

Recap RL = RE		
Let R be a regular expression, then there exists an NFA M such that $L(R) = L(M)$		
The language $L(M)$ of a DFA M is equivalent to a language $L(M')$ of a GNFA = M', which can be converted to a two-state M''		
The transition $q_{start} \longrightarrow R \rightarrow q_{accept}$ of M'' obeys L(R) = L(M'')		
Hence: $RE \subseteq NFA = DFA \subseteq GNFA \subseteq RE$		
9/24/2007	CSE 2001, Summer 2007	33

