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Announcements
• TA’s will cover office hours (see web 

page for locations/times)
• Please hand in Assignment 1
• Please take a copy of Assignment 2
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Regular Operations
Pages 44-47 (Sipser)
The regular operations are:

1. Union
2. Concatenation
3. Star (Kleene Closure): For a language A,

A* = {w1w2w3…wk| k ≥ 0, and each wi ∈A}

9/24/2007 CSE 2001, Summer 2007 4

Closure Properties
• Set of regular languages is closed 

under
– Union
– Concatenation
– Star (Kleene Closure)
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Union of Two Languages

Theorem 1.12: If A1 and A2 are regular 
languages, then so is A1 ∪ A2.
(The regular languages are ‘closed’ under
the union operation.)

Proof idea: A1 and A2 are regular, hence there are 
two DFA M1 and M2, with A1=L(M1) and A2=L(M2).
Out of these two DFA, we will make a third 
automaton M3 such that L(M3) = A1 ∪ A2.
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Proof Union-Theorem (1)

M1=(Q1,Σ,δ1,q1,F1) and M2=(Q2,Σ,δ2,q2,F2)

Define M3 = (Q3,Σ,δ3,q3,F3) by:
• Q3 = Q1×Q2 = {(r1,r2) | r1∈Q1 and r2∈Q2}

• δ3((r1,r2),a) = (δ1(r1,a), δ2(r2,a))

• q3 = (q1,q2)

• F3 = {(r1,r2) | r1∈F1 or r2∈F2}
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Proof Union-Theorem (2)

The automaton M3 = (Q3,Σ,δ3,q3,F3) runs M1
and M2 in ‘parallel’ on a string w.

In the end, the final state (r1,r2) ‘knows’
if w∈L1 (via r1∈F1?) and if w∈L2 (via r2∈F2?)

The accepting states F3 of M3 are such that
w∈L(M3) if and only if w∈L1 or w∈L2, for:
F3 = {(r1,r2) | r1∈F1 or r2∈F2}.
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Closure under intersection
• Modify the previous proof.
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Concatenation of L1 and L2

Definition: L1• L2 = { xy | x∈L1 and y∈L2 }

Example: {a,b} • {0,11} = {a0,a11,b0,b11}

Theorem 1.13: If L1 and L2 are regular 
langues, then so is L1•L2.
(The regular languages are ‘closed’ under
concatenation.)
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Proving Concatenation Thm.

Consider the concatenation:
{1,01,11,001,011,…} • {0,000,00000,…}
(That is: the bit strings that end with a “1”,
followed by an odd number of 0’s.)

Problem is: given a string w, how does 
the automaton know where the L1 part
stops and the L2 substring starts?

We need an M with ‘lucky guesses’.
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Guessing machines?
• Non-deterministic Finite Automata.
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Closure under regular operations
Union (new proof):



3

9/24/2007 CSE 2001, Summer 2007 13

Closure under regular operations
Concatenation:
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Closure under regular operations
Star:
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More on regular languages
• Built up using regular operations.    
• Recall: Set of regular languages is 

closed under
– Union
– Concatenation
– Star (Kleene Closure)
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Incorrect reasoning about RL
• Since L1 = {w| w=an, n ∈ N}, 

L2 = {w| w = bn, n ∈ N} are regular,
therefore L1 • L2 = {w| w=an bn, n ∈ N} is 
regular

• If L1 is a regular language, then
L2 = {wR| w ∈ L1} is regular, and
Therefore L1 • L2 = {w wR | w ∈ L1} is 
regular
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Regular Expressions (Def. 1.52)
Given an alphabet Σ, R is a regular expression if:
(INDUCTIVE/RECURSIVE DEFINITION)

• R = a, with a∈Σ
• R = ε
• R = ∅
• R = (R1∪R2), with R1 and R2 regular expressions
• R = (R1•R2), with R1 and R2 regular expressions
• R = (R1*), with R1 a regular expression

Precedence order: *, •,∪
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Regular Expressions
• Unix ‘grep’ command: Global Regular 

Expression and Print
• Lexical Analyzer Generators (part of 

compilers)
• Both use regular expression to DFA 

conversion
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Languages corresponding to 
regular expressions
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Examples
• e1 = a ∪ b,        L(e1) = {a,b} 
• e2 = ab ∪ ba,    L(e2) = {ab,ba} 
• e3 = a*,  L(e3) = {a}* 
• e4 = (a ∪ b)*,    L(e4) = {a,b}*
• e5 = (em . en),    L(e5) = L(em) • L(en)
• e6 = a*b ∪ a*bb,    

L(e6) = {w| w ∈ {a,b}* and w has 0 or 
more a’s followed by 1 or 2 b’s}
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Thm 1.54: RL ~ RE 
We need to prove both ways:
• If a language is described by a regular expression,
then it is regular (Lemma 1.55)
(We will show we can convert a regular
expression R into an NFA M such that L(R)=L(M))

• The second part:
If a language is regular, then it can be described by
a regular expression (Lemma 1.60) 
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Regular expression to NFA
Claim:   If L = L(e) for some RE 

e, then L = L(M) for some 
NFA M

Construction: Use inductive 
definition

1. R = a, with a∈Σ
2. R = ε
3. R = ∅
4. R = (R1∪R2), with R1 and R2

regular expressions
5. R = (R1•R2), with R1 and R2

regular expressions
6. R = (R1*), with R1 a regular 

expression

a1.

