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Course Announcements

Announcments

The schedule on the course website has been updated

A submission policy has been added to the syllabus

More suggested engineering projects have been added
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Course Announcements

A Local Conference

Mathematics of Vision Workshop
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Course Announcements

Final Thoughts from Monday

We now begin looking at directly processing and analyzing image
content

Image capture is not the focus of this course, but it is important to
be aware of the vocabulary and concepts

The more you can control your input, the easier your job will be
There are rich research questions in image capture, and it is an
industry area with high demand
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Lecture Outline

Outline

Topic Introduction

Pixels and Colour Spaces

Point Operators

Linear Filtering
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Introduction

Image Representation

Once an image is captured by a camera or otherwise obtained, we must
represent the visual content in some manner. This is most commonly in
the form of a matrix of pixels.

However, in order to analyze an image (whether computationally or as a
human observer), it is often advantageous to change or manipulate the
image representation. While sometimes these changes will be reversible,
often they are not.

Calden Wloka (York University) Image Representation 11 September, 2019 6 / 33



Pixels

The Pixel

A pixel is the basic building block of a digital image.

Image source: CIFAR10 dog3

For any given pixel p, there are a
number of important attributes
associated with it:

Coordinates, e.g. (x, y)

Value, e.g. [R,G,B]

Sometimes others, e.g. α
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Pixels

Pixel Coordinates

It is important to know the convention under which you are operating!

Image source: CIFAR10 dog3

Most common conventions follow:

The origin is in the upper left
corner

The width is the total number
of pixels in the x direction

The height is the total number
of pixels in the y direction
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Pixels

Pixel Coordinates - Rows and Columns

Unfortunately, there is not a unified standard across programming
languages for coordinate order, (x, y) or (y, x)

The convention of any one particular language or library is usually set by
whether arrays are viewed as row-major or column-major.

For the purposes of this course, note:

Mathematical notation will
follow the standard convention
of (x, y)

OpenCV indexes images as [y, x]

Pixel coordinates in OpenCV
start at [0, 0] and run to
[height− 1, width− 1]

Image source: Wikipedia
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Pixels

Pixel Value

The value a pixel has represents some sort of information. Possible image
types and data formats include:

An intensity image.

∀p, pi = si where s ∈ L.

L = [0, 255], 8-bit integer image

L = [0, 1.0], floating point image
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Pixels

Pixel Value

The value a pixel has represents some sort of information. Possible image
types and data formats include:

A binary image
(often referred to as a “mask”).

∀p, p ∈ 0, 1

All pixels from the previous image with value over
250
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Pixels

Pixel Value

The value a pixel has represents some sort of information. Possible image
types and data formats include:

A colour image.

∀p, pi = [ai, bi, ci]
where ai ∈ La, bi ∈ Lb, ci ∈ Lc

and [ai, bi, ci] correspond to specific colour
channels.
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Pixels Colour Spaces

Colour Representation

The information carried in channels a, b, c and range available to each
(La, Lb, Lc) differs depending on what model and standard is being used
to represent colour information.

The most common is 8-bit [Red, Green, Blue], with
LR = LG = LB = [0, 255]

Minor variants of RGB format include BGR or floating-point
representation (I = [0, 1.0])

CIEL*a*b* (sometimes referred to simply as “Lab” or “LAB”)

L* is the lightness value, and has range [0, 100]
a* is the green-red axis, range differs by implementation
(e.g. [−100, 100] or [−128, 127])
b* is the blue-yellow axis, has the same range as a*
Designed for perceptual-numerical equivalence

YCbCr is similar to LAB, except the design is more practical and less
based on perceptual properties.
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Pixels Colour Spaces

Colour Conversions and Grayscale

Converting from one colour space to another may or may not be reversible,
depending on whether both colour spaces have equivalent representational
power.

A common (irreversible) conversion is converting from colour to grayscale.
Note that there are many different ways to do this!

GIMP default uses the equation L = 0.21R+ 0.72G+ 0.07B

MATLAB rgb2gray and OpenCV both use the equation
L = 0.299R+ 0.587G+ 0.114B
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Pixels Colour Spaces

Visualizing Pixel Values

It is often convenient to display or process pixel channels independently,
treating each one as a grayscale image, or to treat non-luminance
information as an intensity image.

