

For TS, we say that the process p ∈ P is deadlocked in s ∈ S if,

∀s′ ∈ reach(s) : enabled(s′, p) = ∅.

The state s represents a locally deadlocked state. Once s is reached, the threads of process
p cannot execute any actions, regardless of the executions of other processes in the system.

We use a definition similar to reach(s) for the set Reach(s), which denotes the set of
all states reachable from s in r(TS), except Reach(s) is defined over the relation =⇒ instead
of −→. For r(TS), we say that the process p ∈ P is deadlocked in s ∈ g(S) if,

∀s′ ∈ Reach(s) : Enabled(s′, p) = ∅.

Theorem 2.1. For any state reachable from s0 in TS in which the process p is deadlocked,
there exists a state in r(TS) reachable from s0 in which p is deadlocked.

Proof. Note that to prove this theorem we use Assumption 1.4, 1.5, and 1.1. Suppose that
the process p is deadlocked in the state sn ∈ S which is reachable from s0 in TS. This
implies

s0
α1−→
T1

s1
α2−→
T2

s2 · · ·
αn−−→
Tn

sn

where for each state s ∈ reach(sn), enabled(s, p) = ∅. According to Lemma 1.2, there exists
a state, sn+m ∈ g(S) reachable from sn, that is

s0
α1−→
T1

s1
α2−→
T2

s2 · · ·
αn−−→
Tn

sn
αn+1−−−→
Tn+1

sn+1 · · ·
αn+m−−−−→
Tn+m

sn+m

Any state s which is reachable from sn+m in TS where sn+m
αn+m−−−−→
Tn+m

· · · αn+m+l−−−−−→
Tn+m+1

sn+m+l = s

is also reachable from sn through the path

sn
αn−−→
Tn

sn
αn+1−−−→
Tn+1

sn+1 · · ·
αn+m−−−−→
Tn+m

sn+m · · ·
αn+m+l−−−−−→
Tn+m+1

sn+m+l = s.

This implies,
reach(sn+m) ⊆ reach(sn) (3)

Since sn+m ∈ g(S), according to Corollary 1.1, s0 ⇒∗ sn+m. It is obvious that for any state
s reachable from sn+m in r(TS), there exists a path (consisting of the same sequence of
actions) from sn+m which reaches s in TS. That implies,

Reach(sn+m) ⊆ reach(sn+m) (4)

From (3) and (4), it can be concluded that Reach(sn+m) ⊆ reach(sn). Therefore for all
s ∈ Reach(sn+m) we have enabled(s, p) = ∅ which also implies Enabled(s, p) = ∅. Thus
sn+m is a state of r(TS) in which p is deadlocked.

10



Thus we have shown that for any state s in TS in which p is deadlocked, there is a
state in r(TS) in which p is deadlocked. Now we show the reverse of Theorem 2.1 which is
captured by Theorem 2.2.

Theorem 2.2. For any state reachable from s0 in r(TS) in which the process p is dead-
locked, there exists a state in TS reachable from s0 in which p is deadlocked.

Proof. Note that to prove this theorem we use Assumption 1.1, 1.4, and 1.5. Suppose
that the process p is deadlocked in the state s ∈ g(S). This implies that for each state
s′ ∈ Reach(s), Enabled(s′, p) = ∅.

Towards contradiction suppose that in TS, p is not deadlocked in s. Therefore, there
exists a state sn where sn ∈ reach(s) and enabled(sn, p) 6= ∅, that is,

s = s1
α1−→
T1

s2 · · ·
αn−1−−−→
Tn−1

sn
αn−−→
Tn

sn+1 where Tn ∈ Φp

Without loss of generality, assume that sn is a first such state in the execution fragment
s1 →∗ sn. As a consequence, Ti 6= Tn for all 1 ≤ i < n. One possibility is that αn ∈ I.
According to Assumption 1.4, this implies that αn ∈ enabled(s). But this contradicts that
s ∈ g(S). Another possibility is that αn ∈ V . According to Lemma 1.2, there exists

sn+1
αn+1−−−→
Tn+1

sn+2
αn+2−−−→
Tn+2

· · · αn+m−1−−−−−→
Tn+m−1

sn+m where αn+1, . . . , αn+m−1 ∈ I and sn+m ∈ g(S).

Therefore, there exits the fragment s = s1
α1−→
T1

s2 · · · sn
αn−−→
Tn

sn+1
αn+1−−−→
Tn+1

· · · αn+m−1−−−−−→
Tn+m−1

sn+m.