2.

3.

4,5,6: similar to 
closure of RL under 
regular operations.
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Examples of RE to NFA conv. 

L = {ab,ba}
L = {ab,abab,ababab,……}
L = {w | w = ambn, m<10, n>10} 
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Back to RL ~ RE
• The second part (Lemma 1.60):

If a language is regular, then it can be 
described by a regular expression.

• Proof strategy:
regular implies equivalent DFA.
convert DFA to GNFA (generalized NFA)
convert GNFA to NFA.

GNFA: NFA that have regular expressions as 
transition labels
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Example GNFA

qS qA

01*

0

0* ∪ 11

0110

∅

ε
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Generalized NFA - defn
Generalized non-deterministic finite automaton 
M=(Q, Σ, δ, qstart, qaccept) with
• Q finite set of states
• Σ the input alphabet
• qstart the start state 
• qaccept the (unique) accept state 
• δ:(Q - {qaccept})×(Q - {qstart}) → R is the transition 
function
(R is the set of regular expressions over Σ)

(NOTE THE NEW DEFN OF δ)
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Characteristics of GNFA’s δ

• δ:(Q\{qaccept})×(Q\{qstart}) → R

The interior Q\{qaccept,qstart} is fully connected by δ
From qstart only ‘outgoing transitions’
To qaccept only ‘ingoing transitions’
Impossible qi→qj transitions are labeled “δ(qi,qj) = ∅”

qS qA
R∈RObservation: This GNFA

recognizes the 
language L(R)
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Proof Idea of Lemma 1.60

Proof idea (given a DFA M):

Construct an equivalent GNFA M’ with k≥2 states

Reduce one-by-one the internal states until k=2

This GNFA will be of the form

This regular expression R 
will be such that L(R) = L(M)

qS qA
R
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DFA M → Equivalent GNFA M’

Let M have k states Q={q1,…,qk}

- Add two states qaccept and qstart qS
q1ε

- Connect qstart to earlier q1:

qi
∅ qj- Complete missing transitions by 

qAqj ε - Connect old accepting states to qaccept

- Join multiple transitions:

qi 0
qj

1 becomes qi
0∪1 qj
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Remove Internal state of GNFA
If the GNFA M has more than 2 states, ‘rip’
internal qrip to get equivalent GNFA M’ by:
- Removing state qrip: Q’=Q\{qrip}
- Changing the transition function δ by
δ’(qi,qj) = δ(qi,qj) ∪ (δ(qi,qrip)(δ(qi,qj))*δ(qrip,qj))
for every qi∈Q’\{qaccept} and qj∈Q’\{qstart}

qi
R4∪(R1R2*R3) qjqi

R2

qjR4

qrip
R1

R3 =
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Proof Lemma 1.60
Let M be DFA with k states

Create equivalent GNFA M’ with k+2 states

Reduce in k steps M’ to M’’ with 2 states

The resulting GNFA describes a single regular 
expressions R

The regular language L(M) equals the language
L(R)  of the regular expression R
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Proof Lemma 1.60 - continued
• Use induction (on number of states of 

GNFA) to prove correctness of the 
conversion procedure.

• Base case: k=2.
• Inductive step: 2 cases – qrip is/is not on 

accepting path.

qi
R4∪(R1R2*R3) qjqi

R2

qjR4

qrip
R1

R3 =
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Recap RL = RE
Let R be a regular expression, then there exists 
an NFA M such that L(R) = L(M) 

The language L(M) of a DFA M is equivalent to
a language L(M’) of a GNFA = M’, which can
be converted to a two-state M’’

The transition qstart R→ qacceptof M’’
obeys L(R) = L(M’’) 

Hence: RE ⊆ NFA = DFA ⊆ GNFA ⊆ RE
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Example
L = {w| the sum of the bits of w is odd}

9/24/2007 CSE 2001, Summer 2007 35

Non-regular Languages §1.4

Which languages cannot be recognized by finite 
automata?

Example: L={ 0n1n | n∈N }
• ‘Playing around’ with FA convinces you that the
‘finiteness’ of FA is problematic for “all n∈N”

• The problem occurs between the 0n and the 1n

• Informal: the memory of a FA is limited by the
the number of states |Q|