Colour Red Channel Green Channel Blue Channel
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Point Operators

Point Operator: Definition

A point operation is a an image transformation in which the output value
of a given pixel is determined solely as a function of the input pixel value
corresponding to that location (or values, if more than one input image is
used, and potentially subject to global modulation).

Converting a colour image to grayscale is an example of a point operation.
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Point Operators

Brightness Adjustment

One example operation is the adjustment of global image brightness. The
brightness adjustment operation is given by:

p′i = pi + b

where b is a constant value.
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Point Operators

Brightness Adjustment Example

Original Image b = 20 b = 40 b = 60

For dark images and reasonable values of b this can improve the perceived
quality of the image, but too large of a value can lead to over saturation
or “bleaching”.
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Point Operators

Normalization

When dealing with issues of saturation, we can re-map a range of values
which is outside our available range onto our available range.

Let Lmax be the maximum allowable value and Lmin be the minimum
allowable value for a given image representation.

To remap a set of pixel values, we first need to compute the current global
maximum, pmax, and minimum, pmin.

For each pixel in the image, we can compute its remapped value according
to the equation:

p′ = (p− pmin)
Lmax−Lmin
pmax−pmin

+ Lmin
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Point Operators

Contrast Enhancement

Contrast refers to the difference in nearby pixel values. Multiplication is
one way of manipulating contrast, because a multiplicative factor will
increase the relative difference between pixels by increasing the value of
bright pixels more than dark pixels. However, it is very easy to saturate
values with multiplication, so it is often useful to re-normalize after
applying our multiplicative gain.

Original Image No normalization Normalized
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Point Operators

Alpha Compositing

Point operations may also be used to combine information from multiple
images. One convenient tool for such a process is the α-matte.

To perform alpha compositing, we associate an additional attribute to our
pixels, α, which tells us how much of that pixel’s value we want to use.
Colour image formats which include α will sometimes be written as RGBα,
or will be referred to as including a “transparency channel”.
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Point Operators

Alpha Compositing

Given two images, Ia and Ib, with pixel formats [r, g, b, α], we can
compute an output image Io according to the equation:

p = [ro, go, bo] = αa[ra, ga, ba] + αb[rb, gb, bb]

for all p in Io.
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Point Operators

Alpha Compositing

Demo.
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Linear Filtering

Image Context

Sometimes it is not enough to look at pixels in isolation, and we instead
need to integrate information from the local surroundings in order to
interpret its value.

Point A and B are the same shade of grey.
Image Source: Adelson, 1995
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Linear Filtering

Image Context

Sometimes it is not enough to look at pixels in isolation, and we instead
need to integrate information from the local surroundings in order to
interpret its value.

Linking the squares shows that they are the same shade.
Image Source: Adelson, 1995
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Linear Filtering

Image Context

Sometimes it is not enough to look at pixels in isolation, and we instead
need to integrate information from the local surroundings in order to
interpret its value.

Removing the surrounding context makes it even more clear.
Image Source: Adelson, 1995
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Linear Filtering

Local Neighbourhoods

It is common in computer vision to take a local area around a pixel
(the pixel’s neighbourhood) and combine that information in some
way

If this combination takes the form of a weighted sum, then we refer
to this as a linear operation

Applying an operation like this is frequently referred to as filtering an
image

The specific size and weights of a given operation are usually referred
to as a kernel
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Linear Filtering

Kernel Operations

Assume we have an intensity image. Let px,y be the value of the pixel
with coordinates (x, y).

We will define a kernel K to be a 2D matrix of weights wi,j , where
(i, j) are indices in K

To apply this filter to our image, we compute the following equation:

p′x,y =
∑
i,j

wi,jpx+i,y+j
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Linear Filtering

Worked Example

1

9

1 1 1
1 1 1
1 1 1


Our kernel

18 27 54 9 81

45 27 72 36 63

63 63 27 54 36

45 72 27 36 27

9 81 45 54 54

27 63 54 36 27

Our image patch
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Linear Filtering

Image Borders

What do we do for edge pixels?

The most common numerical method is padding, where you add extra
pixels to the outer edge. But what do we pad with?

Zero-padding

Wrap

Clamp (aka replicate)

Mirror

Plus other more sophisticated heuristics
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Linear Filtering

Image Padding Examples

Image Source: Szeliski, 2011
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Linear Filtering

Some Common Kernels

 0 −1 0
−1 5 −1
0 −1 0



Sharpen kernel
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Linear Filtering

Some Common Kernels
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Gaussian blur (approximate)
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