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Course Announcements

Announcments

Lab today and Wednesday: Template matching

Think about your project

White paper due next Monday
Next lecture we will talk about ideas
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Lecture Outline

Outline

Recap

Linear Filtering Continued

Image Pyramids

Non-linear Operators
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Recap

Recap of Last Lecture

Images are made up of pixels

Pixels have spatial location (x, y)
Pixels have an associated value, e.g. intensity

Point operators map input pixel values to new output values

Neighbourhood operators take surrounding values into account, too

Linear operators are weighted sums
Linear operator weights are stored in kernels
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More Linear Filtering

Picturing an Image as a Function

It is conceptually helpful to recognize that an image can be viewed as a
(discrete) function in two spatial dimensions, forming a surface manifold.

Image

Manifold visualization
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More Linear Filtering

The Complexity of Filter Calculations

For a kernel K with dimensions n× n and an image F of size w × h, how
many operations do we need to perform to filter F by K?

Each pixel requires n2 operations and we have wh pixels, so our total
number of filtering operations is whn2.

For big kernels, large images, or many filters, this can become a significant
strain on computational resources.
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More Linear Filtering Separable Filters

Separable Filters

Over the years a number of methods have been developed for reducing the
computational cost of image filtering. One major approach is to take
advantage of separable filters.

A filter K is separable if it can be broken into x and y components which
may be applied independently.

K = KyKx
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More Linear Filtering Separable Filters

Separable Filters

If K is size n× n, then both Kx and Ky contain n elements.

Applying Kx to F takes whn operations, and applying Ky to F takes
whn operations, for a total of 2whn
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More Linear Filtering Separable Filters

Separable Filters - Worked Example

Take a (reduced) example from previous class, first showing the
computation using the 2D kernel:

1

9

1 1 1
1 1 1
1 1 1


Kernel

18 27 54 9

45 27 72 36

63 63 27 54

45 72 27 36
Image patch
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More Linear Filtering Separable Filters

Separable Filters - Worked Example

Using zero padding, apply the kernel to the
first element:

1

9

1 1 1
1 1 1
1 1 1


0 0 0 0 0 0

0 18 27 54 9 0

0 45 27 72 36 0

0 63 63 27 54 0

0 45 72 27 36 0

0 0 0 0 0 0

Input patch

13 - - -

- - - -

- - - -

- - - -

Output patch

0

9
+

0

9
+

0

9
+

0

9
+

18

9
+

27

9
+

0

9
+

45

9
+

27

9
= 2 + 3 + 5 + 3 = 13
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More Linear Filtering Separable Filters

Separable Filters - Worked Example

Apply the kernel to the second element: 1

9

1 1 1
1 1 1
1 1 1


0 0 0 0 0 0

0 18 27 54 9 0

0 45 27 72 36 0

0 63 63 27 54 0

0 45 72 27 36 0

0 0 0 0 0 0

Input patch

13 27 - -

- - - -

- - - -

- - - -

Output patch

0

9
+

0

9
+

0

9
+

18

9
+

27

9
+

54

9
+

45

9
+

27

9
+

72

9
= 2+ 3+ 6+ 5+ 3+ 8 = 27
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More Linear Filtering Separable Filters

Separable Filters - Worked Example

And so on, until we compute our filtered
patch:

1

9

1 1 1
1 1 1
1 1 1


0 0 0 0 0 0

0 18 27 54 9 0

0 45 27 72 36 0

0 63 63 27 54 0

0 45 72 27 36 0

0 0 0 0 0 0

Input patch

13 27 25 19

27 44 41 28

35 49 46 28

27 33 31 16

Output patch

Recommended Exercise: Make sure you understand how to fill in the full
output patch on your own.
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More Linear Filtering Separable Filters

Separable Filters - Worked Example

Note that:

1

9

1 1 1
1 1 1
1 1 1

 = (
1

3

11
1

)(1
3

[
1 1 1

]
)

So our kernel can be written as:

Kx =
1

3

[
1 1 1

]
Ky =

1

3

11
1


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More Linear Filtering Separable Filters

Separable Filters - Worked Example

We take our input patch and apply Kx, then apply Ky to the output of
that calculation.