Let αr(1), · · · , αr(k) be the subsequence of α1, · · · , αn+m−1 of visible actions and αn = αr(j)

for some j. According to Lemma 1.1, since s1, sn+m ∈ g(S) then s1 = s′1
t1===⇒

Tr(1)
s′2

t2===⇒
Tr(2)

· · · tk===⇒
Tr(k)

s′k+1 = sn+m for some s′1, · · · , s′k+1 ∈ g(S) and tl ∈ αr(l)I∗ for 1 ≤ l ≤ k. This

implies that there exists s′i ∈ g(S) and ti ∈ αnI∗ in s1 ⇒∗ sn+m where ti ∈ Enabled(s′i, p).
According to the definition of Reach(s), since s1 ∈ Reach(s) then s2 ∈ Reach(s), and

hence, by induction si ∈ Reach(s). However, this contradicts that p is deadlocked at s in
the system r(TS).

3 Partial Order Reduction Algorithm

In this section, we explain our POR technique that reduces the transition system r(TS).
Before presenting our technique, we introduce some definitions and notations used through-
out the remainder of this section. We partition the set V of visible transitions in TS into
the set Vl of locally visible actions, which involve interactions between threads of a single
process, and the set Vg of globally visible actions, which involve interactions between threads
that belong to different processes. We assume that these sets are disjoint. This is expressed
by Assumption 3.1.

Assumption 3.1. Vl ∩ Vg = ∅

We also assume that only globally visible actions can be blocking. This is expressed by
Assumption 3.2.

Assumption 3.2. β(s) ⊆ Vg

11



Algorithm 1 Partial Order Reduction Algorithm

1: Initialize: stack ← ∅; visited← ∅; p← process;
2: push(s0, p) onto stack;
3: while stack 6= ∅ do
4: pop(s, p) from stack;
5: if s /∈ visited then
6: add to s in visited;
7: for all t ∈ Branch(s, p) do

8: < ssucc, p >←< s′, p′ > where s
t

=⇒
T
s′ and T ∈ Φp′ ;

9: push(ssucc, p) onto stack;
10: end for
11: end if
12: end while

In r(TS), we distinguish between different types of transitions. Let s
t

=⇒
T
s′, where

T ∈ Φp. The transition t is said to be a local transition of p if t ∈ VlI
∗. We use Lp to

denote the set of all local transitions of p. The transition t is said to be a global transition
if t ∈ VgI∗. We use Gp to denote the set of all global transitions of p.

We define the predicate BlockedG(s, p) for a state s and process p, where BlockedG(s, p)
verifies to true iff there exist t ∈ Gp and

s = s1
t1=⇒
T1

s2
t2=⇒
T2
· · · tn−1

===⇒
Tn−1

sn

such that,

• T1, . . . , Tn−1 6∈ Φp,

• t ∈ Blocked(s), and

• t ∈ Enabled(sn, p).

We need the predicate BlockedG(s, p) to identify if at the state s there exists a blocking
transition of the process p which is waiting on other processes in order to make progress.

In the remainder of this section, first, we describe our POR algorithm (see Algorithm 1).
It adapts the persistent-set selective search of Godefroid presented in Figure 1.4 of [2]. We
show that in any state our algorithm explores a persistent set of transitions. Then, using
Theorem 4.3 of Godefroid in [2], we conclude that our algorithm can detect deadlocks.

Our POR algorithm starts from the initial state s0 in r(TS). The set visited is used
to keep track of visited states. The variable process represents one of the processes in
the system. In a way, at s0, p ∈ P is randomly set to one of the processes in the sys-
tem. At any other state s 6= s0, where s ∈ g(S), p ∈ P represents the process whose
thread takes a transition discovering s. In any state reached by the algorithm, it computes
the set Branch(s, p) ⊆ Enabled(s), and it continues searching the state space from the
transitions in Branch(s, p) only. The set Branch(s, p) for a state s ∈ g(S) is defined as
below.

if Enabled(s, p) 6= ∅ and Enabled(s, p) ⊆ VlI∗ and ¬BlockedG(s, p) then
Branch(s, p)← Enabled(s, p)

12



else
Branch(s, p)← Enabled(s)

end if

We say that s is a process-local state of p if,

Enabled(s, p) 6= ∅ ∧ Enabled(s, p) ⊆ Lp ∧ ¬BlockedG(s, p)

If the state s is not a process-local state, then s is referred to as a system-global state. In
process-local states, the algorithm explores the transitions of only the current process. In
system-global states, the algorithm explores the transitions of all processes in the system.

