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Course Announcements

Announcments

White papers are due today

Reminder: When you submit, follow instructions. PDF filenames
must start with your last name.

Assignment 1 is out

You can download the assignment PDF from the link in the course
schedule
Files for the programming components can be found at the bottom of
the schedule page under “Assignment Downloads”

This weeks’ labs are dedicated time for you to work on the
assignment and get help or clarifications from the TA

Please don’t ask “Is this the right answer?” - this is not what the time
is for
Use this time to make sure you understand what is being asked, and
get any help you might need with software requirements or syntax
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Course Announcements

Computing Resources - The GPUs in the Room

A number of you are looking into projects which will be easier to complete
with GPU resources, and so I wanted to mention available options.

There are ten machines in the lab with GPUs

There are options for cloud-based computing resources (an example
link here), but I can’t vouch for them
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Historical Patterns

Semantic Features Overview
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Feature History

Research Often Follows Patterns

There have been a number of cycles to computer vision. For example, the
type of data (natural vs. synthetic) which is most prevalent has switched
several times.

Synthetic data advantages:

Full control over the appearance and properties of the data

Easy to generate as much data as needed

Usually ground-truth labels can be accurately generated im tandem
with the data

Synthetic data disadvantages:

Data can be “too clean”

Important sources of natural variation might not be captured
Lack of realistic noise might lead to overfitting of features
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Feature History

Research Often Follows Patterns

Natural data advantages:

More likely to capture a wide variety of data variations

Realistic noise patterns
No need to explicitly encode all possible scenarios or data dimensions

Natural data disadvantages:

Costly and tedious to gather and annotate

Can still overfit, particularly as performance begins to saturate

Can lead to false confidence in the degree of data representation
(e.g. see the Training Humans project)
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Feature History

Patterns in Features

Just like with the style and design of computer vision data, there are
patterns in the design and approach of computer vision features.

First, some terminology:

We say that a feature or process is semantic if we can ascribe
interpretable meaning to the specific activity along its dimension

Semantic features are typically carefully designed
Examples include edges and corners

We say that a feature or process is learned if it has been set based on
some pattern in a set of training data

Learned features often are difficult to interpret on their own
Examples include features based on PCA and the features found in
deep networks
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Feature History

The Learning Creep

A very prevalent pattern in computer vision is in the balance between
semantic and learned design.
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Semantic Features

So Why Bother With Semantic Features?

If it’s possible to learn features and then learn the rules to reason over
those features, why bother studying semantic feature design?

Deep learning is data hungry and computationally intensive

While learning usually gives better overall performance, it also tends
to give more unpredictable behaviour

Some applications require explanatory traceback

Understanding how to handle features, whether learned or semantic,
is important for many fields of artificial intelligence, and semantic
features are in many ways easier to visualize and intuit
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Patches

Image Patch Features

Image patch feature detectors are sometimes also known as keypoint
detectors, and the the primary goal for these methods is to find local
patches of an image which are distinctive and which can be matched to
corresponding patches in other images.
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Patches

Applications of Keypoints

Image stitching for panoramas.

Image source: Wloka Farms fruitstand
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Patches

Applications of Keypoints

Object detection and localization.

Image source: Rublee et al., 2011
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Patches

Applications of Keypoints

As a basis for stereo or temporal correspondence, or any other application
in which correspondence between frames is desired.

Image source: Singh, Structure from Motion course material
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Patches

What Makes a Good Patch?

Patch features tend to be sparsely assigned over an image, because not all
patches are equivalently good for matching.

Image source: Szeliski, 2011
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Patches

What Makes a Good Patch?

A schematic overview of patch suitability.

Image source: Szeliski, 2011

a) The dark patch contains two uniquely angled segments and their
intersection, so may be matched to the light patch

b) The dark patch only has enough information to be matched
somewhere along the corresponding line segment (aperture problem
or barber pole illusion)

c) The dark patch has no useful information, and could be conceivably
matched to any background patch
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Patches

What Makes a Good Patch?

An example in a real image.

Top image: input

Middle row: patches extracted

Bottom row: autocorrelation
surfaces

Image source: Modified from Szeliski, 2011
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Patches

Patch cross-correlation is brittle

For some applications (such as panoramic image stitching), we can assume
minimal changes to spatial scale and object orientation while performing
patch matching.

However, as we saw in lab, template matching under even very small
changes in size or orientation often fails. We therefore would like to find
approaches to patch matching which are more robust.
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Patches

Feature Matching Method Steps

Most feature matching algorithms include two distinct steps:

1. Candidate keypoint detection

2. Keypoint descriptor calculation
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Patches

Keypoint Detection

There are a number of different ways to do this, including:

Maxima over patch autocorrelation

Difference of Gaussians (DoG)

Harris corner detection (Harris and Stephens, 1988)

FAST (Rosten and Drummond, 2006)
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Patches

Keypoint Selection

Once the keypoint detector has run, we need to decide which keypoints to
keep. Common approaches include:

Cut-off thresholding

Adaptive non-maximal suppression (ANMS - Brown, Szeliski, and
Winder, 2005)

Threshold or soft-weighting from an additional value (e.g. saliency)
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Patches

Keypoint Description

Once keypoints are found, they can be made more effective by computing
a descriptor. This is typically a high-demonsional feature vector computed
at each keypoint. The goal of a keypoint descriptor is typically to be
robust to an affine transformation (i.e., scale, rotation, reflection, and
shear), and as such includes the following aims:

High discriminability between keypoints

Rotational invariance (often done by computing a canonical
orientation for a given keypoint)

Scale invariance (often done by computing descriptor features over an
image pyramid)
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Patches

Comparing Keypoints

Once our keypoint descriptors have been computed we need to determine
a method for computing the distnace between two descriptors (a metric).
This can often be based directly on Euclidean distance, but it is sometimes
more effective to use PCA or whitening.

