
A Wait-Free Queue with
Polylogarithmic Step Complexity

Hossein Naderibeni Eric Ruppert

June 21, 2023

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



Queues: Breaking Linear-Time Bottleneck

Problem: implement linearizable, lock-free FIFO queue
shared by p processes
use single-word CAS (reasonable-sized words)
support multiple enqueuers, dequeuers

Many previous solutions for this problem.

All require Ω(p) steps per operation
→ Real obstacle to scalability

Our New Queue
O(log p) steps per ENQUEUE

O(log2p + log q) steps per DEQUEUE (q = size of queue)
wait-free

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



Queues: Breaking Linear-Time Bottleneck

Problem: implement linearizable, lock-free FIFO queue
shared by p processes
use single-word CAS (reasonable-sized words)
support multiple enqueuers, dequeuers

Many previous solutions for this problem.

All require Ω(p) steps per operation
→ Real obstacle to scalability

Our New Queue
O(log p) steps per ENQUEUE

O(log2p + log q) steps per DEQUEUE (q = size of queue)
wait-free

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



Queues: Breaking Linear-Time Bottleneck

Problem: implement linearizable, lock-free FIFO queue
shared by p processes
use single-word CAS (reasonable-sized words)
support multiple enqueuers, dequeuers

Many previous solutions for this problem.

All require Ω(p) steps per operation
→ Real obstacle to scalability

Our New Queue
O(log p) steps per ENQUEUE

O(log2p + log q) steps per DEQUEUE (q = size of queue)
wait-free

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



Lock-Free Queue using CAS

Michael and Scott Queue [PODC 1996]

Tail Head

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



Lock-Free Queue using CAS

Michael and Scott Queue [PODC 1996]

ENQUEUE(A):
1 create new node

A

Tail Head

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



Lock-Free Queue using CAS

Michael and Scott Queue [PODC 1996]

2 CAS next pointer

ENQUEUE(A):
1 create new node

A

Tail Head

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



Lock-Free Queue using CAS

Michael and Scott Queue [PODC 1996]

3 advance Tail

2 CAS next pointer

ENQUEUE(A):
1 create new node

A

Tail Head

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



Lock-Free Queue using CAS

Michael and Scott Queue [PODC 1996]

1 CAS Head
DEQUEUE:

3 advance Tail

2 CAS next pointer

ENQUEUE(A):
1 create new node

A

Tail Head

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



CAS Retry Problem

Suppose p processes want to enqueue simultaneously.

Tail Head

one CAS of next pointer succeeds.
other ENQUEUES must try again.
⇒ starvation and Ω(p) steps per operation (amortized)

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



CAS Retry Problem

Suppose p processes want to enqueue simultaneously.

ENQUEUE(B)

A

C

D

B

ENQUEUE(A)

ENQUEUE(C)

ENQUEUE(D)

Tail Head

one CAS of next pointer succeeds.
other ENQUEUES must try again.
⇒ starvation and Ω(p) steps per operation (amortized)

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



CAS Retry Problem

Suppose p processes want to enqueue simultaneously.

ENQUEUE(B)

A

C

D

B

ENQUEUE(A)

ENQUEUE(C)

ENQUEUE(D)

Tail Head

one CAS of next pointer succeeds.
other ENQUEUES must try again.
⇒ starvation and Ω(p) steps per operation (amortized)

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



CAS Retry Problem

Suppose p processes want to enqueue simultaneously.

ENQUEUE(B)

A

C

D

B

ENQUEUE(A)

ENQUEUE(C)

ENQUEUE(D)

Tail Head

one CAS of next pointer succeeds.
other ENQUEUES must try again.
⇒ starvation and Ω(p) steps per operation (amortized)

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



CAS Retry Problem

Suppose p processes want to enqueue simultaneously.

ENQUEUE(B)

A

C

D

B

ENQUEUE(A)

ENQUEUE(C)

ENQUEUE(D)

Tail Head

one CAS of next pointer succeeds.
other ENQUEUES must try again.
⇒ starvation and Ω(p) steps per operation (amortized)

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



Other Lock-Free Queues

Other list-based queues
add elimination array [Moir et al. 2005]

baskets queue [Hoffman, Shalev, Shavit 2007]

doubly-linked list + optimism [Ladan-Mozes, Shavit 2008]

fast path, slow path [Kogan, Petrank 2012]

futures [Kogan, Herlihy 2014]

All have CAS retry problem [Morrison, Afek 2013]

So do array-based queues
All∗ previous queues take amortized Ω(p) steps per operation