In our approach, we compute an approximation of BlockedG(s, p), which is denoted
by ApproxBlockedG(s, p). If there exists a transition t ∈ Gp where t ∈ Blocked(s),
then ApproxBlockedG(s, p) is evaluated as true, otherwise it is evaluated as false. Our
approach implies that if ApproxBlockedG(s, p) = false, then Block(s, p) = false, and
for ApproxBlockedG(s, p) = true, BlockedG(s, p) can be evaluated as true or false.
By evaluating ApproxBlockedG(s, p) to true, where BlockedG(s, p) = false, the algo-
rithm uses a system-global state where a process-local state can be used. Therefore,
ApproxBlockedG(s, p) is considered a conservative approximation of BlockedG(s, p).

Below we define the notation of independence of transitions, adapted from Definition
3.1 in [2]. Using this notion, we later show that our algorithm preserves certain properties.

Definition 3.1. Let t1 and t2 be two transitions of r(TS). The transitions t1 and t2 are
said to be independent in r(TS) if for any s ∈ g(S) the two following properties hold:

• if s
t1=⇒
T
s′, then t2 ∈ Enabled(s) iff t2 ∈ Enabled(s′), and

• if t1, t2 ∈ Enabled(s), then there exists a unique state s′′ where s
t1=⇒
T1

s′1
t2=⇒
T2

s′′ and

s
t2=⇒
T2

s′2
t1=⇒
T1

s′′.

In our model, we assume that local transitions of one process are independent from the
transitions taken by any other process in the system. This is expressed by Assumption 3.3.

Assumption 3.3. If t1 ∈ Lp1 and t2 ∈ Lp2 ∪ Gp2 where p1 6= p2 then t1 and t2 are
independent.

Before we discuss the correctness of the algorithm, below, we provide the definition of
persistent set taken from Definition 4.1 in [2].

Definition 3.2. A set γ of transitions in a state s is persistent in s iff, for all nonempty
sequences of transitions

s = s1
t1=⇒
T1

s2
t2=⇒
T2
· · · tn−1

===⇒
Tn−1

sn
tn=⇒
Tn

sn+1

from s in r(TS) and including only transitions ti /∈ γ, 1 ≤ i ≤ n, tn is independent in sn
with all transitions in γ.

To prove that our algorithm perform a persistent-set selective search, we need show that
the set of transitions, explored by Algorithm 1 in any state s ∈ g(S), is a persistent set
in s, and that set is nonempty if there is a transition enabled in s. Theorem 3.1 shows
that the set of transitions explored at states are persistent. To prove this theorem we use
Assumption 3.4.

13



Assumption 3.4. If s1
t1=⇒
T1

s2
t2=⇒
T2

. . . sn
tn=⇒
Tn

sn+1 where tn 6∈ Enabled(si), Tn ∈ Φp, and

Ti 6∈ Φp for 1 ≤ i < n then tn ∈ Blocked(s1).

Theorem 3.1. For any state s ∈ g(S) and process p ∈ P , the set Branch(s, p) of transitions
explored by Algorithm 1 is a persistent set in s.

Proof. For a system-global state s, Branch(s, p) is set to Enabled(s). Therefore, there is

no nonempty sequence of transitions s = s1
t1=⇒
T1

s2
t2=⇒
T2
· · · tn=⇒

Tn
sn+1 which includes only

ti /∈ Branch(s, p) for 1 ≤ i ≤ n. Therefore, according to Definition 3.2, Branch(s, p) is a
persistent set in s.

Now we show that, at a process-local state s of the process p, the set Branch(s, p) is
persistent in s. Towards contradiction, we assume that Branch(s, p) is not a persistent set
in s. Then, according to Definition 3.2, there exists a nonempty sequence of transitions

s = s1
t1=⇒
T1

s2
t2=⇒
T2
· · · tn−1

===⇒
Tn−1

sn
tn=⇒
Tn

sn+1 (5)

such that:

(a) t1, t2, ..., tn /∈ Branch(s, p).

(b) tn in (5) is dependent with some transition t ∈ Branch(s, p) in sn.

Without a loss of generality, suppose (5) is a shortest such a sequence. Now we show that
such a sequence cannot exist. Since s is a process-local state,

Branch(s, p) = Enabled(s, p) (6)

First we show that for all 1 ≤ i ≤ n,

Enabled(s, p) = Enabled(si, p) (7)

by induction on i.

• Base case: i = 1, which is trivial.

• Inductive step: let i > 1. We assume that (7) holds in si−1, that is,

Enabled(s, p) = Enabled(si−1, p). (8)

Then we show that (7) holds in si, that is, Enabled(s, p) = Enabled(si, p).