0 0 0 0 0 0

0 18 27 54 9 0

0 45 27 72 36 0

0 63 63 27 54 0

0 45 72 27 36 0

0 0 0 0 0 0

Input patch

0 0 0 0

15 33 30 21

24 48 45 36

42 51 48 27

39 48 45 21

0 0 0 0

After Kx

13 27 25 19

27 44 41 28

35 49 46 28

27 33 31 16

After Ky
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More Linear Filtering Parametric Filters

Designing Filters

Filters are used for many different types of computation over images, and
we often want to be able to adjust the behaviour of a filter to accomplish
a specific goal.

Many common filters belong to a larger filter class which allows us to
compute the specific desired filter based on a selection of parameters.
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More Linear Filtering Parametric Filters

Gaussian Filters

The Gaussian function forms the basis for a wide range of image filters.

Long history of use in signal processing

Nice mathematical properties (including separability!)

Can be parametrized by kernel dimensions and σ

Go to the Gaussian Filter section of the Steerable Filters demo.

Calden Wloka (York University) Image Representation 16 September, 2019 16 / 39



More Linear Filtering Parametric Filters

Gaussian Filters

The Gaussian function forms the basis for a wide range of image filters.

Long history of use in signal processing

Nice mathematical properties (including separability!)

Can be parametrized by kernel dimensions and σ

Go to the Gaussian Filter section of the Steerable Filters demo.

Calden Wloka (York University) Image Representation 16 September, 2019 16 / 39



More Linear Filtering Parametric Filters

Gaussian Filters

The Gaussian function forms the basis for a wide range of image filters.

Long history of use in signal processing

Nice mathematical properties (including separability!)

Can be parametrized by kernel dimensions and σ

Go to the Gaussian Filter section of the Steerable Filters demo.

Calden Wloka (York University) Image Representation 16 September, 2019 16 / 39



More Linear Filtering Parametric Filters

Gaussian Filters

The Gaussian function forms the basis for a wide range of image filters.

Long history of use in signal processing

Nice mathematical properties (including separability!)

Can be parametrized by kernel dimensions and σ

Go to the Gaussian Filter section of the Steerable Filters demo.

Calden Wloka (York University) Image Representation 16 September, 2019 16 / 39



More Linear Filtering Convolution vs. Correlation

Convolution vs. Cross-Correlation

There are two major styles of filter operation in images: convolution and
cross-correlation.

For a kernel K of dimensions 2k + 1× 2k + 1, an image F , and output G,
we compute cross-correlation as:

Gcc(x, y) =

k∑
i=−k

k∑
j=−k

K(i, j)F (x+ i, y + j)

which is often written as:

Gcc = K ⊗ F
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More Linear Filtering Convolution vs. Correlation

Convolution vs. Cross-Correlation

There are two major styles of filter operation in images: convolution and
cross-correlation.

For a kernel K of dimensions 2k + 1× 2k + 1, an image F , and output G,
we compute convolution as:

Gc(x, y) =

k∑
i=−k

k∑
j=−k

K(i, j)F (x− i, y − j)

which is often written as:

Gc = K ∗ F
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More Linear Filtering Convolution vs. Correlation

Why does it matter?

Up until now we have been relatively non-specific about which type of
filtering we use (though the order of our worked example calculations
suggests correlation). This ambiguity is possible for symmetric filters,
because then the correlation and convolution results are identical.

What sorts of filters might not be symmetric?

Next several slides adapted from Noah Snavely’s Computer Vision slides.
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More Linear Filtering Convolution vs. Correlation

Edges
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More Linear Filtering Convolution vs. Correlation

Differentiation in a Digital Image

Digital images can be treated as discrete functions. When dealing with a
discrete function, it is common to use finite differences to approximate a
differential.

For an image F (x, y), we can find the differential in the x direction by:

∂

∂x
F (x, y) ≈ F (x+ 1, y)− F (x, y)

and in the y direction:

∂

∂y
F (x, y) ≈ F (x, y + 1)− F (x, y)
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More Linear Filtering Convolution vs. Correlation

Image Gradient
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More Linear Filtering Convolution vs. Correlation

The Picture Gets Complicated by Noise
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More Linear Filtering Convolution vs. Correlation

Expanding Our Context (e.g. with Smoothing) Can Help
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More Linear Filtering Convolution vs. Correlation

Convolution is Commutative

Convolution is commutative, and our finite differences equation is a
convolution, so we can combine the smoothing and convolution into one
step.