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



Other Lock-Free Queues

Other list-based queues
add elimination array [Moir et al. 2005]

baskets queue [Hoffman, Shalev, Shavit 2007]

doubly-linked list + optimism [Ladan-Mozes, Shavit 2008]

fast path, slow path [Kogan, Petrank 2012]

futures [Kogan, Herlihy 2014]

All have CAS retry problem [Morrison, Afek 2013]

So do array-based queues
All∗ previous queues take amortized Ω(p) steps per operation

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



Other Lock-Free Queues

Other list-based queues
add elimination array [Moir et al. 2005]

baskets queue [Hoffman, Shalev, Shavit 2007]

doubly-linked list + optimism [Ladan-Mozes, Shavit 2008]

fast path, slow path [Kogan, Petrank 2012]

futures [Kogan, Herlihy 2014]

All have CAS retry problem [Morrison, Afek 2013]

So do array-based queues
All∗ previous queues take amortized Ω(p) steps per operation

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



∗Exceptions: Sublinear Time Queues

Restricted queues
1 enqueuer, multiple dequeuers [David 2004]

1 dequeuer, multiple enqueuers [Jayanti, Petrovic 2005]

Other primitives
O(
√

p) using unusual double-word RMW instructions
[Khanchandani, Wattenhofer 2018]

Universal constructions
O(log p) using huge words

[Afek, Dauber, Touitou 1995; Jayanti 1998]

Ω(p) with reasonably-sized words

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



∗Exceptions: Sublinear Time Queues

Restricted queues
1 enqueuer, multiple dequeuers [David 2004]

1 dequeuer, multiple enqueuers [Jayanti, Petrovic 2005]

Other primitives
O(
√

p) using unusual double-word RMW instructions
[Khanchandani, Wattenhofer 2018]

Universal constructions
O(log p) using huge words

[Afek, Dauber, Touitou 1995; Jayanti 1998]

Ω(p) with reasonably-sized words

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



∗Exceptions: Sublinear Time Queues

Restricted queues
1 enqueuer, multiple dequeuers [David 2004]

1 dequeuer, multiple enqueuers [Jayanti, Petrovic 2005]

Other primitives
O(
√

p) using unusual double-word RMW instructions
[Khanchandani, Wattenhofer 2018]

Universal constructions
O(log p) using huge words

[Afek, Dauber, Touitou 1995; Jayanti 1998]

Ω(p) with reasonably-sized words

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



Lower Bound

All previous multi-enqueuer, multi-dequeuer queues take
Ω(p) steps per operation.

For many data structures, fastest lock-free operations take
O(sequential complexity + contention) steps

Lower Bound [Attiya, Fouren 2017]

Amortized step complexity for any bag is Ω(contention).
But lower bound holds only if contention is O(log log p)

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



Lower Bound

All previous multi-enqueuer, multi-dequeuer queues take
Ω(p) steps per operation.

For many data structures, fastest lock-free operations take
O(sequential complexity + contention) steps

Lower Bound [Attiya, Fouren 2017]

Amortized step complexity for any bag is Ω(contention).
But lower bound holds only if contention is O(log log p)

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



Lower Bound

All previous multi-enqueuer, multi-dequeuer queues take
Ω(p) steps per operation.

For many data structures, fastest lock-free operations take
O(sequential complexity + contention) steps

Lower Bound [Attiya, Fouren 2017]

Amortized step complexity for any bag is Ω(contention).
But lower bound holds only if contention is O(log log p)

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



Breaking Linear-Time Bottleneck

Our New Queue
O(log p) steps per ENQUEUE

O(log2p + log q) steps per DEQUEUE

wait-free
uses CAS on reasonable-size words
bounded space version: O(log p log (p + q)) amortized
steps per operation (relies on safe GC)

p = # processes
q = # elements in queue

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



Ordering Tree

Use ordering in root as linearization

P1 P3 P4

E(A) E(B) DD

E(A) D

D

P2

E(B)

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



Ordering Tree

Use ordering in root as linearization

E(C)

P1 P3 P4

E(A) E(B) DD

E(A) D

D

P2

E(B)

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



Ordering Tree

Use ordering in root as linearization

E(C),D

E(C)

P1 P3 P4

E(A) E(B) DD

E(A) D

D

P2

E(B)

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



Ordering Tree

Use ordering in root as linearization

E(A),E(B),E(C),D

E(C),D

E(C)

P1 P3 P4

E(A) E(B) DD

E(A) D

D

P2

E(B)

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



Ordering Tree

Use ordering in root as linearization

E(A),E(B),E(C),D

E(C),D

E(C)

P1 P3 P4

E(A) E(B) DD

E(A) D

D

P2

E(B)

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



Propagating Operations to the Root

1 Append operation to your leaf
2 At each node v on path to root refresh twice:

(a) Read unpropagated operations in both of v ’s children
(b) CAS them into v

Double Refresh
If your CAS on v fails twice, then
another process has propagated your operation to v .