According to (a), ti−1 /∈ Branch(s, p), which according to (6), implies that ti−1 /∈
Enabled(s, p). Therefore, according to (8), ti−1 /∈ Enabled(si−1, p). That implies
ti−1 ∈ Lp′ ∪ Gp′ where p′ 6= p. Since s is a process-local state, Enabled(s, p) ⊆ Lp,
and hence, Enabled(si−1, p) ⊆ Lp. Therefore, according to Assumption 3.3, ti−1 is
independent from any transition t ∈ Enabled(si−1, p). Therefore, from Definition 3.1,
we can conclude that for any t ∈ Enabled(si−1, p), t ∈ Enabled(si, p). Hence,

Enabled(si−1, p) ⊆ Enabled(si, p). (9)

Towards a contradiction, suppose that Enabled(si−1, p) 6= Enabled(si, p). There-
fore, there exists a transition t′, where t′ ∈ Enabled(si, p), but t′ /∈ Enabled(si−1, p).

14



Therefore, according to Definition 3.1, t′ and ti−1 are dependent. As shown above,
ti−1 ∈ Lp′ ∪ Gp′ where p′ 6= p, and since t′ ∈ Enabled(si, p), then t′ ∈ Lp ∪ Gp.
Therefore, since t′ and ti−1 are dependent, from Assumption 3.3, we can conclude
that ti−1 ∈ Gp′ and t′ ∈ Gp.
Since t′ /∈ Enabled(si−1, p), according to (8) t′ /∈ Enabled(s, p). Moreover, since
t′ ∈ Enabled(si, p), by showing that T1, · · · , Ti−1 /∈ Φp, according to Assumption 3.4,
we can conclude t′ ∈ Blocked(s).

It is shown above that Ti−1 /∈ Φp. Towards a contradiction, suppose that there exists
Tk ∈ Φp where 1 < k < i − 1. According to (8), since tk ∈ Enabled(sk, p) then
tk ∈ Enabled(s, p). However, this contradicts (a). Therefore, we can conclude that
t′ ∈ Blocked(s). Since t′ ∈ Gp, this implies that BlockedG(s, p) = true. This is a
contradiction, i.e., since s is a process local state, BlockedG(s, p) = false. Hence,
such t′ does not exist, and

Enabled(si, p) ⊆ Enabled(si−1, p). (10)

Therefore, from (9) and (10), we can conclude that (7) holds in the state si.

Next we show that tn ∈ Enabled(sn, p). Towards contradiction, suppose tn ∈ Lp′ ∪Gp′
where p′ 6= p. Since s is a process-local state, according to Algorithm 1, Branch(s, p) ⊆ Lp.
Therefore, according to Assumption 3.3, tn is independent from any t ∈ Branch(s, p).
However, that contradicts (b). Thus, tn ∈ Enabled(sn, p). From (7), this implies tn ∈
Enabled(s, p). Hence, from (6), tn ∈ Branch(s, p). This contradicts our initial assumption
(a).

Theorem 3.1 shows that our algorithm performs a selective search through r(TS), and
in each state s reached by a process p, explores a set Branch(s, p) of enabled transitions
that is persistent.

Since the empty set is a persistent set, we need to show that the set Branch(s, p) com-
puted by the algorithm becomes empty if and only if Enabled(s) = ∅. For Enabled(s) = ∅, it
is clear that Branch(s, p) = ∅. Towards a contradiction, consider that for the state s where
Enabled(s) 6= ∅, Branch(s, p) = ∅. One possibility is that s is a local state of the process p.
Therefore, Branch(s, p) = Enabled(s, p) which implies that Enabled(s, p) = ∅. However,
this is a contradiction, since for a local state s, our algorithm requires that Enabled(s, p) 6= ∅.
Another possibility is that s is a global state. Therefore, Branch(s, p) = Enabled(s) which
implies that Enabled(s) = ∅. However, that contradicts our initial assumption. Thus,
Branch(s, p) = ∅ iff Enabled(s) = ∅.

The following theorem captures Theorem 4.3 by Godefroid, presented in [2]. According
to this theorem our algorithm preserves deadlocks reachable from s0 in r(TS). Note that
the system, on which the algorithm is applied, is required to satisfy Assumption 1.2-3.3,
otherwise there is no guarantee that global deadlocks are detected by Algorithm 1.

Theorem 3.2. Let s ∈ g(S) be a globally deadlocked state which is reachable from s0 in
r(TS). Then s is reached from s0 by Algorithm 1.

References

[1] Patrice Godefroid. Model checking for programming languages using Verisoft. In Pro-
ceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 174–186, Paris, France, January 1997. ACM.

15



[2] Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent Systems -
An Approach to the State-Explosion Problem, volume 1032 of Lecture Notes in Computer
Science. Springer, 1996.

16


	Reduction of Single Process Systems
	Reduction of Distributed Systems
	Partial Order Reduction Algorithm