In other words, an effective edge detector can be constructed by taking the
differential of a Gaussian.
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More Linear Filtering Steerable Filters

But Edges Have Orientations

The specific orientation of an edge and which side is light and which side
dark carries useful information.

Being able to turn a filter to reflect an arbitrary orientation is known as
steering a filter.

Go to steerable filter demo.
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More Linear Filtering Filter Normalization

Sums over Filter Weights

You may have noticed that most example filters presented so far have one
of two possible sums: 1 or 0.

Filters which sum to 1 tend to (mostly) recreate the original image

If a filter sums to more than 1 or less than 0, you increase your chance
of saturation

Filters which sum to 0 tend to look for a specific pattern or feature

If a filter sums to more or less than 0, you will respond to light or dark
regions, respectively, independent of the actual pattern
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Image Pyramids

How do we choose a kernel size?

For many of the filters we’ve already discussed (e.g. smoothing filters), the
size of the kernel really just dictates how great an effect the filter has
(although this in many ways still depends on the relative side of the filter
and the image).

For more complex filters, (e.g. looking for a specific pattern), the ability of
the filter to identify its target feature greatly depends on how well its size
matches the image size of its target.
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Image Pyramids

Humans and Scale

Human observers are remarkably robust to the spatial scale of objects.

Image Source: Zimbio.com
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Image Pyramids

Example: Template Matching

Imagine we want to identify all occurences of the letter ‘E’ in an eye chart:

Image Source: Original source unknown

E
E

E

Which kernel should we use?
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Image Pyramids

Example: Template Matching

We could build a whole bank of filter kernels at different sizes (scales) and
say that we find an ‘E’ any time one of them yields a sufficiently high
value, but this could get costly for very large kernels.

A more efficient option is to use a smaller kernel, but run it over different
sizes of the image.
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Image Pyramids

Image Pyramids

Image Source: Wikipedia

An image pyramid is a
common multiscale image
representation.

Typically formed at half
resolution steps (Why?)

Downsampling usually
involves a blurring step

Taking the difference
between pyramid layers
often yields interesting
structural features
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Non-Linear Operators

Rules Based Filtering

Sometimes we don’t want to treat all pixels as equivalently valid, and
instead want to apply nonlinear rule.

Image Source: Wikipedia

“Salt and pepper” noise is a common
form of image degredation, and
blurring will incorporate the
unwanted noise into the surrounding
pixels.

Taking the median pixel in a
neighbourhood will more effectively
remove the isolated noise peaks.
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Non-Linear Operators

Morphology

Another class of non-linear filter which is a very useful tool to have tucked
into your image processing toolkit are morphology tools.

Morphology tools are typically applied to binary images, making them very
useful for cleaning up and manipulating masks.
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Non-Linear Operators

Morphology Examples - Erosion

Erosion uses a structuring element in a kernel with the rule that a pixel is
set to 1 only if all elements under the structuring element are equal to 1,
otherwise it is set to 0.

Image Source: OpenCV Morphology Tutorial Image Source: OpenCV Morphology Tutorial
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Non-Linear Operators

Morphology Examples - Dilation

Dilation uses a structuring element in a kernel with the rule that a pixel is
set to 1 if any elements under the structuring element are equal to 1,
otherwise it is set to 0.

Image Source: OpenCV Morphology Tutorial Image Source: OpenCV Morphology Tutorial
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Non-Linear Operators

Morphology Examples - Closing

When dilation is followed by erosion, it is referred to as closing.

Image Source: OpenCV Morphology Tutorial Image Source: OpenCV Morphology Tutorial
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Non-Linear Operators

Morphology Examples - Opening

When erosion is followed by dilation, it is referred to as opening.

Image Source: OpenCV Morphology Tutorial
Image Source: OpenCV Morphology Tutorial
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Non-Linear Operators

Morphology Application Demo

Go to Morphology Demo.
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