Avoids CAS retry problem.

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



Propagating Operations to the Root

1 Append operation to your leaf
2 At each node v on path to root refresh twice:

(a) Read unpropagated operations in both of v ’s children
(b) CAS them into v

Double Refresh
If your CAS on v fails twice, then
another process has propagated your operation to v .

Avoids CAS retry problem.

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



Propagating Operations to the Root

1 Append operation to your leaf
2 At each node v on path to root refresh twice:

(a) Read unpropagated operations in both of v ’s children
(b) CAS them into v

Double Refresh
If your CAS on v fails twice, then
another process has propagated your operation to v .

Avoids CAS retry problem.

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



Main Challenge

Refresh may have to propagate up to p operations
⇒ need an implicit representation

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



Requirements for Implicit Representation

E(A), E(B), E(C), D

E(C), D

E(C)

P1 P3 P4

E(A) E(B) DD

E(A) D

D

P2

E(B)

Must support following in polylog time
Refresh: promote batch of ops from children to parent
Find my DEQUEUE in root
Check if DEQUEUE returns null, or otherwise
determine rank of DEQUEUE among non-null DEQUEUES

Find ENQUEUE of given rank (and its argument)

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



Requirements for Implicit Representation

E(A), E(B), E(C), D

E(C), D

E(C)

P1 P3 P4

E(A) E(B) DD

E(A) D

D

P2

E(B)

Must support following in polylog time
Refresh: promote batch of ops from children to parent
Find my DEQUEUE in root
Check if DEQUEUE returns null, or otherwise
determine rank of DEQUEUE among non-null DEQUEUES

Find ENQUEUE of given rank (and its argument)

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



Requirements for Implicit Representation

E(A), E(B), E(C), D

E(C), D

E(C)

P1 P3 P4

E(A) E(B) DD

E(A) D

D

P2

E(B)

Must support following in polylog time
Refresh: promote batch of ops from children to parent
Find my DEQUEUE in root
Check if DEQUEUE returns null, or otherwise
determine rank of DEQUEUE among non-null DEQUEUES

Find ENQUEUE of given rank (and its argument)

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



Requirements for Implicit Representation

#1

E(A), E(B), E(C), D

E(C), D

E(C)

P1 P3 P4

E(A) E(B) DD

E(A) D

D

P2

E(B)

Must support following in polylog time
Refresh: promote batch of ops from children to parent
Find my DEQUEUE in root
Check if DEQUEUE returns null, or otherwise
determine rank of DEQUEUE among non-null DEQUEUES

Find ENQUEUE of given rank (and its argument)

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



Requirements for Implicit Representation

#1

E(A), E(B), E(C), D

E(C), D

E(C)

P1 P3 P4

E(A) E(B) DD

E(A) D

D

P2

E(B)

Must support following in polylog time
Refresh: promote batch of ops from children to parent
Find my DEQUEUE in root
Check if DEQUEUE returns null, or otherwise
determine rank of DEQUEUE among non-null DEQUEUES

Find ENQUEUE of given rank (and its argument)

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



Implicit Representation: Blocks

E(A), E(B), E(C), D

E(C), D

E(C)

P1 P3 P4

E(A) E(B) DD

E(A) D

D

P2

E(B)

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



Implicit Representation: Blocks

E(A), E(B), E(C), D

E(C), D

E(C)

P1 P3 P4

E(A) E(B) DD

E(A) D

D

P2

E(B)

∅ ∅

∅∅

∅

∅ ∅

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



Implicit Representation: Blocks

E(A), E(B), E(C), D

E(C), D

E(C)

P1 P3 P4

E(A) E(B) DD

E(A) D

D

P2

E(B)

∅ ∅

∅∅

∅

∅ ∅

P1 P3 P4P2

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



Implicit Representation: Blocks

E(A), E(B), E(C), D

E(C), D

E(C)

P1 P3 P4

E(A) E(B) DD

E(A) D

D

P2

E(B)

∅ ∅

∅∅

∅

∅ ∅

P1 P3 P4P2

E(C)E(A)∅ E(B) D∅ ∅D∅

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



Implicit Representation: Blocks

E(A), E(B), E(C), D

E(C), D

E(C)

P1 P3 P4

E(A) E(B) DD

E(A) D

D

P2

E(B)