This metric can then be used to perform clustering over descriptor feature
space, compute nearest neighbours during matching, and other reasoning
tasks.

For large numbers of keypoints, it is often beneficial to use data
representations like a k-d tree to more efficient calculations.
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Patches

Keypoint Models

For many years keypoint detectors dominated a broad range of
applications in computer vision, and still prove useful for a number of
specific roles and areas today. Examples of keypoint detection methods
which see high use include:

Scale Invariant Feature Transform (SIFT - Lowe, 1999), and related
methods:

SURF (Bay et al., 2006)
PCA-SIFT (Ke and Sukthankar, 2004)

Gradient Location-Orientation Histogram (GLOH - Mikolajczyk and
Schmid, 2005)

Oriented FAST and Rotated BRIEF (ORB - Rublee et al., 2011)

Calden Wloka (York University) Image Representation 23 September, 2019 23 / 32



Patches

Keypoint Models

For many years keypoint detectors dominated a broad range of
applications in computer vision, and still prove useful for a number of
specific roles and areas today. Examples of keypoint detection methods
which see high use include:

Scale Invariant Feature Transform (SIFT - Lowe, 1999), and related
methods:

SURF (Bay et al., 2006)

PCA-SIFT (Ke and Sukthankar, 2004)

Gradient Location-Orientation Histogram (GLOH - Mikolajczyk and
Schmid, 2005)

Oriented FAST and Rotated BRIEF (ORB - Rublee et al., 2011)

Calden Wloka (York University) Image Representation 23 September, 2019 23 / 32



Patches

Keypoint Models

For many years keypoint detectors dominated a broad range of
applications in computer vision, and still prove useful for a number of
specific roles and areas today. Examples of keypoint detection methods
which see high use include:

Scale Invariant Feature Transform (SIFT - Lowe, 1999), and related
methods:

SURF (Bay et al., 2006)
PCA-SIFT (Ke and Sukthankar, 2004)

Gradient Location-Orientation Histogram (GLOH - Mikolajczyk and
Schmid, 2005)

Oriented FAST and Rotated BRIEF (ORB - Rublee et al., 2011)

Calden Wloka (York University) Image Representation 23 September, 2019 23 / 32



Patches

Keypoint Models

For many years keypoint detectors dominated a broad range of
applications in computer vision, and still prove useful for a number of
specific roles and areas today. Examples of keypoint detection methods
which see high use include:

Scale Invariant Feature Transform (SIFT - Lowe, 1999), and related
methods:

SURF (Bay et al., 2006)
PCA-SIFT (Ke and Sukthankar, 2004)

Gradient Location-Orientation Histogram (GLOH - Mikolajczyk and
Schmid, 2005)

Oriented FAST and Rotated BRIEF (ORB - Rublee et al., 2011)

Calden Wloka (York University) Image Representation 23 September, 2019 23 / 32



Patches

Keypoint Models

For many years keypoint detectors dominated a broad range of
applications in computer vision, and still prove useful for a number of
specific roles and areas today. Examples of keypoint detection methods
which see high use include:

Scale Invariant Feature Transform (SIFT - Lowe, 1999), and related
methods:

SURF (Bay et al., 2006)
PCA-SIFT (Ke and Sukthankar, 2004)

Gradient Location-Orientation Histogram (GLOH - Mikolajczyk and
Schmid, 2005)

Oriented FAST and Rotated BRIEF (ORB - Rublee et al., 2011)

Calden Wloka (York University) Image Representation 23 September, 2019 23 / 32



Edges

Edges

We have already talked about gradients and edge detection filters,
including steerable Gaussian derivative kernels. This section will expand
upon this topic, particularly with respect to the interpretation and
characterization of edges.
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Edges

Why Edges?

We spend a lot of time in this course talking about edges. This is because
edges often carry a lot of useful information.

Object boundary

Internal structure or components

Symbolic meaning (e.g. text)

Distinctive texture or patterns for recognition
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Edges Motivating Challenges

Semantic Edges

Some edges are more meaningful than others.

Image source: Shi et al., 2013
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Edges Motivating Challenges

Illusory Contours

Sometimes an “edge” is missing local contrast.

Image source: Kanizsa’s Triangle
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Edges Motivating Challenges

The Challenge of Shadows

Image source: Steinmetz, National Geographic, 2005
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Edges Localizing Edges

Edge vs. Gradient

Where is the edge in this picture?
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Edges Localizing Edges

Localizing an Edge

As we saw in the Image Representation 2 lecture, we can detect edges
with the spatial derivative of the image surface, and can define the
direction of that edge by the gradient:

∇f =

[
∂f

∂x
,
∂f

∂x

]

To localize the edge explicitly, we can calculate the extrema of the
derivative, which we can find by taking the second derivative:

∇ · ∇f = ∇2f

This operation is known as the Laplacian.
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Edges Localizing Edges

Laplacian of Gaussians

As we saw previously, it is helpful to combine a Gaussian kernel with the
derivative to better incorporate local context and reduce the impact of
noise on edge detection. This approach remains valid for the Laplacian,
and taking the Laplacian of a Gaussian is sometimes referred to as a LoG
filter.

As before, this can be equivalently computed using separable filters.

∇2Gσ(x, y) =
1

σ3

(
1− x2

2σ2

)
Gσ(x)Gσ(y) +

1

σ3

(
1− y2

2σ2

)
Gσ(x)Gσ(y)
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Edges Localizing Edges

Localized Edges and Further Reasoning

Once we have localized edge information, we can begin trying to link those
edge elements (sometimes referred to as edgels) into more complete
contours.

This will be explored more next class with a look at the subtopic Lines.
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