∅ ∅

∅∅

∅

∅ ∅

3,2

1,22,0

P1 P3 P4P2

E(C)E(A)∅ E(B) D∅ ∅D∅

0,00,0 1,0 0,1

0,0 0,1

pointers to last subblocks in children

block in parent

not shown: approximate
pointer from subblock to

prefix sums of enqs, deqs

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



Implicit Representation: Blocks

E(A), E(B), E(C), D

E(C), D

E(C)

P1 P3 P4

E(A) E(B) DD

E(A) D

D

P2

E(B)

∅ ∅

∅∅

∅

∅ ∅

3,2

1,22,0

P1 P3 P4P2

E(C)E(A)∅ E(B) D∅ ∅D∅

0,00,0 1,0 0,1

0,0 0,1

pointers to last subblocks in children

block in parent

not shown: approximate
pointer from subblock to

0 20 root only: size of queue at end of block

prefix sums of enqs, deqs

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



Adding a Block for a Refresh

E(A), E(B), E(C), D

E(C), D

E(C)

P1 P3 P4

E(A) E(B) DD

E(A) D

D

P2

E(B)

1,22,0

3,2

P1 P3 P4P2

E(C)E(A)∅ E(B) D∅ ∅D∅

0,00,0 1,0 0,1

0,0 0,1

0 20 root only: size of queue at end of block

prefix sums of enqs, deqs

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



Tracing a DEQUEUE to the Root

E(A), E(B), E(C), D

E(C), D

E(C)

P1 P3 P4

E(A) E(B) DD

E(A) D

D

P2

E(B)

use approximate
pointers from sublocks
to parent’s block

3,2

1,22,0

P1 P3 P4P2

E(C)E(A)∅ E(B) D∅ ∅D∅

0,00,0 1,0 0,1

0,0 0,1

0 20 root only: size of queue at end of block

prefix sums of enqs, deqs

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



Check if DEQUEUE Returns Null

E(A), E(B), E(C), D

E(C), D

E(C)

P1 P3 P4

E(A) E(B) DD

E(A) D

D

P2

E(B)

When DEQUEUE occurs,

size = 0 + (3− 0) > 03,2

1,22,0

P1 P3 P4P2

E(C)E(A)∅ E(B) D∅ ∅D∅

0,00,0 1,0 0,1

0,0 0,1

0 20 root only: size of queue at end of block

prefix sums of enqs, deqs

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



Rank of DEQUEUE Among Non-Null DEQUEUES

#1

E(A), E(B), E(C), D

E(C), D

E(C)

P1 P3 P4

E(A) E(B) DD

E(A) D

D

P2

E(B)

use size = #enqs− # non-null deqs

⇒ #non-null deqs = #enqs− size3,2

1,22,0

P1 P3 P4P2

E(C)E(A)∅ E(B) D∅ ∅D∅

0,00,0 1,0 0,1

0,0 0,1

0 20 root only: size of queue at end of block

prefix sums of enqs, deqs

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



Find ENQUEUE of Given Rank

#1

E(A), E(B), E(C), D

E(C), D

E(C)

P1 P3 P4

E(A) E(B) DD

E(A) D

D

P2

E(B)

O(log p) time per level
Use pointers to last subblocks and binary search

O(log q) time
Use doubling binary search in root

3,2

1,22,0

P1 P3 P4P2

E(C)E(A)∅ E(B) D∅ ∅D∅

0,00,0 1,0 0,1

0,0 0,1

0 20 root only: size of queue at end of block

prefix sums of enqs, deqs

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



Our Result

New Wait-Free Queue
O(log p) steps per ENQUEUE

O(log2p + log q) steps per DEQUEUE

O(log p) CAS steps per DEQUEUE

Unbounded space

p = # processes
q = # elements in queue

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



Our Result

New Wait-Free Queue
O(log p) steps per ENQUEUE

O(log2p + log q) steps per DEQUEUE

O(log p) CAS steps per DEQUEUE

Unbounded space

p = # processes
q = # elements in queue

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



Bounding Space

Replace each array of blocks with a red-black tree of blocks
Periodically split RBT and discard obsolete blocks
Processes help one another to ensure blocks are obsolete

Bounded-Space Queue
Amortized O(log p log (p + q)) steps per operation
O(pq + p3log p) space
Still wait-free

p = # processes
q = # elements in queue

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity



Future Directions

Practical implementation
(perhaps slow path of fast path slow path method)
Extend technique to other data structures
(stacks and deques are recently done)
Close gap between
Ω(log log p) lower bound [Attiya Fouren 2017]
O(log2p + log q) upper bound [this work]

Hossein Naderibeni, Eric Ruppert A Wait-Free Queue with Polylogarithmic Step Complexity


